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Received: 1 July 2016
Published online: 22 September 2016
c© The Author(s) 2016. This article is published with open access at Springerlink.com
Communicated by T. Biro

Abstract. Using a simple quasiparticle model of QCD matter, presented some time ago in the literature,
in which interactions are modelled by some effective fugacities z, we investigate the interplay between the
dynamical content of fugacities z and effects induced by nonextensivity in situations when this model is
used in a nonextensive environment characterized by some nonextensive parameter q �= 1 (for the usual
extensive case q = 1). This allows for a better understanding of the role of nonextensivity in the more
complicated descriptions of dense hadronic and QCD matter recently presented (in which dynamics is
defined by a Lagrangian, the form of which is specific to a given model).

1 Introduction

Dense hadronic or QCD matter is typically produced
in a nonextensive environment, i.e., in situations where
the application of the usual Boltzmann-Gibbs statistics is
questionable (cf. [1–5] and references therein for details).
Such an environment can be described by a nonexten-
sive statistics, which is usually taken to be in the form
of Tsallis statistics [6–8] and is characterized by a pa-
rameter of nonextensivity, q �= 1 (for q = 1 one recovers
the usual Boltzmann-Gibbs statistics). The sensitivity of
models of high-density matter to such an environment has
been investigated for some time already (cf. the most re-
cent works on nonextensive versions of the Walecka [9],
Nambu–Jona-Lasinio [10] or other models [11–13], and ref-
erences therein). In practice it consists in investigating the
departure of values of some selected observables with in-
creasing value of the parameter |q − 1| from their exten-
sive values (obtained for q = 1). However, since in the all
above mentioned models the interaction is defined by some
form of a more or less complicated Lagrangian, this is not
a simple task because particles considered acquire some
dynamical masses which implicitly depend (usually in a
very complicated manner) on the nonextensivity parame-
ter q [10]. It would therefore be interesting and instructive
to demonstrate the sensitivity of the calculational scheme
used to the nonextensive environment in a more transpar-
ent way.

Such a possibility is provided by a class of phenomeno-
logical quasiparticle models (QPM) in which the interact-
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ing particles are replaced by free, noninteracting quasipar-
ticles. The effects of interaction, normally defined by some
Lagrangian (as, for example, in the Walecka model [14–16]
or in the Nambu–Jona-Lasinio (NJL) model [17–20]), are
in this class of QMP models modelled phenomenologically
by means of some special, temperature-dependent factors,
called effective fugacities z(i) [21–25], the form of which
is obtained from fits to the lattice QCD results (here pro-
vided by [26]). In effect the masses of the quasiparticles
are not directly modified by the interaction1. The corre-
sponding equilibrium distribution function is assumed to
be equal to

f (i)
eq (x) =

z(i)e(−xi)
1 − ξ · z(i)e(−xi)

=
1

1
z(i) e(xi) − ξ

, (1)

where e(x) = exp(x), xi = βEi and ξ = +1 for bosons
and −1 for fermions. One deals here with particles only:
massless u and d quarks (i = q) for which Eq = p, strange
quarks with mass m (i = s) for which Es =

√
p2 + m2

and massless gluons (i = g) with Eg = p. For z(i) = 1 one
deals with a noninteracting gas of bosons (fermions).

One can also rewrite eq. (1) in a form identical to that
usually used,

f (i)
eq (x̃) =

1
e(x̃(i)) − ξ

, (2)

with
x̃(i) = βEi − μ(i)(T ) (3)

1 For a comparison of this approach with other formulations
of the QPM see [21–25] and references therein.
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and
μ(i)(T ) = ln z(i)(T ) (4)

representing a kind of effective chemical potential, μ(i),
which depends on temperature T and replaces the action
of the fugacities z(i)2.

Such notation suggests the possibility of a straight-
forward generalization of eq. (2) to the nonextensive case.
To this end, following [10,9,11,12,27], one simply replaces
f

(i)
eq by the corresponding nonextensive particle occupa-

tion numbers

nq

(
x̃(i)

)
=

1
eq(x̃(i)) − ξ

, (5)

where the q-exponential function is defined as

eq(x) = [1 + (q − 1)x]
1

q−1 for x > 0. (6)

Its inverse function is

e2−q(−x) = [1 + (1 − q)(−x)]
1

1−q (7)

(known as the dual (2 − q)-exponent), i.e.,

e2−q(−x) · eq(x) = 1. (8)

For q → 1 one returns to the extensive situation with
eq(x) → e(x), e2−q(−x) → e(−x) and with relation (8)
replaced by the usual extensive relation, e(x) · e(−x) = 1.

In fact, this prescription works without additional re-
strictions only as long as x (or (−x)) remains positive.
This is always true if μ(i)(T ) ≤ 0 (or z(i) ≤ 1, which is
the case for the usual extensive situations [21]). However,
for the nonextensive μ

(i)
q (T ) this is not always true, there-

fore the above formulas have to be supplemented by some
additional conditions (discussed in [27,10]). These will be
presented in more detail together with the results of our
investigations in sects. 2 and 3.

Note that with eq(x) defined by eq. (6) one has to use
the following form of the respective q-logarithm functions:

lnq X =
Xq−1 − 1

q − 1
q→1
=⇒ ln X, (9)

for which
lnq [eq(X)] = X. (10)

Respectively, with e2−q(x) defined by eq. (7) one has to
use its dual version,

ln2−q X =
X1−q − 1

1 − q

q→1
=⇒ ln X, (11)

for which
ln2−q [e2−q(X)] = X. (12)

2 Note that this μ contains both the interaction and stan-
dard chemical potential used, for example, by us in our nonex-
tensive Nambu–Jona-Lasinio approach [10]. Therefore z = 1
corresponds to the case when the standard chemical potential
is equal to the confining potential and we have free particles.

Note also that because of the above duality properties,
the nonextensive version of eq. (1) (with z(i) = 1) takes
the following form:

nq(x) =
1

eq(x) − ξ
=

e2−q(−x)
1 − ξe2−q(−x)

. (13)

A further consequence of this duality is that the known
extensive relation,

n(x) + n(−x) = ξ, (14)

now takes the following dual form [27,28]:

nq(x) + n2−q(−x) = ξ. (15)

2 QPM in a nonextensive environment:
q-QPM

There are two possible approaches to proceed from the
usual extensive QPM to its nonextensive version, the q-
QPM.

(A) The first, seemingly very straightforward, has already
been mentioned. One simply takes the extensive version
of the QPM in the form of eq. (2) and changes exp(. . .)
to expq(. . .). This corresponds to insertion of the initial
extensive system in the nonextensive environment charac-
terised by a nonextensivity parameter q; for q → 1 one
recovers the usual extensive case. The nonextensive for-
mula for the particle occupation number is in this case
given, for q > 1, by eq. (5) with

x̃(i) → x(i)
q = βEi − μ(i)

q ; μ(i)
q = ln

[
z(i)

q (T )
]
. (16)

For q < 1 it is given by eq. (6) with (−x) → x
(i)
q de-

fined above. Note that the effective chemical potentials
μ(i), or fugacities z(i) (cf. eq. (4)), must become effectively
q-dependent quantities because some part of the original
dynamics is now described by the replacement e(. . .) →
eq(. . .). This fact has other consequences. Namely, in the
case when the resulting z

(i)
q exceeds unity and the corre-

sponding μ
(i)
q becomes negative, eqs. (5) or (6) have to

be supplemented by conditions ensuring that the corre-
sponding q-exponents are always nonnegative real valued
(see sects. 3.2 and 3.3 of [10] for details). As will be seen
below, in our case it will result in z

(i)
q (τ) limited for q > 1

to some range of τ < τlim, such that z
(i)
q (τlim) = 1 and

the corresponding q-exponent becomes zero forcing the
respective particle occupation number to remain equal to
unity from this point [27,10]3. Note that in this approach
the energies Ei remain unchanged, the only dynamical

3 Since in QMP and in q-QMP we do not have a chemical
potential, there is also no corresponding Fermi energy. There-
fore, the third method of introducing nonextensivity discussed
in sect. 3.4 of [10] is not applicable here.
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change introduced by switching to a nonextensive envi-
ronment is in z(i) → z

(i)
q .

(B) In the second approach one starts with some system of
noninteracting particles and first immerses it in a nonex-
tensive environment characterized by a nonextensivity pa-
rameter q �= 1; they will then be described by eq. (5) (with
x̃(i) = βEi). The q-QPM is then defined by introducing,
as before, a q-fugacity factor, z

(i)
q (T ), and defining particle

occupation numbers as4

nq(xi) =
1

1

z
(i)
q

eq(xi) − ξ
, xi = βEi. (17)

In this case one can also introduce a q-version of the ef-
fective chemical potential, μ

(i)
q , and rewrite, for q > 1,

eq. (17) as

nq

[
x(i)

q

]
=

1

eq[x
(i)
q ] − ξ

, (18)

where now

x(i)
q = β · E(i)

q − μ(i)
q ; μ(i)

q = ln2−q

[
z(i)

q

]
(19)

and

E(i)
q =

[
z(i)

q

]1−q

· Ei. (20)

As in case (A), for q < 1 it is given by eq. (6) with
(−x) → x

(i)
q defined above. All remarks concerning sup-

plementary conditions needed in this case are identical to
those brought up when presenting approach (A) above.
Note that in this case not only z(i) → z

(i)
q but also the

form of the effective chemical potential (its dependence on
fugacity) is different and the initial energy now becomes
a q-dependent quantity as well.

When going into detail we follow closely the approach
developed in [9,11] and take for the nonextensive ideal
quantum gas the following form of the nonextensive par-
tition function Ξq

5:

lnq (Ξq) = −
∫

d3p

(2π)3
∑

i

ξLq

[
x(i)

q

]
, (21)

where the summation is, as in [21], over the type of par-
tons considered, with i = q and ξ = −1 for light quarks
(for which we assume zero mass), i = g and ξ = +1 for
(massless) gluons and i = s and ξ = −1 for strange quarks
with mass m. Functions Lq(x) are defined as

Lq(x) = ln2−q [1 − ξe2−q(−x)] . (22)

4 Note the important difference between methods (A) and
(B). In method (A) the original fugacity described the inter-
action of extensive quasiparticles, whereas in method (B), the
q-fugacity describes the interaction of nonextensive quasiparti-
cles, i.e., quasiparticles in some nonextensive environment.

5 In [9] it was derived from first principles using the so-called
q-calculus, in [11] it was just postulated.

As in [21–25] we do not consider antiparticles.
Equation (21) can also be written in a different form

(used, for example, in [9]). Integrating by parts one gets
∫ ∞

0

p2dp ln2−q [1 − ξe2−q(−x)] =

−1
3

∫ ∞

0

p3dp
∂

∂p
{ln2−q [1 − ξe2−q(−x)]} . (23)

Since

∂ ln2−q(x)
∂x

= ξ [1 − ξe2−q(−x)]−q · [e2−q(−x)]q

=
ξ

[eq(x) − ξ]q
= ξ [nq(x)]q , (24)

one can write eq. (21) as

lnq (Ξq) =
1
3

∫
d3p

(2π)3
∑

i

p
[
nq

(
x(i)

q

)]q ∂x
(i)
q

∂p
. (25)

The form of the variable x
(i)
q depends on the particular

implementation of q-QPM. In method (A) it is given by
eq. (16), in method (B) by eqs. (19) and (20). This means
that

∂x
(g,q)
q

∂p
= β and

∂x
(s)
q

∂p
= β

p
√

p2 + m2
(26)

in the first case and

∂x
(g,q)
q

∂p
= β

[
z(g,q)

q

]1−q

and

∂x
(s)
q

∂p
= β

p
√

p2 + m2

[
z(g,q)

q

]1−q

(27)

in the second case. The conditions to be satisfied in order
to proceed from eq. (21) to eq. (25) are the same as those
which must be satisfied by (x, q) in eqs. (6) and (7) and
which were discussed in detail in [27]. Note that the cor-
rect particle number density when considering the nonex-
tensive case is given not by nq(x) but by nq

q(x). This is
also a necessary condition to satisfy the thermodynamic
consistency of our approach, cf. [10].

3 Results

To check the sensitivity of the quasiparticle approach to
the nonextensive environment characterized by nonexten-
sivity parameter q we use, as our input, results for the
scaled temperature dependence of the fugacities, z(i) =
z(i)(τ) (where τ = T/Tc and Tc is the critical tempera-
ture), obtained in [21] in the usual extensive environment
from their fits to the lattice QCD results presented in [26].
Because in the version of q-thermodynamics used here all
thermodynamic relations are preserved, we can compare
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Fig. 1. (Color online) Nonextensive effective fugacities z
(i)
q for gluons (i = g, left panel) and quarks (i = q, right panel) plotted

as functions of scaled temperature τ = T/Tc and obtained in approach (B) (eqs. (19) and (20)).

the pressures in extensive and nonextensive environments
using, after [21], the usual thermodynamic relation,

PqβV = lnq (Ξq) (28)

calculated, respectively, for the q = 1 and for q �= 1 cases,

Pq=1 (x̃i) = Pq

[
x(i)

q

]
. (29)

Whereas x̃i is given by eq. (3), the meaning of x
(i)
q (xi)

depends on the version of q-QPM used. In version (A) it
is given by eq. (16), in version (B) by eq. (19).

