

2 Ernesto Posse, Juergen Dingel

1.1 Model-Driven Development of RTE systems

The development of RTE systems consists of, broadly

speaking, several major activities: design and modelling,

reasoning and analysis, and implementation and de-

ployment. In design and modelling, engineers rely on
languages and formalisms that provide adequate facil-

ities to describe the systems to build, at the desired

level of abstraction. Reasoning and analysis reduce risk
by providing assurance that the system will meet its

requirements. Implementation and deployment realize

the system on specific platforms. These activities may
be supported by automated tools. For instance, imple-

mentation may be aided by automatic code generation,

and analysis by automatic model (formal) verification.

Model-Driven Development (MDD) is an approach

to software development where models of a system and
its components are the main artifact of the develop-

ment process. In the MDD approach, models provide

the basis for the activities outlined above. The engineer
designs models, from which an implementation may be

automatically generated. The MDD approach also fa-

cilitates analysis, as models, by definition, are abstrac-
tions of a system, and therefore likely to be simpler and

easier to analyze than the final product.

An influential modelling language for the design of

RTE systems which targets event-driven, soft real-time

systems is the Real-Time Object Oriented Modeling
language (ROOM) [56]. This language was later made

into a UML profile called “UML-RT”, introduced in [57,

54]. UML-RT is an industrial-strength language which
has enjoyed considerable success with hundreds of large-

scale industrial projects and with users in a variety of

sectors such as automotive, avionics and telecommuni-
cations, for which ROOM was originally designed. It

has been supported by a number of commercial tools,

including ObjectTime, Rational Rose RT, IBM’s Ra-

tional Rose Technical Developer toolkit [22], and IBM
Rational Software Architect Real Time Edition (IBM

RSA-RTE) [23].

In order to be able to analyze models in a language,

the language must have a well-defined semantics, other-
wise, the meaning of models would be ambiguous, and

the analysis results would be ad hoc, applicable only

to, for example, specific models or specific implemen-
tations. Unfortunately, the semantics of UML-RT has

only been defined informally. There have been some at-

tempts at formalizing the semantics of UML-RT (e.g.,

[61, 5, 4, 7, 16, 31]), but all of these attempts consider
only limited subsets of the language, thus limiting the

potential for analysis.

Our goal is to provide a comprehensive formal se-

mantics for UML-RT, which can not only serve as a

reference semantics but also supports both the execu-

tion and the analysis of models.

1.2 UML-based modelling of RTE systems

UML-RT, along with SDL [28] and Acme [17], heavily

influenced the development of UML 2 [42, 44].

In addition to UML-RT, other UML profiles have
been developed to account for timeliness and platform

dependent issues, including the UML Schedulability,

Performance and Time profile or UML SPTP [40] and
its successor, the UML profile for Modeling and Analy-

sis of Real-Time and Embedded Systems (MARTE) [41],

both of which are OMG standards. Other unrelated
UML profiles which are not OMG standards have been

proposed as well, such as “Real-time UML”, a.k.a. RT-

UML [11], and variants such as those in [3] and [38].

While there is some overlapping between UML-RT

and UML SPTP and MARTE, there are significant dif-

ferences. At the top-level, MARTE consists of three
packages: the core package, the design modelling pack-

age and the analysis modelling package. The core pack-

age provides constructs to describe non-functional prop-

erties, time, generic resource modelling and allocation
modelling. The design modelling package provides fa-

cilities for generic components, high-level application

modelling and detailed resource modelling. The anal-
ysis package provides facilities for generic quantitative

analysis modelling, schedulability analysis, and perfor-

mance analysis. By contrast, UML-RT focuses on sys-
tem architecture based on the notion of capsules (called

actors in ROOM), ports, connectors, services and cap-

sule structure diagrams, and event-driven behaviour de-

scribed by state machines. MARTE’s constructs and
models are much more detailed than UML-RT’s con-

structs and models. For instance, in MARTE, the basic

unit of concurrent execution is called the RtUnit, de-
fined in the HLAM package. This corresponds roughly

to a capsule in UML-RT, but an RtUnit specifies many

details such as memory size, message pool policies and
waiting times, whereas a UML-RT capsule abstracts

such details.

UML SPTP, MARTE and other similar profiles tar-
get the time-driven and hard real-time side of the spec-

trum of real-time systems, where the primary concern

is timeliness, scheduling and platform dependent mat-
ters. According to Bran Selic, one of the main authors

of ROOM, UML-RT and UML SPTP,

“MARTE deals with completely different aspects
than UML-RT. MARTE addresses general is-

sues related to real-time systems as they are

usually implemented. Thus, it provides facilities

3 An executable formal semantics for UML­RT

for modeling time, resources, real-time operating

systems (with their complex schedulers, light-
weight threading systems, mutual exclusion fa-

cilities, etc.). It also provides support for model-

ing platforms of all kinds (including hardware),
as well as facilities for doing real-time analyses,

such as schedulability and queuing network anal-

ysis. ROOM/UML-RT, on the other hand, is a
level of abstraction above that and does not deal

with any of that.” [55]

Hence, while MARTE is an appropriate formalism for

the design and analysis of time-driven, resource inten-

sive, and platform dependent, hard real-time systems,
UML-RT may be better suited for soft-real time sys-

tems where such level of detail is a secondary concern.

Why should we be concerned with defining a seman-

tics for UML-RT considering that the MARTE profile
is available? We believe there are several important

reasons: 1) UML-RT is in active industrial use, but

there are no UML-RT development tools which pro-

vide formal analysis; a formal semantics would provide
the basis for such analysis capabilities. 2) While the

MARTE profile targets RTE systems, as argued above,

UML-RT deals with related but different concerns and
level of abstraction. 3) An executable formal semantics

can also provide an analysis tool for simulation and

validation of implementations. 4) Given that UML-RT
played a central role in the definition of UML 2 and is

fully aligned with it, a UML-RT formal semantics can

help clarifying issues regarding the formal semantics of

UML 2. 5) UML-RT has much in common with several
architecture description languages such as AADL [53]

and SysML [43], as well as a number of hardware de-

scription languages such as VHDL [25], Verilog [24],
SystemVerilog [27], SystemC [26] and GDL [21], and a

formal semantics for UML-RT can also suggest formal

semantics for these languages, or can help elucidating
their differences. 6) Formal semantics for foundational

languages and calculi abound, but formal semantics for

large, complex, industrial-strength languages are few.

Our proposal can serve as a showcase for what such
semantics can look like.

1.3 UML-RT semantics by translation

There are many approaches to formal semantics, such

as denotational, operational, axiomatic, etc. Many such

approaches do not yield an executable semantics. Even

with operational semantics, which often takes the form
of defining some form of transition system, considerable

effort is required to obtain an executable artifact. The

alternative is to define semantics by translating models

to a language that already has a well-defined executable

formal semantics.
In this paper we follow this approach. There are

many possible choices for the target language such as

CSP or the π-calculus, and we find such examples in
the literature (see Section 6). However, these alterna-

tives face many difficulties when formalizing a large,

complex, high-level language such as UML-RT. Foun-
dational calculi provide a solid basis for a formal seman-

tics, but are limited in that the abstraction gap is often

too wide. For example, these low-level calculi often lack

higher level constructs to define complex data-types.
Without such facilities in place, the task of defining a

comprehensive formal semantics of a language such as

UML-RT is almost unsurmountable. Hence we need a
target language which is both executable and formal,

as well as having higher level constructs to make the

translation practical.
The target language we have chosen is called kil-

tera [50, 49, 46, 51]. The main reasons for this choice are:

1. kiltera’s semantic concepts have many similarities
with those of UML-RT, providing a natural repre-

sentation of UML-RT concepts,

2. kiltera has a well-defined formal semantics based on
a real-time extension of the π-calculus [35], a process

algebra for modelling and reasoning about concur-

rent, mobile systems, thus resting on a rich theory
which provides a solid foundation for analysis, and

3. kiltera is a real high-level language with features to

ease development and with a working implemen-

tation thus, providing the capability of executing
models.

The goal of this article is to formally specify a trans-
lation from UML-RT models into kiltera. More con-

cretely, we define a map M[·] : UMLRTC → KLT

from UML-RT models to kiltera process terms, where
UMLRTC is the set of valid UML-RT models and

KLT is the set of valid kiltera terms.

UML-RT models describe both structural and be-

havioural aspects of a system. In the structural view, a
model consists of a collection of interconnected compo-

nents called capsules, which may have a behaviour and

may themselves contain sub-capsules. The behaviour of
capsules is specified by state machines. In this article

we break down the translation into the behavioural and

the structural parts. This is, we define a mapping for
state machines and a mapping for capsule diagrams.

Due to the modular nature of both UML-RT and kil-

tera, the two mappings are largely independent, there-

fore we only need to invoke the state machine trans-
lation without reference to its internals, in the capsule

diagram mapping. This, in turn, allows for experimen-

tation with alternative semantics, as it opens up the

4 Ernesto Posse, Juergen Dingel

possibility of replacing state machines with some other

formalism to specify behaviour.

1.4 Shortcomings of existing UML-RT semantics

As we mentioned above, there have been some attempts

at formalizing the semantics of UML-RT (e.g., [61, 5, 4,

7, 16, 31], and also see Section 6).

The existing approaches to formalizing UML-RT fall

short not only because of their limited scope and lack

of support for syntactic features, but also because they
provide fundamentally incomplete semantics. Those ap-

proaches will not include behaviours that are possible,

and in some cases necessary, of UML-RT models. As a
consequence, analysis of system behaviour may be in-

complete or even erroneous. For example, as we will

illustrate later, existing semantics are unable to distin-

guish between certain fair and unfair behaviours. The
reason for this situation is that the existing approaches

rely on incorrect assumptions.

Two of these fundamental aspects of the semantics

of UML-RT which, with the exception of [31], have been

ignored by every other attempt to formalize the lan-
guage are the relation between capsules and threads,

and the mechanism for communication between cap-

sules. Apart from [31], all previous approaches make
the incorrect assumptions that each capsule is executed

as an independent (concurrent) thread, and that com-

munication between them is direct, thus relying on the

communication mechanism of the formalism or language
used to describe the semantics (e.g., CSP or LOTOS),

or assuming specific message-passing policies (e.g., syn-

chronous communication). But this is not the case: cap-
sules can be assigned to the same thread, sharing the

same event queue, and the basic mechanism for message

delivery is asynchronous and handled by a controller
process. This however, is not a mere implementation

issue or optimization issue, for it is semantically mean-

ingful: different thread assignments, and different deliv-

ery mechanisms can yield different behaviours, for the
same UML-RT model. Hence, by ignoring these aspects,

other approaches provide an incorrect semantics which

can result in incorrect analysis of system behaviour. In
this paper we address this specific issue by providing ex-

plicitly in our proposed semantics, the controller’s role,

and the assignment of capsules to threads.

As stated above, our goal is to obtain a compre-

hensive account of the UML-RT semantics. While this

article fails to cover all elements of UML-RT in detail,
we believe it goes well beyond previous attempts to do

so, and given its extensible nature, we are increasing

the coverage of UML-RT’s many features.

1.5 Correctness and validation

One of the main questions regarding the definition of a
formal semantics for a language is validation. How do

we know that our semantics is correct? Since the lan-

guage we are formalizing lacks a formal semantics, we

cannot prove mathematically the correctness of our se-
mantics. How, then, can we be assured of our semantics’

validity? We have addressed this problem by: 1) care-

ful study of existing documentation on UML-RT and
ROOM, 2) experimentation with the de facto reference

implementations of UML-RT, specifically with Rational

RoseRT and IBM’s RSA-RTE, 3) inspection of code
generated by these tools and their run-time systems,

4) consulting with Bran Selic, one of the lead designers

of ROOM and UML-RT, and 5) developing a full imple-

mentation of the mapping using IBM’s RSA transfor-
mation tool. The implementation produces code which

can be executed with kiltera’s simulator, allowing for

validation against the output produced by RoseRT and
RSA RTE. Having an actual implementation of the se-

mantics also differentiates our work from previous at-

tempts.

Just like UML, UML-RT has several semantic varia-

tion points, where, intentionally or unintentionally, the
precise semantics is unspecified. Our definition is in-

tended to be as close as possible to UML-RT as im-

plemented by IBM’s RSA-RTE. Nevertheless, some as-
pects can be considered to be implementation-specific

and not mandatory for UML-RT models. In this paper

we will mark such semantic variation points as SVP #

and the alternatives are proposed in the appendix.

Paper organization This article is organized as follows:

In Section 2 we present background on UML-RT and kil-

tera. In Section 3 we present a motivating example that

shows how thread allocation is essential to the seman-

tics of UML-RT. Section 4 deals with state machines.
In Subsection 4.1 we present a formal syntax for state

machines, and the translation into kiltera is presented

in Subsection 4.2. Section 5 addresses capsule diagrams.
In Subsection 5.1 we present a formal syntax for capsule

diagrams, and their translation is presented in Subsec-

tion 5.2. In Section 6 we discuss some related work and

finally Section 7 concludes.

In the presentation of the formal translation of both
state machines (Subsection 4.2) and capsule diagrams

(Subsection 5.2), for each formal definition we proceed

by first informally providing an overview of the concept

being defined, and then we present the actual formal
definition followed by a detailed explanation of the def-

inition, and in the most important cases, an illustrative

example.

5 An executable formal semantics for UML­RT

2 Background

2.1 UML-RT

In this section we describe informally the main con-
cepts of UML-RT, in particular we describe the notions

of capsules and structure diagrams in Subsection 2.1.1

and State Machines in Subsection 2.1.2. While UML-
RT covers other types of UML diagrams, we focus only

on these two, as they are the most important for UML-

RT modelling. For more information on UML-RT we
refer the reader to [54, 57, 56]. The official account of

the UML can be found in [42, 44].

2.1.1 Structure diagrams: capsules

UML-RT allows modelling a system’s structure through

structure diagrams, also called capsule diagrams. Fig-

ure 1 shows a typical UML-RT capsule diagram.

A capsule, as its name suggests, is a highly encap-
sulated active entity, which may have some behaviour

specified via a state machine (see Subsection 2.1.2).

Capsules may execute concurrently with other capsules

and communicate with them only by sending and re-
ceiving signals through ports (p1, p2, ..., p13 in Figure 1).

Ports in different capsules are linked by connectors (la-

belled l1, l2, ..., l5 in Figure 1). A connector links only
two ports. Each port has a type specified with a proto-

col, which identifies signals that can be sent or received

via the port. Communication may be asynchronous or
synchronous. Capsules are organized hierarchically and

each capsule may contain a number of instances of other

capsules, called parts. External ports of these parts are

connected (wired) statically or can be connected at run-
time. Connected ports must implement the same proto-

col and be “compatible”, i.e., the output (send) signals

of one port must be the input (receive) signals of the
other port and vice versa. In this case, one of the ports

is said to be the base port and the other the conjugate

port, e.g., p6 and p9 in Figure 1. A port marked with ∼
implements the conjugated version of a protocol, with

the input and output signals inverted.

The set of ports of a capsule defines its interface.

