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A B S T R A C T
A model of the gravitationally evolved dark matter distribution, in the Eulerian space, is
developed. It is a simple extension of the excursion set model that is commonly used to
estimate the mass function of collapsed dark matter haloes. In addition to describing the
evolution of the Eulerian space distribution of the haloes, the model allows one to describe the
evolution of the dark matter itself. It can also be used to describe density profiles, on scales
larger than the virial radius of these haloes, and to quantify the way in which matter flows in
and out of Eulerian cells. When the initial Lagrangian space distribution is white noise
Gaussian, the model suggests that the Inverse Gaussian distribution should provide a reason-
ably good approximation to the evolved Eulerian density field, in agreement with numerical
simulations. Application of this model to clustering from more general Gaussian initial
conditions is discussed at the end.

Key words: methods: analytical – galaxies: clusters: general – galaxies: formation –
cosmology: theory – dark matter.

1 I N T RO D U C T I O N

The hypothesis that, in comoving coordinates, initially denser
regions contract more rapidly than less dense regions, and that
sufficiently underdense regions expand, is simple, reasonable, and
powerful. As a consequence of this expansion and contraction, the
density distribution in the initial Lagrangian space will be different
from that in the evolved, Eulerian space. Suppose that, as the
Universe evolves, the number of expanding and contracting regions
is conserved – only their comoving size changes – and the mass
within each such region is also conserved. If we have a model for the
way in which the evolution of the size of a region depends on its
initial size and density, and we also have a model for the initial
number of regions as a function of initial size and density, then we
can compute the distribution of sizes and densities at some later
time. For example, suppose that the initial Lagrangian density
distribution is a Gaussian random field, and that the evolution of
regions is given by the spherical collapse model. Then it should be
possible to construct a model for pðM0jR; zÞ, where pðM0jR; zÞ is the
fraction of regions of size R that, at z, contain mass M0. The quantity
pðM0jR; zÞ is often called the Eulerian probability distribution
function.

In the Press–Schechter (1974) approach, at any given time, all
matter is in the form of collapsed objects, usually called haloes, and
the distribution of halo masses evolves with time. At any time, the
matter within a randomly placed cell R is divided among many

collapsed haloes. Thus, pðM0jR; zÞ depends both on the halo mass
function, and on the spatial distribution of the haloes. Bond et al.
(1991) showed how to estimate the evolution of the halo mass
function if the initial Lagrangian distribution is Gaussian (also see
Lacey & Cole 1993). They did not show how to estimate the spatial
distribution of these haloes, but Mo & White (1996) showed how
this might be accomplished. This paper develops a model that
combines, self-consistently, the Bond et al. excursion set approach
with the Mo & White model for the Eulerian space halo distribution.
The model developed here allows one to simultaneously describe
both the distribution of the dark matter, i.e., pðM0jR; zÞ, and that of
the haloes. See, e.g., Mo & White (1996) for why such a model is
useful.

Section 2 describes the model. It shows why the distribution of
first crossings of a barrier whose height is not constant, by Brownian
motion random walks, is useful. The shape of the barrier associated
with the spherical collapse model is given in Section 2.2. The
relation between the first-crossing distribution and the Eulerian
distribution pðM0jR; zÞ is discussed in Section 2.3. Section 2.4
shows that, in the context of the model developed here, the halo
mass function is related to the small cell size limit (i.e., R → 0) of
pðM0jR; zÞ. It discusses the Bond et al. (1991) excursion set results
in this context, and then shows how the model can be used to
describe the spatial distribution of the haloes as well. The results of
Mo & White (1996) are discussed in Section 2.5. Section 2.6 shows
that the associated two-barrier problem can be used to provide
information about the evolved density profile, and also about the
way in which matter flows in and out of Eulerian cells.
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The first-crossing distribution associated with the spherical
collapse barrier must be obtained numerically. Therefore, to illus-
trate the usefulness of our approach, Section 3 shows the results of
assuming that the initial distribution is white-noise Gaussian, and
that the barrier shape is simpler than that associated with the
spherical collapse model. In Section 3, the barrier is assumed to
be linear for a number of reasons. First, this linear barrier can be
understood as arising from a simple variant of the spherical collapse
model (Section 3.1). Secondly, the barrier-crossing distribution can
be computed analytically (e.g. Schrödinger 1915). The details of the
derivation are presented in Appendix A. Thirdly, the Eulerian
probability distribution associated with the first crossings of this
linear barrier is Inverse Gaussian (Section 3.3), and the Inverse
Gaussian provides a good fit to the Eulerian distribution measured
in numerical simulations of clustering from white-noise initial
conditions (Section 3.6). Finally, studies of clustering from Poisson
initial conditions also suggest that this barrier shape is a useful
approximation (Sheth 1998).

The Bond et al. (1991) results are derived, within the context of
this linear barrier model, in Section 3.2. Analytic expressions for
the Eulerian distribution function as well as the halo–mass and
halo–halo correlations are derived for all scales, and for all times, in
Sections 3.3 and 3.4. Section 3.5 provides various formulae
associated with the two-linear-barrier problem. Section 4 discusses
some scaling properties of the model, and also how the model can
be extended to describe clustering from more general initial con-
ditions. Section 5 summarizes the results.

2 T H E E X C U R S I O N S E T M O D E L

The first subsection defines various Eulerian space quantities of
interest in this paper. Since these definitions are standard (e.g.
Peebles 1980), no further references are given. Subsequent subsec-
tions develop a model which allows one to estimate the evolution of
these quantities.

2.1 The matter and halo distribution in Eulerian space

Imagine partitioning the Eulerian space Vtot into a large number of
cells, each of size V ; ð4p=3ÞR3, at time z. Since the volume of each
cell is V , the total number of such cells is Ntot ¼ Vtot=V . Let
pðM0jR; zÞ dM0 denote the fraction of these cells that contain
mass between M0 and M0 þ dM0. Then, at a given z,

pðM0jR; zÞ dM0 ¼
NðM0jRÞ dM0

Ntot
¼

V NðM0jRÞ dM0

Vtot
; ð1Þ

where we have not bothered to write z explicitly on the right-hand
side. Define D ; ð1 þ dÞ ; M0=r̄V , where r̄ is the average co-
moving density in the Eulerian space. That is,

r̄ ¼
Mtot

Vtot
¼

1
Vtot

�∞

0
M0 NðM0jR; zÞ dM0: ð2Þ

Then

pðDjR; zÞ dD ¼ pðM0jR; zÞ dM0; ð3Þ

and pðDjR; zÞ is the probability distribution function of the density
in Eulerian space at z. Since dD ¼ dM0=ðr̄VÞ,�∞

0
pðDjR; zÞ dD ¼

�∞

0
D pðDjR; zÞ dD ¼ 1 ð4Þ

for all z.
Let n̄ðM1; dc1Þ, where dc1 ¼ dc0ð1 þ z1Þ and dc0 is some constant

that will be determined later, denote the average number density of

M1 haloes identified at z1. On average, the number of such haloes
within an Eulerian cell V is n̄ðM1; dc1ÞV . Let N1 denote the number
of such M1 haloes within the ith Eulerian cell. Suppose we classify
all Eulerian cells by the mass M0 within them at some z < z1. Let
Nð1j0Þ denote hN1i0, where the average is over only those Eulerian
cells that contain mass M0 at z. Clearly,

n̄ðM1; dc1ÞV ¼

�∞

0
Nð1j0Þ pðDjR; zÞ dD; ð5Þ

since equation (3) shows that pðM0Þ dM0 ¼ pðDÞ dD.
Define

dhð1j0Þ ¼
Nð1j0Þ

n̄ðM1; dc1ÞV
¹ 1: ð6Þ

This is the number, relative to the average number of ðM1; dc1Þ

haloes in Eulerian cells V , of such haloes that are within Eulerian
cells which contain mass M0 at z, minus one. The cross-correlation
ȳhmðM1; dc1jR; zÞ between haloes and mass in Eulerian space,
averaged over Eulerian cells of comoving size V , at the epoch z, is

ȳhmð1jR; zÞ ¼
D
dhð1j0Þ d

E
R

¼

�∞

0
ðD ¹ 1Þ

Nð1j0Þ pðDjR; zÞ
n̄ðM1; dc1ÞV

dD;

ð7Þ

where we have used equation (4) to set hDi ¼ h1 þ di ¼ 1, and so
hdi ¼ 0.

Let ȳhhðM1;M2; dc1jR; zÞ denote the (volume average of the)
correlation function of M1 and M2 haloes identified at the epoch
z1, averaged over all comoving Eulerian cells V , at the epoch z # z1.
This average can be computed in two steps. Let N1 and N2 denote
the number of M1 and M2 haloes within an Eulerian cell V . Classify
all Eulerian cells by the mass M0 within them at z. Let Cð12j0Þ

denote the average over all M0 cells of ðN1N2Þ: Cð12j0Þ ; hN1N2i0.
Then

1 þ ȳhhð12jR; zÞ¼
�∞

0

Cð12j0Þ pðDjR; zÞ
n̄ðM1; dc1ÞV n̄ðM2; dc1ÞV

dD: ð8Þ

Higher order moments of the halo distribution can be defined
similarly. The remainder of this section develops a barrier-crossing,
excursion set model which allows one to estimate all these Eulerian
quantities.

2.2 The spherical collapse model

We will assume that the total mass and comoving volume of the
evolved Eulerian space are the same as those initially (i.e., in the
Lagrangian space). Then the average density in the two spaces is the
same: r̄0 ¼ r̄, where here, and below, quantities with subscript zero
are in the Lagrangian space.

We will also assume that the initial over-density fluctuations in
the Lagrangian space are small: d0 p 1 initially. If r̄ is the average
background density, then M0 ¼ r̄0V0ð1 þ d0Þ < r̄V0, where
V0 ¼ ð4p=3Þ R3

0. That is, the initial mass M0, volume V0 and size
R0 are all equivalent variables. Consider a region that initially
contains mass M0 and has initial over-density d0. At some later time,
it has size RðzÞ, so that the over-density within it is d, where

1 þ d ; D ¼ M0=r̄V ¼ ðR0=RÞ3
: ð9Þ

Notice that D is the same Eulerian quantity of the previous
subsection, and that it is simply the ratio of the Lagrangian
volume to the Eulerian volume of the region.