We are therefore looking for values of the correspond-
ing effective fugacities, z

(i)
q (τ), which in the nonextensive

environment (i.e., on the rhs of eq. (29)) should replace
z(i)(τ) in the extensive environment (i.e., on the lhs of
eq. (29)) in order to reproduce the lattice QCD data [26].
Following [21] this is done separately for the gluonic and
quark sectors for which the following conditions must be
satisfied:

∫ ∞

0

dpp2 ln
[
1 − e

(
−x̃(g)

)]
=

∫ ∞

0

dpp2 ln2−q

[
1 − e2−q

(
−x(g)

q

)]
(30)

for gluons and

νq

∫ ∞

0

dpp2 ln
[
1 + e

(
−x̃(q)

)]

+ νs

∫ ∞

0

dpp2 ln
[
1 + e

(
−x̃(s)

)]
=

νq

∫ ∞

0

dpp2 ln2−q

[
1 + e2−q

(
−x(q)

q

)]

+ νs

∫ ∞

0

dpp2 ln2−q

[
1 + e2−q

(
−x(s)

q

)]
(31)

for quarks; following [21], νg = 16, νq = 24 and νs = 12.
The above equations provide us with τ and q-dependent

relations between the extensive fugacities, z(i)(τ) (which
are our input), and nonextensive fugacities, z

(i)
q (τ) (which

are our results).
As discussed in detail in [21], there is no one universal

function describing the QCD data in the whole range of
scaled temperatures τ used in fits; the cross-over point is
at τg = 1.68 for gluons and τq = 1.7 for quarks. The low
and high τ domains require different functional forms (the
same occurs for quark and gluon sectors but with different
parameters). Following [21] we therefore take as our input

z(g,q) = a(g,q) exp
[
−b(g,q)/τ5

]
· Θ

(
τ(g,q) − τ

)

+ a′
(g,q) exp

[
−b′(g,q)/τ2

]
· Θ

(
τ − τ(g,q)

)
(32)

with [a(g), b(g)] = (0.803, 1.84), [a′
(g), b

′
(g)] = (0.98, 0.94)

for gluons and [a(q), b(q)] = (0.81, 1.72), [a′
(q), b

′
(q)] =

(0.96, 0.85) for quarks.
Figure 1 shows the resulting zq(i)(τ) (separately for

gluons, i = g, and quarks, i = q) as functions of scaled
temperature, τ = T/Tc, calculated for approach (B). Fig-
ure 2 shows the same z

(i)
q (τ) but scaled by their corre-

sponding extensive values, i.e., the ratios

ri = ri(τ) =
z
(i)
q (τ)

z
(i)
q=1(τ)

. (33)

The values of the nonextensivity parameter q used here
correspond to values of q used by us before in the q version
of the Nambu–Jona-Lasinio model [10].

The same can be calculated using method (A). How-
ever, instead of repeating all the previous figures we simply
present in fig. 3 the corresponding ratios of results calcu-
lated using methods (A) and (B) (separately for gluons
and quarks and as a function of scaled temperature τ),

Ri = Ri(τ) =
[z(i)

q (τ)]method(A)

[z(i)
q (τ)]method(B)

. (34)
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Fig. 2. (Color online) The same z
(i)
q (τ) as presented in fig. 1 but scaled by their corresponding extensive values (cf. eq. (33)).

The curves for q = 1.02 end at τ for which the corresponding zq in fig. 1 become unity.

Fig. 3. (Color online) Ratios R(τ) of gluonic fugacities (left panel) and quarkonic fugacities (right panel) calculated by methods
(A) and (B) (cf. eq. (34)) for q = 0.98, 0.99, 1.01 and 1.02 used above. For greater values of τ this ratio remains essentially
unity.

Note the noticeable differences between both methods for
smaller values of τ which tend to vanish for τ ≥ 1.56.

The fugacities z
(i)
q obtained above constitute our re-

sult. They demonstrate in a very clear way the action of
immersing the QPM in a nonextensive environment with
q �= 1. They could be used for any further analysis based
on the QPM, for example repeating the whole analysis
of [21–25] for the q �= 1 case. However, this is not our
goal. We shall therefore end this section by presenting the
physical significance of the effective nonextensive fugaci-
ties by showing the corresponding nonextensive dispersion
relations (i.e., single particle energies),

εq = − ∂

∂β
(Ξq) . (35)

In our case, for the first choice of q-QPM (eqs. (5)
and (16)), one gets

ε(i)
q = Ei + T 2 ∂μ

(i)
q

∂T
= Ei + T 2

[
1

z
(i)
q

∂z
(i)
q

∂T

]

. (36)

6 However, since for small values of the fugacities both meth-
ods start to be numerically unstable, the structures observed
below τ ∼ 0.75 are not very reliable.

This means that for this form of the q-QPM extensivity
affects only the interaction term. The quasiparticle ener-
gies get some additional contributions from their collective
excitations. Note that this additional term occurs because
of the temperature dependence of the effective fugacities
and that it can be interpreted as representing the action
of the gap equation in [10] (but with constant energy Ei).

For the second choice of q-QPM (eqs. (18)–(20)) one
gets

ε(i)
q = E(i)

q + T 2 · ∂ ln2−q(z
(i)
q )

∂T

= E(i)
q + T 2 · 1

[z(i)
q ]q

∂z
(i)
q

∂T
, (37)

with E
(i)
q given by eq. (20). It means that for this form

of the q-QPM both the initial energy and the interaction
term are modified by effects of nonextensivity. As before,
all modifications occur because of the temperature depen-
dence of the effective fugacities and can be interpreted as
representing action of gap equation in [10]. However, now
this representation is more exact because the energy Ei
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is modified, cf., eq. (20), and becomes the q-dependent
quantity [10].

4 Summary and conclusions

This work illustrates how nonextensive environment
(modelled by using q-exponentials and methods of nonex-
tensive thermodynamics) changes usual extensive calcu-
lations. The quasiparticle model [21–25] used here as the
basis of our comparison allows for apparently maximal
possible separation of effects of the usual dynamics (repre-
sented by fugacity z) from the effects caused by the nonex-
tensive environment (represented by the nonextensivity
parameter q). We have limited ourselves to the investiga-
tion of the respective fugacities in two possible realization
of the nonextensive version of the quasiparticle model, the
q-QPM. They differ by the starting point assumed:

– in method (A) it is a gas of free, noninteracting quasi-
particles immersed in extensive environment (i.e., free
particles with interaction modelled by some assumed
fugacities);

– in method (B) it is a gas of free particles immersed in
nonextensive environment7.

The main results are presented in fig. 1. It is clearly visi-
ble that immersing free quasiparticles in some nonexten-
sive environment described by the nonextensivity param-
eter q > 1 considerably accelerates the approach to the
free (nonextensive) quasipartile limit of zq = 1. In the
case of q < 1 nonextensive environment this regime is
practically never reached. Considering this result a com-
ment concerning comparison with the similar nonextensive
Nambu–Jona-Lasinio results [10] are in order. As shown
there, nonextensive effects result, for q > 1, in the en-
hancement of the growth of pressure and entropy observed
in the critical region of phase transition from quark matter
to hadronic matter in lattice calculations for finite tem-
perature [29]. As a result, for q > 1 one reaches earlier the
limit of noninteracting particles (albeit still remaining in
a nonextensive environment), which corresponds to limit
zq = 1 here (whereas there is no such transition for the
q < 1 case). Note that such limit is the same for quarks
and gluons.

Finally, out of the two methods of formulating the q-
QPM presented here, method (B) seems to be more com-
plete and adequate in what concerns the introduction and
description of the nonextensive effects. It can therefore be
used further to investigate some more complicated aspects
of dense matter in a nonextensive quasiparticle approach.

This research was supported in part by the National Science
Center (NCN) under contract DEC-2013/09/B/ST2/02897.

7 As a matter of fact, in this case these are really not fully
free particles but rather a kind of a noninteracting (because
zq = 1) q-quasiparticles.
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the manuscript.
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