There are three kinds of ports: external end ports, ex-

ternal relay ports and internal ports. External end ports
are ports linked to external capsules, and used directly

by the capsule’s state machine (if it has one) to either

send or receive messages (e.g., port p2 in Figure 1). Ex-

ternal relay ports are ports directly connected to some
sub-capsule (thus relay messages between some exter-

nal capsule and some sub-capsule, e.g., ports p1 and p3

in Figure 1). Internal or protected ports, are used to

communicate between the capsule’s state machine and

some sub-capsule (e.g., port p4 in Figure 1).

Some ports such as p12 and p13 may be declared as

unwired, but they may become connected or wired at
run-time by explicit actions on the part of the capsules

that own these ports. This is achieved when one of the

ports is registered at runtime by its capsule as a service

provision point or SPP for short, under a unique service
name, and the other port is registered by its capsule as

a service access point or SAP for short, under the same

unique service name. When both ports are registered
(which may be done asynchronously), a new connector

links them. It is also possible to deregister ports and

reregistering them, thus allowing a dynamic reconfig-
uration of the connections among capsules. SPPs and

SAPs were not originally intended by the designers of

UML-RT to be used for dynamic wiring between peer

capsules [55] such as C and D in Figure 1. SPPs and
SAPs were intended to be used as a mechanism for

capsules to access services in the underlying layer or

platform, in a multi-layer architecture. Nevertheless the
language does not prohibit the dynamic wiring within

the same layer, among peer capsules. Furthermore it is

useful for modelling certain kinds of structural changes.
For this reason, our mapping considers this operation

as any other in the language.

A capsule is a class (in the OO sense) of compo-
nents with ports. A capsule may have parts, which are

instances of sub-capsules (and are attributes of the cap-

sule’s instance). A sub-capsule part may have one of
three possible roles: fixed, optional or plug-in. A fixed

sub-capsule is created (resp. destroyed) when its con-

taining capsule is created (resp. destroyed) and is per-

manently attached to its containing capsule. An op-
tional sub-capsule may be incarnated (i.e., created) or

destroyed at a different time. Plug-in capsule roles are

“placeholders” for capsules which can be filled and re-
moved dynamically, and can be shared between differ-

ent capsules. In Figure 1, B is a fixed capsule, C is an

optional role, indicated by its light gray colour, and D
is a plug-in role, indicated by its blue colour.

Each capsule is assigned to a logical thread of control

which in turn is assigned to some physical thread. A log-
ical thread represents a conceptual concurrent thread of

execution, while the physical thread is the actual run-

time processing thread used by the underlying platform.
That is, several capsules/logical threads can share the

same real system thread. Each physical thread has a

controller. A controller drives the execution of all cap-

sules (logical threads) within a single physical thread.
It contains the event pool for all events whose intended

receiver is a capsule associated to the physical thread.

It enforces run-to-completion semantics, this is, that

7 An executable formal semantics for UML­RT

nected segments form a transition chain, which is

executed as one step.
3. In UML-RT entry points are by default connected

to deep history pseudo-states. Suppose a composite

state n is the target of a transition and that the
associated entry point is not linked to a sub-state

of n. If n has not been previously visited and there

is an initial transition pointing to the default state,
then the initial transition is followed and the de-

fault state entered. If, however, n has been visited

previously, then the last sub-state visited in n is en-

tered. If it has not been visited and there is no initial
transition, no sub-state is entered and the state ma-

chine remain “at the border” of n. This policy is

applied recursively. Hence, entering a state can be
interpreted as “resuming computation where it pre-

viously left off”. In standard UML state machines,

on the other hand, it is possible not to connect entry
points to deep history pseudo-states, but to “shal-

low” history pseudo states, or to the boundary of

the state, in which case an initial state is always en-

tered, if an entry point is not explicitly connected
to a sub-state. Since all states have deep-history se-

mantics, we avoid the common notation of depicting

deep history pseudo-states explicitly, to avoid clut-
ter in the diagrams.

4. Actions may be related to concepts specific to UML-

RT such as capsule operations. In particular an ac-
tion may send an event through a port, create or de-

stroy an optional capsule, import or deport a plug-in

capsule, connect or disconnect unbound ports, and

perform normal operations on objects.
5. UML-RT supports timing requirements using a spe-

cial timing protocol and internal ports which im-

plement this protocol. A capsule, which contains
a port that implements the timing protocol, can

schedule an event by sending a signal through this

port. Scheduling can be a part of the entry or exit
behavior of a state or as an action on a transition.

After a specified amount of time, the capsule will

receive a timeout event from the port which it can

process as any other signal.

2.1.3 Time

In UML-RT, time is assumed to progress according to
an external timing service (usually provided by the un-

derlying platform). The timing service adheres to a tim-

ing protocol with a distinguished timeout signal and a

period or a deadline. The timing service is accessible
by UML-RT models through a standard port with the

corresponding timing protocol, so time signals can be

treated as any other signal. Since the timing service

is external, it can proceed in any way that maintains

time consistency, i.e., if two timers with timeout sig-
nals tmo1 and tmo2 are set up at the same time t0 with

timeouts t1 > t0 and t2 > t0 respectively, and such that

t1 < t2, then the timing service must guarantee that
signal tmo1 will be triggered before tmo2. Besides this

requirement, the semantics of UML-RT does not make

any assumptions about the rate of progress of these
clocks. Furthermore, since UML-RT is not concerned

with performance or scheduling, it makes no assump-

tions about the duration of specific actions. We assume

that individual actions in the underlying action lan-
guage take a negligible amount of time with respect to

the minimum time unit of the time services used. Fur-

thermore, other activities such as entering or exiting a
state, or relaying a message on a relay port, also take a

negligible amount of time. In the case of asynchronous

communication between capsules, the amount of time
between the sending of a message and its reception and

consumption is undetermined. If a capsule is in a state

listening to a normal port and a timeout port, and the

environment sends the message before the timeout, the
language does not guarantee that the message will be

consumed before the timeout signal arrives.

2.2 kiltera

Our approach to formalize the semantics of UML-RT is

to use a process calculus or process algebra to describe

the behaviour of a model. Process calculi or process al-
gebras are mathematical formalisms for modelling and

reasoning about concurrent systems in which a broad

set of algebraic, logic and set theoretic techniques can
be used to analyze system behaviour. Some of the best

known process calculi are CCS [34], CSP [19], ACP [2]

and the π-calculus [35].
kiltera [50, 49, 46, 51]. is a language for modelling and

simulating concurrent, interacting, real-time processes

with support for mobility and distributed systems. It is

directly based on the πklt calculus [48] which is a real-
time extension of the asynchronous π calculus [35, 20,

6], one of the best known variants of the π-calculus.

Just as in the π-calculus, the central notions are
those of process and channel. A πklt term represents a

process or set of processes running concurrently. Pro-

cesses interact by asynchronous message passing over
channels. In kiltera we identify events and channels:

triggering an event start is the same as sending a mes-

sage over a channel named start, and listening to an

event is the same as waiting for input on a channel. This
event-oriented terminology is due to the fact that kil-

tera was originally designed in the context of modelling

and simulation of discrete-event systems as treated in

8 Ernesto Posse, Juergen Dingel

[64, 63]. Just like the π calculus, kiltera supports chan-

nel mobility: the ability to send channels (i.e., events)
as part of messages. This allows the topology of the

network to change dynamically.

In addition to communication primitives, πklt ex-
tends the asynchronous π-calculus by introducing tim-

ing constructs (e.g., delaying the execution of a pro-

cess, recording waiting times, and timeouts), primitive

data values and data structures, pattern matching on
input, nested process and function definitions with lex-

ical scoping. These characteristics make it a high-level

language, which facilitates our description of the seman-
tics of UML-RT, while still having a formal semantics.

The formal semantics of πklt is given in terms of

a Plotkin-style structural operational semantics over

timed-labelled transition systems. The meta theory of
πklt extends that of the π calculus by a notion of time-

bounded equivalence and a notion of timed composi-

tionality and an associated timed congruence which al-
low reasoning about timed processes.

We have developed an implementation of the lan-

guage based on an abstract machine which has been

proven sound with respect to πklt ’s operational seman-
tics. The core simulation algorithm consists of event

scheduling as known in discrete-event simulation [64].

The interpreter supports two modes: real-time and sim-
ulated time. In real-time mode, the wall-clock timing

of events reflects delays and timeouts specified in the

model, and thus the interpreter actually pauses during

idle periods. In simulated time, execution proceeds ac-
cording to a logical clock, and events are processed as

soon as they are available, thus avoiding idling when

the model specifies events far apart in time. Conse-
quently, execution in simulated time mode is more effi-

cient, while execution in real-time mode is more reflec-

tive of the timing constraints. Our interpreter is a pro-
totype implemented in Python and does not use a real-

time operating system; thus, in real-time mode, timing

constraints are only approximated.

The full language also includes some constructs for
distributed computing, allowing the execution of pro-

cesses in logical sites. The simulator allows assigning kil-

tera sites to different physical machines, and distributed
simulation is performed using a variation of the Time-

Warp algorithm [29]. We have used kiltera in the mod-

elling of complex systems such as automobile traffic

simulation and cloud computing environments. kiltera

has been used for teaching in graduate courses at McGill

and Queen’s universities. Our kiltera simulator is avail-

able for download at http://www.kiltera.org.

2.2.1 Syntax

To formally define the mapping we use the core of kil-

tera, the πklt calculus, which has a mathematical nota-

tion suitable to describe the mapping.

Definition 1 (Syntax) The set of all πklt process

terms, denoted KLT is defined by the BNF in Fig-

ure 3. The same BNF defines the set Expr of expres-

sions, ranged over by E, E ′ , ..., the set Patts of pat-

terns, ranged over by R, R ′ , ..., and the set Defs of

definitions, ranged over by D, D ′ , We usually write

a, b, c... for channel/event names, A, B, C, ... for process
names, x, y, z, ... for variables.

2.2.2 Informal semantics

We now describe informally the language’s semantics.
For a formal semantics of the language see [48]. For

earlier versions of the semantics see [50, 47, 46].

– Expressions E are either constants (null represents

the null constant), variables (x), tuples of the form

(E1, ..., Em) or function applications f(E1, ..., Em).
Patterns R have the same syntax as expressions, ex-

cept that they do not include function applications.

– The term stop represents the stopped process: it
has no actions.

– The process done represents successful termination.

– The process a!E is a trigger ; it triggers an event a

with the value of E. Alternatively, we can say that
it sends the value of E over a channel a. This is

an asynchronous message sending, with no specific

buffering policy mandated by the semantics. The
expression E is optional: a! is shorthand for a!null.

– A process when {G1 → P1 | · · · | Gn → Pn} is a lis-

tener. Each Gi is a guard of the form ai ?Ri@yi

where ai is an event/channel name, Ri is a pattern,

and yi is an optional variable. This process listens to

all channels (or events) ai, and when ai is triggered

with a value V that matches the pattern Ri, the
corresponding process Pi is executed with yi bound

to the amount of time the listener waited, and the

alternatives are discarded. Note that to enable an in-
put guard it is not enough for the channel to be trig-

gered: the message must match the guard’s pattern

as well. Pattern-matching of inputs means that the
input value must have the same “shape” as the pat-

tern, and if successful, the free names in the pattern

are bound to the corresponding values of the input.

For example, the value (3, true, 7) matches the pat-
tern (3, x, y) with the resulting binding {true/x, 7/y}.

The scope of these bindings is the corresponding Pi.

. The suffixes Ri and @yi are optional: a? → P is

9 An executable formal semantics for UML­RT

P ::= stop Stopped process

| done Successful termination

| a!E Trigger/Output

| when {G1 → P1 | · · · | Gn → Pn} Listener/Input

| new a1 , ..., an in P New/Hide

| if E then P1 else P2 Conditional

| wait E → P Delay

| A(E1 , ..., En) Instantiation/Call

| def {D1; ...; Dn} in P Local definitions

| P1 I P2 Parallel composition

| P1; P2 Sequential composition

| x := E Assignment

G ::= a?R@y Listener/input guard

D ::= proc A(x1, ..., xn) = P Process definition

| func f (x1, ..., xn) = E Function definition

| var x = E Variable definition

E ::= null | r | true | false | “s” | x

| (E1, ..., Em) | f(E1, ..., Em)

R ::= null | r | true | false | “s” | x

| (R1, ..., Rm)

Fig. 3 πklt syntax

equivalent to a?x@y → P for some fresh names x is the entire term (so they can be invoked in P and

and y. in other definitions). Each Di can be either a pro-
– The process new a1 , ..., an in P hides the names ai cess definition proc A(x1, ..., xn) = P , a function

from the environment, so that they are private to P . definition func f (x1, ..., xn) = E or a local variable

Alternatively, new a1 , ..., an in P can be seen as the definition var x = E.
creation of new names, i.e., , new events or channels, – The term x := E assigns the value of E to the local

whose scope is P . variable x.

– The process wait E → P is a delay: it delays the – The process A(E1 , ..., En) creates a new instance of

execution of process P by an amount of time equal a process defined by proc A(x1, ..., xn) = P , defined
to the value of the expression E. The value of E is in some enclosing scope, where the ports or param-

expected to be a non-negative real number. If the eters x1, ..., xn are substituted in the body P by the

value of E is negative, wait E → P cannot perform values of expressions E1, ..., En, which may be chan-
any action. Similarly, terms with undefined values nel names.

(e.g., , wait 1/0 → P) or with incorrectly typed ex-

pressions (e.g., , wait true → P) cause the process 2.2.3 Some examples and usage patterns
to stop. Since the language is untyped we do not

enforce these constraints statically. In order to give the reader some intuition about the se-
– The process if E then P1 else P2 is a conditional mantics of πklt we present some representative examples

with the standard meaning. if E then P is short- and common patterns.
hand for if E then P else done.

– The process P1 I P2 is the parallel composition of P1 Interaction The process a! I when {a? → P} results in
and P2. We also allow an indexed parallel composi- one interaction between the processes and then contin-
tion, written Pi to stand for P1 I P2 I · · · I Pn

i∈I ues as done I P which is the same as just P .
for some index set I = {1, 2, ..., n}.

– The term P1; P2 is the sequential composition of P1 Choice The term a! I when {a? → P |b? → Q} reduces
and P2. to P , while b! I when {a? → P |b? → Q} reduces to Q.

– The term def {D1; ...; Dn} in P declares definitions If the environment of a listener triggers more than one
Di and executes P . The scope of these definitions of the listener’s guards, the choice is non-deterministic:

10 Ernesto Posse, Juergen Dingel

a! I b! I when {a? → P |b? → Q} can reduce to either

b! I P or a! I Q.

Pattern matching For interaction to happen, data re-

ceived must match the expected pattern: the process

a!“hi” I when {a?“hi” → P} reduces to P . On the other
hand, a!“hi” I when {a?“hey” → P} does not result

in an interaction because the data sent over a (“hi”)

does not match the expected pattern (“hey”). Hence
the two processes remain the same. If the pattern has

variables, a successful communication results in sub-

stituting the corresponding variables by the received

values: a!“hi” I when {a?x → P} results in P{“hi”/x},
this is, substituting every free occurrence of x in P by

“hi”. The same holds for more complicated patterns:

the term a!(“hi”, 6) I when {a?(“hi”, x) → P} results
in P{6/x}.

Local channels The new construct introduces new names

and restricts their scope. For example, in the term a!1 I
new a in (a!2 I when {a?x → P}) the a in a!1 is differ-
ent from the one in a!2. The whole term reduces to

a!1 I P{2/x}.