The spherical collapse model (e.g. Peebles 1980) allows one to
describe the evolution of such a region. In particular, it provides
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relations between the initial size R0, the initial over-density d0, the
time z, and the evolved Eulerian size at that time RðzÞ. If R0, d0 and z
are given, then RðR0; d0; zÞ is determined by the model. On the other
hand, if only R and z are given, then the model describes a curve in
the ðR0; d0Þ plane: d0ðR0jR; zÞ. To a good approximation, this
relation is

d0ðR0jR; zÞ
1 þ z

¼ 1:68647 ¹
1:35

D2=3 ¹
1:12431

D1=2 þ
0:78785

D0:58661 ð10Þ

(Mo & White 1996). A simpler approximation to this relation is

d0ðR0jR; zÞ
1 þ z

¼ dc0 ¹ dc0 D¹1=dc0 ð11Þ

(Bernardeau 1994). Whereas Bernardeau used dc0 ¼ 1:5, the value
1:68647 is also acceptable. Since d0 is the linear theory density
fluctuation, it can be less than ¹1. In both these relations, this
happens as D → 0.

Notice that when R → 0, then D → ∞, so formulae (10) and (11)
both become d0 → dc0 ð1 þ zÞ with dc0 ¼ 1:686. In this limit
d0ðR0jR ¼ 0; zÞ is independent of R0. When R > 0, then
d0ðR0jR; zÞ decreases monotonically as R0 decreases. Essentially,
equation (10) shows that a given pair R and z could initially have
come from a range of R0 and d0. This is sensible; in the spherical
model, initially denser regions collapse more rapidly than less
dense regions. Therefore a region of size R at z may initially have
been a small region containing a small over-density, or it may have
been larger initially, but with a correspondingly larger over-density.

Our model for estimating the Eulerian probability distribution
function pðM0jR; zÞ works as follows. At any given z, imagine
partitioning space into a large number of cells each of size V .
Assume that each cell evolved according to the spherical model
independently of the others. This means that the mass within each
cell remains the same – only its comoving size changes – and the
total number of cells is conserved. These are strong simplifying
assumptions that, on (larger) scales where shell crossing has yet to
occur, are certainly reasonable. In general, however, they do not
have a rigorous physical justification. So, as with the Bond et al.
(1991) excursion set approach, the extent to which the model here is
able to reproduce the results of numerical simulations is, at present,
the only real justification for these assumptions. As we show below,
these assumptions allow one to estimate a number of useful
quantities.

Since each cell evolved according to the spherical model, and the
number of such cells is conserved, to compute pðM0jR; zÞ we simply
need to specify the relative numbers of regions initially with ðR0; d0Þ

that have now evolved into regions ðR; zÞ. Clearly, this distribution
depends on the initial distribution of fluctuations and on the
evolution described by the spherical model. The next subsection
shows how to do this.

2.3 The first-crossing distribution

Consider a density field d0ðr; 0Þ. Recall that the subscript zero
denotes the fact that d0 is a quantity measured in the Lagrangian
space. Smoothing this field with a window W of scale R0 produces a
smoothed field d0ðr; R0Þ:

d0ðr; R0Þ ¼

�
Wðjr ¹ r0j;R0Þ d0ðr

0; 0Þ dr0

¼

�
W̄ðk;R0Þ d0ðkÞ expðik:rÞ dk;

ð12Þ

where W̄ is the Fourier transform of the window W. By definition of
the average density, d0 → 0 as R0 → ∞, for all positions r. Thus, for

each position in the Lagrangian space there is a curve, d0ðR0Þ, which
describes the over-density d0 in a window of Lagrangian size R0

centred on that position. Call such a curve a trajectory. The volume
associated with a window of size R0 is V0 ; VWR3

0, where VW is
some constant that may depend on the shape of the window, but
does not depend on R0. For example, VW ¼ 4p=3 for a top-hat
window. The mass within this volume is M0 ¼ r̄0V0ð1 þ d0Þ, where
r̄0 is a constant that denotes the average mass density in the
Lagrangian space. Provided the initial d0 is small, M0 < r̄0V0 to
lowest order. In this approximation, there is a deterministic relation
between the volume V0 and the mass within it: M0 ; r̄0V0 in the
Lagrangian space.

There is also a deterministic relation between the scale R0, and
the variance S0 associated with that scale:

S0 ¼


d2

0ðr; R0Þ
�

¼

�
PðkÞ W̄2ðk; R0Þ d3k; ð13Þ

where PðkÞ is the power spectrum of the unsmoothed Lagrangian
field. Thus, for a given PðkÞ, the quantities S0, R0, V0 and M0 are
equivalent. For most power spectra of interest, S0 increases as R0

decreases. For what follows, assume that S0 → ∞ as R0 → 0.
The deterministic relation between R0 and S0 means that to each

trajectory d0ðR0Þ associated with a position in the Lagrangian space,
there is a corresponding trajectory d0ðS0Þ. Since d0ðR0Þ → 0 as
R0 → ∞, all these trajectories start from the origin
ðS0; d0Þ ¼ ð0; 0Þ. Since S0 → ∞ as R0 → 0, and since S0 is a measure
of the mean square distance of a trajectory at S0 from the S0 axis,
any trajectory may be an arbitrary distance above or below the S0

axis as R0 → 0.
The deterministic relation between R0 and S0 also means that

equation (10) represents a curve in the ðS0; d0Þ space. Given R and z,
draw this curve, and call it the barrier BðS0jR; zÞ. The thick solid
curve in Fig. 1 shows this barrier for a representative value of R and
z. It decreases monotonically as S0 increases. For a given z,
equation (10) shows that curves for different R all have the same
value B ¼ dc0ð1 þ zÞ at S0 ¼ 0. Equation (10) also shows that B ¼ 0
when R ¼ R0, so curves for larger values of R cross the S0 axis at
smaller values of S0. In fact, for a given z, the curves for different R
form a nested family (see Fig. 2). This will be important below.

An excursion set model for dark matter distribution 1059
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Figure 1. Examples of trajectories (thin jagged curves) traced out by the
Lagrangian over-density, d0, as a function of linear variance, S0. The
trajectories are absorbed at the barrier (thick solid line). Here, the barrier
shape is given by the spherical collapse model (equation 10), and S0 ~ 1=V0

as it is for white noise.
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Since BðS0jR; zÞ decreases monotonically with increasing S0,
each Lagrangian trajectory will intersect the barrier at least once
(see Fig. 1). Define the first crossing as the smallest value of S0 at
which the Lagrangian trajectory d0ðS0Þ intersects BðS0jR; zÞ. That is,
it is the smallest S0 at which d0 ¼ B. Bond et al. (1991) discuss why
the first-crossing distribution is so important (it solves the so-called
cloud-in-cloud problem). Although they only considered the special
case in which BðS0jR; zÞ was independent of S0, their argument
holds for the more general barrier considered here also. The
argument is as follows.

Consider a trajectory d0ðS0Þ. It may cross the barrier BðS0jR; zÞ
many times. Consider the first crossing. Since S0 and M0 are
equivalent variables, the trajectory can be thought of as representing
a volume element of a Lagrangian volume V0 that has Eulerian size
R at z. Suppose the second crossing happened at M1 (note that this
requires M1 < M0). The same logic means that the trajectory could
also have been thought of as representing a volume element of a
Lagrangian volume V1 that has Eulerian size R at z. We need to find
a way of assigning a unique mass, a unique Lagrangian scale, to the
trajectory.

If the various crossings of the barrier correspond to
M0 > M1 > . . ., then the trajectory represents concentric Lagran-
gian regions V0 > V1 > . . . that are now all within the same Eulerian
region R at z. In effect, Bond et al. (1991) assume that successive
concentric shells never cross; whereas the actual sizes of
V0 > V1 > . . . may change, the order of the shells is preserved.
This means that if the largest region V0 has Eulerian size V , then the
subregions originally within it will remain within it. So the largest
Lagrangian region associated with the trajectory, i.e., the one
associated with the first crossing, is the one that should be
associated with the trajectory. Counting the largest region V0 at
once includes all the smaller ones within it, and is the natural way to
avoid double-counting the smaller regions.

Although Bond et al. (1991) considered only the case in which
Lagrangian regions had collapsed to Eulerian size R ¼ 0, their
argument can also be applied in the R > 0 case studied here. Recall
that, for a given z, curves for different R are nested (Fig. 2). Consider
a trajectory d0ðS0Þ that crosses the barrier BðRÞ for the first time at
V0. The Lagrangian scale Vn¹1, corresponding to the nth crossing of
BðRÞ by this same trajectory may be smaller than the Lagrangian
scale V 0

0 corresponding to the first crossing, by this trajectory, of the

barrier BðR0Þ for some Eulerian R0 # R. In our model, such a
trajectory represents a volume element of a Lagrangian region V0

that at z, has Eulerian size R, at which time it contains a subregion
that originally had size V 0

0 # V0 and now has size R0 # R. The
assumption is that if V 0

0 has Eulerian size R0, and if Vn¹1 < V 0
0 # V0

originally, then all the mass Mn¹1 contained within Vn¹1 must still
be contained within the Eulerian region R0 now occupied by V 0

0.
Thus the model developed here, in which the first crossing of a
barrier BðS0jR; zÞ is used to assign a mass to a Lagrangian trajectory,
explicitly preserves the ordering that was assumed by Bond et al.

Let f ðS0; d0jR; zÞ dS0 denote the fraction of trajectories that have
their first crossing of the barrier between S0 and S0 þ dS0. Then, for
a given barrier BðS0jR; zÞ, f ðS0; d0jR; zÞ dS0 can be equated with the
fraction of Lagrangian space that is associated with regions contain-
ing mass M0 that each occupy an Eulerian region R at z. If
NðM0jR; zÞ dM0 denotes the number of such regions, then each
such region occupied a Lagrangian volume V0 ¼ M0=r̄0, so

f ðS0; d0jR; zÞ dS0 ¼
V0 NðM0jR; zÞ dM0

Vtot
; ð14Þ

where Vtot ;
�

V0 NðM0jR; zÞ dM0. Thus the distribution of first
crossings gives an estimate of the number density of Lagrangian
regions which contained mass M0 and had initial over-density d0, so
that at z, while they still contain mass M0, they occupy the Eulerian
volume V .

If we further suppose that the number of such regions is the same
in both the Eulerian and Lagrangian spaces, then comparison with
equation (1) shows that

pðM0jR; zÞ dM0 ¼
V
V0

f ðS0; d0jR; zÞ dS0: ð15Þ

Since ðV0=VÞ ¼ M0=ðr̄VÞ ¼ ð1 þ dÞ ¼ D, this means that

f ðS0; d0jR; zÞ dS0 ¼ D pðDjR; zÞ dD; ð16Þ

provided that d0 is the function of S0, R and z that is given by
equation (10). This shows how the barrier-crossing distribution is
related to pðDjR; zÞ.

