
An Exception-Handling Architecture for Open Electronic
Marketplaces of Contract Net Software Agents

Chrysanthos Dellarocas
Sloan School of Management

Massachusetts Institute of Technology
 Cambridge, MA 02139, USA

+1 (617) 258-8115

dell@mit.edu

Mark Klein
Center for Coordination Science

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

+1 (617) 253-6796

m_klein@mit.edu

Juan Antonio Rodriguez-Aguilar
Center for Coordination Science

Massachusetts Institute of Technology
Cambridge, MA, 02139, USA

+1 (617) 253-2430

jarjar@mit.edu

ABSTRACT
Software agent marketplaces require the development of new
architectures, which are capable of coping with unreliable
computational and network infrastructures, limited trust among
independently developed agents and the possibility of systemic
failures. In analogy with human societies, agent marketplaces will
benefit from the introduction of appropriate electronic exception
handling institutions, whose role will be to help guarantee efficiency
and fairness in the face of these challenges. This paper presents a
research methodology for designing and evaluating such electronic
institutions. It also describes how the methodology has been applied
in order to design and evaluate an exception handling architecture
for robust software agent marketplaces based on the contract net
protocol.

Keywords
Software agents, electronic markets, electronic institutions,
exception handling, contract net, failure management.

1. INTRODUCTION
Software agent technologies promise substantial increases in
productivity by automating several of the most time-consuming
stages of electronic commerce processes. Agents are software
systems, which are capable of interacting with other agents in a
flexible and autonomous way, in order to meet the design objectives
of their creators [12].

Electronic agent marketplaces are formed by collections of software
agents, which interact with one another in order to negotiate and
form partnerships or trade products and services through the
Internet. In the emerging model of 21st century electronic commerce,
a variety of open software agent marketplaces will be competing
with one another for participants. Independently developed agents

will be entering and leaving marketplaces at will, in pretty much the
same way that human investors enter and leave different financial
markets today. The stakeholders of electronic marketplaces will,
therefore, have an interest in making them as attractive to
prospective “customers” (buyers and sellers) as possible. One
expects that the most successful marketplaces will be the ones that
provide the best “quality of service” guarantees (in terms of security,
fairness, efficiency, etc.). The proper design of open electronic
marketplace infrastructure thus emerges as an important research
and practical question.

Designing efficient and robust open electronic marketplaces, whose
participants will be independently developed software agents, is a
difficult problem. Some of the most important challenges include:

• Unreliable Infrastructures. In large distributed systems like the
Internet, unpredictable node and link failures may cause agents
to die unexpectedly, messages to be delayed, garbled or lost,
etc.

• Non-compliant agents. In open systems, agents are developed
independently, come and go freely, and thus can not always be
trusted to follow the rules properly due to bugs, bounded
rationality, programmer malice and so on. This can be expected
to be especially prevalent and important in electronic
marketplaces where there may be significant incentives for
fraud.

• Emergent dysfunctions. Emerging multi-agent system
applications are likely to involve complex and dynamic
interactions that can lead to emergent dysfunctional behaviors
with the relatively lightweight multi-agent coordination
mechanisms that have proved most popular to date. This is
especially true since agent societies operate in a realm where
relative coordination, communication and computational costs
and capabilities can be radically different from those in human
society, leading to behaviors with which we have little previous
experience. It has been argued, for example, that 1987’s stock
crash was due in part to the action of computer-based “program
traders” that were able to execute trade decisions at
unprecedented speed and volume, leading to unprecedented
stock market volatility [26].

All of these departures from “ideal” multi-agent system behavior can
be called exceptions, and the results of inadequate exception

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
EC’00, October 17-20, 2000, Minneapolis, Minnesota.
Copyright 2000 ACM 1-58113-272-7/00/0010…$5.00.

225

handling include the potential for poor performance, system
shutdowns, and security vulnerabilities.

The standard approach to dealing with exceptions in closed systems
has been to “compile in” complicated and carefully coordinated
exception handling behaviors into all problem-solving agents. We
call this approach the “survivalist approach”, because agents in such
systems are expected to contain enough intelligence to be able to
fend for themselves in the face of, say, unreliable infrastructure and
systemic dysfunctions.