Barriers and joining It is common for a process to wait
for several other processes before continuing. This can

be achieved with nested listeners: in (wait 3 → a!) I
b! I when {a? → when {b? → P}}, process P will begin
only when both a and b have been triggered. This ex-

ample also shows that the triggers are persistent, this is,

the trigger b! is not lost if no other process is listening to

b, and remains available until some process is ready to
accept it. So the whole process waits 3 time units and

becomes a! I b! I when {a? → when {b? → P}} which

then becomes b! I when {b? → P} which finally be-
comes P . This notion of nested listeners as barriers is

so useful that we will write when {(a, b)? → P} as syn-

tactic sugar for when {a? → when {b? → P}}. The se-
quential composition operator is also useful for joining

processes: in (P I Q); R process R will start only after

both P and Q are done.

Process definitions Process definitions allow us to en-
capsulate processes, giving them a specific interface and

be reused in the scope of their definition. For example,

def { proc P(x) = x!; proc C (y) = when {y? → Q} }
in new a in (P(a) I C (a)) results in the same process

as the term new a in (a! I when {a? → Q}). The param-

eters of a process definition can be thought of as its

interface, its ports, so when we invoke the process defi-
nition we can visualize it as creating an instance of the

process and “hooking up” channels to its ports; e.g., in

P(a) we are instantiating P and hooking-up the local

channel a to the new instance’s port x. Nevertheless, pa-

rameters are not required to be only channels or events,
but they can be any value. This fact is used for example

to keep track of additional state variables.

Recursion The body of a process can refer to itself, or

even to other processes in the same definition group (or

any enclosing process definitions). Recursion is used by

a process to keep itself alive, and possibly change its
connections by invoking itself with different parame-

ters. For example consider the definition proc A(x, y) =

when {x?z → (y! I A(z, y))}. Then, executing A(a, b) I
a!c will result in when {a?z → (b! I A(z, b))} I a!c which

will then reduce to b! I A(c, b).

Lexical scoping This applies to names introduced with
new, names introduced with def and pattern variables.

This is, the occurrence of a name x always refers to

the closest enclosing construct that declares it, e.g., in
proc A(x, y, z) = when {x?y → new z in y!(x, z)}, in the

innermost term y!(x, z), x refers to the first parame-

ter of A, y refers to the pattern in the listener’s guard
x?y (not A’s second parameter) and z refers to the one

introduced by new z (and not to A’s third parameter).

Channel mobility Channels or events are first-class ob-
jects, so they can be included in messages: reducing

a!b I when {a?x → x!c} results in b!c. This is allowed

even for private or local names. For example the term
when {a?x → x!c} I new b in (a!b I P) reduces to the

term new b in (b!c I P). In this case, the right-hand sub-

process sent a private channel b to the left-hand sub-

process via a. Hence the left-hand process evolves into
1b!c becoming aware of the private b.

Asynchronous message passing As in the asynchronous
π-calculus, asynchronous communication is modelled

by syntactically restricting the output operator by not

allowing it to have a continuation. In practice, however

it is often desired to allow writing, e.g., a!1 → P . This
however is only syntactic sugar for a!1 I P , as the pro-

cess P is free to continue without having to wait for the

output a!1 to be consummated.

Message acknowledgment and response Since commu-

nication is asynchronous, when sending a message, the

sender does not wait for the receiver to get and ac-
knowledge the message, e.g., in a!“hi”; Q process Q can

begin before any process receives the message sent over

1 In the π­calculus literature this is known as scope extrusion
as the lexical scope of the private name is effectively extended
beyond its original scope.

11 An executable formal semantics for UML­RT

a. Nevertheless, we often wish to receive an acknowl-

edgment or response from a receiver. A common way
to do this in the π-calculus is to use channel mobility:

create a local channel, say r where the sender will ex-

pect the acknowledgment or response, send r as part
of the query and listen to r before proceeding. The re-

sponse message on r may be empty to signal acknowl-

edgement, or may include data, such as the answer to
the query. This can also be seen as a simple way to

enco de synchronous message passing or remote proce-

dure calls. The response channel needs to be local to

remain private, avoiding interference from other pro-
cesses. For example, the sender could be proc S(q) =

new r in (q!r I when {r?x → P}) and the receiver could

be proc R(q) = when {q?r → (Q; r !“result”)}. Thus,
the sender sends a query on channel q including its pri-

vate channel r where it will expect the response, and

then listens to r. Once the response arrives, it proceeds
as P . The receiver waits for a query on q and when the

query arrives it is expected to come with a response

channel r. Then it proceeds to do some task Q and

when it is done, it sends the result on channel r. We
use this pattern repeatedly throughout our translation.

Process names as parameters In process definitions,

process invocations, expressions and patterns, we al-

low the names x to be process and function names

as well. This is an essential feature that allows us to
write generic processes, for example: def { proc A(x) =

x!1; proc B(y, Z) = Z (y) } in new u in B(u, A). In this

example, the second parameter passed to B is A, so
executing B(u, A) results in A(u).

Auxiliary functions

While data structures such as lists and dictionaries (as-

sociative tables) are not primitive, they can be enco ded

in this language. It is outside the scope of this paper

to provide such enco dings, but for convenience we will
assume the following functions as primitive:

– empty_list: the empty list constant,

– list_add(item, list): returns the list that has item
as the first element and list as the remainder,

– list_pop(list): returns a pair (item, rem) where item

was the first element of list and rem was the rest,
– list_del(item, list): returns the list without item,

– list_isempty(list): returns true if the list is empty,

and false otherwise,

– empty_dict: the empty dictionary constant,
– dict_put(key, value, dict): returns a dictionary that

adds the association (key, value) to the dictionary

dict, if there was no pair with the given key, oth-

erwise, it replaces the existing association (key, v)
with the association (key, value),

– dict_get(key, dict) returns the value associated with

the key in the dictionary dict, or null if the key has

no associated value,
– dict_del(key, dict) returns the dictionary dict with

any association (key, v) removed.

2.3 Additional preliminaries

Here we define some additional notation used through-

out the paper.

We write 1..k for the set {1, 2, ..., k}. Sequences will

be enclosed in (and). A sequence name will be denoted
with an arrow on top, and its elements subscripted with

their index, beginning from 1: x̃ = (x1, x2, x3, ...). A

finite sequence (a1, ..., ak) will be abbreviated as a1..k .
The empty sequence is denoted (), or ǫ. We will also

use standard set operators for sequences, in particular

we write x ∈ x̃ for membership of x in the sequence x̃.

3 The significance of thread allocation

As suggested in the introduction, thread allocation is

a fundamental aspect of UML-RT which is overlooked
by the existing attempts to formalize its semantics. To

illustrate the semantic importance of this issue we now

present an example that highlights how thread alloca-
tion affects the semantics. This example also illustrates

several of the UML-RT features that our proposed for-

mal semantics addresses.

Example 1 Suppose that some system A uses some sub-

component B to perform a task, but B may fail to

answer requests timely. For such situations, A includes
an optional sub-component C as a fall-back. At first, A

will attempt to make a request to B, and if B responds,

then it will continue to behave in some specified way.
But if B has not responded within a certain amount of

time, A will send the request to C, while still listening

to a possible response from B. If a response from C
arrives, the behaviour of A will continue in a different

way than if the response came from B.

The model is shown in Figure 4. In this model we

have a top-level capsule A with a fixed sub-capsule B
and an optional sub-capsule C. A is connected to B

via the l1 connector, so ports p1 (internal) of A and

p3 of B are wired. However ports p2 of A and p4 of

C are unwired. Their behaviour is as follows: capsule
A registers p2 as an SAP under some service name “s”

and incarnates a capsule in C in some logical thread L1.

Then it sets up a timer to trigger in 1.0 time units, and

13 An executable formal semantics for UML­RT

then it becomes evident that under the assignment of

B and C to the same thread, C gets stuck in n11 so
it never gets a chance to continue executing. In other

words, the behaviour becomes unfair.

It is not hard to make a simple model which, by using

synchronous communication, exhibits deadlocks when

the sender and receiver are on the same thread, but is

deadlock-free when they are assigned to different threads.
By ignoring thread assignment, existing proposals

of formal semantics for UML-RT fail to discriminate

between a system that will deadlock from a system that
may not deadlock and it will fail to discriminate from

a fair system and an unfair system.

Thread allocation is important in practice, as it is
related to optimization an deployment. The engineer

may choose between different allocations depending on

available resources or platform constraints. But, as this

example shows, naively assuming that thread allocation
is only a matter of optimization, or that it is only a plat-

form dependent issue is misleading at best, and may re-

sult in incorrect runtime-behaviours or incorrect anal-
ysis results at worst. Therefore, a truly useful formal

semantics of UML-RT must take it into account. The

semantics proposed in this paper accounts for thread
assignment and therefore can distinguish between cer-

tain systems with respect to some safety, liveness and

fairness properties that other semantics for UML-RT

fail to distinguish.

4 State Machines

Now we begin the presentation of our semantics. In this

section we show how to map UML-RT state machines
into kiltera. We first introduce a syntax to describe these

state machines in Subsection 4.1, and then we describe

how to map them into πklt processes in Subsection 4.2.

4.1 A syntax for UML-RT state machines

We use a mathematical notation for state machines,

adapted from [60], which allows us to define the map-
ping compositionally.

In the sequel we will use the following sets:

– Nstates : the set of all possible state names; we use

n, n1, n2, ..., m, ... for elements in Nstates ;
– Nenp : the set of all possible entry point names; we

use a, a1, a2, ... for elements in Nenp ;

– Nexp : the set of all possible exit point names; we use
b, b1, b2, ... for elements in Nexp ;

def
– Ncp = Nenp ∪ Nexp : the set of all connection point

names; we use c, c1, c2, ... for connection points.

– Nports : the set of all possible port names; we use

p, p1, p2, ... for elements in Nports ;
– Nevt : the set of all possible event names including

the “non-event” ⊥, used to mark transitions without

a trigger; we use e, e1, e2, ... for elements in Nevt ;
– Trig: the set of all possible triggers: it is defined as

Nports × Nevt . We write p.e for (p, e) ∈ Trig.

– Vals: is a set of possible data values.
– Guards: the set of possible transition guards (which

are boolean expressions over port names, capsule

attributes, and event data). We write g, g1, g2, ... for

guards.
– Acts: the set of all possible actions including the

“non-action” ⊥, i.e., the action that does nothing;

we use f, f1, f2, ... for transition actions, en for entry
actions and ex for exit actions in Acts;

def
– B = {false, true} the set of boolean values;

– N: the set of natural numbers

Furthermore, we make the following assumptions about
these sets:

– Every state and connection point is labelled with a
unique name. If this is not the case, a simple traver-

sal of the state machine can give unique names, for

example by providing fully qualified names or at-

taching a unique id.
– For every state name n ∈ Nstates , there is an entry

point name denn ∈ Nenp and an exit point name

dexn ∈ Nexp . These denote the default entry and
exit points of a state respectively, this is, when state

n is the target of a transition, but the transition is

not connected to any named entry point, it is as-
sumed to be connected to the default entry point

denn. Analogously, when n is the source of a transi-

tion, and the transition doesn’t leave the state from

a named exit point, it is assumed to begin at the
default exit point dexn.

Before we define state machine terms, we define the
enco ding of transitions, which link connection points.

We distinguish between three kinds of transition: in-

coming, outgoing and sibling. Incoming transitions are
transitions from an entry point to some sub-state. Out-

going transitions are transitions from a sub-state to an

exit point. Sibling transitions are transitions between

sub-states.

Definition 2 (Transitions) Let Kinds = {in, out, sib}
represent the set of transition kinds, (respectively in for

incoming, out for outgoing, and sib for sibling). The set
def

of all possible transitions is Trans = Kinds × B ×
Ncp × Ncp ×Trig ×Guards×Acts. Given a transition

t = (k, l, c1, c2, e, g, f) ∈ Trans we define the following

14 Ernesto Posse, Juergen Dingel

functions:2

def
kind(t) = k The kind of transition

def
first(t) = l Whether t is the first in a chain

def
src(t) = c1 The source of the transition

def
targ(t) = c2 The target of the transition

def
trig(t) = e The trigger event of the transition

def
guard(t) = g The guard of the transition

def
act(t) = f The action of the transition

Now we can define state machine terms.

Definition 3 (State machine terms) The set SM

of state machine terms is defined according to the fol-
lowing BNF:

s ::= [n, A, B, en, ex] Basic-state
| [n, A, B, S, d, T, en, ex] Composite state

Here n ∈ Nstates is the name of a state, A ⊆ Nenp and

B ⊆ Nexp are the sets of entry and exit points where
A ∩ B = ∅ and denn ∈ A and dexn ∈ B, en, ex ∈ Acts

are the entry and exit actions, S is a sequence (s1, ..., sk)
of sub-states with each si ∈ SM, d is the index, in the
sequence, of the default sub-state sd, and T ⊆ Trans

is a set of transitions subject to the conditions stated

below.

We first define the following useful functions for a
given basic state s = [n, A, B, ex, en]:

def
name(s) = n The name of the state s

def
entries(s) = A The set of entry points of s

def
exits(s) = B The set of exit points of s

def
enact(s) = en The set of entry actions of s

def
exact(s) = ex The set of exit actions of s

Note that since we assume unique names for all connection
points, the source and target of a transition are well­defined.

For a composite state s = [n, A, B, S, d, T, en, ex]

with S = s1..k , we define

def
name(s) = n The name of the state s

def
entries(s) = A The set of entry points s

def
exits(s) = B The set of exit points of s

def
substates(s) = S The set of substates of s

def
trans(s) = T The set of transitions of s

def
default(s) = sd The default (initial) substate of s

def
enact(s) = en The set of entry actions of s

def
exact(s) = ex The set of exit actions of s

and all transitions t ∈ T must satisfy the following con-

ditions:

1. If first(t) = false then trig(t) = ⊥
2. kind(t) = sib if and only if there are sub-states si

and sj in S such that src(t) ∈ exits(si) and targ(t) ∈
entries(sj).

3. kind(t) = in if and only if there is a sub-state si in
S such that src(t) ∈ A and targ(t) ∈ entries(si).

4. kind(t) = out if and only if there is a sub-state si in

S such that src(t) ∈ exits(si) and targ(t) ∈ B.

In the remainder we will omit the entry and exit actions

when en = ⊥ and ex = ⊥, and if we omit a transition’s

guard, it is assumed to be true. Also, in our examples,

the transition’s labels have the general form t : p.e[g]/a
where t is the transition’s name (only used for readabil-

ity, but not part of the formal definition), p.e ∈ Trig is

the transition’s trigger with port p ∈ Nports and event
e ∈ Nevt , g ∈ Guards is the transition’s guard, and

a ∈ Acts is the transition’s action. All of these items

are optional.

Example 2 Consider the state machine shown in Fig-

ure 5. This is enco ded in our syntax as follows:

def
s1 = [n1, {denn1

}, {dexn1
}, (s2, s5), 1, {t1, t2}]

def
s2 = [n2, {denn2

, a1, a2}, {dexn2
, b1, b2},

(s3, s4), 1, {t3, t4, t5, t6, t7}]
def

s3 = [n3, {denn3
}, {dexn3

}]
def

s4 = [n4, {denn4
, a3}, {dexn4

}]
def

s5 = [n5, {denn5
}, {dexn5

}]

2

16 Ernesto Posse, Juergen Dingel

such event occurs, the Handler tells its currently ac-

tive sub-state to exit and then waits for the sub-state
to acknowledge the exit before jumping to the actual

destination. Waiting for the sub-state to exit ensures

that the sequence of exit actions will be executed in
the correct order.

