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Abstract 

Queries to part hierarchies in CAD/CAM data- 
bases (and structures with similar semantics 
found in other applications) can be fundamentally 
different from queries to sets of parts having no 
underlying structure, and they can raise dif f i- 
cult issues in query language behavior and data 
management. Including explicit geometric infor- 
mat ion further complicates query processing by 
adding computational geometry to the list of 
is sues to be considered. In this paper, we 
investigate the problems of querying part hierar- 
chies and of using the special semantics associ- 
ated with such structures to improve query per- 
formance and responsiveness to user requirements. 
In particular, we show how the hierarchy and 
geometry can interact to improve query process- 
ing, and how knowledge about the behavior of 
attributes stored in the hierarchy can be used to 
choose appropriate levels of detail for query 
output. 
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1. Information Model 

A basic data structure frequently found in 
databases for computer aided design and computer 
aided manufacturing (CAD/CAM) applications is 
some form of bill-of-materials (BOM). This 
structure defines the component parts and 
subassemblies that make up each product being 
designed or manufactured (an assembly is a part 
that is composed of other parts). The classic 
BOM structure has a schema of the form: 

------------------------- 
PART 1 PARTID 

1 COST I <<--- 
I WEIGHT I 
1 MANUFACTURER I I SUBPARTS 
1 SHAPE I ----- 
------------------------- 

where each record represents a different m of 
part (e.g., a pump, bolt, or wing). Some 
integrated CAD/CAM database designs attempt to 
combine this data with geometric data, and 
separate records for each distinct instance of a 
given part (since different instances may differ 
in their geometric position and connectivity to 
other parts) to provide a more complete physical 
model of the product. 

We refer to this general class of data 
structures (including the original BOM structure) 
as part hierarchies, because the basic relation- 
ship shown is hierarchical and has “part of” 
semantics. 

An interesting feature of such structures is 
that frequently attributes are stored in the 
structure whose semantics “parallel” those of the 
part-of relationship itself. For example, the 
part-of relationship implies such things as phy- 
sical inclusion (of geometry -- i.e., a component 
part’s geometry is physically within the geometry 
of its containing assembly), as well as other 
types of “dominance” (e.g., weight -- a component 
part’s weight is a component of its containing 
assembly’s weight > . Moreover, such structures 
are not confined to CAD/CAM applications. Exam- 
ples of other applications exhibiting similar 
structures include: 
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- Data about geographic features wherein each 
level down the hierarchy represents more 
detailed information about the components of a 
given feature. Examples of features might be 
continents, countries within them or specific 
features such as cities that include industrial 
plants, that in turn include particular build- 
ings, etc. Values of attributes such as 
geometry (area) or population preserve the 
“part of” semantics of the hierarchy. 

- Work breakdown structures, in which each task 
has resources such as people or time. A sub- 
task has a subset of those resources. 

Queries to part hierarchies can be fundamen- 
tally different from queries to sets of parts 
having no underlying structure, and they can 
raise difficult issues in query language behavior 
and data management. Even queries to the basic 
BOM structure can involve computation of transi- 
tive closures [Aho & Ullman, Clemens, Zloof 1. 
fnc luding explicit geometric information further 
complicates query processing by adding computa- 
tional geometry to the list of In this paper, we 
investigate the problems of querying part hierar- 
chies, and we investigate how to use the special 
semantics associated with such Structures to 
improve query performance and responsiveness to 
user requirements. In particular, we show how 
the hierarchy and geometry can interact to 
improve query processing, and how knowledge about 
the behavior of attributes stored in the hierar- 
chy can be used to choose appropriate levels of 
detail for query output. 