We argue that survivalist approaches to exception handling are not
viable in the context of open systems. First, they raise the bar for
participation into the system by requiring that all agents contain
sophisticated exception handling mechanisms built into them. This
is especially undesirable in applications, such as electronic
marketplaces, where participation is voluntary and the market
maker’s incentive is to reduce the “barriers of entry” into the system
as much as possible. Second, and most important, even if a
sophisticated “survivalist” exception handling behavior could be
agreed upon, in an open system where agents are developed
independently there can be no guarantee that they will all correctly
follow it. Agents could deviate from the specified exception
handling behavior because of ignorance of the specification,
programming bugs or malice. In such a system, naïve agents would
be left unprotected in the face of exceptions. Furthermore, even
sophisticated agents could be harmed by transacting with agents of
variable quality. For example, suppose that a sophisticated and
highly reliable agent receives a contract from another agent and
contracts out a subtask to a third agent, who happens to be buggy
and failure prone. Further suppose that the third agent encounters a
bug before it has completed its assigned subtask. Because its
implementation is flawed, it fails to notify its contractor of the
problem. The contractor will then fail to receive the expected results
on time (probably having to reassign the subtask to another agent)
and will itself be late in returning its results to its contractor, thus
damaging its reputation for being a reliable agent.

Civilized human societies have successfully coped with similar
challenges by developing social institutions that set and enforce
laws (e.g. courts, police), monitor for and respond to emergencies
(e.g. ambulance system), prevent and recover from disasters (e.g.
coast guard, firefighters), etc. In that way, societies allow citizens to
utilize relatively simple, optimistic and efficient rules of behavior,
offloading the prevention and recovery of many problem types to
social institutions that can handle them efficiently and effectively by
virtue of their economies of scale and widely accepted legitimacy.

In an analogous manner, we believe that the design of the right
electronic exception-handling institutions will be a crucial success
factor in the new universe of open electronic marketplaces. More
specifically, our claim is that, through the proper division of labor
between problem-solving agents and institutions, successful open
electronic marketplaces will achieve a number of desirable
outcomes, including:

• Decreasing the “barriers to survival” for each agent,
simplifying their implementation requirements and allowing
them to focus on their core problem-solving functionality.

• “Leveling the playing field” by offering a basic set of security,
fairness and efficiency guarantees, which provide consistent
system behavior in the presence of agents of varying
sophistication, reliability and benevolence.

• Increasing the efficiency of the system as a whole.

In this paper we present an experimental evaluation of a set of
domain-independent exception handling services we have developed
to address these challenges, applied to the well-known “Contract
Net” multi-agent coordination protocol. We show that these services
produce more effective exception handling behavior than standard
existing techniques, while allowing simpler agent implementations.
The remainder of this paper will introduce the contract net protocol,
outline our exception handling approach, describe the experiments
used to evaluate it, consider the contributions of this work, and
discuss directions for future research.

2. THE CONTRACT NET PROTOCOL
The “Contract Net” (henceforth called CNET) is a protocol for
matching up tasks with agents in multi-agent systems [22]. CNET
and its many variants is probably the most widely used agent system
protocol, presumably because of its intuitiveness, direct applicability
to many common problems, simplicity and relative efficiency.
CNET has been applied to many domains including manufacturing
control [1], tactical simulations [3], transportation scheduling [4],
and distributed sensing [22]. CNET is also an abstract version of the
one-round-sealed-bid auction protocol used in a number of today’s
B2B exchanges.

The CNET protocol operates as follows (Figure 1):

An agent (hereafter called the “contractor”) identifies a task
that it cannot or chooses not to do locally and attempts to find
another agent (hereafter called the “subcontractor”) to perform
the task. It begins by creating a Request For Bids (RFB)
which describes the desired work, and then sends it to
potential subcontractors (typically identified using a
matchmaker that indexes agents by the skills they claim to
have). Interested subcontractors respond with bids (specifying
such issues as the time needed to perform the task) from
which the contractor selects a winner. The winning agent,
once notified of the award, performs the work (potentially
subcontracting out its own subtasks as needed) and submits
the results to the contractor.

CNET is prone to a wide range of potential exceptions from all three
of the categories (unreliable infrastructure, non-compliant agents,
emergent dysfunctions) described in Section 1. A more exhaustive
analysis of these failure modes will appear in a forthcoming paper.
For now we will limit ourselves to three examples:

226

Contractor Role Subcontractor Role

Create RFB
(Request For

Bids)

Create Bid

Select Bid

Perform Work

Receive Results

Send RFB

Send Bid

Award Contract

Send Results

Figure 1. A simple version of the Contract Net protocol.

- Agent death: If a CNET agent dies there are several immediate
consequences. If the agent is acting as a subcontractor, its
customer clearly will not receive the results it is expecting. In
addition, if the agent has subcontracted out one or more
subtasks, these subtasks and all the sub-sub-… tasks created to
achieve them become “orphaned”, in the sense that there is no
longer any real purpose for them and they are uselessly tying
up potentially scarce subcontractor resources. Finally, if the
system uses a matchmaker, it will continue to offer the now
dead subcontractor as a candidate (a “false positive”), resulting
in wasted message traffic.