Enabled-transition selection policy

It is possible that two transitions are simultaneously

enabled if their source is the currently active state and
they share the same trigger event. In this case the tran-

sitions are said to be in conflict. If the source of one

such transition is a sub-state of the source of the other

transition, then the conflict is resolved by giving pri-
ority to the former, inner transition (SVP 1). In this

section we implement such priority scheme. Note that

this “priority” is different from the priority of events in
the event pool. Such event priorities will be addressed

later.

The main idea is as follows. For each composite state

n, the Handler receives the incoming event and before it

compares this event with the triggers of the transitions
from n, it forwards the event “down” to its currently ac-

′ tive sub-state n ′ . If n (or a sub-state) has a transition

with this event as a trigger, then it handles the event
and sends an “accepted” message back to n’s Handler .

′ On the other hand, if n (or a sub-state) didn’t have

such a transition, then it sends a “rejected” message
′ back to n’s Handler . If n’s Handler receives from n an

“accepted” message, it in turn sends an “accepted” mes-

sage to its containing state. If it receives a “rejected”

message, it compares the event with the triggers of n’s
transitions. If one trigger matches, an “accepted” mes-

sage is sent to the containing state of n and the transi-

tion is taken. Otherwise, a “rejected” message is sent.

In order to implement this, we add an acc and a

rej port to inform the containing state of acceptance or
rejection of events.

History

Whenever a composite state is entered for the first time,

its initial sub-state is entered. If, however, the com-

posite state was previously visited, and the composite
state is entered through an entry point not explicitly

connected to any sub-state, it enters the last visited

sub-state, i.e., the sub-state which was active when the
composite state exited. This behaviour is called history.

The policy applies recursively for the sub-state, result-

ing in what is known as deep history. (SVP 2)

To implement history we define, for each state nk a

history cell hk, a process which stores nk’s last visited

sub-state. In fact, whenever we take a transition inside

a composite state nk, we store the target state of the
transition nk’s history cell, and hence, hk always con-

tains nk’s currently active sub-state. Then, if we exit

nk and reenter it later, the Dispatcher recalls the state
stored in the history cell.

Actions

There are two main issues to be addressed in order to

support actions: first, how are individual actions en-

coded in πklt and second, when should they be exe-
cuted?

To address the first question, we consider an ex-
isting set of actions Acts without specifying what are

these actions exactly. Normally these actions would be

given in some action language (SVP 3). However, the

order of execution (the second issue) is independent of
such action language, and therefore it is useful to keep

this set abstract, and assume that we have a transla-

tion α : Acts → KLT which maps each action to the
corresponding πklt term. Later on we will provide a spe-

cific action language (Subsection 5.1.2) and a specific

translation in the context of UML-RT capsules (Sub-
section 5.2.6).

Once we assume the action translation, we can fo-

cus on where to put the resulting translations. We have
three kinds of action: entry actions, exit actions and

transition actions. Entry actions must be executed when-

ever we enter a state. Similarly, exit actions must be
executed whenever we exit a state. Transition actions

are executed whenever the transition is taking place,

after exiting the source state and before entering the

target state. This means that the process Sn for a state
[n, ..., en, ex] must begin by executing α(en) and that

α(ex) must be executed when leaving the state, in pro-

cess Bb for each exit point b.

4.2.2 Formal mapping

Actions

As stated above, we need a translation for actions. The
particular action language may vary, so we assume that

an appropriate translation is provided.

Definition 4 (Action translation) An action trans-

lation is a map α : Acts → C → KLT from the set
of possible actions Acts to the set of πklt terms KLT,

where C is some set of contextual information needed

to do the translation.

17 An executable formal semantics for UML­RT

History cells

The history cell h for a given state m stores its last

active sub-state Sn, as well as a boolean flag ini, which

is set to true if the state m has been previously visited.
History cells are instances of the following process:

Definition 5 (History Cells) History Cells are rep-

resented by the following process definition:

proc HistoryCell(h, ini, kill, Sn) =
when {
h?(“set”, Sn ′) → HistoryCell(h, true, kill, Sn ′)

| h?(“get”, inp, acc, rej , exit, exack, sh, kill, enp) →
(if ini then

Sn(inp, acc, rej, exit, exack, sh, kill, enp)

I HistoryCell(h, ini, kill, Sn))

| h?(“peek”, r) →
(r!ini I HistoryCell(h, ini, kill, Sn))

| kill? → done }

The way a history cell works is straight-forward. It ac-

cepts three kinds of messages: “set”, to store a sub-
state in the cell, “get” to execute the currently stored

sub-state, and “peek” to determine whether the cell has

been initialized. When a “set” message is received, it
comes with the name Sn ′ of the sub-state process to

be stored in the cell. This is kept as the third param-

eter in the definition of HistoryCell. In this case, the

ini flag is set to true, indicating that the cell has been
initialized and the state has been visited at least once.

When a “get” message arrives, if the state has been ini-

tialized, it executes the sub-state Sn currently stored,
linking the ports and parameters passed along with the

request. These parameters are explained below. Finally,

when a “peek” message is received, it returns the value
of the ini flag along a given channel r .

The process definition for states

Each state nk is translated into a process definition Snk

which has the following ports and parameters:

– inp: this is the port where input events are received,

– acc: this port is used to signal that an input event
has been accepted by the state,

– rej: this port is used to signal the rejection of an

input event, i.e., , that the event cannot be handled
by the state because no outgoing transition from

this state is enabled by the event.

– exit: this port is used by the state’s parent to request

the state to exit,
– exack: this port is used to acknowledge an exit re-

quest, once the necessary (and possibly recursive)

exit actions have been performed,

– sh: this port is used to signal that exiting this state

also exits the enclosing state, and thus the Handler
of the enclosing state must stop (hence sh for “stop

handler”),

– kill: this port is used to stop the state and all pro-
cesses associated to it, including its Handler and

sub-states.

– enp: is a parameter used only in composite states to
pass the name of the entry point used to enter the

state.

The difference between exit, kill and sh is as follows:

exit is signaled when executing a group transition, so
the composite state taking the transition asks its cur-

rently active sub-state to exit and waits for it to exit be-

fore executing the corresponding Exit action; kill is sig-

naled when the entire state machine is being destroyed,
when it’s capsule is being destroyed so the composite

state being killed asks its active sub-state to be killed as

well, without executing exit actions or waiting for sub-
states to finish; and sh is signaled when a transition

chain is being taken and going through an exit point so

the handler of the composite state is to be stopped.
In the following, we assume that for each compos-

ite state nk there is a top-level channel hk for its his-

tory cell. We also assume a global event compl, used

to indicate that we have reached a stable state, and
thus signaling the end of a run-to-completion step. The

following definition formalizes the translation of a ba-
′ sic state s whose containing (parent) state is s , as

TS [s]s ,hist,hist′ ,compl,ports , where hist is the link to the ′

′ history cell for s, hist is the history link for its parent
′ s , compl is the completion event, and ports is the list

of ports of the capsule containing the state machine.

Each transition is assumed to be annotated with

a label (p, e, g) where p is a port name, e is an event

name and g is a guard (a boolean expression). Incoming
events are of the form (p, e, d) where p is a port name,

e is an event name and d is some data associated to the

event e.
This translation assumes a translation for actions

α : Acts → Cports → KLT, with context set Cports

whose elements are pairs ((p, e, d), ports) of incoming
events and lists of ports (so that the action can refer or

use the event and/or the capsule’s ports).

We now provide the definition of the translation

TS [s]... for basic states in Definition 6 and composite
states in Definition 7.

Translation of basic states

Definition 6 (Translation of basic states) Given a

basic state

s = [nk, A, B, en, ex]

19 An executable formal semantics for UML­RT

def
TS [s3]s2,hist 3,hist 2,compl, p1,p2 ,p3) =

proc Sn3 (inp, acc, rej, exit, exack, sh, kill, enp) =
def {

proc Entry() = α[en]((⊥, ⊥, ⊥), (p1, p2, p3));
proc Exit(p, e, d) = α[ex]((p, e, d), (p1, p2, p3));
proc Handler() =

when {
inp?(p, e, d) → Choice(p, e, d, acc, rej)

| exit? → Exit(⊥, ⊥, ⊥); exack!
| kill? → done }

proc Choice(p, e, d, acc, rej) =
if p = “p1 ” and e = “x” and true then

acc!; Exit(p, e, d);
α[f1]((⊥, ⊥, ⊥), (p1, p2, p3)); Bb1(sh)

else if p = “p3 ” and e = “z” and true then
acc!; Exit(p, e, d);
Sn4 (inp, acc, rej, exit, exack, sh, kill, “denn4 ”)

else rej!; Handler()
} in

Entry(); hist2 !(“set”, Sn3); compl!; Handler()

Fig. 8 Example: translation of state n3 from Figure 5.

Example 3 Consider the basic state n3 from the state
machine from Figure 5, inside state s2 with outgoing

transitions t3 and t4. Figure 8 shows the result of the

translation TS [s3]s2,hist3,hist2 ,compl,ports where ports =
(p1, p2, p3).

In this example one can see that the Choice pro-

cess has three branches: one for transition t3, one for
transition t4 and the default branch for the case when

the incoming event does not match the trigger of these

transitions and the event is rejected.

The first branch, corresponding to t3, informs its

containing state (Sn2) that the event is accepted (acc!),
executes the exit action, then executes the transition

action f1 and then executes the process corresponding

to the exit point b1 (process Bb1). The definition for

Bb1 will be provided in the definition of the enclosing
state Sn2.

The second branch is similar, but the transition does
not have an action to execute, and the target state is

n4, thus it invokes the process Sn4 with entry point

denn4
, the default entry point.

In the main body, the history cell for the parent,

hist2 is set to this state Sn3, after executing the entry

action.

Translation of composite states

Definition 7 (Translation of composite states)

Given a composite state

s = [nk, A, B, S, d, T, en, ex]

def
TS [s]s ,hist ,hist′ ,compl,ports = ′

proc Snk (inp, acc, rej, exit, exack, sh, kill, enp) =
def {

proc Entry() = α[en]((⊥, ⊥, ⊥), ports);
proc Exit(p, e, d) = α[ex]((p, e, d), ports);
DHand ler ; DForward ; DChoice ; DDispatcher ;
DSn1

; ...; DSnj
; DBb1

; ...; DBbl

} in
′ ′ new inp ′ , acc , rej ′ , exit ′ , exack ′ , sh ′ , kill in

(Entry();
hist ′ !(“set”, Snk);

′ (Dispatcher(inp ′ , acc , rej ′ , exit ′ , exack ′ , sh ′ , kill ′ , enp)
′ I Handler(inp ′ , acc , rej ′ , exit ′ , exack ′ , sh ′ , kill ′)))

Fig. 9 Translation of composite states.

′ proc Dispatcher(inp ′ , acc , rej ′ , exit ′ , exack ′ ,
′ sh ′ , kill , enp) =

if enp = “a1 ” then Q ′ 1

else if enp = “a2 ” then Q ′ 2

· · ·
else if enp = “am ” then Q ′ m

′ ′ hist!(“get”, inp ′ , exit ′ else , acc , rej ,
′ exack ′ , sh ′ , kill , enp)

Fig. 10 Dispatcher: chooses a sub­state according to the entry
point or history.

whose parent (enclosing) state is4

′ ′ ′ ′ s = [nk′ , A ′ , B ′ , S ′ , d ′ , T , en , ex ′]

and given an action translation α : Acts → Cports →
KLT, the translation of s is the πklt term TS [s]··· shown

in Figure 9 , where each DSni
is the definition of sub-

state ni:

def
DSni

= TS [si]s,hi,hk ,compl,ports

with hi being the history cell for sub-state ni (state

term si), hk being the history cell for nk (state term
s); DBbj

is the definition of exit point bj given be-

low; DHand ler , DForward , DChoice and DDispatcher are

the definitions of the Handler , Forward, Choice and
Dispatcher given below:

– The Dispatcher process definition DDispatcher is given

in Figure 10, where as before, Q ′ is the target of i

the transition segment i, the process that executes
the transition’s action and goes to the target of the

transition, defined as


′ ′ ′ ′ ′
 Ti; Snj (inp ′ , acc , rej , exit , exack , sh ′ , kill , a)




 if kind(ti) = in, a = targ(ti),


def
Q ′ = ∃sj ∈ S. a ∈ entries(sj), and nj = name(sj)i




 Ti; Bbj (sh ′)




if kind(ti) = out and bj = targ(ti) ∈ B

4 If the state has no parent, i.e., , it is the top­most state
on the state­machine, the role of the parent will be taken by a
special process called Sink, described in Definition 8.

20 Ernesto Posse, Juergen Dingel

′ ′ proc Handler(inp ′ , acc , rej ′ , exit ′ , exack ′ , proc Choice(p, e, d, acc, rej, inp ′ , acc , rej ′ ,
sh ′ , kill ′) = exit ′ , exack ′ , sh ′ , kill ′) =

when { if p = “p1 ” and e = “e1 ” and g1 then
inp?(p, e, d) → exit ′ ! →

new visited in when {exack ′ ? → acc! → (Exit(p, e, d); Q1)}
hist!(“peek”, visited) → else if p = “p2 ” and e = “e2 ” and g2 then
when { exit ′ ! →
visited?true → when {exack ′ ? → acc! → (Exit(p, e, d); Q2)}

′ Forward(p, e, d, acc, rej, inp ′ , acc , rej ′ , · · ·
exit ′ , exack ′ , sh ′ , kill ′) else if p = “pm ” and e = “em ” and gm then

| visited?false → exit ′ ! →
′ Choice(p, e, d, acc, rej, inp ′ , acc , rej ′ , when {exack ′ ? → acc! → (Exit(p, e, d); Qm)}

exit ′ , exack ′ , sh ′ , kill ′) } else rej! →
′ | exit? → exit ′ ! → Handler(inp ′ , acc , rej ′ , exit ′ , exack ′ , sh ′ , kill ′)

when {exack ′ ? → (Exit(⊥, ⊥, ⊥); exack!)}
Fig. 13 Composite state choice taker. | sh ′ ? → done

| kill? → kill ′ ! → done }

Fig. 11 Composite state handler. transition’s action and goes to the target of the tran-

sition, defined (in the same way as for Bbj above)
′ proc Forward(p, e, d, acc, rej, inp ′ , acc , rej ′ ,

as
exit ′ , exack ′ , sh ′ , kill ′) =

inp ′ !(p, e, d)

 Ti; Snj (inp, acc, rej , exit, exack, sh, kill, a)→ when {

 ′ ? → acc acc! →
 if kind(ti) = sib, a = targ(ti),

′ ′ Handler(inp ′ , acc , rej , exit ′ , exack ′ , 

 ∃sj ∈ S ′ . a ∈ entries(sj), and nj = name(sj)sh ′ , kill ′) 


 ′ ′ ′ ′ ′| rej ′ ? → def Ti; Snj (inp ′ , acc , rej , exit , exack , sh ′ , kill , a)

′ Choice(p, e, d, acc, rej, inp ′ , acc , rej ′ , Qi =

 if kind(ti) = in, a = targ(ti),exit ′ , exack ′ , sh ′ , kill ′) }



 ∃sj ∈ S. a ∈ entries(sj), and nj = name(sj)

Fig. 12 Composite state event­forwarder. 