Notice that the left-hand side of equation (16) is determined by
Lagrangian space quantities (the trajectories which cross the barrier
are Lagrangian), whereas the right-hand side is associated with
Eulerian space. A similar sort of relation between Lagrangian and
Eulerian space quantities was used by Bernardeau (1994) (see the
discussion at the start of his Section 3.2.2). The difference between
his work and ours is that he used a Lagrangian distribution that
was derived from perturbation theory, rather than from a barrier-
crossing model, for the left-hand side of equation (16).

In summary, the Eulerian probability distribution function
pðM0jR; zÞ is the fraction of regions of size R that, at z, contain
mass M0. To estimate it, first assume that the initial fluctuation d0 is
small, so M0=r̄0 ¼ V0 ¼ ð4p=3ÞR3

0. Next, choose a random position
in the initial field. Compute d0 in spheres R0 centred on this position.
Call the curve d0ðR0Þ centred on this position a trajectory. Given R
and z, draw the barrier BðR0jR; zÞ associated with the spherical
collapse model (equation 10). The trajectory d0ðR0Þ may intersect
the barrier BðR0jR; zÞ many times. Find the largest value of R0 at
which the trajectory intersects BðR0jR; zÞ. Call this the first crossing
of BðR0jR; zÞ. Associate mass M0 with this trajectory. Since mass M0

and initial volume V0 are equivalent, this trajectory represents a
volume element of a region containing mass M0. Initially, M0 had
size ð4p=3ÞR3

0 and over-density d0ðR0jR; zÞ. At z, it has size R. Repeat
for an ensemble of such trajectories. So compute the distribution of
first crossings of BðR0jR; zÞ. The fraction of trajectories which first
cross the barrier BðR0jR; zÞ at R0 represents the fraction of mass that
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Figure 2. 2 Dependence of the barrier shape on comoving Eulerian size R
and redshift z. Solid curves show B ¼ d0ðR0jR; zÞ of equation (10), and
dashed curves show equation (20). For white noise, S0 ~ 1=V0 ~ 1=R3

0.
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is in regions of mass M0 that, at z, have size R. From this, the average
number density NðM0jR; zÞ=Vtot of such regions can be computed
easily. Assume that the number of such regions is conserved. Then
NðM0jR; zÞV =Vtot equals pðM0jR; zÞ.

2.4 The halo distribution

The previous subsection showed how to compute the Eulerian space
distribution function using an excursion set model. However, the
excursion set model can also be used to provide information about
the halo distribution. This subsection shows why.

Following Bond et al. (1991), define a halo as a Lagrangian
region that has collapsed to a vanishingly small Eulerian size:
R ¼ 0. Suppose z is given, and consider the Eulerian scale R ¼ 0. In
the spherical collapse model, BðR0j0; zÞ is independent of R0 but
depends on z (equation 10). Define BðR0j0; zÞ ; dcðzÞ. As before,
equate the fraction of trajectories f ðR0; dcÞ which first cross dcðzÞ at
R0 with the fraction of mass in regions M0 that, at z, have size R ¼ 0.
Following equation (14), the average number density of such
regions is n̄ðM0; dcÞ ¼ NðM0j0; zÞ=Vtot ¼ ðr̄=M0Þ f ðR0; dcÞ, and
n̄ðM0jzÞ is said to be the mass function of collapsed haloes. This
is exactly the excursion set model for the unconditional halo mass
function developed by Bond et al. In the present context, the
unconditional mass function is just the Eulerian distribution func-
tion in the limit R ¼ 0.

Since the R ¼ 0 limit has this special interpretation, in what
follows, it is convenient to make a distinction between the barrier-
crossing distribution in this limit, and that when R > 0. Below the
subscript ‘c’ (for constant height), as in fcðS0; d0Þ, denotes the
barrier-crossing distribution when R ¼ 0, and the subscript ‘R’
denotes the case R > 0.

Suppose we consider two-barriers B1 ¼ BðS0jR1; z1Þ and
B0 ¼ BðS0jR; z0Þ, with z1 > z0. (It may help to look at Fig. 2.)
For now, assume that R1 # R. Let fRðS1; d1jS0; d0Þ denote the
fraction of trajectories which first cross B1 at S1 given that they
first crossed B0 at S0. Again, consider the limit R1 ¼ R ¼ 0 for
both barriers. Then B1 ¼ dcðz1Þ ¼ dc1, and B0 ¼ dc0 for all S0,
so both barriers have a constant height, and B1 > B0. Bond et al.
(1991) interpret fcðS1; d1jS0; d0Þ as representing the fraction of
mass in an M0-halo that was earlier in M1-haloes. They define a
conditional mass function as the average number of M1-haloes
that are within an M0-halo: N ð1j0Þ ¼ ðM0=M1Þ fcð1j0Þ if M1 # M0,
and N ð1j0Þ ¼ 0 otherwise. In the context of this paper, fcð1j0Þ

represents the fraction of the Lagrangian region V0 that has Eulerian
size R ¼ 0 at z0, which was previously in Lagrangian regions V1

that, at z1, also occupied vanishingly small Eulerian volumes.
The reason for wording things in this way is that it shows how
to compute other properties of the halo distribution in Eulerian
space.

For example, the average number of M1 haloes that collapsed at
z1 and are in Eulerian regions R > 0 at z < z1 can be computed as
follows. Recall that ðM1; z1Þ-haloes are associated with trajectories
which cross the constant barrier B1 ¼ dc1 at S1. Since dc1 > dcðzÞ,
and since B0 decreases monotonically as S0 increases, each of these
trajectories must have crossed B0 ¼ BðS0jR; zÞ at some S0 # S1, so
as to reach dcðz1Þ at S1. Therefore

fcðS1; dc1Þ ¼

�S1

0
fcðS1; dc1jS0; d0Þ fRðS0; d0Þ dS0; ð17Þ

where d0 ¼ BðS0jR; zÞ. Since fcð1Þ ¼ ðM1=r̄Þ n̄ð1Þ, fcð1j0Þ ¼

ðM1=M0Þ N ð1j0Þ, fRð0Þ dS0 ¼ D pðDÞ dD, and D ¼ M0=r̄V ,

equation (17) implies that

n̄ðM1; dc1ÞV ¼

�∞

0
N ðM1; dc1jM0; d0Þ pðM0jR; zÞ dM0: ð18Þ

If we set

Nð1j0Þ ¼ N ðM1; dc1jM0; d0Þ; ð19Þ

where Nð1j0Þ was defined in Section 2, just prior to equation (5),
and d0 in N ð1j0Þ is given by equation (10), and we recall that
pðM0Þ dM0 ¼ pðDÞ dD (equation 3), then this expression is the same
as equation (5). Equation (19) shows that the average number of M1-
haloes in Eulerian cells V which contain mass M0 at z is equal to that
in those Lagrangian regions V0 which had initial density d0 given by
equation (10).

The main reason for writing this out explicitly is that it shows
how statistics in the Lagrangian space can be used to compute
statistics in Eulerian cells V . Namely, the assumed conservation of
number of regions in the two spaces (equation 18 equals equation 5)
means that an average over Eulerian regions of size V is equivalent
to averaging over those Lagrangian regions that have evolved into
Eulerian regions of size V (equations 18 and 19). In practice, this
means that Eulerian space quantities like ȳhm and ȳhh can be
computed simply by using the appropriate value for d0 (that given
by equation 10) in the associated Lagrangian space quantities, and
then summing over M0, weighting the contribution from each M0

appropriately. This weighting is given by the barrier-crossing
algorithm, because the barrier-crossing distribution fRðS0; d0Þ,
with d0 given by equation (10), represents the fraction of Lagran-
gian space that is associated with regions of mass M0 that, because
they had initial over-density d0, are Eulerian regions of size V at z.

Section 3 illustrates how this works. It presents a model in which
all these quantities can be computed analytically.

2.5 Relation to the work of Mo & White

Before moving on, it is interesting to compare this model with
previous work. Our equation (19) is exactly the same as that
assumed by Mo & White (1996). They assumed that the Eulerian
space quantity Nð1j0Þ could be computed by simply substituting the
spherical collapse value of d0ðR0jR; zÞ into the Lagrangian formula
N ð1j0Þ. They showed that the resulting formula for Nð1j0Þ pro-
vided good fits to the corresponding Eulerian space quantity
measured in their numerical simulations of clustering. Since, in
this regard, our model leads to the same formula as that of Mo &
White, the agreement with simulations provides some justification
for the strong simplifying assumptions which lead to our model.

Our model extends their results in the following way. Our
equation (18) shows that, to compute averages in Eulerian space,
knowledge of the Eulerian space distribution function pðDjR; zÞ is
necessary to then take the correct average over Lagrangian regions
V0 that have become Eulerian regions V . Mo & White also knew
this, but they did not know how to compute pðDjR; zÞ. They there-
fore assumed that it could be taken directly from their numerical
simulations. However, as our approach shows, pðDjR; zÞ is related to
the shape of the boundary (cf. our equation 16). This relation must
not be ignored. To see why, suppose (as Mo & White did) that a
lognormal can be substituted for pðDjR; zÞ. If one uses the spherical
model for d0ðR0jR; zÞ in N ð1j0Þ and then does the integral on the
right-hand side of (18), one finds that it does not equal the correct
value for the left-hand side. This is because, as our approach shows,
self-consistency requires that pðDjR; zÞ depend on the boundary
shape; once the boundary is specified, one is no longer free to
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choose any arbitrary distribution for pðDjR; zÞ. This may partially
explain why the Mo & White results using a lognormal are some-
what worse than when they use the distribution measured directly in
their simulations.

Since our approach shows how to derive pðDjR; zÞ from the
boundary shape, our approach can be thought of as deriving, self-
consistently, the Mo & White (1996) spherical evolution formulae
by a simple extension of the Bond et al. (1991) excursion set
approach.

2.6 The two-barrier problem

The previous subsection showed that problems involving the cross-
ing of two-barriers, in which one barrier was assumed to be
constant, and the other not (i.e., the Eulerian scale was R ¼ 0 for
one barrier, but R > 0 for the other), could be used to provide
information about the distribution of haloes within Eulerian cells V .
The case in which R > 0 for both barriers is also interesting.