- Fraudulent [sub]contractor: A buggy or intentionally
malicious CNET agent can wreak havoc through fraudulent
advertising, bidding or subcontracting.

- Resource poaching: It is typical for CNET systems to annotate
tasks with priorities, so that when a subcontractor is
considering several RFBs, it will bid (first) for the RFB with
the greatest priority. One emergent dysfunction that can occur
in such contexts is “resource poaching”, wherein a slew of low-
priority but long-duration tasks tie up the subcontractors,
thereby freezing out resources needed for the higher-priority
tasks that arrive later [6].

This paper concentrates on the “agent death” exception. As we
mention in Section 6, we are currently working on electronic
institutions for handling other CNET exceptions as well, but the
results of that work will be reported in a forthcoming paper.

The standard “agent death” exception handling mechanism used in
CNET, as in many distributed protocols, is timeout/retry: If no
results are received by the deadline the subcontractor promised, for
example, a contractor will re-start the subcontracting process for that
task, sending a new RFB. This approach does handle the agent death
exception, but rather inefficiently, since it does not eliminate
orphaned tasks, does not remove false positives from the
matchmaker, and is prone to an “unzippering” effect, wherein the

death of an agent performing a subtask can cause cascading timeouts
and retries for its customers, the customers of its customers, and so
on, all the way up to the CNET agent at the top of the task
decomposition tree. The timeout/retry approach will not, of course,
prevent a contractor from repeatedly falling prey to a fraudulent
CNET agent, nor will it help with resource poaching.

It is certainly imaginable that the CNET protocol could be
elaborated to allow agents to handle a wider range of exceptions,
and most agent system exception handling research has in fact taken
this direction. Even the original CNET protocol [22] included such
augmentations as an “immediate response bid’, which allowed a
contractor to determine whether the lack of bids was due to all
eligible subcontractors being busy (in which case a retry is
appropriate) or due to the outright lack of subcontractors with the
necessary skills (in which case presumably the system manager/user
should be informed). This “survivalist” approach to multi-agent
exception handling faces, however, a number of serious
shortcomings:

First of all, it greatly increases the burden on agent developers. It is
predicated upon “compiling in” potentially complicated and
carefully coordinated exception handling behaviors into all problem-
solving agents. Perhaps more seriously, this approach is not viable
in the context of open systems where agents are developed by
independent third parties. Some agents may not comply properly
with these more sophisticated protocols, or violate some of their
underlying assumptions. Some protocols, for example, are based on
game-theoretic analyses [21] and assume that all agents will be
rational utility maximizers, which obviously may not always be the
case. All agent interactions are slowed down by the overhead
incurred by these heavyweight protocols. Some kinds of
interventions (such as “killing” a broken agent that is uselessly
monopolizing scarce resources) may be difficult to implement
because the agents do not have the established legitimacy needed to
apply such interventions to their peers. Finally, finding the
appropriate responses to some kinds of exceptions (typically
emergent exceptions such as resource poaching) requires that the
agents achieve a more or less global view of the system state, which
is notoriously difficult to create without heavy bandwidth
requirements.

3. DOMAIN-INDEPENDENT EXCEPTION
HANDLING SERVICES
It is for this reason that we have been creating a set of services that
offload the exception handling burden from problem solving agents.
We call this the “citizen” approach by analogy to the way exceptions
are handled in human society. In such contexts, citizens adopt
relatively simple and optimistic rules of behavior, and rely on a
whole host of exception handling institutions (provided by the
infrastructure) in order to handle most problems.

3.1 Capturing Domain-Independent Exception
Handling Expertise
The key insight that makes this approach workable in the context of
multi-agent systems (MAS) is the simple but powerful notion that
the characteristic exceptions and applicable exception handling
techniques for a multi-agent system can be usefully treated as
dependent on the market mechanism used but independent of the
vertical domain the agents work in. This is a key insight because it

227

means that we can build exception handling knowledge bases (and
associated run-time services) that are generic and thereby highly
reusable.

Early work on expert systems development revealed that it is useful
to separate domain-specific problem solving and generic control
knowledge [2]. Analogous insights were also confirmed in the
domains of collaborative design conflict management [14] and
workflow exception management [17].