Ti; Bbj (sh)



 if kind(ti) = out and bj = targ(ti) ∈ B ′

and where each Ti is the process that executes the
action of transition ti, α[act(ti)]((⊥, ⊥, ⊥), ports).

Explanation – DBbj
is a process definition for exit point bj ∈ B,

given by
Figure 14 shows the control flow of the πklt definition for

composite states. As with basic states, the definition of def
DBbj

= proc Bbj (sh) = sh! I Qj a composite state contains definitions for entry and exit

actions (Entry and Exit) respectively, an event handler
where sh is the parent’s stop-handler signal, and Qj (Handler) and a process to make the choice of what to
is the target of the exit point, defined as follows: do with the event (Choice). In addition to these, it also
 contains:
Ti; Snj (inp, acc, rej , exit, exack, sh, kill, a)



 – a dispatcher to either follow an incoming transition

 if kind(ti) = sib, a = targ(ti),

 into some sub-state or recall history (Dispatcher),

 ∃sj ∈ S ′ . a ∈ entries(sj), and nj = name(sj)
 – a definition DSni

for each sub-state ni,

 ′ ′ ′ ′ ′

def Ti; Snj (inp ′ , acc , rej , exit , exack , sh ′ , kill , a) – a definition DBbj
for each exit point bj ,Qi =


 if kind(ti) = in, a = targ(ti), – and a forwarder process which forwards incoming



 events down to the currently active sub-state, in or-
 ∃sj ∈ S. a ∈ entries(sj), and nj = name(sj)


 der to implement the “deepest first” enabled-tran-
Ti; Bbj (sh)


 sition selection policy.
 if kind(ti) = out and bj = targ(ti) ∈ B ′

In the main body, the state begins by executing its en-

– DHandler is the process definition shown in Figure 11. try action (Entry()), then it updates the history cell

of its parent with the currently active state by do-

– DForward is the process definition shown in Figure 12. ing hist ′ !(“set”, Snk), and then starts the Dispatcher
and the event Handler . Both Dispatcher and Handler

′ ′ ′ – Finally, DChoice is the process definition shown in are invoked with primed channels inp ′ , acc , rej , exit ,
′ Figure 13, where Qi is the process that executes the exack , sh ′ , and kill ′ , which are used to interact with

22 Ernesto Posse, Juergen Dingel

The event Handler is somewhat more complex than

that for basic states. It accepts three kinds of events:
inp (input events), exit, and sh (stop Handler). On an

input event, the Handler inquires its history cell if it

has been previously visited. (SVP 4)

If the state has been previously visited, (the history

cell has been initialized with some sub-state) it proceeds

to the normal case handled by the Forward process,
which forwards the event down to the currently active

sub-state (via inp ′) and waits to see if it was accepted

(acc ′) or rejected (rej ′). If accepted by the sub-state,
the acceptance is forwarded “up” to the parent (acc),

and we wait for the next event. If rejected by the sub-

state, we attempt to handle the event at this level in

the Choice process. (SVP 5)

If the state has not been previously visited, no sub-

state has been activated, which is the case if there is

no initial transition to some sub-state. In this case,
the composite state remains “on the border”, and thus,

events are not forwarded to any sub-state and are han-

dled by the Choice process.

The exit event (exit) might be received from the

parent state, in which case the request is forwarded to
′ the currently active sub-state via exit and when ac-

knowledgement from the sub-state arrives (exack ′), the

exit action is executed (Exit) and an acknowledgement

is forwarded to the parent (exack).

Finally, the stop Handler signal (sh) may be re-

ceived when leaving the state via an exit point bj . In

this case it is not necessary to ask the currently active
sub-state to stop, because it was precisely that sub-

state who has executed the outgoing transition and

has performed its own exit sequence. Note that if a

transition chain is executed, going through several exit
points, each exit point triggers an sh event to stop

the Handler of the composite state containing the exit

point, thus, all Handlers in the chain are stopped as
expected. The kill event is much like the stop-Handler

event, but is used to stop the states in a “top-down”

fashion: whenever the Handler receives a kill request,
it kills its currently active sub-state by triggering kill ′

and then stops. This will be used later, in the mapping

for capsules, to kill a state machine when we destroy its

capsule.

Example 4 Let us revisit the example from Figure 5.

Consider the composite state n2 in that machine. The
definitions for the Handler and Forward processes are

fixed, only the definitions for Dispatcher , Choice and

the sub-states, as well as the exit points are specific.

First we have the Dispatcher . There are three possi-

ble ways to enter the state: through entry points a1 or

a2 or through the default entry point, in which case his-

tory will be recalled, or if the state has not been visited

before, the initial state.

′ ′ ′ proc Dispatcher(inp ′ , acc , rej , exit ′ , exack ,
′ sh ′ , kill , enp) =

if enp = “a1 ” then
′ ′ ′ ′ ′ Sn4(inp ′ , acc , rej , exit , exack , sh ′ , kill , “a3”)

′ ′ ′ ′ else hist!(“get”, inp ′ , acc , rej , exit , exack ,
′ sh ′ , kill , enp)

In the case where we enter the state through a1,
we have to take transition t5, which has no action, and

then go to state n4, invoking Sn4, and enter n4 through

entry point a3. In the case where we enter through a2,
we have to recall history because there is no incoming

transition connecting a2 to any sub-state. Similarly, for

the default entry point we recall history. Note that when

we recall history, if it is the first time, the resulting state
will be the initial state.

Second we have the choice process. There is only one

(group) transition coming out of n2, namely t6. Thus
the choice process is as follows:

′ ′ proc Choice(p, e, d, acc, rej , inp ′ , acc , rej ,
′ exit ′ , exack , sh ′ , kill ′) =

if p = “p2 ” and e = “x” and true then

exit ′ ! → when {exack ′ ? → acc! → (Exit(p, e, d);

Sn5 (inp, acc, rej, exit, exack, sh, kill, “denn5
”)) }

′ ′ else rej! → Handler(inp ′ , acc , rej ,
′ exit , exack ′ , sh ′ , kill ′)

Note that the parameters passed to Sn5 are the un-
primed ports, as this is a sibling transition, so we pass

the channels used by n2 and n5 to communicate with

their common parent (n1), so that Sn1 can now interact
with the new currently active sub-state Sn5.

Definitions for the exit points are also generated.

The only one actually invoked by a sub-state is for b1:

proc Bb1 (sh) =

sh! I Sn5(inp, acc, rej , exit, exack, sh, kill, “denn5
”)

This is executed when taking transition t1 (after t3).

It sends a signal sh to the Handler process of Sn2 to

stop it (the parameter sh is given when exiting n3; see
the Choice process in Example 3, Figure 8). Then the

process jumps to the target state Sn5.

The rest of the definition of Sn2 consists of the def-

initions of Sn3 (Example 3, Figure 8) and Sn4.

The process definition of a full state machine

Having defined processes for basic and composite states,

we are now in a position to define the process for a whole

23 An executable formal semantics for UML­RT

state machine, which acts essentially as a wrapper, pro-

viding history cells, a top level state, links to the capsule
containing the state machine, a Sink process to catch

the acceptance and acknowledgment events from the

top-level state, and a process to handle kill requests, so
when a kill event comes in, the states and history cells

are stopped.

A full state machine is represented as a process
StateMachine with the following ports:

– inp: where input events of the form (p, e, d) are re-

ceived (where p is the port, e is the event, and d is
some data value),

– compl : where the state machine signals the end of

a run-to-completion step, when a stable state has
been reached,

– kill: where requests to end the processes of the state

machine are received,
′ ′ – e1, ..., e , i ′ 1, ..., i ′ : the containing capsule’s (out-nE nI

put) ports, where the actions of the state machine

can send events.

The formal specification is as follows:

Definition 8 (Translation of a full state machine)

Let s ∈ SM be a state machine term. Its translation as

a full state machine is TSM [s], given by

proc StateMachine(inp, compl , kill,
′ ′ e1, ..., e , i ′ 1, ..., i ′) = nE nI

def { Ds; DHistoryCel l ; DSink } in
′ new acc, rej, exit, exack, sh, kill ,

h1, h2, ..., h|s|, htop ,

kill1, kill2, ..., kill |s|, killtop in

(HistoryCell(htop , false, killtop , ⊥)
|s|I HistoryCell(hi , false, killi , ⊥)i=1

′ I Sn1 (inp, acc, rej , exit, exack, sh, kill , “init”)

I Sink(acc, rej , exit, exack, sh)

I when {kill? → (kill ′ ! I killtop ! I |s|
killi !)}) i=1

where

– name(s) = n1

– |s| is the number of states in s, including all sub-

states,

– hi is a link to the history cell for state ni

– DHistoryCel l is the definition of HistoryCell from Def-

inition 5,

– Ds is the translation of s according to Definition 6
or Definition 7:

def
Ds = TS [s]top,h1,htop,compl,ports

def ′ ′ with ports = (e1, ..., e , i ′ 1, ..., i ′), and where top nE nI

def
is a dummy container state term defined as top =

[ntop , ∅, ∅, (s), 1, ∅].

– and DSink is the following definition:

proc Sink(acc, rej , exit, exack, sh) =

when {
acc? → Sink(acc, rej, exit, exack, sh)

| rej? → Sink(acc, rej, exit, exack, sh)

| exack? → Sink(acc, rej , exit, exack, sh)

| sh? → Sink(acc, rej , exit, exack, sh) }

5 Capsules

We now show how capsule diagrams are enco ded as

kiltera processes. In this section we begin by defining
a syntax for UML-RT capsule diagrams and models

(Subsection 5.1) including an action language. Then we

define the translation for this syntax (Subsection 5.2).

The translation describes how to:

– associate capsules to threads (Subsection 5.2.1)

– represent (thread) controllers (Subsection 5.2.2)

– represent capsules themselves (Subsection 5.2.3)
– represent ports and services (Subsection 5.2.4)

– represent optional and plug-in parts (Subsection 5.2.5)

– represent actions (Subsection 5.2.6)
– represent the timer (Subsection 5.2.7)

– put all these together (Subsection 5.2.8)

5.1 A syntax for UML-RT capsule diagrams

We use a mathematical notation for capsule diagrams,

which allows us to define the mapping compositionally.

In the sequel we will use the following sets:

– Ncap : the set of all possible capsule names; we use
m, m1, m2, ... for elements in Ncap ;

– Nparts : the set of all possible part names; we use

b, b1, b2, ... for elements in Nparts

– Nports : the set of all possible port names; we use

p, p1, p2, ... for elements in Nports ;

– Nconn : the set of all possible connector names; we
use l, l1, l2, ... for elements in Nconn ;

– Nsm : the set of all possible state machine names;

we use n, n1, n2, ... for elements in Nsm ;

– Nlthr : the set of all possible logical threads; we use
L, L1, L2, ... for elements in Nlthr ;

– SM: the set of all state machine terms (defined in
def

Subsection 4.1); SM⊥ = SM ∪ {⊥} is the set of

state machine terms extended with the “none” value

⊥, representing the absence of a state machine.

– Vals: the set of possible values (data transmitted
with events between capsules).

Furthermore, we make the following assumptions about

these sets:

24 Ernesto Posse, Juergen Dingel

– Every capsule is labelled with a unique name. If this

is not the case, a simple traversal of the capsule di-
agram can give unique names, for example by pro-

viding fully qualified names or attaching a unique

id.
– Within a capsule, port names and connector names

are unique.

Before we define capsule diagram terms, we define the

the syntax for port references and connectors. We dis-
tinguish between qualified and unqualified port refer-

ences. The former are used to refer to a port of a sub-

capsule within the capsule of interest, while the latter
is used to refer to a port of the capsule itself.

Definition 9 (Port references and connectors) We

define the set Portref of port references according to

the following BNF, with F ∈ Portref :

F ::= p Unqualified port reference

| m.p Qualified port reference

where p ∈ Nports and m ∈ Ncap ∪ Nparts .

We also define the set Conn of possible connectors

according to the following BNF, with k ∈ Conn:

k ::= l : F → F Relay or internal connector

where l ∈ Nconn is the name of the connector, and

F ∈ Portref is a port reference. For a connector k we
define the following useful functions:

def
name(l : F1 → F2) = l The name of the connector

def
src(l : F1 → F2) = F1 The source of the connector

def
targ(l : F1 → F2) = F2 The target of the connector

5.1.1 Capsules

Now we can define capsule diagram terms. A capsule is

fully defined by providing:

– A name,

– Its ports (end, relay and internal)
– An optional state machine

– A set of (sub-capsule) parts

– A set of connectors between ports

The following definition formalizes this by providing
syntax for capsule terms.

Definition 10 (Capsule diagram terms) The set

CAP of capsule diagram terms is defined according to

the BNF shown in Figure 15, where:

– m ∈ Ncap is the name of a capsule,
– G is a set of pairs pi : wi gi where pi ∈ Nports is a

port name, wi ∈ {w, u} and gi ∈ {end, int, rel} is its

type,

c ::= [m, G, s, P, K, A] Capsule

G ::= {p1 : w1 g1, ..., pn : wn gn} Ports (or gates)

w ::= w Wired port
u Unwired port

g ::= end External end port
int Internal port
rel External relay port

P ::= {b1 : o1 m1, ..., bn : on mn} Sub­capsule parts

o ::= fix Fixed role
| opt Optional role
| plug Plugin role

K ::= {k1, ..., kn ′ } Local connectors

A ::= {a1, ..., an ′′ } Attribute names

Fig. 15 Syntax of UML­RT capsule diagrams.

– s ∈ SM ∪ {⊥} is a state machine term (or ⊥ if the

capsule has no state machine), (see Definition 3)

– P is the set of sub-capsule parts of n, more precisely
a set of triples bi : oi mi where bi ∈ Nparts is a part

name, oi is the part’s role and mi ∈ Ncap is a capsule

name,
– K ⊆ Conn is a set of connectors subject to the

conditions stated below,

– and A is a set of attribute names.

We first define the following useful functions to extract

the elements of a given capsule c = [m, G, s, P, K, A]:

def
name(c) = m The name of the capsule

def
ports(c) = G The set of ports of the capsule

def
capsm(c) = s The capsule’s state machine

def
parts(c) = P The set of sub-capsules

def
conn(c) = K The set of port connectors

def
attrs(c) = A The set of attribute names

Furthermore, we also have some functions to extract

particular types of ports:

def
endports(c) = {p | p : w end ∈ G}

def
intports(c) = {p | p : w int ∈ G}

def
relports(c) = {p | p : w rel ∈ G}

def
extports(c) = endports(c) ∪ relports(c)

def
wiredports(c) = {p | p : w g ∈ G}

def
unwiredports(c) = {p | p : u g ∈ G}

25 An executable formal semantics for UML­RT

We generalize these functions over sets in the nat-

ural way. For example, if C = {c1, c2, ..., cn} is a set of
def

capsules, then name(C) = {name(ci) | ci ∈ C} is the

set of names of all capsules in the set. Similarly for the
rest of these functions.