Consider two-barriers BðR0jR;ZÞ and bðr0jr; zÞ. If z ¼ Z and
r < R, then the two-barrier problem is associated with the joint
distribution of the mass within two concentric Eulerian cells. It may
therefore be useful for estimating the evolved Eulerian space
density profile. Of course, in the model, haloes collapse to zero
radius, and this is unrealistic. In practice, haloes virialize at some
fraction of their turnaround radius. Therefore the solution of this
two-barrier problem is probably only useful on scales larger than
the virial radius.

If, instead, r ¼ R, but z > Z, then the two-barrier problem
describes the matter within the same comoving cell at two different
epochs. That is, it can be used to quantify the way in which matter
flows in and out of (comoving) Eulerian cells.

3 T H E L I N E A R B A R R I E R A N D W H I T E - N O I S E
I N I T I A L C O N D I T I O N S

This section shows how the model described in Section 2 can be
used. It assumes that the initial Lagrangian space distribution is
white-noise Gaussian and studies the first-crossing distribution
of a barrier whose height decreases linearly as V0 ¼ ð4p=3ÞR3

0

decreases:

BðS0jR; zÞ ¼ dc0 ð1 þ zÞ ¹
dc0 ð1 þ zÞ

D
; ð20Þ

where S0 ¼ 1=r̄0V0, and D ¼ M0=r̄V ¼ ðR0=RÞ3.
This barrier shape was chosen for a number of reasons. First, this

shape is a simple approximation to the spherical collapse barrier
(compare equation 10, and see Fig. 2), and the associated dynamical
evolution is similar. Section 3.1 shows how the evolution of a
spherical perturbation in this model differs from that in the usual
spherical collapse model. Second, the first-crossing distribution of a
linear barrier is known, so the associated Eulerian distribution can
be written analytically; it is Inverse Gaussian. The Inverse Gaussian
is a good approximation to the distribution measured in numerical
simulations of clustering from white-noise initial conditions
(Section 3.6), so the model may also be realistic. Finally, for this
barrier, the halo–mass and halo–halo correlations can all be
computed analytically.

3.1 Relation to the spherical collapse model

The linear barrier studied in this section is associated with the
following model for the collapse of objects.

Let RðzÞ denote the comoving size of an object at the epoch z.
Then RðzÞ ¼ R0 initially. If the object is in an underdense region,
then its comoving size will increase, else it will decrease. Trajec-
tories with extrapolated linear over-density d0 greater than dc0 are
associated with collapsed objects. Collapsed objects have RðzÞ ¼ 0.
Equation (20) implies that, before collapse,

R3ðzÞ

R3
0

¼ 1 ¹
d0=ð1 þ zÞ

dc0
: ð21Þ

The radius of an object in proper, physical coordinates is
RpðzÞ ¼ RðzÞ=ð1 þ zÞ. Objects which collapse have a turnaround
radius – the maximum value that RpðzÞ attains. This occurs at

ð1 þ ztaÞ ¼
4
3

d0

dc0
; ð22Þ

at which time

RðztaÞ

R0
¼

1
41=3 : ð23Þ

In comparison, collapsing objects in the spherical model reach
turnaround at

ð1 þ ztaÞ ¼ 41=3 d0

dc0
; ð24Þ

at which time

RðztaÞ

R0
¼

ð1 þ ztaÞ RpðztaÞ

R0
¼

6
10

41=3

dc0
¼

4
3p

� �2=3

ð25Þ

(e.g. Peebles 1980). Fig. 3 shows that, for over-dense perturbations,
turnaround in this model (dashed lines) occurs later, and at a larger
radius, than in the spherical model (solid lines). To compensate,
underdense regions expand less rapidly in this model than in the
spherical model.

3.2 The constant barrier and statistics in Lagrangian space

In the limit R → 0, equation (20) for the barrier shape becomes
independent of S0, as it does for the spherical collapse model. In this
limit, the first-crossing distribution is known (e.g. Bond et al. 1991),
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Figure 3. The physical radius of a perturbation in units of the spherical
model turnaround radius, as a function of time in units of the spherical
collapse model turnaround time. The solid curves show the spherical model,
and the dashed curves show the linear barrier model studied in this paper.
The two curves for each line type are for denser perturbations (which
recollapse) and underdense perturbations (which do not).
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although we give a different derivation of it below. Therefore, to set
notation, this section summarizes various known results about the
crossing of a constant barrier by the Lagrangian trajectories
described earlier, under the assumption that d0ðr; 0Þ is a Gaussian
random field.

Let pðS0; d0Þ dd0 denote the fraction of trajectories that have value
between d0 and d0 þ dd0 at S0. Also, let pðS0; d0jS

0
; d0

; firstÞ dd0

denote the fraction of those trajectories which first crossed the
barrier BðS0jR; zÞ between S0 and S0 þ dS0, which have values
between d0 and d0 þ dd0 at S0 $ S0. Then

pðS0; d0Þ ¼

�S0

0
pðS0; d0jS

0
; d0

; firstÞ f ðS0
; d0jR; zÞ dS0

; ð26Þ

provided that at S0, d0 $ BðS0jR; zÞ. If both pðS0; d0Þ and
pðS0; d0jS

0
; d0

; firstÞ are known, then this is a Volterra equation of
the first kind, so it can be solved numerically, by forward substitu-
tion, to yield f ðS0

; d0jR; zÞ.
Suppose that the probability distribution of the density in the

Lagrangian space is Gaussian. Then

pðS0; d0Þ dd0 ¼
dd0����������
2pS0

p exp ¹
d2

0

2S0

� �
: ð27Þ

If the window W is sharp in k-space, then

pðS0; d0jS
0
; d0

; firstÞ dd0 ¼ pðS0; d0jS
0
; d0Þ dd0; ð28Þ

and

pðS0; d0jS
0
; d0Þ dd0 ¼

dd0�����������������������
2pðS0 ¹ S0Þ

p exp ¹
ðd0 ¹ d0Þ2

2ðS0 ¹ S0Þ

� �
ð29Þ

(e.g. Bond et al. 1991). Thus, if the Lagrangian space distribution is
Gaussian, and the window function is sharp in k-space, then the
distribution of first-crossing times is easy to compute, whatever the
boundary shape. Equations (28) and (29) are also correct for a top-
hat filter in real space, if the Gaussian field is white noise. So the
distribution of first-crossing times is easy to compute for white
noise also. In either of these cases, a trajectory d0ðS0Þ resembles the
motion of a particle undergoing standard Brownian motion with
zero drift. Bond et al. (1991) and Lacey & Cole (1993) used this fact
to compute f ðS0; d0Þ.

Notice, however, that when the boundary is a constant,
BðS0jR ¼ 0; zÞ ¼ dc0ð1 þ zÞ ; dcðzÞ, then the form of f ðS0; d0Þ can
be obtained directly from equation (26). First, take the derivative
with respect to d0 on both sides of equation (26), and evaluate it at
d0 ¼ dcðzÞ. Next, set d0 ¼ dcðzÞ. Then the integrand on the right-
hand side is zero, except when S0 ¼ S0. Thus equation (26) implies
that

fcðS0; dc½zÿÞ ¼
dcðzÞ
S0

p½S0; dcðzÞÿ

¼
dcðzÞ����������
2pS0

p exp ¹
d2

cðzÞ
2S0

� �
dS0

S0
;

ð30Þ

where the subscript ‘c’ denotes the fact that this is the distribution of
first crossings of a constant boundary.

If the trajectory is known to start from ðS0; dc0Þ, rather than from
the origin, then the distribution of first crossings of the constant
barrier dc1 ¼ dc0ð1 þ z1Þ can be solved similarly. Provided dc1 > dc0

and S1 > S0,

fcðS1; dc1jS0; dc0Þ ¼
dc1 ¹ dc0

S1 ¹ S0

� �
pðS1; dc1jS0; dc0Þ: ð31Þ

These expressions for the first-crossing distribution are the same as
those derived by Bond et al. (1991) and Lacey & Cole (1993).

Following Bond et al. (1991), treat the parameter dcðzÞ as a
pseudo-time variable; it decreases as the Universe evolves. Then
associate the first-crossing distribution of the barrier dcðzÞ with a
number density of regions containing mass M0 in the Lagrangian
space, and call every such region a dark matter halo. Then the
number density of M1 haloes at the epoch labelled by dc1 ¼ dcðz1Þ is

n̄ðM1; dc1Þ dM1 ;
r̄0

M1
fcðS1; dc1Þ dS1: ð32Þ

This is consistent with equation (14), and n̄ðM1; dc1Þ is sometimes
called the unconstrained halo mass function at the epoch z1.

Similarly, the average number of ðM1; dc1Þ-haloes that are within
an ðM0; dc0Þ-halo is

N ð1j0Þ ;
M0

M1

� �
fcðS1; dc1jS0; dc0Þ

dS1

dM1
ð33Þ

(e.g. Lacey & Cole 1993). This is the constrained mass function.
The joint distribution of the number N1 of ðM1; dc1Þ-haloes and

the number N2 of ðM2; dc1Þ-haloes, that are both within the same
ðM0; dc0Þ-halo, averaged over all ðM0; dc0Þ-haloes is

Cð12j0Þ ;


N1N2; dc1jM0; dc0

�
¼ N ð1j0Þ N ð2j10Þ; ð34Þ

where N ð1j0Þ is given by equation (33), and

N ð2j10Þ dM2 ¼
M0 ¹ M1

M2
fcðS2; dc1jS01; d01Þ dS2 ð35Þ

(Sheth 1996b). Here S01 ¼ SðM0 ¹ M1Þ ¼ ðM0 ¹ M1Þ
¹1, and d01 is

the over-density in the remaining volume V0 ¹ V1 that is not
occupied by the M1-halo. That is,

1 þ d01 ¼
M0 ¹ M1

r̄0ðV0 ¹ V1Þ
: ð36Þ

However, M0 ; r̄0V0ð1 þ dc0Þ and M1 ; r̄0V1ð1 þ dc1Þ, so that, to
lowest order,

dc1 ¹ d01 ¼ ðdc1 ¹ dc0Þ
M0ð1 þ dc1Þ

M0ð1 þ dc1Þ ¹ M1ð1 þ dc0Þ

< ðdc1 ¹ dc0Þ
M0

M0 ¹ M1
:

ð37Þ

Most of the formulae in this section are not new, but they will all
be useful below. They have been included to set notation, and
because, as the previous section showed, if these expressions are
known, then simple transformations allow one to compute the
associated Eulerian space quantities.