2. Ouerving a Part Hierarchy 

Queries to part hierarchies can have very 
different semantics from queries to unstructured 
sets of parts. In this section, we show how 
these special semantics can be used by the DBMS 
to return query results at an appropriate level 
of detail and to reduce the amount of search it 
performs. For example, if a user queries the 
part hierarchy of an airplane for parts within 4 
feet of the instrument panel, the user probably 
does not want the query to return “airplane”, 
even though, strictly speaking, “airplane” is a 
part in the hierarchy (the root) and various 
parts of the airplane geometry are within 4 feet 
of the instrument panel. Nor is the user likely 
to want the query to return every bolt in the 
pilot’s seat; instead, the seat will often suf- 
fice to represent all its subparts. 

Specifically, we categorize predicates based 
on how the predicate result may differ between a 
part and its subparts. Using these categories, 
we describe general rules for preventing the user 
from receiving unwanted output. Turning to 
implementation issues, we discuss how the hierar- 
chy itself is an appropriate 8tructur.e for limit- 
ing the search on many queries, and we discuss a 
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general algorithm for searching part hierarchies, 
Finally , we discuss the data model implications 
of these new facilities. 

2.1 Monotonic Predicates 

Queries to a part hierarchy can be 
expressed: “Find parts P [in hierarchy HI where 
<predicate>.” The variable P ranges over parts in 
hierarchy H. Our output limitation and search 
reduction rules apply to a special class of 
predicates called monotonic predicates. The gen- 
eral idea behind the notion of monotonicity is 
that as one goes down the hierarchy, the chances 
of satisfying the predicate get better (downward 
monotonic) or worse (upward monotonic). Hence 
one need not test or display all members of the 
part hierarchy to determine the results of predi- 
cate evaluation. 

The monotonicity of a predicate is dependent 
on both the part hierarchy itself and on the 
semantics of the attribute involved. We say that 
an attribute is order preservinq (with respect to 
the hierarchy) if the value of the attribute is 
necessarily smaller for a given part than for an 
assembly that includes the part. Examples of 
order preserving attributes might be 
max dimension(P) or weight(P). We say that an 
attribute is inverse order preserving (with 
respect to the hierarchy) if the value of the 
attribute is necessarily larger for a given part 
than for an that assembly includes the part. An 
example of an inverse order preserving attribute 
might be hierarchic-depth(P). We assume that the 
DBMS can be made aware of which attributes are 
order or inverse order preserving according to 
these definitions. 

A predicate Pred is downward monotonic with 
respect to hierarchy Ii if whenever a part satis- 
fies Pred, all its descendants (subparts) satisfy 
Pred. For many purposes it is not necessary to 
return subparts of a part that satisfies a down- 
ward monotonic query. Since the number of sub- 
parts can be enormous, omitting them can greatly 
reduce the output size and search time. 

Some downward monotonic predicates (where P 
ranges over parts) are: 

1. Attribute(P) ( constant, where Attribute is 
order preserving. 

2. Attribute(P) ) constant, where Attribute is 
inverse order preserving. 

3. P is a descendent (subpart) of assembly QO 
(for any fixed QO). 

4. AND or OR of downward monotonic predicates. 

5. NOT (upward monotonic predicates). 
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6. Part P is contained in Region R (see Section 
3, Geometric Queries). 

A predicate Pred is upward monotonic with 
respect to hierarchy H if whenever a part satis- 
fies Pred, its ancestors (superparts) satisfy 
Pred. Since no additional information is con- 
veyed by returning the superparts, they can be 
omitted from the response to the user. This 
reduces the size of the output somewhat, but not 
as dramatically as with downward monotonic predi- 
cates. 

Each downward monotonic predicate above has an 
upward monotonic analog (obtained by (1) revers- 
ing the inequality, (2) testing for superpart 
rather than subpart, etc.). 

Some upward monotonic predicates are: 

1. Attribute (P) > constant, where Attribute is 
order preserving. 

2. Attribute (P) < constant, where Attribute is 
inverse order preserving. 

3. P is a superpart (ancestor of) part Q (for 
any fixed QO) . 

4. AND or OR of upward monotonic predicates. 

5. NOT (downward monotonic predicates). 

6. Part P contains Region R. 

7. Part P (contains or properly intersects) 
Region R. 

(The last two predicates are described further in 
Section 3, Geometric Queries.) 

2.2 Output Limitat ion 

A query to the part hierarchy identifies a 
set of nodes that satisfy the query predicate. 
Here we present a list of convenient rules for 
further limiting the query result. The rules 
take the form: “DO not show the descendants (or, 
less frequently, the ancestors) of parts that 
satisfy certain conditions. ” The user can 
specify how terse the output should be. This 
terseness specification determines which of the 
rules should be invoked. Usually, default rules 
are in effect. 

A two-faced predicate is one that can be 
expressed as (pred-u OR pred-d), where pred-u is 
upward monotonic and pred-d is downward mono- 
tonic. We propose the following rules for 
preventing “uninteresting” parts in the hierarchy 
from being returned in response to a query: 

Return Smallest satisfactory part: If pred is 
upward monotonic and P satisfies pred, do not 
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show ancestors of P. 

Return Largest satisfactory part: If pred is 
downward monotonic and P satisfies pred, do not 
show descendants of P. More generally , if pred 
is two-faced, do not search below parts which 
satisfy pred-d. 

Any order preserving or inverse order preserving 
attribute can be treated as a measure of a part’s 
importance (e.g., weight, maximum dimension, 
hierarchic level, cost). A part is important if 
the measure exceeds (or falls below) some thresh- 
old value. 

Return Important Parts : When the search 
encounters an unimportant part P that satisfies 
Pred, the search stops and returns P but not its 
subparts. 

Return Consistent Levels: If Pred is two-faced 
and P satisfies pred d, do not search below any 
siblings of P that satisfy pred. 

Other rules are possible. For example, 
Return Smallest could be modified to provide con- 
text information by outputting a specified number 
of levels above the smallest part returned. 
Alternately, it could be modified to suppress 
parts that were too important to be included for 
context (e.g., “airplane”). 

A particular system could choose terseness 
defaults to avoid swamping the interactive user 
with data and to give responses quickly. Because 
rules Return Largest and Return Consistent Levels 
greatly reduce the data volume, they might 
default to “on” (so they would be in force if the 
predicate is appropriate). Similarly, Return 
Important Parts might default to “on” if an 
importance threshold has been defined. 

On the other hand, Return Smallest reduces 
output volume and the search is accelerated, 
somewhat, but the user receives no context infor- 
mation. It probably should default to “off”. 

2.3 Access Structures for 
Part Hierarchy Searches 

Like the determination of appropriate query 
output, the design of access structures also can 
involve consideration of the special semant its 
implied by the part hierarchy. We consider here 
the particular case of part hierarchies in 
CAD/CAM databases that we call instance hierar- 
chies. In an instance hierarchy, each appearance 
of a part in the final product is separately 
represented. Hence one can attach information to 
instances that will identify the part globally 
( e.g., date manufactured, serial number, and 
position in the end product). 
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In an instance hierarchy, there ia a choice 
between representing a part.6 position with 
respect to its immediate ancestor, or its 
( unique) end item. The latter choice means that 
moving a large assembly may require hundreds of 
database updates for changing the positions of 
each of its component subparts, the positions of 
their components, etc. This is infeasible in an 
interactive environment. As a result, the former 
choice is common in many CAD/CAM systems 
(although in geographic systems the opposite 
choice often is made, using absolute latitude and 
longitude). 

If geometric information about a part is 
available relative only to the immediate 
superassembly, information about the global loca- 
tion of the part (with respect to the overall 
product) would have to be reconstructed by 
traversing the hierarchy. In such a case, it is 
not feasible to use spatial index structures, 
a ince these require global information. The 
hierarchy itself is the only usable search atruc- 
ture. 

The hierarchy has more levels than a B-tree, 
but the number of levels still is moderate. A 
brief analysis suggests that the search time for 
moat cases will be substantial but bearable. For 
example, consider an airplane with 100,000 parts 
in the hierarchy. Assuming that each assembly is 
composed of 10 subassemblies, the leaves are five 
levels below the root. Each of these levels 
requires accesses to one Part record (in an 
instance hierarchy), or to one Part record and a 
cluster of (contiguously stored) Part-instance 
records for that part. The search time will be 
substantial, but the alternatives are sequential 
search of the database or manual search through 
drawings. 

Use of the hierarchy as the search structure 
also facilitates application of the output limi- 
tat ion rules. If, instead, positions were stored 
relative to a top level assembly, one would then 
need a storage structure for a geometric search 
that permitted the output limitation rules to be 
applied. This problem is not addressed even by 
storage structures dea igned for searching for 
non-point objects [Guttman]. 

2.4 The Search Algorithm -- 

Our search algorithm exploits the fact that 
for any assembly only a few of its next level 
parts are likely to be needed in processing the 
query. The algorithm tries to detect two types 
of situations. The first type includes aitua- 
t ions in which no member of a aubtree can poaai- 
bly satisfy the search predicate. For example, 
it is sometimes possible to determine that no 
part of the elevator hinge satisfies the predi- 
cate “is within 3 feet of the pilot’s seat”. by 
testing the positions of higher level parts 
(e.g., “tail assembly”) that contain the elevator 
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hinge. If the tested part is not within 3 feet 
of the pilot’s seat, subparts of the tested part 
need not be individually checked. 

When a predicate is evaluated on a part P, 
the search algorithm sometimes acquires the 
answers to several questions at the same time by 
making deductions from previous teats and mono- 
tonicity. The information exploited by the query 
processor is : does P satisfy the query predicate? 
(yea/no); does any descendant of P satisfy the 
predicate? (yes/no/don’t know); do all deacen- 
danta of P satisfy the predicate? (yea/no/don’t 
know). In addit ion, when testing a two-faced 
predicate, both pred-d and pred-u are evaluated. 
This helps the algorithm detect situations in 
which an output limitation rule inhibits the 
return of subparts. 

We conceive of query processing as going on 
in two stages. First, the algorithm walks the 
part hierarchy, avoiding further search below a 
part if neither the part nor any of its deacen- 
dents could possibly appear in the output. Such 
parts are called irrelevant. The algorithm 
builds a hierarchical structure that includes all 
relevant parts, together with flags that indicate 
whether the parts seemed to satisfy the predi- 
catea. 

The nodes of the result hierarchy will 
include pointers to parts in the original hierar- 
chy, and annotations about whether the part or 
its subparts are known to satisfy the predicate 
or could possibly satisfy the query predicate (if 
the aubtree was not searched), and about whether 
an output limitation rule asserts that the node 
(or its descendants) should not be returned. 

Note that the algorithm must simultaneously 
teat all children of a part, because in Return 
Consistent Levels the decision about searching 
below one child may depend on the predicate 
result for a sibling. Also, some storage atruc- 
turea keep all the information about children 
together, so it would be desirable to use this 
information before it is paged-out. During the 
search the predicate can be modified to remove 
downward monotonic conjuncta that are satisfied 
by some child. Each relevant child node that is 
searched must be added (with annotations) to the 
result hierarchy. 

Once the result hierarchy has been produced, 
output is prepared by walking the result with the 
following restrictions. 

1. If no output limitation rules are in force, 
then walk the result hierarchy in preorder, 
printing each part that satisfies the predi- 
cate, with appropriate format. 

2. If the Return Smallest rule is in force, 
then walk the result hierarchy in postorder, 
printing parts that satisfy the predicate 
& that have not had a descendant printed. 

Singapore, August, 1984 

366 



3. If the Return Largest rule is in force, then use knowledge about hierarchies to ease declara- 
walk the result hierarchy in preorder, but tion and enforcement of integrity constraints, 
stop the downward traversal when encounter- 
ing a part that satisfies the predicate. 

such as the fact that a part hierarchy has no 
directed cycles. 

2.5 Data Model Implications -- 

Database researchers have devoted very lit- 
tle attention to defining appropriate semantics 
for queries to part hierarchies. This reluctance 
stems not from lack of user interest, but from 
the well known difficulty of using a conventional 
language to specify queries that involve 
arbitrary-length paths through a set of 
instances. In fact, [Aho and Ullman] showed that 
the query formulations in conventional languages 
(e.g., SQL, QUEL) cannot express the query “Is Pl 
descended from P2 in the hierarchy?” 

Systems implementors have provided some 
facilities for manipulating bill-of-materials 
data [Zloof I. Instead of determining level of 
detail based on properties of part hierarchies, 
this approach specifies in advance how many lev- 
els of data should be considered. A more general 
enhancement would support transitive closures as 
part of a facility for defining and manipulating 
recursively defined structures. 

The output limitation rules and query pro- 
cessing strategy we have described are based on 
monotonicity. The system components doing query 
optimization and query execution must be informed 
about monotonicity of each predicate or each 
attribute. 

As noted in Section 1, the structures in 
which our output limitation rules make sense seem 
to have two important characteristics: 

a. They involve a partially ordered set whose 
ordering relation is based on a “part-of” 
relationship. 

b. The entities in the hierarchy possess one or 
more attributes that are order preserving or 
inverse order preserving, as defined above. 

East conventional data models do not support 
an adequate indication of the recursive structure 
of the part hierarchy, or the fact that the 
hierarchic order is preserved by attributes such 
as weight, or by predicates such as “set inter- 
sect ion”. 

This suggests a study of enhanced data 
models that include declarations of part hierar- 
chies and information about order preservation. 
We have shown how this kind of knowledge can 
improve performance for queries that involve 
these hierarchies. But it would be desirable to 
more fully integrate the hierarchical and ordi- 
nary processing in a query. The DBMS also could 
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The output limitation rules can be imple- 
mented by predicates that are added at the source 
level to restrict a query’s output. The query 
processor would be augmented with strategies for 
optimizing access via such predicates. Further 
research is needed to determine how well these 
special strategies can be integrated with an 
existing query optimizer‘s cost model and exploi- 
tation of predicates. 

3. Geometric Queries_ 

Geometric queries ar,? usefu: ‘0~ returning a 
list of parts or drawings reie-,n. : to a specified 
volume of space (here called a .:.egion). They 
also may be used for interference checking and 
for general orientation when performing CAD/CAM. 
The geometric predicates we propcse support 
queries about the positions of parts relative to 
each other or to spatial regions. For example, 
one could ask: “What are all the parts in region 
R?” or ‘What are the parts that intersect the 
cross-sectional plane P?“. In addition, one 
could ask queries that combine geometric informa- 
tion (which often is available only in drawings) 
with data usually available only from a database. 
For example: “What are all the plastic parts con- 
tained in region R?” or “What are all the third- 
level assemblies in region R?“. Asking the query 
with only one kind of restriction can produce an 
unmanageably large set of parts. 

This section describes how we represent and 
manipulate the shapes (called envelopes) of parts 
and regions. It then illustrates the output lim- 
itation rules on an example query that includes 
geometric predicates. Finally, it considers the 
impact of using an approximate rather than exact 
representation of the shapes of parts. It pro- 
poses a particular approximate geometry and 
describes the effects on query processing of 
using the approximation. 

3 .l Envelopes 

Each part’s shape is represented by an 
envelope, a region expressed in the coordinate 
system of some part in the hierarchy. Each part 
m has a local coordinate system, together with 
an envelope that represents the shape of the part 
defined in that local coordinate system. This 
envelope is called the part’s basic envelope. 
Normally a part’s basic envelope is input to the 
DBMS. If the part is an assembly composed of 
other parts, its basic envelope may be either 
directly input or computed from the envelopes of 
it 6 component part 6. An envelope for a part must 
always wholly contain the part. 
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The position of a part within a next-level 
assembly is represented by the transformation 
that places the part’s basic envelope in the 
assembly’s coordinate system. In general, the 
transformation may involve translation, rotation, 
and scaling operations. 

3.2 Operations 011 Geometric EnveloDes 

An envelope is defined as an abstract data 
type. Thus the actual representation of 
envelopes is known only to the envelope type 
operators. We provide operators to: 

1. Retrieve a part’s basic envelope. 

2. Transform the coordinate system of an 
envelope (usually to the coordinate system 
of the basic envelope of another part). 

3. Return the smallest Ha-box that contains 
envelope E , in the current coordinate system 
(an xyz-box is a rectangular box whose edges 
parallel the coordinate axes). 

4. Extend an envelope by a specified distance 
along each axis. 

5. Return the distance between the closest 
points in two envelopes. 

6. Test geometric predicates on envelopes (as 
described in the next section). 

The basic manipulations of geometric objects are 
unaffected by the part hierarchy. However, the 
output limitation rules and control over change 
between different coordinate systems require 
knowledge of the hierarchy, as described in Sec- 
tion 2.3. 

Operators such as union, intersection, and 
difference, which explicitly combine envelopes to 
form a new envelope, also could be provided. 

3.3 Directional regions 

We will supply functions that implement the 
concepts “forward” and “back” (along any axis), 
in order to support queries such as “find all 
plastic parts forward of part xyz”. The user 
must specify the kind of region desired. For 
example, suppose we are defining a box to 
represent the concept of “forward” along the x 
axis from box B. One option has the resulting 
box begin at the leftmost point of B, while 
another begins at the rightmost point. Another 
choice made by the user is whether the resulting 
region “forward from B” is bounded in the y and z 
directions by the same boundaries as B, or 
whether it extends inf iaitely in those direc- 
t ions, 
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3.4 Geometric Predicates 

The geometric predicates that are supported 
are : 

1. x properly intersects (“cuts”) y (i.e., ’ x 
and y intersect, but neither is contained in 
the other). 

2. x contains y. 

3. x contained in y. 

4. x intersects y [meaning: (x properly inter- 
sects y OR x contains y) OR x is contained 
in yl. 

Note that “intersects” is two-faced. The 
parenthesized term is upward monotonic (in 
x>, while “is contained in” is downward 
monotonic. 

If x and y are envelopes in the same coordinate 
system, interpretation is straightforward. In 
other cases, the query processor must supply a 
transformation that puts the envelopes in the 
same coordinate system. 

We also allow the geometric predicates to 
use a part as an argument. In that case, the 
predicate is applied to the part’s envelope. For 
example : 

8 Find P in hierarchy H where P contains x. 

e Find P in H, I in Inventory where (P inter- 
sects xl and (P.P#=I.P#) and 
(I.quantity-in-stock < 10). 

3.5 Example of a Geometric Query 

The following query shows all parts near 
(within 6 cm) of the eject switch. 

Temp = Find parts P where P intersects 
Enclosing-envelope 
(eject-switch, 6 cm along each axis) 

Suppose the entire altimeter, a piece of the 
radio, and a piece of the pilot’s seat are within 
6 cm of the switch. Then: 

- Return Smallest prevents the return of “air- 
plane” or “cockpit”, because some smaller parts 
are being returned. 

- Return Largest means don’t search below the 
altimeter. 

- Return Consistent Levels says the radio is a 
sibling of the altimeter, so don’t search below 
the radio. 
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- Return Important Parts says the front panel of 
pilot’s seat is 
it. 

unimportant, don‘t decompose 

3.6 Use of an Approximate Geometry 

In a CAD/CAM environment, the most exact 
representations are available on paper drawings 
and on workstations that have facilities for 
solid modeling. These facilities cannot reason- 
ably be duplicated in a DBMS. In addition, we 
want the facility to be useful even with crude 
approximations entered manually. 

We find that a box provides a decent 
representation for most solid parts, even 
spheres. A part’s home coordinate system usually 
ii chosen so that some axis parallels a long 
dimension of the part. As a result, we initially 
use relatively simple envelopes to represent part 
shapes. Initially, each envelope will be a sin- 
gle rectangular box that contains the part, and 
each basic envelope will be a box whose edges 
parallel the axes of the home coordinate system 
(termed an gz-box) . 

The decision to use a box as the basic 
representation was influenced by the fact that 
eventually we may represent envelopes as sets of 
boxes. The generalized representation would per- 
mit an assembly to be represented as the union of 
the boxes of its components. The representation 
of a part could be refined to any desired accu- 
racy, and one could implement intersection and 
difference of sets of boxes (oriented along the 
same set of axes). If necessary, a tilted box 
could be replaced by an xyz-box that enclosed it 
and that had axes parallel to the axes of the 
current coordinate system. A box can be 
displayed along any of its axes. 

Other reasonable representations include 
xyz-boxes from a fixed set of sizes, spheres, or 
more general shapes with appropriate manipulation 
primitives from constructive solid geometry. 
xyz-boxes that have a fixed set of alternative 
sizes probably will yield a poorer approximation 
(especially if one wants to use a single box for 
each part), but storage may be more efficient, 
and difference operations between boxes will 
yield fewer slivers. 

Spheres can be specified without knowing the 
coordinate axes, and changes to the coordinate 
system, rotations, and predicate testing (e.g., 
intersect ion) are extremely easy. But spheres 
are an even poorer fit than boxes to many shapes; 
approximation cannot be refined as a union of 
disjoint spheres; a display of a sphere will sup- 
ply little visual information. 

One also could provide for alternative 
representations of a shape. One alternative 
might be used for display, another for fast 
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predicate testing (spheres excel here), and 
another for more detailed tests. Algebraic 
expressions over envelopes (union, difference) 
could provide even better approximations. (For 
example, difference would be useful in represent- 
ing hollow shapes.) 

3.7 Interpretation of Geometric Predicates 

Because a part’s basic envelope may contain 
space not included in the part, geometric predi- 
cates cannot always return definitive answers. 
The test of the predicate can use only the part’s 
envelope, not its exact representation. We can 
determine whether: 

[Envelope E properly intersects (cuts) E’l 
(yes/no). 

But the predicate: 

[Part P properly intersects E’l 

yields the results “no” or “don’t know”, since P 
is possibly smaller than Envelope(P). 

Similarly: 

[P contains E’] 

yields “no” or “don’t know”. 

If E’ was obtained as the envelope of a part 
P’s one cannot conclude anything about the rela- 
tions between P and P’, but only about relations 
between their envelopes. 

The predicate “P is contained in E” must be 
interpreted as yielding “yes” or “don’t know”. 
Its usefulness seems limited, because returning 
only parts where the answer is “yes” means that 
one has omitted some of the desired parts. For- 
tunately, intersection is the predicate most use- 
ful for applications, so even approximate 
geometry will support useful facilities. 

4. Cone lus ion 

Part hierarchies (and 8 imilar structures) 
and approximate geometries that might be used in 
CAD/CAM database systems have special semantics 
that need to be taken into consideration in the 
design of such systems. These semantics create 
interesting problems in query interpretation, but 
they also offer the potential for improvements in 
query performance , and in the systems’ ability to 
return appropriate data to users. This paper has 
explored some of these issues, and has presented 
methods for dealing with the special semantics 
involved . Research continues in an effort to 
incorporate these methods in an operational data- 
base system for CAD/CAM data. 

Singapore, August, 1984 
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