We assume that fix is the default role, so b : m is

the same as b : fix m. We use the notation m.b to refer
′ ′ to the part b of capsule m, i.e., , m.b = m iff b : o m ∈

parts(c). We write pcallroleb = o if b : o m ∈ parts(c).

def
fixedcaps(c) = {b : fix m ∈ P}

def
optcaps(c) = {b : opt m ∈ P}

def
plugincaps(c) = {b : plug m ∈ P}

We also write l : F1 ↔ F2 ∈ K to mean that either

l : F1 → F2 ∈ K or l : F2 → F1 ∈ K. All connectors in

K must satisfy the following conditions:

1. if l : p ↔ F ∈ K where p is an unqualified port

reference, then p ∈ relports(c) ∪ intports(c)
2. if l : m.p ↔ F ∈ K where m.p is a qualified port

reference, then there is a sub-capsule ci ∈ C such

that name(ci) = m and p ∈ extports(ci)
3. every port p ∈ relports(c) ∪ intports(c) is linked to at

most one connector k ∈ K (possibly none).

4. no port p ∈ endports(c) is linked to any connector

inside c.
5. for all connectors l : m1.p1 ↔ m2.p2, {p1, p2} ⊆

wiredports(c)

6. for every port p ∈ wiredports(c) there is a l : m.p ↔
F ∈ K

7. for every port p ∈ unwiredports(c) there is no l :

m.p ↔ F ∈ K.

If any component of a capsule diagram is not specified,
we write it as −. This is useful for describing partially

specified models, or abstracted models.

Note that this definition does not include any ref-

erence to protocols. This is by design. Our goal is to
provide a behavioural semantics of UML-RT models,

but protocols play a static, syntactic role in UML-RT.

Protocols can be understood as port types. As future
work we will formalize such a type system, but we leave

it out of our present formalization as it would distract

us from the behavioural aspects.

Definition 11 (Capsule models) The set UMLRT

capsule models is defined by the following BNF:

U ::= [c0, c1, ..., cn] UML-RT model

where c0 is designated the model’s top-capsule, and

such that for each capsule ci, for each part b : o mj ∈
parts(ci), there is a capsule cj such that mj = name(cj),
this is, all sub-capsules must be defined in the model.

Example 5 Consider the capsule diagram from Figure 1.

Suppose that in that diagram, capsule B is fixed, cap-
sule C is optional and capsule D is a plug-in part. Fur-

thermore, suppose that s1 is the term representing the

state machine of the capsule according to the syntax
from Definition 3. Then the model is represented by

def
U = [c1, c2, c3, c4]

where each ci is a term representing the capsules as

follows:

def
c1 = [A, {p1 : w rel, p2 : u end, p3 : u rel, p4 : w int}

s1,

{b1 : fix B, b2 : opt C, b3 : plug D},

{l1 : p1 → B.p5, l2 : p4 → C.p8,

l3 : p3 → D.p11 , l4 : B.p6 → C.p9,
l5 : B.p7 → D.p10 }, ∅]

def
c2 = [B, {p5 : w −, p6 : w −, p7 : w −}, −, −, −, ∅]

def
c3 = [C, {p8 : w −, p9 : w −, p13 : u −}, −, −, −, ∅]

def
c4 = [D, {p10 : w −, p11 : w −, p12 : u −}, −, −, −, ∅]

We note the following. First, in the set of connec-

tors, we can use either the capsule name or the name

of the part (bi) in qualified port references, as per Defi-
nition 9, so for example l1 : p1 → B.p5 could have been

written l1 : p1 → b1.p5. Also, the direction of the arrow

is not relevant, as messages can flow in either direction,
so we could have written l1 : B.p5 → p1. We also allow

a bidirectional arrow as well: l1 : p1 ↔ B.p5, however

the designer may intend a specific direction for infor-
mation flow, so the arrow can be used as a suggestion.

This does not have an impact on the translation. Fi-

nally, a particular wiring of the capsules ports has been

assumed.

Also note that in capsules c2, c3 and c4 we have left
the kinds of ports, state machines, parts and connec-

tors unspecified. We could interpret this as a partially

specified model, or an abstracted model. However, to

obtain the actual semantics with our translation, the
model must be fully specified.

5.1.2 An action language

In UML-RT actions are used in state machines, but

most significant actions perform operations related to

capsules, such as sending messages, or creating new cap-
sules. For this reason, we introduce a syntax for actions

in this section.

The syntax presented here includes only a subset of

all possible operations in UML-RT. Nevertheless, these

seem to form a core subset of actions.

26 Ernesto Posse, Juergen Dingel

C ::= send e(d) to p

| inform p in t
| registerspp p on s

| registersap p on s

| deregisterspp p on s

| deregistersap p on s

| incarnate b on t
| destroy b

| import m in b

| deport m from b

| let x = E in C

| a := E

| if E then C1 else C2

| C1; C2

Fig. 16 Syntax for the action language.

Definition 12 (Actions) The set Acts of all possi-
ble actions from Subsection 4.1 is defined according to

the BNF shown in Figure 16, (SVP 3) where C ranges

over Acts, and where p ∈ Nports , e ∈ Nevt , d ∈ Vals,
b ∈ Nparts , and t ∈ Nlthr . Expressions E can include

attribute access.

Informally, these actions do the following:

– send e(d) to p sends event e with data d through

port p.
– inform p in t sets up a timeout event on port p

after t seconds.

– registerspp p on s registers the unwired port p as
an SPP with unique service name s.

– registersap p on s registers the unwired port p as

an SAP with unique service name s.
– deregisterspp p on s deregisters the unwired port

p as an SPP with unique service name s.

– deregistersap p on s deregisters the unwired port

p as an SAP with unique service name s.
– incarnate b on t incarnates optional capsule part b

on logical thread t.

– destroy b destroys optional capsule part b.
– import m in b imports capsule instance m in plug-

in capsule role b.

– deport m from b removes capsule instance m from
plug-in capsule role b.

– let x = E in C declares a local variable x initialized

to the value of E with scope C, and executes C.

– a := E assigns the value of expression E to the
capsule’s instance attribute a.

– if E then C1 else C2 executes C1 if the value of

E is true, otherwise, executes C2.
– C1; C2 executes C1 and then C2.

5.2 Translating capsule diagrams

Mapping UML-RT models to πklt involves the follow-
ing:

– Mapping state machine diagrams to process defini-

tions

– Mapping capsule diagrams to process definitions
– Representing UML-RT “controllers”, which guide

the execution of the system

– Representing the association of capsules to threads

Each of these issues is largely independent of the others,
and thus the combined map has a modular structure.

We describe each of these in the following subsections.

We begin by defining the association of capsules to

threads in Subsection 5.2.1, then describe how to rep-

resent controllers in Subsection 5.2.2 followed by the
enco ding of capsules in Subsection 5.2.3. In Subsec-

tion 5.2.4 we detail the behaviour of ports and services.

In Subsection 5.2.5 we deal with optional and plug-in
parts. In Subsection 5.2.6 we translate the action lan-

guage into πklt terms. In Subsection 5.2.7 we define the

timing mechanism. Finally, in Subsection 5.2.8 we de-

fine the full translation, integrating all of the above.

5.2.1 Mapping capsules to threads

In order to support some deployment requirements, in

UML-RT it is possible to associate each capsule to a

logical thread. Each logical thread can in turn be as-
signed to a physical thread. Each physical thread cor-

responds to exactly one controller, and each controller

corresponds to exactly one physical thread. Hence, in
addition to the UML-RT model, we must take into ac-

count:

– the map from capsules to logical threads, and

– the map from logical threads to physical threads

Since the assignment to physical threads determines
the controller of a capsule, this assignment is seman-

tically meaningful, as capsules associated to different

controllers will be able to execute simultaneously and

use separate event pools. On the other hand, multiple
logical threads on the same physical thread behave just

as one logical thread. Therefore what we are interested

in is the composition of these two maps.

Let us assume that Nlthr denotes the set of possi-
ble logical thread names, and Npthr denotes the set of

physical thread names.

Definition 13 (Capsule-to-thread assignment)

Let NC ⊆ Ncap be a set of capsule names, NL ⊆ Nlthr

be a set of logical thread names, and NP ⊆ Npthr a

set of physical thread names. A capsule-to-logical-thread

27 An executable formal semantics for UML­RT

assignment over NC and NL is a function θL : NC →
NL, i.e., a map from capsule names to logical-thread
names. A logical-to-physical-thread assignment over NL

and NP is a function θP : NL → NP , mapping logical

thread names to physical threads. The capsule-to-thread
def

assignment is the composition of these two maps: θ =
θP ◦ θL : NC → NP . For convenience we also define

CAP2TH as the set of all possible capsule-to-thread

assignments.

This assignment is used in the translation by creating
a new instance of a controller for each physical thread,

and linking a capsule m to the controller for the thread

θ(m) (Subsection 5.2.8).

5.2.2 Controllers

Each capsule is associated with a controller. Controllers

are objects which guide the execution of a capsule or
set of capsules. Controllers are responsible for imple-

menting the run-to-completion semantics. A controller

contains an event pool, and thus, all capsules associated
to it share the same event pool. Hence at any point in

time, amongst all capsules associated to a controller,

there will be only one capsule, or more precisely one

state machine active, i.e., executing an event.

During execution, capsules send each other mes-
sages or events. An event is sent to a specific port in the

target capsule, and may have additional data associated

with it which is transmitted as part of the message.

In our mapping, capsule ports and connectors are

represented as kiltera events or channels, so sending an
event e with data d to a port p will be represented as

triggering the event p with the pair (e, d) as parameter.

On reception, if the port is a relay port, the message
will go directly to the final receiver. If the port is an

end port, the capsule must have a state machine. In

this case, the receiving capsule forwards this informa-
tion, the tuple (p, e, d) to its controller, to be queued

so that it is processed when the controller decides. The

capsule must also forward to the controller, the state

machine’s input port smi, and the event smc where
the machine will signal it has completed the execution

of an event. The smc port is called ctrl in the defini-

tion of states (see Definition 6, Definition 7 and Defi-
nition 8). Thus, capsules send each other messages of

the form (e, d), controllers queue messages of the form

(smi, smc, p, e, d) and state machines expect messages
of the form (p, e, d).

Definition 14 (Controller events and event pools)

An inter-capsule message is a pair (e, d) where

– e is the name of a UML-RT event

– d is a reference to some data object, carried by the

event

A state machine input message is a triple of the form

(p, e, d) where

– p is the name of the target port in the receiving

capsule,
– e is the name of a UML-RT event,

– d is a reference to some data object, carried by the

event

A controller message is a tuple of the form:

(smi , smc, p, e, d)

where:

– smi is the input port of the state machine that must

deal with the event,
– smc is the state machine’s event which signals com-

pletion,

– p is the name of the target port in the receiving
capsule,

– e is is the name of a UML-RT event,

– d is a reference to some data object, carried by the

event

Controllers consist of two components: an event pool,

and a Dispatcher .

An event pool process is a πklt process which has the

following interface:

proc EventPool(put, get)

where put is a port where events are received by the

queue, get is a port to get and remove the first item

in the queue. The event pool process in a controller
expects, on port put a message of the form of controller

messages described above. We do not provide a specific

implementation of such process in order to leave open
the particular queuing policy desired. (SVP 6)

A Dispatcher is a process that takes the first event avail-
able in the queue and forwards it to the appropriate

capsule, more specifically to the target capsule’s state

machine. Since the event pool holds tuples of the form
(smi , smc, p, e, d) which come with the channel smi to

the target state machine, all the Dispatcher has to do

is to forward the tuple (p, e, d) to that channel and wait
for the event smc which signals that the state machine

has finished processing the event. Once this smc event is

received, the controller can process the next event in the

queue. Since a new event is taken from the queue and
dispatched only when the completion event has been re-

ceived, the controller guarantees the run-to-completion

semantics.

28 Ernesto Posse, Juergen Dingel

Definition 15 (Controllers) A controller is an in-

stance of the following process:

proc Controller(inp) =

def {
proc EventQueue(put, get) = Q;

proc Dispatcher(qget) =

new first in
(qget!first →
when { first ?(smi, smc, p, e, d) →

smi !(p, e, d) →
when {smc? → Dispatcher(qget)}})

} in

new q in (EventQueue(inp, q) I Dispatcher(q))

where Q is the implementation of the event pool.

5.2.3 Translating capsules

Each capsule is represented as a single process definition
which, when instantiated, contains:

– An instance of the capsule’s state machine (called

StateMachine)
– An instance of each sub-capsule (called Cmi for each

fixed capsule named mi, Opt for each optional part

and Plugin for each plug-in part.)

– An instance, for each port, of a port-handling pro-
cess (called WiredEIPort and UnwiredEIPort de-

pending on its type), and

– An instance of a process CapsuleHandler which han-
dles operations on the capsule itself, such as those

performed by actions in the action language,

Every UML-RT connector is represented by a pair of
channels: one for sending messages in each direction.

For each port/channel p where input is expected, there
′ is a port/channel p which is used for output.

The interface of the capsule’s process definitions
′ contains a pair of ports for each end-p ort (ep, e) and p

′ relay-port (rp, r) of the capsule6, a ctrl port to link the p

capsule to its controller, and a hook channel where the

capsule may receive certain instructions and queries.
The hook channel is unique for each capsule, and thus

can be thought of as the capsule’s address or identifier.

Internally the definition includes the process defini-

tion corresponding to the state machine (this is called
DStateMachine below), and a definition of the capsule

handler (DCapsuleHand ler). Additionally, there is a pair

of local events/channels for each internal-port (ip, i ′)p

In kiltera, channels are bidirectional, allowing both input
and output on the same port. Nevertheless, we represent each
UML­RT port (resp. connector) by a pair of kiltera ports (resp.
channels) to differentiate between input and output on a port.

and and for each port connector (lp, l ′). There is also a p

hooki channel for each sub-capsule instance (fixed, op-
tional or plug-in), a port handle hp linking each port p

to its port handler process, and a local variable ai for

each attribute. Furthermore, there are local events/channels
smi, smc, and smk representing, respectively, the state-

machine’s input and completion, this is, smi is where

the state machine receives events, smc is where the
state-machine signals that an event has been fully pro-

cessed, smk used to kill the state machine when de-

stroying the capsule.

The translation of a capsule c is parametrized by

an assignment θ ∈ CAP2TH of capsule names to

controllers, or more precisely to the input channel of
the capsule’s controller. We also assume a global event

name sink, used as a receptor for unconnected ports.

We will use the following conventions for naming
ports and channels:

′ ′ – End ports will be written as e, e , e1, e 1, ...
′ ′ – Relay ports will be written as r, r , r1, r 1, ...

– Internal ports will be written as i, i ′ , i1, i ′ 1, ...

– Local connectors will be written as l, l ′ , l1, l 1
′ , ...

– Capsule attributes will be written as a, a1, ...