3.3 The linear barrier-crossing distribution and the matter
distribution in Eulerian space

The previous subsection described the first-crossing distribution
associated with a constant barrier by trajectories associated with a
Lagrangian field that is Gaussian white noise. Recall that the
constant barrier is got from the linear barrier of equation (20) by
setting R ¼ 0. When R > 0, then direct substitution shows that

fRðS0; d0Þ dS0 ¼
Bð0jR; zÞ����������

2pS0

p exp ¹
B2ðS0jR; zÞ

2S0

� �
dS0

S0
; ð38Þ

where B is given by equation (20), satisfies equation (26). The
identity�∞

0
fRðS0; d0Þ dS0 ¼ 1; ð39Þ

which follows from the definition of the modified Bessel function of
the third kind, is useful in proving this result. A full derivation of
this distribution is given in Appendix A.
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Equation (38) is known as the Inverse Gaussian distribution. It
was first discovered in the context of Brownian motion by Schrö-
dinger (1915). Folks & Chhikara (1978) give a review of its role in
other fields. Here, the distribution represents the fraction of
Lagrangian space which is associated with regions of mass
M0ðS0Þ provided the initial distribution is white-noise Gaussian,
and the dynamics are a simple modification of the usual spherical
collapse model (as described in the previous subsection.)

For white noise, M0 ¼ 1=S0, so, for white noise, equation (38)
in (16) implies that the Eulerian distribution function that is
associated with the linear barrier is

pðDjRÞ dD ¼ r̄V S0 fRðS0; d0Þ dS0

¼
1���������������

2pȳmD
p exp ¹

ðD ¹ mÞ2

2ȳmD

� �
dD

D
;

ð40Þ

where

ȳmðRÞ ; ½d2
c0ð1 þ zÞ2r̄Vÿ¹1

; and m ¼ 1; ð41Þ

and we have not bothered to write the z dependence of pðDjR; zÞ
explicitly. Notice that pðDjRÞ is also an Inverse Gaussian distribu-
tion. The mean of this distribution is m ¼ 1, and the variance is ȳm.
The higher order moments of this distribution are simple. If ȳn is the
nth cumulant of this distribution, then

Sn ;
ȳn

ȳn¹1
m

¼ ð2n ¹ 3Þ!! ð42Þ

and it is independent of cell size V . This is simply a consequence of
the fact that, in the model, haloes have vanishingly small Eulerian
sizes: R ¼ 0.

As ȳm → 0, this Inverse Gaussian tends to the Gaussian distribu-
tion. For fixed V , this happens if dc0ð1 þ zÞ q 1. Since z is a pseudo-
time variable, this means that, at sufficiently early times, the
Eulerian distribution is Gaussian for almost all scales V . This is
sensible, since at early times the Eulerian and Lagrangian dis-
tributions should be similar, and, by hypothesis, the Lagrangian
distribution is Gaussian. For a given z, ȳm → 0 as V q 1. This
means that, even at later times, the Eulerian distribution function,
measured in sufficiently large cells V , appears Gaussian.

When V → 0, then the term in the exponent of equation (40) tends
to D=ym ¼ d2

c0ð1 þ zÞ2
=S0, so pðDjRÞ → V times equation (32),

which is the same as 1=D times equation (30). This is consistent
with the fact that, in this limit, equation (20) shows that the barrier
shape tends to the constant dc0ð1 þ zÞ, and the first-crossing dis-
tribution of a constant barrier is given by equation (30). This shows
explicitly that the unconstrained mass function of (32) is essentially
the same as the Eulerian distribution function, in the limit of
vanishing cell size V . All these asymptotic relations are sensible.

3.4 The halo distribution

A little algebra shows that when the barrier shape is linear, then
equation (17) is satisfied for all R. Recall that that expression simply
expresses the fact that the fraction of trajectories which first cross
the constant barrier dc1 at S1 is equal to the fraction of trajectories
which first cross the linear barrier (associated with the Eulerian
scale R) at d0 ¼ BðS0jR; z0Þ, and then cross the constant barrier
dc1 $ dc0 at S1, summed over all S0 # S1. Of course, this implies
that equation (18) is also satisfied: n̄ðM1; dc1ÞV is equal to V times
equation (32), as it should. This shows explicitly that, for the linear
barrier, the number density of haloes in the Eulerian space is equal
to that in the Lagrangian space, and this number density is just what
is required by the Bond et al. (1991) excursion set approach.

The cross-correlation between haloes and mass can be worked
out similarly. Start with equation (7). Use equation (16) to write
pðDjR; zobsÞ in terms of the Lagrangian barrier-crossing distribution
fRðS0; d0Þ. Then use (38) for fRðS0; d0Þ, and recall that d0 ¼

BðS0jR; zobsÞ where equation (20) gives B. This means that
Bð0jR; zÞ ¼ dc0ð1 þ zobsÞ, where zobs # z1. Then use equation (19)
to set Nð1j0Þ ¼ N ð1j0Þ, and use (33) for N ð1j0Þ with
d0 ¼ BðS0jR; zobsÞ. With these substitutions, the integral in
equation (7) can be solved analytically:

ȳhmð1jRÞ ¼
M1

r̄V
1 þ z1

1 þ zobs

� �
þ

M¬ðzobsÞ

r̄V
z1 ¹ zobs

1 þ z1

� �
; ð43Þ

where

dc1 ¼ dc0 ð1 þ z1Þ; d2
c0=S0 ¼ M0=M¬0; and

M¬ðzobsÞ ¼ M¬0 ð1 þ zobsÞ
¹2
:

ð44Þ

Notice that when z1 ¼ zobs, then ȳhm ¼ M1=r̄V . That is, the only
correlation that arises is that which is due to the fact that there is a
halo of mass M1 inside V , so there is certainly mass M1 inside V .
Since

ȳmðRÞ ¼
1

d2
c0ð1 þ zobsÞ

2r̄V
¼

M¬ðzobsÞ

r̄V
;

equations (41) and (44) imply that

ȳhmð1jRÞ

ȳmðRÞ
¼

M1

M¬ðzobsÞ

1 þ z1

1 þ zobs

� �
þ

z1 ¹ zobs

1 þ z1

� �
: ð45Þ

This ratio is independent of the Eulerian cell size V . Again, this a
consequence of the fact that the model assumes that haloes have
zero volume, so if a halo is within a cell, then all its associated mass
is also.

This expression has an interesting relation to previous work. Mo
& White (1996) argue that, when jdc0j p dc1, then, in the limit of
large V ,



dhð1j0Þ d

�
R < 1 þ

ðn2
1 ¹ 1Þ=dc0

dc1=½dc0ð1 þ zobsÞÿ

� �

d2�

; ð46Þ

where n2
1 ; d2

c1=S1. Now, dc1=dc0 ¼ ð1 þ z1Þ, and hd2i < ȳm for large
V , so this expression is the same as what is required by
equations (44) and (45) if dc0 ¼ 1. The extra factor of dc0 arises
from the fact that, for large V , the density fluctuation d in most
Eulerian cells is small, so D ; 1 þ d < 1 for most V . In this limit,
equation (10) shows that d0=ð1 þ zÞ < d in the collapse spherical
model, whereas equation (20) shows that it is <dc0 d for the linear
barrier.

Let ȳhhðM1;M2; dc1jRÞ denote the correlation function of M1 and
M2 haloes identified at the epoch z1, averaged over all comoving
Eulerian cells V , at the epoch zobs # z1. Recall that this average can
be computed in two steps. All Eulerian cells can be classified by the
mass M0 within them. Further classify all Eulerian cells which
contain mass M0 by their Lagrangian over-density d0. Since the
number of such regions is conserved, the joint distribution of the
number of M1 and M2 haloes, N1N2, averaged over all such ðM0; d0Þ-
regions, is the same in both spaces, provided we set d0 ¼ BðS0jR; zÞ.
This average gives Cð12j0Þ of equation (34), where d0 ¼ BðS0jR; zÞ
and B is given by (20). All that remains is to further average Cð12j0Þ

over the number of such conserved regions. This is done by
weighting it by pðDjRÞ, integrating over D, and then dividing out
the factors expected on average. We have gone to the trouble of
stating things this way to show that our definition of ȳhhð12jRÞ

includes the effects of the scatter of halo counts in Eulerian regions
which had the same over-density as well as the same radius initially.

1064 R. K. Sheth

q 1998 RAS, MNRAS 300, 1057–1070

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/300/4/1057/988218 by guest on 20 August 2022



Therefore, ȳhh here denotes the same quantity as j2
hh of equation (25)

in Mo & White (1996).
Now, 1 þ ȳhhð12jRÞ is given by equation (8), where Cð12j0Þ is

given by equation (34). With equations (16) and (38) for pðDjRÞ, and
setting d0 ¼ BðS0jR; zÞ as before, this integral can be solved
analytically. The result is that

ȳhhð12jRÞ

ȳmðRÞ
¼

M1 þ M2

M¬ðzobsÞ

z1 ¹ zobs

1 þ zobs

� �
þ

z1 ¹ zobs

1 þ z1

� �2

; ð47Þ

where z1 $ zobs, and M¬ðzobsÞ is defined as before. Like the halo–
mass correlation function, this ratio is independent of V because, in
the model, haloes are point-sized. Thus, in the model, haloes are
linearly biased tracers of the mass on all scales. Mo & White (1996)
argue that ȳhh=ȳm should equal ðȳhm=ȳmÞ2 on large scales. Although
our equation (45) for ȳhm=ȳm is similar to theirs, the right-hand side
of our equation (47) is not the same as the square of the right-hand
side of equation (45); they differ by a factor of ½Mð1 þ z1Þ=

M¬ðzobsÞð1 þ zobsÞÿ
2.

When z1 ¼ zobs, ȳhhð12jRÞ ¼ 0, which implies that haloes, when
they first virialize, are uncorrelated with each other. Further, the
correlation of haloes depends on the sum of the halo masses, but not
on the masses themselves. This suggests that halo–halo correlations
arise because of volume exclusion effects only. That is, halo–halo
correlations arise from the fact that an M1-halo occupies a region V1

initially, so no other halo can occupy this region. The correlation
function is affected by the fact that a region is included, but not by
the exact way in which the excluded region is populated.

If the halo masses M1 and M2 and their formation epoch z1 are
fixed, then the halo–halo correlation function at a given comoving R
increases as zobs decreases. This increase reflects the fact that haloes
which formed at z1, at which time they were uncorrelated with each
other, must have merged with each other to construct the more
massive haloes present at the later epoch zobs # z1. Suppose,
instead, that the halo masses, the comoving scale, and the epoch
at which the halo distribution is measured (i.e., zobs), are given, and
we wish to consider the effect of changing the halo formation epoch
z1 $ zobs. Equation (47) shows that as z1 decreases to zobs, ȳhh

decreases. That is, at fixed mass, the halo–halo correlation function
in comoving coordinates exhibits negative evolution.

3.5 The two-barrier problem

The previous subsections showed how the first crossing of a linear
barrier by Brownian walks could be used to compute various
interesting quantities associated with gravitational clustering.
This section shows that the associated two-barrier problem may
also be useful. In general, the linear barrier has two free parameters
which may be thought of as the y-intercept dc0 and the slope b,
respectively:

d0ðS0Þ ¼ dc0 ¹ bS0: ð48Þ

Below, we consider the statistics of trajectories which first cross a
barrier with one choice of parameters, and then cross another.

First, consider two-barriers d1 and d2 which have the same y-
intercept dc0, but different slopes, b1 and b2. Assume that b2 > b1.
This means that trajectories must cross the barrier d2 before they can
cross d1. We seek an expression for the probability that a trajectory
has its first crossing of d1 at S1, given that it has its first crossing of
the barrier d2 at S2 # S1. Recall the derivation of the barrier-
crossing distribution given in Appendix A. To a particle that started
from the origin and has just crossed the barrier d2ðS2Þ, the barrier

d1ðS1Þ has shape

d12ðS1 ¹ S2Þ ¼ d1ðS1Þ ¹ d2ðS2Þ

¼ b2 ¹ b1Þ S2 ¹ b1ðS1 ¹ S2Þ
ð49Þ

Since this barrier is also linear, the solution is the same as before,
except that S0 → S1 ¹ S2 and dc → d12. Therefore the first-crossing
distribution is

f ðS1; d1jS2; d2Þ dS1 ¼

ðb2 ¹ b1ÞS2������������������������
2pðS1 ¹ S2Þ

p exp ¹
ðb2S2 ¹ b1S1Þ

2

2ðS1 ¹ S2Þ

� �
dS1

ðS1 ¹ S2Þ
:

ð50Þ

Since dc0 is a pseudo-time variable, and it is the same for the two-
barriers, equation (48) shows that the expression above will be
useful for computing statistics in concentric cells V1 and V2 > V1, at
the same epoch. Therefore it may be useful for computing Eulerian
density profiles within the context of the model. Since, in the model,
haloes collapse to zero radius, this way of computing density
profiles is probably only useful on scales larger than the virial
radius. The virial radius can be derived from combining the
spherical collapse model with the fact that the mass within the
virial radius is given by the scale at which the trajectory first crosses
dc0.

The corresponding expression for two-barriers which have the
same slope b, but have different values for the y-intercept, say, dc1

and dc2 < dc1, is

f ðS1; d1jS2; d2Þ dS1 ¼
ðdc1 ¹ dc2Þ������������������������
2pðS1 ¹ S2Þ

p
× exp ¹

�
ðdc1 ¹ dc2Þ ¹ bðS1 ¹ S2Þ

�2
2ðS1 ¹ S2Þ

( )
dS1

ðS1 ¹ S2Þ
:

ð51Þ

Equation (48) shows that this provides information about the matter
in concentric cells V1 and V2 > V1, at two different epochs. Since
the value of b is the same, the two cell sizes are related:
ðV2=V1Þ ¼ ðdc1=dc2Þ.

More interesting, perhaps, is the case in which the cell sizes V are
the same, but dc1 > dc2. This case is also more complicated, since
now it is possible to cross barrier 1 before crossing barrier 2.
Provided S2 < r̄V ,

f ðS1; d1jS2; d2Þ dS1 ¼
dc12������������������������

2pðS1 ¹ S2Þ
p

× exp ¹

�
dc12 ¹ b1ðS1 ¹ S2Þ

�2
2ðS1 ¹ S2Þ

( )
dS1

ðS1 ¹ S2Þ
;

ð52Þ

where dc12 ¼ ðdc1 ¹ dc2Þð1 ¹ b2Þ, and b1 and b2 are given by
using (20) in (48), with dc1 and dc2, respectively. When the first
crossing of d2 occurs at S2 > r̄V , then the trajectory will have
crossed d1 first. In this case, f ðS2; d2jS1; d1Þ, with S2 $ S1, is given
by the expression above, provided the labels 1 and 2 are inter-
changed. These expressions contain information about the mass in
the same comoving Eulerian cell at different epochs. They show
that it is possible that the mass in V first decreases and later
increases. This shows explicitly that, in the model, matter can
flow in and out of Eulerian cells.

3.6 Comparison with simulations

This subsection shows that the Inverse Gaussian distribution
provides a good description of the evolved distribution for
clustering from white-noise initial conditions. Before doing so,
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we first argue that such a test has, in fact, already been performed by
others.

The Inverse Gaussian is a limiting form of the generalized
Poisson distribution (GPD)

pðNjR; bÞ ¼
N̄c

N!

ÿ
N̄c þ Nb

�N¹1 e¹N̄c¹Nb
; ð53Þ

where N is the number of identical particles in a randomly placed
cell of size R which contains N̄ particles on average, N̄c ; N̄ð1 ¹ bÞ,
and 0 # b # 1. In the astrophysical context, the GPD was first
derived by Saslaw & Hamilton (1984). It can be related to the
Inverse Gaussian as follows (Fry 1985; Sheth 1996a). The mean of
this discrete distribution is N̄, and the variance is
N̄=ð1 ¹ bÞ2 ; N̄ð1 þ N̄ȳÞ. Notice that as N̄ → ∞ and b ;
ð1 þ dc0Þ

¹1 → 1, N̄ȳ → d¹2
c0 , which is the relation required by

equation (41). In this limit, N̄ pðNjR; bÞ tends to the Inverse
Gaussian distribution pðDjRÞ, since N=N̄ ; D.

Sheth (1998) shows that the GPD can be derived using a
boundary crossing, excursion set model associated with the Poisson
distribution in the initial Lagrangian space. The linear barrier shape
considered in this paper is a limiting form of that associated with the
Poisson case. This correspondence is important, since the GPD is in
good agreement with numerical simulations of clustering from
Poisson initial conditions (Itoh, Inagaki & Saslaw 1993, and
references therein), provided the variance is allowed to be a free
function of scale. Bouchet & Hernquist (1992) showed that the GPD
also describes clustering from white-noise initial conditions well.
This just reflects the (intuitively obvious) fact that clustering from
Poisson and white-noise initial conditions should evolve similarly.
Since the Inverse Gaussian is just a limiting form of the GPD (just as
the white-noise Gaussian is a limiting form of the Poisson distribu-
tion), the Inverse Gaussian should provide a good approximation to
the Eulerian distribution measured in simulations of clustering from
white-noise initial conditions, in the regime where discreteness
effects are unimportant. Fig. 4 shows this explicitly.

The simulations of clustering from white-noise initial conditions
used here are the same as those studied by Mo & White (1996),
where they are described in more detail. The simulations contain
106 particles in a cube with periodic boundary conditions. Fig. 4
shows the evolved Eulerian distribution function for a few repre-
sentative choices of the comoving scale. Each panel shows results
for counts in spherical cells with comoving radii 0:02, 0:04, 0:08,
and 0:16 times the box size. For each cell size, the thin curves show
the distribution of counts averaged over 303 cells. The two panels
show results at two different expansion factors a, where a ¼ 1
initially. The variance in the cell counts decreases with cell size: for
the curves shown, the associated variance is 0:62, 0:11, 0:016 and
0:002 in the panel on the left, and it is 10:9, 2:1, 0:4 and 0:07 in the
panel on the right.

Comparison with the linear barrier model is a little tricky. In
principle, the model requires that the free parameter ȳm of the
Inverse Gaussian distribution (equation 40) should scale as
ȳm ~ 1=V . In fact, although ȳm in the simulations is ~1=V initially,
it scales differently at later times (e.g. Hamilton et al. 1991; Jain,
Mo & White 1995). On large scales it is ~1=V , even at late times, but
on smaller scales it is less steep. At least some of this difference
between the model prediction and the simulation results is a
consequence of the model assumption that haloes collapse to zero
volume. This assumption means that, on scales smaller than that of a
typical halo in the simulations, the model will certainly be in error.
We will therefore proceed as follows. Recall that ȳm determines the
shape of the Inverse Gaussian distribution. We will assume that, on
any scale V , we can treat ȳm as a free parameter that is fixed by
relating it to the value of the variance of particle counts in cells of
size V measured in the simulations. This assumption allows us to
test if the functional form of the Inverse Gaussian distribution
provides a good description of the simulations, even if the detailed
scale dependence of the model is not right.

The thick curves in Fig. 4 show Inverse Gaussian distributions
that have the same variance as the distributions measured in the
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Gaussian distributions that have the same variance as the thin curves. Larger cells have narrower distribution functions.
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simulations (thin curves). When this is done, the Inverse Gaussian
(equation 40) describes the simulation results reasonably well, even
on small scales, at all times. In fact, the Inverse Gaussian fits pðdÞ at
least as well as the Press–Schechter mass function (equation 32) fits
the distribution of cluster masses (see, e.g., Lacey & Cole 1994).
The evolution of the variance in the simulations is reasonably well
understood (Hamilton et al. 1991; Nityananda & Padmanabhan
1994; Jain et al. 1995; Padmanabhan 1996), so we could have used
this to set ȳm, rather than the simulations themselves. Fig. 4 shows
that this then provides a simple way in which to extend the
predictions of the linear barrier model beyond the point-cluster
approximation, so that it can be applied with reasonable accuracy
even on small scales.

Since the Inverse Gaussian model fits the simulation results
reasonably well, the other results associated with the linear barrier
model may also be of more than just academic interest. For
example, in the linear barrier model, when haloes first virialize,
they are uncorrelated with each other (Section 3.4). What correla-
tions do exist arise primarily from volume exclusion effects. That is,
in the initial Lagrangian space, haloes occupy a volume that is
proportional to their mass. Since no other halo can occupy the
region taken up by a given halo, this exclusion effect gives rise to
(anti)correlations, at least on small scales. This is probably a
generic consequence of the white-noise initial conditions, and is
not specific to the linear barrier model.