The exceptions that characterize a given MAS protocol can be
uncovered using an emerging technique we call Role Commitment
Violation (RCV) analysis [16]. RCV analysis is based on the insight
that coordination fundamentally involves the process of agents
making commitments to each other. Exceptions can thus be viewed
as the ways in which the agents in a MAS can fail to achieve the
commitments underlying their coordination protocol.

We have used RCV analysis to uncover the consequences of agent
death in the context of a CNET. In summary, if a CNET agent dies
there are several immediate consequences. If the agent is acting as a
subcontractor, its customer clearly will not receive the results it is
expecting. In addition, if the agent has subcontracted out one or
more subtasks, these subtasks and all the sub-sub-… tasks created to
achieve them become “orphaned”, in the sense that there is no
longer any real purpose for them and they are uselessly tying up
potentially scarce subcontractor resources. Finally, if the system
uses a matchmaker, it will continue to offer the now dead
subcontractor as a candidate (a “false positive”), resulting in wasted
message traffic.

Once we have identified the exceptions that characterize a given
MAS protocol we need to uncover the handlers that are appropriate
for dealing with them. Unlike exceptions, the range of possible
handlers is not a closed easily enumerable set but seems to be
limited only by human ingenuity.

We have found that there are four main classes of handlers; those
suitable for anticipating and avoiding exceptions before they occur,
or detecting and resolving them after they occur [8]. The following
is a domain-independent set of handlers for dealing with unexpected
agent death.

To detect agent death, periodically poll active subcontractors.
Consolidate polling in order to minimize the number of “are you
alive?” messages CNET agents must respond to. To resolve a
situation where an agent has died, clear the agent record from the
matchmaker(s), and immediately instruct the contractors for that
agent to re-run the bidding process for the failed tasks. One can
cancel the orphaned sub-sub-tasks if any, or else (if there is a
standard task decomposition for this kind of problem) be prepared
to offer these results to the new CNET agent that takes on the sub-
task previously assigned to the dead agent. Finally, to avoid or
minimize the number of agent death exceptions, keep track of agent
reliability statistics (as a function of mean time between failures)
and help agents use them when making task assignment decisions.

3.2 A Domain-Independent Architecture for
Handling Agent Death Exceptions
Our approach instantiates these ideas in an open MAS setting using
the following functional architecture:

A
S

A
S

A
S

A

A

S Sentinel

Agent

MAS Protocol Message Traffic

Exception Handling Traffic

Reputation
Server

Contract
Notary

Registrar

Figure 2. Functional architecture for open MAS with exception

handling services.

When an agent joins an open MAS served by the exception handling
(EH) services, it must register with a registrar responsible for
assigning it a sentinel that will mediate all of the agents’ further
interactions with other agents in the system. The agents so
‘wrapped’ can include problem solving agents as well as
components such as matchmakers that support the protocols they
enact.

Sentinels are the central element in this approach. They can be
viewed as “commitment monitors” whose role is to observe and
influence agent behavior as necessary to ensure the robust
functioning of the system as a whole. Each sentinel includes a
repository of domain-independent EH expertise that describes the
characteristic exceptions and associated handlers for the protocol(s)
enacted by the agents in that MAS. Sentinels monitor message
traffic to develop a model of the commitments their agent(s) are
involved in, use the appropriate anticipation and/or detection
handlers to uncover when these commitments are violated, diagnose
the underlying causes to identify the appropriate avoidance and/or
resolution handlers, and enact these handlers to help re-establish the
violated commitments, or at least minimize the impact of them
having been violated. Ancillary services such as the contract notary
and reputation server keep track of global state information such as
commitment structures and reliability statistics. Agents, for their
part, must be able to respond appropriately to a relatively small set
of EH directives to support the action of the sentinels.

4. EXPERIMENTAL EVALUATION
We ran a series of experiments to test these claims in a multi-agent
marketplace running the CNET protocol. The experiments all take
place in a discrete event based multi-agent system simulator built on
top of the Swarm Simulation System [19]. Our system allows one to
emulate a world consisting of multiple host computers, each running
one or more agents and connected by network links, all with
controllable speed and failure frequency. The scenario consists of
several dozens CNET agents, one per host, interacting over a
reliable network. Contractor agents send out an RFB with a
specified timeout period: potential subcontractors bid only if they

228

become available during this period (i.e. subcontractors perform
only one task at a time). Bids are binding, which means that
subcontractors will bid on a new RFB only after the timeout for its
pending bid expired without an award being received (presumably
because some other subcontractor won the task). Contractors select
the winning bids based solely on how quickly the bidders claimed
they could perform the task. Contractors re-send RFBs if no bids
have been received by the timeout period (presumably because no
subcontractors with the needed skills were available at that time).
This CNET protocol is modeled on the one described in [22] and
was chosen because it is simple and was shown by Smith to
represent a reasonable design tradeoff in several test domains.

Our experiments explored the effect of three experimental
conditions. The key independent variable, of course, was whether
the agents took a “survivalist” or “citizen” approach to handling
agent death. Survivalist agents rely on the standard timeout/retry
mechanism to handle agent death: If a subcontractor does not return
results to its contractor by the agreed-upon deadline, the contractor
issues a new RFB for the task. Citizen agents, by contrast, rely
entirely on the EH services. Whenever a task has been awarded to a
subcontractor, the EH service begins periodic polling of the
subcontractor to check whether it is still alive, which continues until
the agent has died or returned the task results to its contractor. If an
agent dies, the EH service takes a series of coordinated actions:

1. It notifies the matchmaker that this agent is dead and should
therefore be removed from the list of available subcontractors.
This handles the “false matchmaker positive” problem.

2. If the agent is subcontracting to someone else, it immediately
informs the contractor that it should re-send the RFB for that
task, thereby ensuring that the contractor does not waste time
waiting for results from a dead agent. Note that this avoids the
“unzippering” effect described above.

3. If the agent is a contractor for some pending subtasks, a proxy
agent is created to try to find new customers for those
“orphaned” subtask results. The proxy registers itself with the
matchmaker, so that it becomes eligible to receive RFBs. It
then waits for an RFB for the orphaned tasks, and submits a
bid whose estimated completion time accounts for the amount
of time that has already been spent processing those tasks, and
is therefore likely to be highly competitive. This is a reasonable
strategy in domains where there is a standardized task
decomposition, so the replacement for the dead agent is apt to
require the same subtask results that the dead agent did. If the
proxy wins the anticipated RFB, it forwards the results as it
receives them. Otherwise it keeps responding to RFBs until it
wins or until the task results become obsolete. This strategy is
thus designed to minimize wasted work on orphaned tasks. In
domains where results get obsolete very quickly, or where there
is no standard task decomposition, it may be more appropriate
to do without the proxy-bidding agent and simply kill all
orphaned tasks when the ultimate customer for them has died.

4. Finally, it reports the agent death to the reputation server. This
way the reputation server keeps track of the mean time between
failures (MTBF) for every agent in the system. Whenever a
contractor is receiving bids as a response to a previously sent
RFB, the reputation server instructs sentinels to filter out
incoming bids from agents whose MTBF is substantially lower
than the marketplace mean unless they are the only bids

received. This bid filtering scheme is designed to avoid agent
death exceptions by protecting contractors from subcontracting
unreliable agents, if other, more reliable agents are also
available.

Our central hypothesis is that the “citizen” exception handling
approach will significantly reduce the average amount of time
needed to complete tasks in which exceptions occur (due to quicker
detection of agent death, and the avoidance of the unzippering
effect), as well as reduce the overall system effort needed to perform
tasks (by avoiding wasting resources on orphaned tasks). We also
explored the related hypotheses that the impact of the EH services
will depend on the nature of the task decompositions needed to
perform a task. More specifically, tasks that have deep task
decompositions should benefit more because in those cases the
unzippering effect will be more severe with survivalist agents.

In order to validate the above hypotheses, we tested the contract
completion performance of five different agent configurations:

a) Failure-free environment (baseline case)

b) Failure-prone environment, “survivalist” agents (timeout-and-
retry)

c) Failure-prone environment, “citizen” agents supported by EH
services which poll subcontractors and, upon detection of agent
death, inform the contractor of the dead agent and kill all
orphaned tasks.

d) Failure-prone environment, “citizen” agents supported by EH
services which poll subcontractors and, upon detection of agent
death, inform the contractor of the dead agent and create a
proxy agent to try to reassign orphaned tasks.

e) Same as d) with the addition of filtering of bids from unreliable
agents.

In all configurations, top-level contractor agents execute a loop
where they announce a new top-level task, wait for bids, award the
contract to the best bidder, wait to receive the results and then stay
idle a random amount of time before repeating the above steps.

In order to be completed, top-level tasks require the creation of task
trees with depth 4 and branching factor 2. In other words, in order to
complete a top-level task, a top-level contractor has to seek two
level-2 subcontractors, each of which has to seek two level-3
subcontractors, and so on. Therefore, a single top-level task may
involve up to 15 agents working simultaneously. To simplify the
experiment, it is assumed that any available subcontractor is capable
of performing any task in a given task chain.