Definition 16 (Capsules to processes) Given some

UML-RT model U = [c0, c1, ..., cn] and a capsule c =

[m, G, s, P, K, A] in U , with endports(c) = {e1, ..., enE
},

relports(c) = {r1, ..., rnR
}, intports(c) = {i1, ..., inI

},
parts P = {b1 : o1m1, ..., bnP

: onP
mnP

}, with each
def

mi = name(ci) for some capsule ci ∈ U , connectors

K = {k1, ..., knK
}, and attributes A = {a1, ..., an}, we

define c’s translation into πklt by the function TC [·] :
CAP → CAP2TH → KLT, as shown in Figure 17,

where:

def
– L = {name(ki)|ki ∈ K} = {l1, ..., lnK

}
– DStateMachine is the translation of the capsule’s state

machine, if s � ⊥, more precisely DStateMachine = is
′ TSM [s] according to Definition 8 (The e and i ′ p p

ports of the state machine are used by the state

machine only to send events to sub-capsules (i ′)p
′ or to other capsules (e). All inputs to the state p

machine, including those from internal ports are re-

ceived through the inp port of the state machine,

as, according to the run-to-completion semantics, a
state machine must handle one and only one input

event at a time.)

– DCapsuleHandler is the definition of CapsuleHandler

given in Definition 17,
– each Cmj is the name of the process definition for

the (sub)capsule named mj , subject to the require-

ments described below,

6

29 An executable formal semantics for UML­RT

def
TC [c]θ =

′ ′ proc Cm(hook, e1, e 1, ..., enE , e ,nE
′ ′ r1, r 1, ..., rnR , r , ctrl, async) =

new smi , smc , smk ,
i1, i ′ 1, ..., i ′ ,

nR

nI

l1, l 1
′ , ..., lnK , l

′ ,nK

h1, ..., h|G|,

hook1 , ..., hook|P| in
def {

DStateMachine ; DCapsuleHandler ; DBody ;
var a1 = null; · · · ; var a|A| = null

} in
if async then

′ new smc in
′ ctrl !(smi , smc , “sys”, “init”, null) →

when { smi ?(“sys”, “init”, null) →
′ Body(smc , true) }

else Body(smc, false)

where DBody is

′ proc Body(smc , async) =
′ WiredEIPort(hj , pj , pj , ctrl , smi , smc, “pj”)

pj :wend∈G
′ I WiredEIPort(hj , pj , pj , ctrl , smi , smc, “pj”)

pj :wint∈G
′ I WiredRPort(hj , pj , pj , lk , l ′)

pj :wrel∈G k
′ I UnwiredEIPort(hj , pj , pj , ctrl , smi , smc, “pj”)

pj :uend∈G
′ I UnwiredEIPort(hj , pj , pj , ctrl , smi , smc, “pj”)

pj :uint∈G
′ I UnwiredRPort(hj , pj , pj , lk , l ′)

pj :urel∈G k
′ ′ ′ I Cmj (hookj , pj,1, p j,1, pj,2, p j,2, ..., pj,h , p

bj :fix mj ∈P j,h ,

θ(mj), false)

I Opt(hook, hookj , Cmj ,bj :opt mj ∈P
′ ′ ′ pj,1, p j,1, pj,2, p j,2, ..., pj,h , p j,h , ctrl)

I Plugin(hook, hookj , Cmj ,bj :plug mj ∈P
′ ′ ′ pj,1, p j,1, pj,2, p j,2, ..., pj,h , p)j,h

I when { (hook1 , hook2 , · · · , hook|P|)? →
(CapsuleHandler((hook1 , ..., hook|P|))

′ ′ I StateMachine(smi , smc , smk , e 1, ..., e ,nE

i ′ 1, ..., i ′)nI

I when {smc ? → hook! → if async then smc ′ !})

Fig. 17 Translation of capsules.

– the port handling process definitions WiredEIPort,
WiredRPort, UnwiredEIPort and UnwiredRPort are

given in Definition 18,

– the process definitions Opt and Plugin are given in
Definition 20 and Definition 21 (Subsection 5.2.5).

These definitions are not nested inside the capsule’s

definition as they are generic, independent of the
capsule’s specific and so they can be defined glob-

ally, as is done in Definition 25.

– Each Cmj is the name of the process definition for

capsule ci such that mj = name(ci). This definition
is TC [ci]ρ and is of the form:

′ ′ ′ proc Cmj (hook, p1, p 1, p2, p 2, ..., ph, p h, ctrl, async) = ...

In the invocation of Cmj , the actual port sequence
′ ′ ′ arguments pj,1, p j,1, pj,2, p j,2, ..., pj,h , p is such that: j,h

′ – either pj,j′ ∈ R ∪ I and l : pj,j′ ↔ mj .pj ∈ K

′ – or pj,j′ = l ∈ L and l : mj .pj ↔ mk.pk ∈ K for

some port reference mk.pk

– or pj,j′ = sink and there is no connector l :

mj .pj′ ↔ F ∈ K

Explanation

The Body in the definition of a capsule creates all its

parts: 1) an instance of the CapsuleHandler process,
2) an instance of the StateMachine of the capsule, 3) an

instance of the WiredEIPort process for each wired end

or internal port, 4) an instance of the WiredRPort pro-

cess for each wired relay port, 5) an instance of the
UnwiredEIPort process for each unwired end or internal

port, 6) an instance of UnwiredRPort for each unwired

relay port, 7) an instance of Cmi for each fixed sub-
capsule mi, 8) an instance of Opt for each optional part,

and 9) an instance of Plugin for each plug-in part. The

arguments of fixed, optional and plugin sub-capsules
are such that they correspond to the connectors in the

model. Figure 18 shows an overview of the structure of

this process.

The Body of the capsule is initialized depending on
the value of the parameter async. This boolean param-

eter specifies whether the capsule is in the same phys-

ical thread of its parent (i.e., connected to the same
controller) or not. If async is false, the capsule is in

the same thread, and Body is executed right away. If

not, the capsule is initialized by sending a special “sys-
tem initialization” event (“sys”) to the controller, thus

treating capsule initialization as any other event, and
′ passing a dummy completion event smc to the con-

troller. The capsule will start executing its Body (creat-
ing its state machine and sub-capsules) when the con-

troller tells it that it can go ahead and do that (on

reception of the message (“sys”, “init”, null)).
The last part of the definition of Body holds the

instantiation of the CapsuleHandler and StateMachine

processes until all sub-capsules have triggered their hook
event. This ensures that all sub-capsules are initial-

ized in a bottom-up fashion. (SVP 7) Once all sub-

capsules have triggered their hook, we instantiate the

StateMachine and CapsuleHandler processes and we
wait for the state machine to signal on its comple-

tion channel smc when it is ready. The smc event is

triggered whenever the state machine reaches a stable
state, namely when entering a basic state. When this

event is received, the capsule can trigger its hook to in-

dicate its readiness to its parent. Furthermore, if it is an
asynchronous instantiation, we also trigger the dummy

′ completion event smc to tell the controller that the

capsule has been created.

Definition 17 (Capsule handler) The definition

31 An executable formal semantics for UML­RT

out proc WiredEIPort(h, pin , p , ctrl , smi , smc, pname) =
when {
p in ?(e, d) →

ctrl!(smi , smc, pname, e, d)
in out → WiredEIPort(h, p , p , ctrl , smi , smc, pname)

| h?(“send”, e, d) →
p out !(e, d)

in out → WiredEIPort(h, p , p , ctrl , smi , smc, pname)
| h?“unbind”

→ UnwiredEIPort(h, ctrl, smi , smc , pname)
in out | h?(“bind”, p , p)1 1

out → WiredEIPort(h, pin , p , ctrl , smi , smc, pname)1 1

| h?“destroy” → done }

Fig. 19 Wired end or internal ports.

out in out)proc WiredRPort(h, pin , p , q , q =
when {
p in ?(e, d) →

q in !(e, d)
in out in out)→ WiredRPort(h, p , p , q , q

| q out ?(e, d) →
p out !(e, d)

in out in out)→ WiredRPort(h, p , p , q , q
| h?“unbind”

in out)→ UnwiredRPort(h, q , q
in out | h?(“bind”, p , p)1 1

out in out)→ WiredRPort(h, pin , p , q , q 1 1

| h?“destroy” → done }

Fig. 20 Wired relay ports.

– When a “bind” message arrives with new channels
in out p , p , the process simply replaces the old links 1 1

with the new ones.
– When a “destroy” message arrives, the process stops.

For a wired relay port, the behaviour is as follows:

– When a message (e, d) arrives on the port’s pin , it
in is resent to the sub-capsule though q .

out – When a message arrives on port q from a sub-
capsule, it is resent to the outside through the port

out p .

– Messages “bind”, “unbind” and “destroy” are han-
dled in the same way as end and internal ports.

For an unwired port, the behaviour is:

– When a “bind” message arrives with new channels
in out p , p , the process switches to the wired mode 1 1

with these new channels as parameters.

– When a “destroy” message arrives, the process stops.

Formally we define these processes below.

Definition 18 (Ports) The definition DWiredEIPort for

wired end or internal ports is given in Figure 19. The

definition DWiredRPort for wired relay ports is given in

Figure 20. The definition DUnwiredEIPort for unwired
end or internal ports is given in Figure 21. The defini-

tion DUnwiredRPort for unwired relay ports is given in

Figure 22.

proc UnwiredEIPort(h, ctrl , smi , smc, pname) =
when {

in out h?(“bind”, p , p)1 1
out → WiredEIPort(h, pin , p , ctrl, smi , smc, pname)1 1

| h?“destroy” → done }

Fig. 21 Unwired end or internal ports.

out)proc UnwiredRPort(h, qin , q =
when {

in out h?(“bind”, p , p)1 1
out in out)→ WiredRPort(h, pin , p , q , q 1 1

| h?“destroy” → done }

Fig. 22 Unwired relay ports.

The request to send a message may come directly from

an action (see Definition 22), and the request to be de-

stroyed may come from the capsule’s handler (see Def-
inition 17) but the request to bind or unbind a port

always comes from a global “service handler”. This is

because to bind wired ports a globally unique service
name must be provided for ports to be linked: ports can

be registered as either service provision points (SPPs)

or service access points (SAPs). Connections are estab-

lished only between SPPs and SAPs: when an SPP is
registered under the same service name as some SAP,

the two become bound (connected). When an action

registers an unwired port, it sends the registration re-
quest to the service handler, which keeps track of all

registered ports, and links them whenever two ports

match the same service name. (SVP 8)

Definition 19 (Service handler) The definition of

the service handler process DServiceHand ler is as shown
in Figure 23.

The service handler receives requests in the req port. It

keeps two dictionaries spps and saps. These dictionaries
are indexed by the service name, and the values are

(channels to) port handlers. When a request to register

a port as an SPP arrives for a service name sname, the
service handler looks up the service name in the saps

dictionary. If there was an SAP already there under the

service name, it creates a new pair of channels l, l ′ and
sends a “bind” message to the port handler of both the

SPP and SAP, linking them. After this, the new port

handler is added to the spps dictionary. If there was no

matching SAP, we only add the new port handler spps.
A request to register a port as an SAP is symmetric.

Deregistering is achieved in a similar fashion, sending

“unbind” messages to the corresponding ports.

5.2.5 Optional and plug-in parts

Definition 20 (Optional Parts) The definition DOpt

of the optional part handler process is defined as shown

in Figure 24.

32 Ernesto Posse, Juergen Dingel

proc ServiceHandler(req, spps, saps) =
when {
req?(“registerspp”, spp, sname) →
(def { var sap = dict_get(sname , saps) } in

if sap! = null then
new l, l ′ in

(sap!(“bind”, l ′ , l)) I spp!(“bind”, l, l ′))
I ServiceHandler(req, dict_put(sname, spp, spps), saps))

| req?(“registersap”, sap, sname) →
(def { var spp = dict_get(sname , spps) } in

if spp � null then =
new l, l ′ in

(sap!(“bind”, l ′ , l)) I spp!(“bind”, l, l ′))
I ServiceHandler(req, spps, dict_put(sname, sap, saps)))

| req?(“deregisterspp”, spp, sname) →
(def { var sap = dict_get(sname, saps) } in

(sap!“unbind” I spp!“unbind”)
I ServiceHandler(req, dict_del(sname, spps)

dict_del(sname, saps)))
| req?(“deregistersap”, sap, sname) →

(def { var spp = dict_get(sname , spps) } in
(sap!“unbind” I spp!“unbind”)

I ServiceHandler(req, dict_del(sname, spps)
dict_del(sname, saps))) }

Fig. 23 Service handler

proc Opt(parenthook, hook,
′ ′ ′ Cm, p1, p 1, p2, p 2, ..., ph, p h, ctrl) =

when {
hook?(“incarnate”, pthread) →

new newhook in
(parenthook!(“addhook”, newhook)
I (if pthread = ctrl then

′ ′ ′ Cm(newhook, p1, p 1, p2, p 2, ..., ph, p h,

ctrl, false)
else

′ ′ ′ Cm(newhook, p1, p 1, p2, p 2, ..., ph, p h,

pthread, true))
I Opt(parenthook, hook,

′ ′ ′ Cm, p1, p 1, p2, p 2, ..., ph, p h, ctrl))
| hook?“destroy” → done }

Fig. 24 Optional parts.

In this definition, an optional part acts as a placeholder,
which can receive requests to incarnate a capsule Cm

in some thread t (or in the same thread as its parent,

if pthread is ctrl). When a request to incarnate a new

instance arrives, a message is sent to the containing cap-
sule’s handler to add the new Cm is instantiated with

the proper connections. When a request to be destroyed

arrives, the part simply stops. In this case, the parent’s
capsule handler takes care of destroying all created in-

stances. This destroys only the part, not the capsules

incarnated in it. Their destruction is addressed by the
capsule handler itself.

Definition 21 (Plug-in Parts) The following auxil-

iary process is used to connect ports:

proc Plugin(parenthook, hook,
′ ′ ′ Cm, p1, p 1, p2, p 2, ..., ph, p h, plugs) =

when {
hook?(“import”, targethook) →

new unboundports, u1, ..., uh in
(targethook!(“reqimport”, unboundports) →

′ ′ ′ when { unboundports?(p̄1, p̄1, p̄2, p̄2, ..., p̄h, p̄) → h
h ′ ′ Plug(pi , pi , p̄i , p̄i , ui) }
i=1

I Plugin(parenthook, hook,
′ ′ ′ Cm, p1, p 1, p2, p 2, ..., ph, p h, (u1, ..., uh)))

| hook?(“deport”, targethook) →
(u!

u∈plugs

I Plugin(parenthook, hook,
′ ′ ′ Cm, p1, p 1, p2, p 2, ..., ph, p h, ()))

| hook?“destroy” → u! }
u∈plugs

Fig. 25 Plugin parts.

′ ′ proc Plug(p1, p 1, p2, p 2, unplug) =
when {

′ ′ ′ p ?x → (p2 !x I Plug(p1 , p1 , p2 , p2 , unplug)) 1
′ ′ ′ | p ?x → (p1 !x I Plug(p1 , p1 , p2 , p2 , unplug)) 2

| unplug? → done }

The definition DPlugin of the plug-in part handler
process is defined as shown in Figure 25.

The Plug process simply binds two port pairs, by act-
′ ing as a message forwarder, connecting the output p1

′ to the input p2 and the output p to the input p2. The 2

Plugin waits for import requests which come with the

imported (targethook). The plug-in part asks that cap-

sule to provide a list of its (unbounded) ports to be
bound. When the answer arrives, these ports are bound

by the P lug instances. The plugs parameter keeps a list

of the unplug port for each plug. When a “deport” or

“destroy” message arrives a signal is sent to unplug all
plugs.