4 D I S C U S S I O N A N D E X T E N S I O N S

4.1 Scaling properties of the model

The Inverse Gaussian distribution was derived here by considering
the distribution of crossings of a linear barrier by Brownian motion.
The relation between this barrier shape (equation 20) and that
required by the spherical collapse model (equation 10) was dis-
cussed in Section 3.1.

The thick solid lines in Fig. 2 show this spherical collapse barrier
(equation 10) for representative values of V ~ R3. Curves for larger
R, look just like those for smaller R except that are shifted to the left
(since the x-axis of the plot shows the negative of the logarithm of
V0). Curves for the same comoving R but at higher redshift are
simply multiplied by ð1 þ zÞ, so the zero-crossing remains the same.
Dashed curves show the corresponding quantities for the linear
barrier used in Section 3. This figure shows that changing the
comoving size R at fixed z is equivalent to rescaling the S0 axis, and
changing z at fixed comoving radius R is equivalent to rescaling the
d0 axis. This provides a strong constraint on the form of the
distribution of first crossings.

Namely, it implies that f ðS0; d0jRÞ should have a self-similar
form, in that it should be a function of two parameters, one which is
related to the scaling of the S0 axis, and another which relates the
scaling of the S0 axis to that of the d0 axis. Since the first-crossing
distribution is a function of only two parameters, the associated
Eulerian distribution is also. It is convenient, then, to think of these
parameters as being the mean and variance of the Eulerian distribu-
tion. This is an attractive feature of the model, since Colombi et al.
(1997) find that, to a good approximation, the Eulerian distributions
measured in N-body simulations of clustering from white-noise
initial conditions are functions of the mean and the variance only.

4.2 Scale-free initial conditions

Initial Gaussian random fields with scale-free power spectra,

PðkÞ ~ kn with ¹3 < n < 1, are a simple generalization of white
noise (for which n ¼ 0). Equation (13) shows that, for these
spectra,

S0 ~ M¹a
0 ; where a ¼ ðn þ 3Þ=3; ð54Þ

which means that D ¼ M0=V ¼ ðSV=S0Þ
1=a, where SV ~ V¹a. This

means that, when plotted as a function of ðd0; S0Þ, the shape of the
spherical collapse barrier depends on the initial power spectrum.
Although the barrier shape when n Þ 0 is different from that for
white noise, it still has the same scaling as the white-noise barrier,
since changing the Eulerian scale R is still equivalent to a simple
shift of the barrier along the logðS0Þ axis. So the barrier crossing and
the associated Eulerian distributions will still be functions of two
parameters. This is in qualitative agreement with the results of
Colombi et al. (1997).

For initial conditions that are not scale-free, changing the
Eulerian scale R is no longer equivalent to a simple shift of the
barrier along the logðS0Þ axis. Thus the barrier-crossing distribution
is no longer self-similar, and the associated Eulerian distribution is
no longer a function of just two parameters. Of course, two-
parameter fits may remain a good approximation; at issue is the
rate of change of the slope of the power spectrum over the scales at
which most of the trajectories cross the barrier.

While these are encouraging features of the model, extending it
to describe clustering from initial conditions that are different from
white noise is not straightforward. The problem is one of ensuring
correct normalization. For scale-free initial conditions, equations
(54) and (16), and the requirement that the associated Eulerian
distribution have unit mean (equation 4), mean that the first-
crossing distributions must satisfy�∞

0
f ðS0; d0jRÞ dS0 ¼

�∞

0

S0

SV

� �1
a

f ðS0; d0jRÞ dS0 ¼ 1: ð55Þ

The previous section showed that, for a white-noise Gaussian field,
the distribution of first crossings of the linear barrier has an
associated Eulerian distribution which has unit mean, as required.
However, in general, not all barrier shapes are compatible with this
requirement.

For example, recall that equation (11) with dc0 ¼ 1:5 is a good
approximation to the spherical collapse model. When n ¼ ¹1,
a ¼ 2=3, so the associated barrier, when written as a function of
S0, is the same (linear) as it was in Section 3. Now, for a linear
barrier, the first passage distribution is Inverse Gaussian. However,
when a ¼ 2=3 and f ðS0; d0jRÞ is Inverse Gaussian, then the second
equality of equation (55) is not satisfied. Thus it appears likely that,
for arbitrary power spectra, the excursion set approach developed
here will not work if at least some parametrizations of the spherical
collapse barrier are used.

This means that it may be more fruitful to consider the inverse
problem to that considered in this paper.

4.3 The inverse problem and the Generalized Inverse
Gaussian distributions

In this paper, the barrier shape was specified, then the first-crossing
distribution was obtained and, finally, the associated Eulerian
distribution was derived. It may be more useful to first specify an
Eulerian distribution. Then, transform it to a first-crossing distribu-
tion, from which the shape of the barrier can be inferred. This
ensures that all normalization requirements have been satisfied.
Once the barrier shape is known, the halo–mass and halo–halo
correlations can be worked out just as they were in this paper.
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Finally, this barrier shape can be compared with that required by the
spherical collapse model.

In this context, it is worth mentioning that there is a class of
distributions which provides convenient generalizations of the
Inverse Gaussian, and may provide useful approximations to the
Eulerian distributions measured in simulations of gravitational
clustering from scale-free initial conditions.

The Generalized Inverse Gaussian (GIG) distribution with index
l, scale parameter h, and concentration parameter q is

flðxjh;qÞ dx ¼
ðx=hÞl

2 KlðqÞ
e¹q

2ð
x
h
þ

h
xÞ

dx
x
; x $ 0; ð56Þ

where KlðqÞ is a modified Bessel function of the third kind with
index l. For a given l, these are functions of just two parameters, h

and q, so they have the self-similar property discussed above. For
these modified Bessel functions,

KlðqÞ ¼ K¹lðqÞ and

Klþ1ðqÞ ¼ 2 ðl=qÞ KlðqÞ þ Kl¹1ðqÞ:
ð57Þ

Therefore, when l ¼ ¹ð2aÞ¹1, the GIG distributions, with x ¼ S0,
h ¼ SV and q ¼ d2

c0=SV satisfy equation (55), so the associated
Eulerian distributions are correctly normalized and have unit mean.
When n ¼ 0, then a ¼ 1, so l ¼ ¹1=2, and this distribution is the
same as the Inverse Gaussian distribution considered in Section 3.

The symbols in Fig. 5 show the values of S3 and S4 (defined
similarly to equation 42) plotted versus variance for these GIG
distributions when n ¼ 0 (filled circles), ¹1 (open circles) and ¹2
(stars). The curves were computed using the extended perturbation
theory fitting functions of Colombi et al. (1997). The solid curves
show their fits to the values of S3 and S4 measured in numerical
simulations of clustering from the corresponding scale-free initial
conditions, and dashed curves give an estimate of the allowed range
of values. While the GIG values do not fit the numerical results, they
do show similar trends.

The problem, then, is to determine the shape of the barrier for
which the GIG distribution is the first-crossing distribution, and to
then compute the associated halo distribution. The solution of this
inverse problem is the subject of ongoing work, where the barriers

associated with the distributions given by the extended perturbation
theory of Colombi et al. (1997) are also used as the Eulerian
distributions.

5 S U M M A RY

This paper develops a model that allows one to provide an
approximate description of the spatial distribution of dark matter,
as well as dark matter haloes, in a self-consistent way. It can also be
used to estimate the evolution of the density profiles of haloes, and
to quantify how matter flows in and out of Eulerian cells. The model
is described in Section 2.

The model assumes that, at the epoch z, the comoving Eulerian
size R of an initial Lagrangian region R0 is related to its initial over-
density d0. This assumption is motivated by the spherical collapse
model. The additional assumption that the number of such regions
is conserved (only their comoving size changes) allows one to
compute statistics in the Eulerian space by taking appropriate
averages over the relevant Lagrangian space quantities. Since the
initial Lagrangian distribution can be computed (e.g. Mo & White
1996; Sheth & Lemson, in preparation), so can the Eulerian
distribution. The algorithm for taking these appropriate averages
is related to the solution of an excursion set, barrier-crossing
problem, in which the barrier shape is given by the spherical
collapse model.

A constant barrier is a special case of the barrier studied here. The
first-crossing distribution associated with a constant barrier can be
used to estimate the distribution of virialized halo masses (Bond et
al. 1991). In the context of this paper, this special case corresponds
to the limit of vanishing Eulerian cell size; the halo mass function is
simply the Eulerian probability distribution function in the limit of
vanishing Eulerian cell size. Thus the model here shows how the
Bond et al. construction that yields the halo mass function can be
extended to yield the Eulerian probability distribution function. The
results of Mo & White (1996) are also easily understood within the
context of this model.

In Section 3, clustering from white-noise initial conditions was
considered, and the linear barrier was used to show explicitly how
the model works. This was done for a number of reasons. First, the
spherical collapse barrier problem must be solved numerically,
whereas, for the linear barrier, most interesting quantities can be
computed analytically. Secondly, within the context of this model,
the linear barrier can be understood as arising from a simple variant
of the spherical collapse model (Section 3.1). Finally, for this
barrier shape, the associated Eulerian distribution is Inverse
Gaussian (Section 3.3), and this is good agreement with numerical
simulations of clustering from white-noise initial conditions
(Fig. 4).

In the white-noise, linear barrier model, correlations between
haloes and mass arise from the simple fact that a cell which is
known to contain a halo certainly contains that halo’s mass. For the
linear barrier model, the evolution of halo–halo correlations can be
written analytically (Section 3.4). Correlations between haloes arise
primarily from volume exclusion effects. That is, in the initial
Lagrangian space, haloes occupy a volume that is proportional to
their mass. Since no other halo can occupy the region taken up by a
given halo, this exclusion effect gives rise to (anti)correlations, at
least on small scales at early times. The effects of this volume
exclusion decrease as clustering evolves. This behaviour is generic,
and is not specific to the linear barrier.

Section 3.5 showed that the two-linear-barrier problem can also
be solved analytically; in the model, this can be used to provide
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Figure 5. S3 and S4 versus variance for the Generalized Inverse Gaussian
distributions associated with initial power spectra with slopes n ¼ 0 (filled
circles), ¹1 (open circles) and ¹2 (stars). The solid curves show the values
measured in numerical simulations of clustering from these initial condi-
tions, as parametrized by Colombi et al. (1997). Dashed curves show their
estimates of the allowed range of values.
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information about the evolved density run around positions in
Eulerian space. Although the necessary formulae were all derived
there, we did not pursue this further.

Finally, Section 4 discussed one way in which this model could
be extended to describe clustering from more general Gaussian
initial conditions. The Generalized Inverse Gaussian distributions
(equation 62) were introduced in this context. Strictly speaking, the
model as described here is correct for Q0 ¼ 1 universes. It is, of
course, trivial to extend it to less dense universes. Applying this
model to more general initial conditions is the subject of ongoing
work.

AC K N OW L E D G M E N T S

I thank Houjon Mo and Simon White for providing the data from
their simulations, and both of them, and Gerard Lemson, for
interesting discussions.

REFERENCES

Bernardeau F., 1994, A&A, 291, 697
Bond J. R., Cole S., Efstathiou G., Kaiser N., 1991, ApJ, 379, 440
Bouchet F. R., Hernquist L., 1992, ApJ, 400, 25
Colombi S., Bernardeau F., Bouchet F. R., Hernquist L., 1997, MNRAS,

287, 241
Cox D. R., Miller H. D., 1967, The Theory of Stochastic Processes. J. Wiley

& Sons, New York
Folks J. L., Chhikara R. S., 1978 J. R. Statist. Soc. B, 40, 263
Fry J., 1985, ApJ, 289, 10
Hamilton A. J. S., Kumar P., Lu E., Matthews A., 1991, ApJ, 374, L1
Itoh M., Inagaki S., Saslaw W. C., 1993, ApJ, 403, 459
Jain B., Mo H. J., White S. D. M., 1995, MNRAS, 276, L25
Kao E. P. C., 1996, An Introduction to Stochastic Processes. Wadsworth

Publishing Company, Belmont
Lacey C., Cole S., 1993, MNRAS, 262, 627
Lacey C., Cole S., 1994, MNRAS, 271, 676
Mo H. J., White S. D. M., 1996, MNRAS, 282, 347
Nityananda R., Padmanabhan T., 1994, MNRAS, 271, 976
Padmanabhan T., 1996, in Lahav O., Terlevich E., Terlevich R., eds, Proc.

36th Herstmonceux Conf., Cambridge Univ. Press, Cambridge, p. 207
Peebles P. J. E., 1980, The Large Scale Structure of the Universe. Princeton

Univ. Press, Princeton
Press W., Schechter P., 1974, ApJ, 187, 425
Saslaw W. C., Hamilton A. J. S., 1984, ApJ, 276, 13
Schrödinger E., 1915, Physikalische Zeitschrift, 16, 289
Sheth R. K., 1996a, MNRAS, 281, 1124
Sheth R. K., 1996b, MNRAS, 281, 1277
Sheth R. K., 1998, MNRAS, in press

A P P E N D I X A : T H E F I R S T PA S S AG E T I M E A N D
T H E L I N E A R B A R R I E R

This appendix presents a derivation of the first time S that a particle
undergoing Brownian motion with zero drift reaches the linear
barrier

dnðSÞ ¼ n ¹ b S; ðA1Þ

having started from the origin ðS; dÞ ¼ ð0; 0Þ. Let fnðSÞ denote the
first passage time distribution associated with this barrier. The
subscript n indicates the height of the barrier at S ¼ 0.

The assumption of zero drift means that, in the absence of the
absorbing barrier, the mean distance of a particle from the S axis,
averaged over the ensemble of Brownian walks of the type shown in
Fig. 1, is zero. To be more precise, recall that equation (27) gives the
probability pðS; d0Þ dd0 that a trajectory has value between d0 and

d0 þ dd0, at S. So, for those trajectories,

hd0i ¼

�
d0 pðS; d0Þ dd0 ¼ 0 for all S; ðA2Þ

and

hd2
0i ¼

�
d2

0 pðS; d0Þ dd0 ¼ S þ hd0i
2 ¼ S at S: ðA3Þ

Since hd0i ¼ 0 for all S, these are said to be Brownian walks with
zero drift.

Consider another linear barrier which is a simple shift of m along
the d-axis of the barrier above:

dqðSÞ ¼ m þ d0ðSÞ ¼ m þ n ¹ b S ; q ¹ b S: ðA4Þ

Let fqðSÞ denote the first passage time distribution associated with
this barrier. The subscript q indicates the height of the barrier when
S ¼ 0. Then

fqðSÞ dS ¼

�S

0
dS0 fnðS

0Þ fqnðSjS0Þ dS; ðA5Þ

where fqnðSjS0Þ denotes the first passage time distribution to dqðSÞ,
given that the particle started at ½S0

; dnðS
0Þÿ instead of the origin.

Since the particle is undergoing Brownian motion, fqnðSjS0Þ is the
same as for a particle that starts at the origin, but sees a barrier

dmðSÞ ¼ dqðSÞ ¹ dnðS
0Þ ¼ m ¹ b ðS ¹ S0Þ: ðA6Þ

So we can write

fqnðSjS0Þ ¼ fmðS ¹ S0Þ; ðA7Þ

where the subscript m indicates that the height of the barrier above
the starting position at S0 is m.

This means that equation (A5) is a convolution equation:

fqðSÞ ¼ fmþnðSÞ ¼

�S

0
fnðS

0Þ fmðS ¹ S0Þ dS0
: ðA8Þ

When b ¼ 0, then the barrier is constant, and the first passage
distribution is known to be

fnðSÞ dS ¼
n2

2pS

� �1=2

e¹n2
=2S dS

S
: ðA9Þ

It is straightforward to verify that this expression satisfies the
convolution equation above. Therefore the solution to the convolu-
tion equation when b Þ 0 must be

fnðSÞ dS ¼
n2

2pS

� �1=2

e¹ðn¹bSÞ2
=2S dS

S
: ðA10Þ

A more formal derivation can be found in e. g., Schrödinger (1915)
or Cox & Miller (1967). The following derivation follows that in
Kao (1996) closely.

First, multiply both sides of equation (A5) by expð¹tSÞ, and
integrate over all S. This gives the Laplace transform Lðq; tÞ of
fqðSÞ. Equation (A5) implies that

Lðq; tÞ ¼

�∞

0
dS e¹tS

�S

0
dS0 fnðS

0Þ fqnðSjS0Þ

¼

�∞

0
dS0 fnðS

0Þ

�∞

S0
dS fmðS ¹ S0Þ e¹tS

¼

�∞

0
dS0 fnðS

0Þ e¹tS0

�∞

0
dS00 fmðS

00Þ e¹tS00

¼ Lðn; tÞ Lðm; tÞ;

ðA11Þ
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which is the same as

Lðn þ m; tÞ ¼ Lðn; tÞ Lðm; tÞ: ðA12Þ

This is a functional equation with solution LðnÞ ¼ e¹Cn, where
C > 0 is some constant, and we have not bothered to write the
dummy variable t. The problem, then, is to find C.

To do so, notice that the crossing of a barrier which decreases as S
increases, by Brownian walks with zero drift, is equivalent to the
crossing of a constant barrier by trajectories that, in the mean, drift
upwards as S increases, provided that the drift is chosen correctly.
This correct choice of drift corresponds to choosing

hd0i ; b S at S: ðA13Þ

Of course, the variance remains the same, so that

hd2
0i ¼ S þ hd0i

2 ¼ S þ b2S2 at S: ðA14Þ

So the problem of the crossing of the linear barrier dnðSÞ ¼ n ¹ bS
by walks with zero drift is transformed to the problem of the
crossing of a constant barrier of height n by walks with upward
drift b. In particular, the relation (A12) remains the same.

So, to find C, assume that the probability of first crossing the
barrier n in the first small increment s along the S axis is negligible.
Suppose that at S ¼ s, the random trajectory has value d0 < n. Then

fnðSÞ ¼

�
fnðSjd0; sÞ pðs; d0Þ dd0

¼

�
fn¹d0

ðS ¹ sÞ pðs; d0Þ dd0;

ðA15Þ

so that

Lðn; tÞ ¼

�∞

0
dS e¹tS

�
fn¹d0

ðS ¹ sÞ pðs; d0Þ dd0

¼

�
dd0 pðs; d0Þ

�∞

s
dS fn¹d0

ðS ¹ sÞ e¹tS

¼ e¹ts
�

dd0 pðs; d0Þ Lðn ¹ d0; tÞ:

ðA16Þ

In what follows, we will sometimes omit the dummy variable t:
LðnÞ ; Lðn; tÞ. As s and d0 are small,

Lðn ¹ d0Þ < LðnÞ ¹ d0 L0ðnÞ þ
d2

0

2
L00ðnÞ; ðA17Þ

and

e¹ts < 1 ¹ ts: ðA18Þ

These expressions imply that

LðnÞ < ð1 ¹ tsÞ LðnÞ ¹ hd0i L0ðnÞ þ
hd2

0i

2
L00ðnÞ

� �
¼ ð1 ¹ tsÞ LðnÞ ¹ bs L0ðnÞ þ

s þ ðbsÞ2

2
L00ðnÞ

� �
< LðnÞ ¹ ts LðnÞ ¹ bs L0ðnÞ þ

s
2

L00ðnÞ;

ðA19Þ

The second line follows from (A13) and (A14), and the third is
correct to lowest order in s. Dividing by s, and taking the limit s → 0,
reduces this to

t LðnÞ ¼ ¹b L0ðnÞ þ
1
2

L00ðnÞ: ðA20Þ

However,

LðnÞ ¼ e¹Cn
; so L0ðnÞ ¼ ¹Ce¹Cn

; and L00ðnÞ ¼ C2e¹Cn
:

These expressions in (A20) imply that

C2 þ 2bC ¹ 2t ¼ 0; ðA21Þ

so that, if C > 0, then

C ¼ ¹b þ
���������������
b2 þ 2t

p
; ðA22Þ

since b and t are both positive. Thus

Lðn; tÞ ¼ enb¹n

���������
b2þ2t

p
: ðA23Þ

Inverting this Laplace transform gives the Inverse Gaussian dis-
tribution.

This problem can also be formulated in the context of the
diffusion equation. In the notation of Lacey & Cole (1993), the
associated diffusion equation is

∂Q
∂S

¼ ¹b
∂Q
∂d

þ
1
2

∂2Q

∂ d2 ; ðA24Þ

where b is the drift term, and QðS; d; nÞ represents the solution to this
equation in the presence of an absorbing boundary at d ¼ n. Bond et
al. (1991) and Lacey & Cole (1993) considered the case b ¼ 0.
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