In the failure-prone cases, subcontractor agents were divided into
three reliability classes. All subcontractor agents had a “lifespan”
(time until death) that was selected for each agent randomly from a
geometric distribution with mean time between failures (MTBF)
equal to:

10⋅(task duration) for low reliability agents
50⋅ (task duration) for medium reliability agents
100⋅(task duration) for high reliability agents.

When an agent dies, a new one is created with the same skills but
with a different unique ID and is registered with the matchmaker.
This is done to keep the subcontractor population from shrinking
over the course of the experiment, thereby emulating a large and

229

dynamic agent pool where the population of subcontractors remains
roughly constant.

All simulations were run until a 90% confidence interval could be
computed for each of the completion time estimates with a width of
less than 15 percent of the estimated mean.

Figure 3 summarizes the mean contract completion time relative to
the failure-free (baseline) case for survivalist and each of the three
configurations of citizen agents described above.

0

50

100

150

200

250

300

350

400

450

2 3 4

Task Chain Length

N
o

rm
al

iz
ed

 M
ea

n
 T

as
k

C
o

m
p

le
ti

o
n

 T
im

e
(f

ai
lu

re
-f

re
e

ca
se

 =
 1

00
)

Survivalist

Citizen (polling + killing)

Citizen (proxy)

Citizen (proxy + bid filtering)

Figure 3. Mean task completion times relative to the failure-free
case.

As expected, citizen agents with EH support clearly outperformed
survivalist agents and managed to greatly reduce the effects of agent
death exceptions (mean completion time in all citizen configurations
was less than 140% of the failure-free mean). The difference in
performance was particularly dramatic for longer tasks chains. The
explanation in this case is that, for longer tasks, the probability of
multiple agent deaths in the same task tree is correspondingly
higher. In the survivalist case, each death may trigger the
“unzippering” effect described in Section 2, which would effectively
double the task completion time. In the case of multiple deaths, the
“unzippering” effect would be repeated, thus multiplying the mean
completion time even more.

Figure 4 compares the relative performance of the three different
configurations of EH services tested. Although the differences are
not very dramatic, we can see that the creation of proxy agents has a
positive effect in overall efficiency, as does the addition of bid
filtering. The combination of polling, creation of a proxy agent and
bid filtering is the approach that gave the best overall results.

In addition to the mean task completion time, we were also
interested to compare the standard deviation of task completion
times in the presence of agent deaths. Our rationale is that, in most
environments, consistency is equally important to efficiency. A
system with a low mean completion time, but where some task
instances take a very long time to complete is bound to make some
users extremely unhappy.

95

100

105

110

115

120

125

130

135

140

2 3 4

Task Chain Length

N
o

rm
al

iz
ed

 M
ea

n
 T

as
k

C
o

m
p

le
ti

o
n

 T
im

e
(f

ai
lu

re
-f

re
e

ca
se

 =
 1

00
)

Citizen (polling + killing)

Citizen (proxy)

Citizen (proxy + bid filtering)

Figure 4. Comparative performance of the three configurations
of EH services tested.

Figure 5 summarizes the standard deviations of task completion
times in each of the tested configurations. From a study of the charts
it is clear that citizen agents had a lower maximum observed
completion time in all four configurations.

0

2

4

6

8

10

12

2 3 4

Task Chain Length

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

(m

u
lt

ip
le

s
o

f
si

n
g

le
 t

as
k

d
u

ra
ti

o
n

)

Survivalist

Citizen (polling + killing)

Citizen (proxy)

Citizen (proxy + bid filtering)

Figure 5. Standard deviation of task completion times in the four
failure-prone agent configurations tested.

230

Utilization Ratio per Reliability Class

0

0.1

0.2

0.3

0.4

0.5

0.6

1 5 9 13 17 21 25 29 33 37 41 45 49

Time Period

U
ti

liz
at

io
n

 R
at

io

Low Medium High

Figure 6. Effects of bid filtering in the utilization ratio of agents
of different reliability.

Finally, Figure 6 depicts the effect of bid filtering in creating a “fair”
marketplace where high reliability agents get more contracts and
therefore have a higher utilization ratio than low reliability agents.

In conclusion, citizen agents have proven to perform more
efficiently than survivalist agents both in terms of lowering the mean
as well as improving the consistency of contract completion time in
the face of exceptions.

5. CONTRIBUTIONS OF THIS WORK
From a general perspective, the “exception analysis” approach
presented in this paper is an interesting complement to the field of
economic mechanism design. The field of mechanism design uses
the tools of economics and game theory to design “rules of
interaction” for economic transactions that will yield some desired
outcome [24]. In order to apply these analytical tools, mechanism
designers usually make assumptions (such as the existence of
rational, risk-averse agents, zero communication costs, perfectly
reliable infrastructure, etc.), which are not always realistic in open
systems. Our work begins by considering what might happen if one
or more of the assumptions on which a particular game theoretic
analysis is based are violated. It then proceeds to propose, and
experimentally evaluate, additional mechanisms (exception handling
institutions) whose goal is to maintain the desirable outcomes
intended by the original mechanism in the complex, messy
environments of open electronic markets.
 Several lines of research have begun to explore concepts similar to
those presented here, but none as far as we know have explored the
combination of domain-independent exception handling
implemented as distinct services. Hägg [10] presents the concept of
sentinel agents; these are distinct services, which monitor the agent
system and intervene when necessary by selecting alternative
problem solving methods, excluding faulty agents, or reporting to
human operators. This approach is not domain-independent,

however: sentinels must be customized for each new application.
Kaminka et.al. [13] present Social Attentive Monitoring (SAM), an
exception handling approach wherein agents detect exceptions via
uncovering violations of normative relationships with their
teammates, and exploit a teamwork model to diagnose and fix these
problems. This approach does have generic elements, but it is
limited to teamwork protocols like TEAMCORE [23] and requires
domain-dependent customization of the exception detection
procedures. Horling et al. [11] have explored the use of domain-
independent tools to detect and resolve the exception wherein the
agents have a harmfully inaccurate picture of the inter-agent
dependencies in their current context. This approach is limited to a
single exception type, however, and like SAM applies to just one
class of coordination protocol. Finally, Venkatraman et al [25]
describe a generic approach to uncovering agents that do not comply
with coordination protocols. This approach only addresses one
subclass of exception types, however, and does not include a
resolution component.
Distributed and real-time systems research has produced useful
techniques such as checkpointing and rollbacks [5, 20], but these
“one size fits all” techniques achieve generality at the cost of the
efficiencies that can result from coordination-mechanism specific,
albeit domain-independent, exception handling mechanisms.

6. FUTURE WORK
We plan to pursue two concurrent lines of development in this work.
One line will include empirically and analytically evaluating
different “survivalist” and “citizen” exception handling approaches
for a wider range of exception types and market mechanisms. For
example, we are currently looking at exceptions (intentional and
unintentional) related with reputation mechanisms and ways to
avoid or detect and resolve them. We are also planning to look at
exceptions related to intentional contract violations and the
associated electronic dispute resolution and sanctioning
infrastructures.

A second line of work will be to increase the power and scope of our
generic exception handling technologies. The RCV approach is
currently being refined and formalized. Furthermore, we have
developed a prototype repository of exceptions and associated
handlers, built as an extension of the MIT Process Handbook [18].
As we are accumulating analytical and experimental evidence with
market mechanisms, associated exceptions and relevant handlers,
our repository will grow into an invaluable reference for electronic
marketplace designers.

The long-term goal of these efforts is to integrate these lines of
work, and thereby provide electronic marketplace system developers
with a comprehensive knowledge base of well-founded design
guidelines, along with a suite of domain-independent component
technologies that enable them to much more easily develop more
robust open electronic markets.

7. ACKNOWLEDGMENTS
 This work was supported by NSF grant IIS-9803251 (Computation
and Social Systems Program) and by DARPA grant F30602-98-2-
0099 (Control of Agent Based Systems Program).

231

8. REFERENCES
[1] Baker, A. (1988). "Complete manufacturing control using a

contract net: a simulation study." 1988 International
Conference on Computer Integrated Manufacturing. IEEE
Comput. Soc. Press, pp.100-9. Washington, DC, USA.

[2] Barnett, J. A. (1984). “How Much Is Control Knowledge
Worth? A Primitive Example.” Artificial Intelligence 22(1):
77-89.

[3] Boettcher, K., D. Perschbacher, et al. (1987). “Coordination of
distributed agents in tactical situations.” IEEE 1987 National
Aerospace and Electronics Conference: NAECON 1987 (Cat.
No.87CH2450-5). IEEE, pp.1421-6 vol.4. New York, NY,
USA.

[4] Bouzid, M. and A.-I. Mouaddib (1998). “Cooperative
uncertain temporal reasoning for distributed transportation
scheduling.” Proceedings, Third International Conference on
Multi Agent Systems, Paris, France. IEEE Comput. Soc. 1998,
pp.397-8.

[5] Burns, A. and A. Wellings (1996). Real-Time Systems and
Their Programming Languages, Addison-Wesley.

[6] Chia, M. H., D. E. Neiman, et al. (1998). "Poaching and
distraction in asynchronous agent activities." Proceedings,
Third International Conference on Multi-Agent Systems, Paris,
France. IEEE Comput. Soc. Press, 1998, pp. 88-95.

[7] Dellarocas, C. and M. Klein (1999). "Designing robust, open
electronic marketplaces of contract net agents." Proceedings of
the 20th International Conference on Information Systems
(ICIS-99), Charlotte, North Carolina USA.

[8] Dellarocas, C. and M. Klein (2000) "A knowledge-based
approach for handling exceptions in business processes"
Information Technology and Management 1 (3): 155-169.

[9] Gruber, T. R. (1989). “A Method For Acquiring Strategic
Knowledge.” Knowledge Acquisition 1(3): 255-277.

[10] Hägg, S. (1996). "A Sentinel Approach to Fault Handling in
Multi-Agent Systems." Multi-Agent Systems, Methodologies
and Applications. Second Australian Workshop on Distributed
Artificial Intelligence. Selected Papers. Springer-Verlag. 1997,
pp.181-95.

[11] Horling, B., V. Lesser, et al. (1999). "Diagnosis as an Integral
Part of Multi-Agent Adaptability." Proceedings DARPA
Information Survivability Conference and Exposition.
DISCEX'00. IEEE Comput. Soc. 1999, vol. 2, pp.211-19.

[12] Jennings N.R., Sycara K. and Wooldridge M. “A Roadmap of
Agent Research and Development”, Autonomous Agents and
Multi-Agent Systems (1:1), 1998, pp. 7-38.

[13] Kaminka, G. A. and M. Tambe (1998). "What is Wrong With
Us? Improving Robustness Through Social Diagnosis."
Proceedings of the Fifteenth National Conference on Artificial
Intelligence (AAAI-98) Madison, Wisconsin, 1998.

[14] Klein, M. (1991). “Supporting Conflict Resolution in
Cooperative Design Systems.” IEEE Systems Man and
Cybernetics 21(6): 1379-1390.

[15] Klein, M. and C. Dellarocas (1999). "Exception Handling in
Agent Systems." Proceedings of the Third International
Conference on Autonomous Agents (Agents '99). Seattle,
Washington, pp. 62-8.

[16] Klein, M. and C. Dellarocas (2000) "Domain-Independent
Exception Handling Services That Increase Robustness in
Open Multi-Agent Systems." ASES Working Report ASES-
WP-2000-02. Cambridge MA USA, Massachusetts Institute of
Technology.

[17] Klein, M. and C. Dellarocas (2000). "A Knowledge-Based
Approach to Handling Exceptions in Workflow Systems."
Journal of Computer-Supported Collaborative Work 9 (3/4)
August 2000.

[18] Malone T.W., Crowston K., Lee J., Pentland B., Dellarocas C.,
Wyner G., Quimby J., Osborn C.S., Bernstein A., Herman G.,
Klein M., O’Donnell E. (1999) "Tools for inventing
organizations: Toward a handbook of organizational
processes." Management Science 45 (3), pp. 425-43.

[19] Minar, N., Burkhart, R., Langton, C., Askenazi, M., The
Swarm Simulation System: A Toolkit for Building Multi-Agent
Systems, Santa Fe Institute Working Paper 96-06-042, Santa
Fe, NM, 1996.

[20] Mullender, S. J. (1993). Distributed systems. ACM Press, New
York.

[21] Sandholm, T., S. Sikka, et al. (1999). "Algorithms for
Optimizing Leveled Commitment Contracts." Proceedings of
the International Joint Conference on Artificial Intelligence
(IJCAI-99) Stockholm, Sweden, vol.1, pp. 535-540.

[22] Smith, R.G. (1980) "The contract net protocol: high level
communication and control in a distributed problem solver."
IEEE Transactions on Computers 29 (12): 1104-13.

[23] Tambe, M. (1997). “Towards flexible teamwork.” Journal of
Artificial Intelligence Research 7: 83-124.

[24] Varian, H.R. "Economic Mechanism Design for Computerized
Agents" Proceedings of the First USENIX Workshop of
Electronic Commerce. USENIX Assoc. 1995, pp.13-21.
Berkeley, CA, USA.

[25] Venkatraman, M. and M. P. Singh (1999). “Verifying
Compliance with Commitment Protocols: Enabling Open
Web-Based Multiagent Systems.” Autonomous Agents and
Multi-Agent Systems 3(3).

[26] Waldrop, M. “Computers amplify Black Monday”, Science
(238), Oct. 30 1987, pp. 602-604.

232