Example 6 Let us revisit the capsule from Figure 1 and

Example 5. Figure 26 shows the (top-level) translation
of this capsule. See also Figure 18.

Note that the order of ports in the definition is such

that end-ports (p2) go first and they are followed by

relay ports (p1 and p3). We list the connectors for in-
ternal ports (l2, l ′) before the rest. The process CB is 2

the process defined for capsule B. Similarly for capsules

C and D. Their definitions will be of the form:

′ ′ ′ proc CB(hook, p5 , p5 , p6 , p6 , p7 , p7 , ctrl) = ...
′ ′ ′ proc CC (hook, p8 , p8 , p9 , p ctrl) = ... 9 , p13 , p13

′ ′ ′ proc CD(hook, p10 , p10 , p11 , p11 , p12 , p12 , ctrl) = ...

Note how the ports and links passed to the process

invocation CB (in Body) correspond to the (positional)
parameters of its definition according to the connections

in the diagram. So for example, parameter p5 of CB

receives as argument p1 since there is a relay link l1

33 An executable formal semantics for UML­RT

def
TC [c1]θ =

′ ′ ′ proc CA(hook, p2 , p2 , p1 , p1 , p3 , p3 , ctrl) =
new smi , smc , smk ,

l2, l 2
′ ,

l1, l 1
′ , l3, l 3

′ , l4, l 4
′ , l5, l 5

′ ,

h1, h2, h3, h4,

hook1 , hook2 , hook3 in
def {DStateMachine ; DCapsuleHand ler ; DBody } in

if async then
′ new smc in

′ ctrl !(smi , smc , “sys”, “init”, null) →
when { smi ?(“sys”, “init”, null) →

′ Body(smc , true) }
else Body(smc, false)

where Body is

′ proc Body(smc , async) =
′ WiredRPort(h1 , p1 , p1 , l1 , l1

′)
I WiredEIPort(h4 , l2 , l2

′ , ctrl, smi , smc , “p4”)
′ I UnwiredEIPort(h2 , p2 , p2 , ctrl, smi , smc, “p2”)
′ ′ I UnwiredRPort(h3 , p3 , p3 , l3 , l3)

′ I CB(hook1 , l1 , l1
′ , l4 , l4

′ , l5 , l5 , θ(B), false)
′ I Opt(hook, hook2 , CC , l2 , l2 , l4 , l4

′ , ctrl)
′ I Plugin(hook, hook3 , CD, l5 , l5

′ , p3 , p3 , ())
I when { (hook1 , hook2 , hook3)? →

(CapsuleHandler((hook1 , hook2 , hook3))
′ ′ I StateMachine(smi , smc , smk , p2 , l2)

I when {smc? → hook! → if async then smc ′ !})

Fig. 26 Translation of capsule c1 from Example 5.

between them, and parameter p6 receives l4, the local
channel that represents the connector with the same

name. The same applies to the optional and plug-in

parts.
The hook1 links CA’s capsule handler and state ma-

chine with sub-capsule B. Similarly, hook2 is used to

interact with part C and hook3 to interact with part

D.
The definition DCapsuleHandler of the capsule han-

dler is as follows:

proc CapsuleHandler(hooklist) =
when {
hook?“destroy” →

(smk! I h!“destroy” h∈hooklist

I h1 !“destroy” I h2 !“destroy”

I h3 !“destroy” I h4 !“destroy”)

| hook?(“addhook”, subhook) →
CapsuleHandler(list_add(subhook, hooklist))

| hook?(“delhook”, subhook) →
CapsuleHandler(list_del(subhook, hooklist))

| hook?(“reqimport”, ports) →
′ ′ ′ ports!(p2, p 2, p1, p 1, p3, p)3

→ CapsuleHandler(hooklist) }

5.2.6 Translating actions

We now present the translation α for the action lan-

guage from Definition 12.

def
α[send e(d) to pi]c = hi !(“send”, e, d)

def
α[inform p in t]c = timer !(t, p)

def
α[registerspp pi on s]c = shr !(“registerspp”, hi, s)

def
α[registersap pi on s]c = shr !(“registersap”, hi, s)

def
α[deregisterspp pi on s]c = shr !(“deregisterspp”, hi, s)

def
α[deregistersap pi on s]c = shr !(“deregistersap”, hi, s)

def
α[incarnate bj on L]c = hookj !(“incarnate”, θP (L))

def
α[destroy bj]c = hookj !“destroy”

def
α[import mk in bj]c = hookj !(“import”, hookk)

def
α[deport mk from bj]c = hookj !(“deport”, hookk)

def
α[let x = E in C]c = def {var x = E} in α[C]c

def
α[x := E]c = x := E

def
α[if E then C1 else C2]c = if E then α[C1]c else α[C2]c

def
α[C1; C2]c = α[C1]c; α[C2]c

Fig. 27 Mapping actions

Definition 22 (Actions to processes) We define the
map α : Acts → C → KLT, where Acts is the ac-

tion language from Definition 12, with context set C
whose elements are triples ((p, e, d), ports, θ) of incom-
ing events, lists of ports and thread assignment as shown

in Figure 27. In this definition:

– in the case of inform, the channel timer is the global

channel to request a timeout event from the Timer

process (Definition 23) declared in Definition 25,

– in the cases for send and inform as well as for the
sap/spp (de)registering operations, hi is the name

of the handle channel for port pi, and shr is the

(global) request channel for the ServiceHandler (Def-
inition 19), declared at the top level (Definition 25).

– in the case for incarnate, hookj is the name of the

channel corresponding to part bj and
– in the cases for import and deport, hookk is the mk

and hookj is the name of the channel corresponding

to part bj . Note that we assume that t is the name

of a channel which corresponds to a physical thread
(see Definition 25 below).

The actions corresponding to local variables, assign-

ment, conditionals and sequential composition are trans-

lated directly into their corresponding constructs in kil-

tera. Note however, that these constructs can them-

selves be expressed purely in terms of the other con-

structs. Here we do not elaborate on such enco ding, as

it falls beyond the scope of this paper.

5.2.7 The timer

The timer process accepts requests to schedule time-

out signals on a given port. When it receives a request

34 Ernesto Posse, Juergen Dingel

(t, p), it will schedule an event trigger on p after a de-

lay t. This is done asynchronously so that multiple cap-
sules/threads can make such scheduling requests with-

out blocking or delaying each other.

Definition 23 (Timer) The definition DTimer of the

timer process is as follows:

proc Timer(timer) =

when { timer?(time, port) →
wait time → port!“timeout” →
Timer(timer) }

5.2.8 The full system

The meaning and behaviour of a UML-RT model de-
pends on the assignment of capsules to threads (and

therefore to controllers). Thus the input of the transla-

tor must include:

– The UML-RT model (the top-level capsule, includ-
ing the definitions of all capsules and state ma-

chines): a CAP element.

– The maps from capsules to logical-threads and to
physical threads: the pair of maps θL and θP .

The kiltera process simulates the entire model by col-

lecting all capsule definitions, and instantiating the top
capsule and the controllers, with one controller for each

thread.

Definition 24 (UML-RT configuration) A UML-
RT configuration is a tuple (U, NL, NP , θL, θP) where

– U ∈ UMLRT, i.e., U = [c0, c1, ..., cn]

– c0 ∈ CAP is U ’s top-level capsule term,
– NL ⊆ Nlthr is a set of logical-thread names,

– NP ⊆ Npthr is a set of physical-thread names,

– θL : NC → NL is a capsule-to-logical-thread assign-
def

ment where NC = {name(c) | c ∈ U} is the set of
names of all capsules in the model,

– and θP : NL → NP is a logical-to-physical-thread

assignment.

We call UMLRTC the set of all possible UML-RT con-
figurations.

Now we can provide the translation of a full input model.
We create a sink to serve as sink for state machine

events, an event shr where the service handler will re-

ceive requests, an event timer where timer will receive
requests, a channel tophook to serve as the hook chan-

nel for the top-level capsule, and an event/channel Ti

for each thread, which will be specific to each controller.

The main construction simply creates an instance of the
service handler, of the timer, the controllers (one for

each thread) and the top-level capsule, which in turn

will instantiate its sub-capsules.

Definition 25 (Translation of a full configuration)

Given a UML-RT configuration M = (U, NL, NP , θL, θP)
with a model U = [c0, ..., ck] ∈ UMLRT, and NP =

{T1, T2, ..., Tn} the set of physical thread names, the

translation of M is M[M] where the function M[·] :
UMLRTC → KLT is defined as follows:

def
M[M] =

new sink, shr , timer in

def {
Dc0

; Dc1
; Dc2

; · · · ; Dcm
;

DControl ler ; DServiceHandler ; DTimer ;

DOpt ; DPlugin ;

DWiredEIPort ; DUnwiredEIPort ;

DWiredRPort ; DUnwiredRPort ;
} in

new tophook, T1, T2, ..., Tn in

(Cm0 (tophook, θ(m0))
I ServiceHandler(shr , empty_dict,

empty_dict)

I Timer(timer)
nI Controller(Ti)) i=1

def
where m0 = name(c0) is the top-capsule’s name, θ =

θP ◦ θL is the capsule-to-thread assignment,

def
Dci

= TC [ci]θ

is the translation of capsule ci (see Definition 16) and
where DControl ler is the definition of Controller (see

Definition 15), DServiceHandler is the definition of the

ServiceHandler process from Definition 19, DTimer is
the definition of Timer from Definition 23, DOpt is the

definition of Opt (see Definition 20), DPlugin is the def-

inition of Plugin (see Definition 21), and DWiredEIPort

and DUnwiredEIPort are the definitions of the processes

for port-handling given in Definition 18. .

Example 7 Let us finish by revisiting Example 1. As-

sume that c0, c1, c2 are the representations of capsules

A, B and C, and Li and Ti are the names of logical and
physical threads. The model, or more precisely, the con-

figuration with all capsules mapped to the same physi-

cal thread is

M0 = ({c0, c1, c2}, {L0, L1}, {T0, T1},

{A → L0, B → L0, C → L1}, {L0 → T0, L1 → T0})

and the configuration with capsule C mapped to a dif-

ferent physical thread is

M1 = ({c0, c1, c2}, {L0, L1}, {T0, T1},

{A → L0, B → L0, C → L1}, {L0 → T0, L1 → T1})

35 An executable formal semantics for UML­RT

def
M[Mi] =

new sink , shr , timer in
def {

Dc0 ; Dc1 ; Dc2 ;
DControl ler ; DServiceHand ler ; DTimer

DOpt ; DPlugin ;
DWiredEIPort ; DUnwiredEIPort ;
DWiredRPort ; DUnwiredRPort ;

} in
new tophook, T0, T1 in

(CA(tophook, T0)
I ServiceHandler(shr , empty_dict, empty_dict)
I Timer(timer)
I Controller(T0) I Controller(T1))

Fig. 28 Generated πklt model for Mi (Example 1 with two
physical threads).

In both cases C is associated with logical thread L1

but in the first, L1 is assigned to physical thread T0

(the same as A and B) whereas in the second it is as-
signed to T1. Then, the resulting πklt according to Defi-

nition 25, is shown in Figure 28. So while in both cases

we have two physical threads (and two controllers), the
second controller is used only in M1. More precisely, the

incarnate action in state n2 of A (incarnate C on L1)

is translated according to Definition 22 into the term

hook2 !(“incarnate”, θP (L1)) where hook2 is the input
channel for CC ’s control handler. This means that for

M0 this action is hook2 !(“incarnate”, T0) and for M1

it is hook2 !(“incarnate”, T1). Hence, according to Def-
inition 20, when the Opt process inside the top-level

capsule CA receives this incarnation message, it will

create a newhook link to the new capsule instance and
send an (“addhook”, newhook) message to CA’s capsule

handler. Then it will invoke the process CC to instanti-

ate the new capsule, but in the first case the invocation
′ will be CC (newhook, p4 , p4 , T0 , false) whereas in the

′ second case it will be CC (newhook, p4 , p4 , T1 , true).

As a result, in the first case the instance of CC will

communicate with the controller on T0 thus sharing the
same event pool with CA and CB, and in the second,

with the controller on T1 with its own separate event

pool. We could modify the example to have only one
physical thread and one or more logical threads with

the same effects.

6 Related work

There have been many approaches proposed in the liter-

ature, aiming to formalize different aspects of UML. For

example, [13] proposes a semantics of activity diagrams
using labelled transition systems, while [59] presents a

semantics of activity diagrams using Petri Nets. In [32]

a semantics of sequence diagrams is proposed in terms

of certain kind of transition system, while [8] uses a

custom temporal logic for defining the semantics of se-
quence diagrams. Aspects of UML state machines have

been formalized, amongst others, in [33] using General-

ized Stochastic Petri Nets, in [45] using term rewriting
systems, in [39] and in [62] using CSP, or in [37] using

LOTOS. A semantics for a kernel action language for

UML has been proposed in [14] using labelled transition
systems.

Other related work includes [9] where a subset of the

UML for real-time systems called krtUML is proposed

and its semantics formalized with symbolic transition
systems. In [58], a semantics is presented for a subset

of UML consisting of flat state machines and sequence

diagrams with no hierarchical structure diagrams using
linear temporal logic. [36] studies a real-time extension

of UML state machines providing a semantics in terms

of timed-automata. In [65] a semantics for a real-time

variant of standard UML state machines is presented
in terms of transition systems.

The book UML 2 Semantics and Applications [30]

includes several articles proposing formal semantics for
fragments of UML 2, including non-flattening seman-

tics for state machines. Nevertheless, UML-RT itself is

not the same as UML or real-time UML, and work for-

malizing it is less common.

A number of papers have presented formal seman-

tics for small subsets of UML-RT using either CSP or

some timed variant of CSP [16, 12, 15, 7, 1].

In [16], only capsule diagrams are translated into
CSP processes, assuming synchronous communication

(the default in CSP), no state machines, and no sup-

port for dynamic features such as optional or plug-in
capsules, dynamic wiring or thread assignments.

In [12], a translation to CSP is also provided with

the aim of studying the preservation of consistency in

model evolution. This translation deals only with flat
state machines and flat structure diagrams and no dy-

namic structure features or thread assignments.

The translation in [15] actually goes in the opposite

direction, from CSP processes to UML-RT.

In [7], and later in [1], a transformation of UML-RT
models into a timed variant of CSP called CSP+T is

proposed. It addresses hierarchical state machines but

without group transitions or history, and like the previ-
ous papers, it relies on CSP’s synchronous communica-

tion and has no support for dynamic features or thread

assignment.

A similar approach has been proposed in [52] where
the target language is Circus, a combination of CSP and

Z. This translation suffers from the same limitations of

the previous ones.

36 Ernesto Posse, Juergen Dingel

It should be noted that all existing approaches to

the semantics of UML-RT state machines, unlike ours,
flatten the state machine. This forgets the hierarchical

structure, which in turn means that there is no obvi-

ous way to enco de the priority of inner transitions over
outer transitions. Furthermore it complicates traceabil-

ity between model elements and the generated artifact.

A very different approach is presented in [18] where

the semantics of a very small subset of UML-RT is de-
scribed as an algebra of flow-graphs. This is an inter-

esting approach, but not only is it limited in its scope

and coverage of UML-RT but it is also unclear how it
could be leveraged for analysis.

The work most closely related to our own is that

of [61], [31] and [5, 4]. