
An Example of Knowledge-Based Query
Processing in a CAD/CAM DBMS*

Arnon Rosenthal
Sandra Heiler
Frank Manola

Computer Corporation of America
Four Cambridge Center

Cambridge, Massachusetts 02142

Keywords : Hierarchy, part explosion, bill of
materials, transitive closure, data model,
geometric search, knowledge-based question
answering, knowledge-based out put reduction,
geometry in databases

Abstract

Queries to part hierarchies in CAD/CAM data-
bases (and structures with similar semantics
found in other applications) can be fundamentally
different from queries to sets of parts having no
underlying structure, and they can raise dif f i-
cult issues in query language behavior and data
management. Including explicit geometric infor-
mat ion further complicates query processing by
adding computational geometry to the list of
is sues to be considered. In this paper, we
investigate the problems of querying part hierar-
chies and of using the special semantics associ-
ated with such structures to improve query per-
formance and responsiveness to user requirements.
In particular, we show how the hierarchy and
geometry can interact to improve query process-
ing, and how knowledge about the behavior of
attributes stored in the hierarchy can be used to
choose appropriate levels of detail for query
output.

-his research is funded by General Dynamics,
Data Systems Division.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or diwibuted for direct commercial
advantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very Large
Data Base Endowment. To copy otherwise, or to republish, requires (I fee
and/or special permission from the Endowment.

Proceedings of the Tenth International

Conference on Very Large Data Bases.

1. Information Model

A basic data structure frequently found in
databases for computer aided design and computer
aided manufacturing (CAD/CAM) applications is
some form of bill-of-materials (BOM). This
structure defines the component parts and
subassemblies that make up each product being
designed or manufactured (an assembly is a part
that is composed of other parts). The classic
BOM structure has a schema of the form:

PART 1 PARTID

1 COST I <<---
I WEIGHT I
1 MANUFACTURER I I SUBPARTS
1 SHAPE I -----

where each record represents a different m of
part (e.g., a pump, bolt, or wing). Some
integrated CAD/CAM database designs attempt to
combine this data with geometric data, and
separate records for each distinct instance of a
given part (since different instances may differ
in their geometric position and connectivity to
other parts) to provide a more complete physical
model of the product.

We refer to this general class of data
structures (including the original BOM structure)
as part hierarchies, because the basic relation-
ship shown is hierarchical and has “part of”
semantics.

An interesting feature of such structures is
that frequently attributes are stored in the
structure whose semantics “parallel” those of the
part-of relationship itself. For example, the
part-of relationship implies such things as phy-
sical inclusion (of geometry -- i.e., a component
part’s geometry is physically within the geometry
of its containing assembly), as well as other
types of “dominance” (e.g., weight -- a component
part’s weight is a component of its containing
assembly’s weight > . Moreover, such structures
are not confined to CAD/CAM applications. Exam-
ples of other applications exhibiting similar
structures include:

Singapore, August, 1984

363

- Data about geographic features wherein each
level down the hierarchy represents more
detailed information about the components of a
given feature. Examples of features might be
continents, countries within them or specific
features such as cities that include industrial
plants, that in turn include particular build-
ings, etc. Values of attributes such as
geometry (area) or population preserve the
“part of” semantics of the hierarchy.

- Work breakdown structures, in which each task
has resources such as people or time. A sub-
task has a subset of those resources.

Queries to part hierarchies can be fundamen-
tally different from queries to sets of parts
having no underlying structure, and they can
raise difficult issues in query language behavior
and data management. Even queries to the basic
BOM structure can involve computation of transi-
tive closures [Aho & Ullman, Clemens, Zloof 1.
fnc luding explicit geometric information further
complicates query processing by adding computa-
tional geometry to the list of In this paper, we
investigate the problems of querying part hierar-
chies, and we investigate how to use the special
semantics associated with such Structures to
improve query performance and responsiveness to
user requirements. In particular, we show how
the hierarchy and geometry can interact to
improve query processing, and how knowledge about
the behavior of attributes stored in the hierar-
chy can be used to choose appropriate levels of
detail for query output.

2. Ouerving a Part Hierarchy

Queries to part hierarchies can have very
different semantics from queries to unstructured
sets of parts. In this section, we show how
these special semantics can be used by the DBMS
to return query results at an appropriate level
of detail and to reduce the amount of search it
performs. For example, if a user queries the
part hierarchy of an airplane for parts within 4
feet of the instrument panel, the user probably
does not want the query to return “airplane”,
even though, strictly speaking, “airplane” is a
part in the hierarchy (the root) and various
parts of the airplane geometry are within 4 feet
of the instrument panel. Nor is the user likely
to want the query to return every bolt in the
pilot’s seat; instead, the seat will often suf-
fice to represent all its subparts.

Specifically, we categorize predicates based
on how the predicate result may differ between a
part and its subparts. Using these categories,
we describe general rules for preventing the user
from receiving unwanted output. Turning to
implementation issues, we discuss how the hierar-
chy itself is an appropriate 8tructur.e for limit-
ing the search on many queries, and we discuss a

Proceedings of the Tenth International

general algorithm for searching part hierarchies,
Finally , we discuss the data model implications
of these new facilities.

2.1 Monotonic Predicates

Queries to a part hierarchy can be
expressed: “Find parts P [in hierarchy HI where
<predicate>.” The variable P ranges over parts in
hierarchy H. Our output limitation and search
reduction rules apply to a special class of
predicates called monotonic predicates. The gen-
eral idea behind the notion of monotonicity is
that as one goes down the hierarchy, the chances
of satisfying the predicate get better (downward
monotonic) or worse (upward monotonic). Hence
one need not test or display all members of the
part hierarchy to determine the results of predi-
cate evaluation.

The monotonicity of a predicate is dependent
on both the part hierarchy itself and on the
semantics of the attribute involved. We say that
an attribute is order preservinq (with respect to
the hierarchy) if the value of the attribute is
necessarily smaller for a given part than for an
assembly that includes the part. Examples of
order preserving attributes might be
max dimension(P) or weight(P). We say that an
attribute is inverse order preserving (with
respect to the hierarchy) if the value of the
attribute is necessarily larger for a given part
than for an that assembly includes the part. An
example of an inverse order preserving attribute
might be hierarchic-depth(P). We assume that the
DBMS can be made aware of which attributes are
order or inverse order preserving according to
these definitions.

A predicate Pred is downward monotonic with
respect to hierarchy Ii if whenever a part satis-
fies Pred, all its descendants (subparts) satisfy
Pred. For many purposes it is not necessary to
return subparts of a part that satisfies a down-
ward monotonic query. Since the number of sub-
parts can be enormous, omitting them can greatly
reduce the output size and search time.

Some downward monotonic predicates (where P
ranges over parts) are:

1. Attribute(P) (constant, where Attribute is
order preserving.

2. Attribute(P)) constant, where Attribute is
inverse order preserving.

3. P is a descendent (subpart) of assembly QO
(for any fixed QO).

4. AND or OR of downward monotonic predicates.

5. NOT (upward monotonic predicates).

Singapore, August, 1984

Conference on Very Large Oata Bases.

6. Part P is contained in Region R (see Section
3, Geometric Queries).

A predicate Pred is upward monotonic with
respect to hierarchy H if whenever a part satis-
fies Pred, its ancestors (superparts) satisfy
Pred. Since no additional information is con-
veyed by returning the superparts, they can be
omitted from the response to the user. This
reduces the size of the output somewhat, but not
as dramatically as with downward monotonic predi-
cates.

Each downward monotonic predicate above has an
upward monotonic analog (obtained by (1) revers-
ing the inequality, (2) testing for superpart
rather than subpart, etc.).

Some upward monotonic predicates are:

1. Attribute (P) > constant, where Attribute is
order preserving.

2. Attribute (P) < constant, where Attribute is
inverse order preserving.

3. P is a superpart (ancestor of) part Q (for
any fixed QO) .

4. AND or OR of upward monotonic predicates.

5. NOT (downward monotonic predicates).

6. Part P contains Region R.

7. Part P (contains or properly intersects)
Region R.

(The last two predicates are described further in
Section 3, Geometric Queries.)

2.2 Output Limitat ion

A query to the part hierarchy identifies a
set of nodes that satisfy the query predicate.
Here we present a list of convenient rules for
further limiting the query result. The rules
take the form: “DO not show the descendants (or,
less frequently, the ancestors) of parts that
satisfy certain conditions. ” The user can
specify how terse the output should be. This
terseness specification determines which of the
rules should be invoked. Usually, default rules
are in effect.

A two-faced predicate is one that can be
expressed as (pred-u OR pred-d), where pred-u is
upward monotonic and pred-d is downward mono-
tonic. We propose the following rules for
preventing “uninteresting” parts in the hierarchy
from being returned in response to a query:

Return Smallest satisfactory part: If pred is
upward monotonic and P satisfies pred, do not

Proceedings of the Tenth International

Conference on Very Large Data Bases.
365

show ancestors of P.

Return Largest satisfactory part: If pred is
downward monotonic and P satisfies pred, do not
show descendants of P. More generally , if pred
is two-faced, do not search below parts which
satisfy pred-d.

Any order preserving or inverse order preserving
attribute can be treated as a measure of a part’s
importance (e.g., weight, maximum dimension,
hierarchic level, cost). A part is important if
the measure exceeds (or falls below) some thresh-
old value.

Return Important Parts : When the search
encounters an unimportant part P that satisfies
Pred, the search stops and returns P but not its
subparts.

Return Consistent Levels: If Pred is two-faced
and P satisfies pred d, do not search below any
siblings of P that satisfy pred.

Other rules are possible. For example,
Return Smallest could be modified to provide con-
text information by outputting a specified number
of levels above the smallest part returned.
Alternately, it could be modified to suppress
parts that were too important to be included for
context (e.g., “airplane”).

A particular system could choose terseness
defaults to avoid swamping the interactive user
with data and to give responses quickly. Because
rules Return Largest and Return Consistent Levels
greatly reduce the data volume, they might
default to “on” (so they would be in force if the
predicate is appropriate). Similarly, Return
Important Parts might default to “on” if an
importance threshold has been defined.

On the other hand, Return Smallest reduces
output volume and the search is accelerated,
somewhat, but the user receives no context infor-
mation. It probably should default to “off”.

2.3 Access Structures for
Part Hierarchy Searches

Like the determination of appropriate query
output, the design of access structures also can
involve consideration of the special semant its
implied by the part hierarchy. We consider here
the particular case of part hierarchies in
CAD/CAM databases that we call instance hierar-
chies. In an instance hierarchy, each appearance
of a part in the final product is separately
represented. Hence one can attach information to
instances that will identify the part globally
(e.g., date manufactured, serial number, and
position in the end product).

Singapore, August, 1984

In an instance hierarchy, there ia a choice
between representing a part.6 position with
respect to its immediate ancestor, or its
(unique) end item. The latter choice means that
moving a large assembly may require hundreds of
database updates for changing the positions of
each of its component subparts, the positions of
their components, etc. This is infeasible in an
interactive environment. As a result, the former
choice is common in many CAD/CAM systems
(although in geographic systems the opposite
choice often is made, using absolute latitude and
longitude).

If geometric information about a part is
available relative only to the immediate
superassembly, information about the global loca-
tion of the part (with respect to the overall
product) would have to be reconstructed by
traversing the hierarchy. In such a case, it is
not feasible to use spatial index structures,
a ince these require global information. The
hierarchy itself is the only usable search atruc-
ture.

The hierarchy has more levels than a B-tree,
but the number of levels still is moderate. A
brief analysis suggests that the search time for
moat cases will be substantial but bearable. For
example, consider an airplane with 100,000 parts
in the hierarchy. Assuming that each assembly is
composed of 10 subassemblies, the leaves are five
levels below the root. Each of these levels
requires accesses to one Part record (in an
instance hierarchy), or to one Part record and a
cluster of (contiguously stored) Part-instance
records for that part. The search time will be
substantial, but the alternatives are sequential
search of the database or manual search through
drawings.

Use of the hierarchy as the search structure
also facilitates application of the output limi-
tat ion rules. If, instead, positions were stored
relative to a top level assembly, one would then
need a storage structure for a geometric search
that permitted the output limitation rules to be
applied. This problem is not addressed even by
storage structures dea igned for searching for
non-point objects [Guttman].

2.4 The Search Algorithm --

Our search algorithm exploits the fact that
for any assembly only a few of its next level
parts are likely to be needed in processing the
query. The algorithm tries to detect two types
of situations. The first type includes aitua-
t ions in which no member of a aubtree can poaai-
bly satisfy the search predicate. For example,
it is sometimes possible to determine that no
part of the elevator hinge satisfies the predi-
cate “is within 3 feet of the pilot’s seat”. by
testing the positions of higher level parts
(e.g., “tail assembly”) that contain the elevator

Proceedings ot the Tenth International
Conference on Vety Large Data Bases.

hinge. If the tested part is not within 3 feet
of the pilot’s seat, subparts of the tested part
need not be individually checked.

When a predicate is evaluated on a part P,
the search algorithm sometimes acquires the
answers to several questions at the same time by
making deductions from previous teats and mono-
tonicity. The information exploited by the query
processor is : does P satisfy the query predicate?
(yea/no); does any descendant of P satisfy the
predicate? (yes/no/don’t know); do all deacen-
danta of P satisfy the predicate? (yea/no/don’t
know). In addit ion, when testing a two-faced
predicate, both pred-d and pred-u are evaluated.
This helps the algorithm detect situations in
which an output limitation rule inhibits the
return of subparts.

We conceive of query processing as going on
in two stages. First, the algorithm walks the
part hierarchy, avoiding further search below a
part if neither the part nor any of its deacen-
dents could possibly appear in the output. Such
parts are called irrelevant. The algorithm
builds a hierarchical structure that includes all
relevant parts, together with flags that indicate
whether the parts seemed to satisfy the predi-
catea.

The nodes of the result hierarchy will
include pointers to parts in the original hierar-
chy, and annotations about whether the part or
its subparts are known to satisfy the predicate
or could possibly satisfy the query predicate (if
the aubtree was not searched), and about whether
an output limitation rule asserts that the node
(or its descendants) should not be returned.

Note that the algorithm must simultaneously
teat all children of a part, because in Return
Consistent Levels the decision about searching
below one child may depend on the predicate
result for a sibling. Also, some storage atruc-
turea keep all the information about children
together, so it would be desirable to use this
information before it is paged-out. During the
search the predicate can be modified to remove
downward monotonic conjuncta that are satisfied
by some child. Each relevant child node that is
searched must be added (with annotations) to the
result hierarchy.

Once the result hierarchy has been produced,
output is prepared by walking the result with the
following restrictions.

1. If no output limitation rules are in force,
then walk the result hierarchy in preorder,
printing each part that satisfies the predi-
cate, with appropriate format.

2. If the Return Smallest rule is in force,
then walk the result hierarchy in postorder,
printing parts that satisfy the predicate
& that have not had a descendant printed.

Singapore, August, 1984

366

3. If the Return Largest rule is in force, then use knowledge about hierarchies to ease declara-
walk the result hierarchy in preorder, but tion and enforcement of integrity constraints,
stop the downward traversal when encounter-
ing a part that satisfies the predicate.

such as the fact that a part hierarchy has no
directed cycles.

2.5 Data Model Implications --

Database researchers have devoted very lit-
tle attention to defining appropriate semantics
for queries to part hierarchies. This reluctance
stems not from lack of user interest, but from
the well known difficulty of using a conventional
language to specify queries that involve
arbitrary-length paths through a set of
instances. In fact, [Aho and Ullman] showed that
the query formulations in conventional languages
(e.g., SQL, QUEL) cannot express the query “Is Pl
descended from P2 in the hierarchy?”

Systems implementors have provided some
facilities for manipulating bill-of-materials
data [Zloof I. Instead of determining level of
detail based on properties of part hierarchies,
this approach specifies in advance how many lev-
els of data should be considered. A more general
enhancement would support transitive closures as
part of a facility for defining and manipulating
recursively defined structures.

The output limitation rules and query pro-
cessing strategy we have described are based on
monotonicity. The system components doing query
optimization and query execution must be informed
about monotonicity of each predicate or each
attribute.

As noted in Section 1, the structures in
which our output limitation rules make sense seem
to have two important characteristics:

a. They involve a partially ordered set whose
ordering relation is based on a “part-of”
relationship.

b. The entities in the hierarchy possess one or
more attributes that are order preserving or
inverse order preserving, as defined above.

East conventional data models do not support
an adequate indication of the recursive structure
of the part hierarchy, or the fact that the
hierarchic order is preserved by attributes such
as weight, or by predicates such as “set inter-
sect ion”.

This suggests a study of enhanced data
models that include declarations of part hierar-
chies and information about order preservation.
We have shown how this kind of knowledge can
improve performance for queries that involve
these hierarchies. But it would be desirable to
more fully integrate the hierarchical and ordi-
nary processing in a query. The DBMS also could

Proceedings of the Tenth International

Conference on Very Large Data Bases. .

The output limitation rules can be imple-
mented by predicates that are added at the source
level to restrict a query’s output. The query
processor would be augmented with strategies for
optimizing access via such predicates. Further
research is needed to determine how well these
special strategies can be integrated with an
existing query optimizer‘s cost model and exploi-
tation of predicates.

3. Geometric Queries_

Geometric queries ar,? usefu: ‘0~ returning a
list of parts or drawings reie-,n. : to a specified
volume of space (here called a .:.egion). They
also may be used for interference checking and
for general orientation when performing CAD/CAM.
The geometric predicates we propcse support
queries about the positions of parts relative to
each other or to spatial regions. For example,
one could ask: “What are all the parts in region
R?” or ‘What are the parts that intersect the
cross-sectional plane P?“. In addition, one
could ask queries that combine geometric informa-
tion (which often is available only in drawings)
with data usually available only from a database.
For example: “What are all the plastic parts con-
tained in region R?” or “What are all the third-
level assemblies in region R?“. Asking the query
with only one kind of restriction can produce an
unmanageably large set of parts.

This section describes how we represent and
manipulate the shapes (called envelopes) of parts
and regions. It then illustrates the output lim-
itation rules on an example query that includes
geometric predicates. Finally, it considers the
impact of using an approximate rather than exact
representation of the shapes of parts. It pro-
poses a particular approximate geometry and
describes the effects on query processing of
using the approximation.

3 .l Envelopes

Each part’s shape is represented by an
envelope, a region expressed in the coordinate
system of some part in the hierarchy. Each part
m has a local coordinate system, together with
an envelope that represents the shape of the part
defined in that local coordinate system. This
envelope is called the part’s basic envelope.
Normally a part’s basic envelope is input to the
DBMS. If the part is an assembly composed of
other parts, its basic envelope may be either
directly input or computed from the envelopes of
it 6 component part 6. An envelope for a part must
always wholly contain the part.

Singapore, August, 1994

The position of a part within a next-level
assembly is represented by the transformation
that places the part’s basic envelope in the
assembly’s coordinate system. In general, the
transformation may involve translation, rotation,
and scaling operations.

3.2 Operations 011 Geometric EnveloDes

An envelope is defined as an abstract data
type. Thus the actual representation of
envelopes is known only to the envelope type
operators. We provide operators to:

1. Retrieve a part’s basic envelope.

2. Transform the coordinate system of an
envelope (usually to the coordinate system
of the basic envelope of another part).

3. Return the smallest Ha-box that contains
envelope E , in the current coordinate system
(an xyz-box is a rectangular box whose edges
parallel the coordinate axes).

4. Extend an envelope by a specified distance
along each axis.

5. Return the distance between the closest
points in two envelopes.

6. Test geometric predicates on envelopes (as
described in the next section).

The basic manipulations of geometric objects are
unaffected by the part hierarchy. However, the
output limitation rules and control over change
between different coordinate systems require
knowledge of the hierarchy, as described in Sec-
tion 2.3.

Operators such as union, intersection, and
difference, which explicitly combine envelopes to
form a new envelope, also could be provided.

3.3 Directional regions

We will supply functions that implement the
concepts “forward” and “back” (along any axis),
in order to support queries such as “find all
plastic parts forward of part xyz”. The user
must specify the kind of region desired. For
example, suppose we are defining a box to
represent the concept of “forward” along the x
axis from box B. One option has the resulting
box begin at the leftmost point of B, while
another begins at the rightmost point. Another
choice made by the user is whether the resulting
region “forward from B” is bounded in the y and z
directions by the same boundaries as B, or
whether it extends inf iaitely in those direc-
t ions,

Proceedings of the Tenth International

Conference on Very Large Data Bares.

3.4 Geometric Predicates

The geometric predicates that are supported
are :

1. x properly intersects (“cuts”) y (i.e., ’ x
and y intersect, but neither is contained in
the other).

2. x contains y.

3. x contained in y.

4. x intersects y [meaning: (x properly inter-
sects y OR x contains y) OR x is contained
in yl.

Note that “intersects” is two-faced. The
parenthesized term is upward monotonic (in
x>, while “is contained in” is downward
monotonic.

If x and y are envelopes in the same coordinate
system, interpretation is straightforward. In
other cases, the query processor must supply a
transformation that puts the envelopes in the
same coordinate system.

We also allow the geometric predicates to
use a part as an argument. In that case, the
predicate is applied to the part’s envelope. For
example :

8 Find P in hierarchy H where P contains x.

e Find P in H, I in Inventory where (P inter-
sects xl and (P.P#=I.P#) and
(I.quantity-in-stock < 10).

3.5 Example of a Geometric Query

The following query shows all parts near
(within 6 cm) of the eject switch.

Temp = Find parts P where P intersects
Enclosing-envelope
(eject-switch, 6 cm along each axis)

Suppose the entire altimeter, a piece of the
radio, and a piece of the pilot’s seat are within
6 cm of the switch. Then:

- Return Smallest prevents the return of “air-
plane” or “cockpit”, because some smaller parts
are being returned.

- Return Largest means don’t search below the
altimeter.

- Return Consistent Levels says the radio is a
sibling of the altimeter, so don’t search below
the radio.

Singapore, August, 1984

368

- Return Important Parts says the front panel of
pilot’s seat is
it.

unimportant, don‘t decompose

3.6 Use of an Approximate Geometry

In a CAD/CAM environment, the most exact
representations are available on paper drawings
and on workstations that have facilities for
solid modeling. These facilities cannot reason-
ably be duplicated in a DBMS. In addition, we
want the facility to be useful even with crude
approximations entered manually.

We find that a box provides a decent
representation for most solid parts, even
spheres. A part’s home coordinate system usually
ii chosen so that some axis parallels a long
dimension of the part. As a result, we initially
use relatively simple envelopes to represent part
shapes. Initially, each envelope will be a sin-
gle rectangular box that contains the part, and
each basic envelope will be a box whose edges
parallel the axes of the home coordinate system
(termed an gz-box) .

The decision to use a box as the basic
representation was influenced by the fact that
eventually we may represent envelopes as sets of
boxes. The generalized representation would per-
mit an assembly to be represented as the union of
the boxes of its components. The representation
of a part could be refined to any desired accu-
racy, and one could implement intersection and
difference of sets of boxes (oriented along the
same set of axes). If necessary, a tilted box
could be replaced by an xyz-box that enclosed it
and that had axes parallel to the axes of the
current coordinate system. A box can be
displayed along any of its axes.

Other reasonable representations include
xyz-boxes from a fixed set of sizes, spheres, or
more general shapes with appropriate manipulation
primitives from constructive solid geometry.
xyz-boxes that have a fixed set of alternative
sizes probably will yield a poorer approximation
(especially if one wants to use a single box for
each part), but storage may be more efficient,
and difference operations between boxes will
yield fewer slivers.

Spheres can be specified without knowing the
coordinate axes, and changes to the coordinate
system, rotations, and predicate testing (e.g.,
intersect ion) are extremely easy. But spheres
are an even poorer fit than boxes to many shapes;
approximation cannot be refined as a union of
disjoint spheres; a display of a sphere will sup-
ply little visual information.

One also could provide for alternative
representations of a shape. One alternative
might be used for display, another for fast

Proceedings of the Tenth International
Conference on Very Large Data Bases. 1,xl

predicate testing (spheres excel here), and
another for more detailed tests. Algebraic
expressions over envelopes (union, difference)
could provide even better approximations. (For
example, difference would be useful in represent-
ing hollow shapes.)

3.7 Interpretation of Geometric Predicates

Because a part’s basic envelope may contain
space not included in the part, geometric predi-
cates cannot always return definitive answers.
The test of the predicate can use only the part’s
envelope, not its exact representation. We can
determine whether:

[Envelope E properly intersects (cuts) E’l
(yes/no).

But the predicate:

[Part P properly intersects E’l

yields the results “no” or “don’t know”, since P
is possibly smaller than Envelope(P).

Similarly:

[P contains E’]

yields “no” or “don’t know”.

If E’ was obtained as the envelope of a part
P’s one cannot conclude anything about the rela-
tions between P and P’, but only about relations
between their envelopes.

The predicate “P is contained in E” must be
interpreted as yielding “yes” or “don’t know”.
Its usefulness seems limited, because returning
only parts where the answer is “yes” means that
one has omitted some of the desired parts. For-
tunately, intersection is the predicate most use-
ful for applications, so even approximate
geometry will support useful facilities.

4. Cone lus ion

Part hierarchies (and 8 imilar structures)
and approximate geometries that might be used in
CAD/CAM database systems have special semantics
that need to be taken into consideration in the
design of such systems. These semantics create
interesting problems in query interpretation, but
they also offer the potential for improvements in
query performance , and in the systems’ ability to
return appropriate data to users. This paper has
explored some of these issues, and has presented
methods for dealing with the special semantics
involved . Research continues in an effort to
incorporate these methods in an operational data-
base system for CAD/CAM data.

Singapore, August, 1984

A. Aho and J. Ullman, “Universality of Data
Retrieval Languages ,‘I Proc. Sixth ACM Symposium
on Principles of Programming Languages, pp. 110-
120.

E.K. Clemons, “Design of an External Schema
Facility to Define and Process Recursive Struc-
tures ,” ACM TODS, 6(2), June 1981, 295-311.

A. Gut tman , “R-Trees : A Dynamic Index Structure
for Spatial Searching,” Proc. SIGMOD *84, ACM,
New York, 1984.

M.M. Zloof, “Query by Example: Operations on the
Transitive Closure ,I’ Res. Rep. RC5526, IBM
Research Center, Yorktown Heights, N.Y., Oct.
1976. (The essentials of this report appear in
C.J. Date, Introduction to Database Systems,
1981).

Proceedings of the Tenth International

Conference on Very Large Data Bases.

Singapore, August, 1984
.

370

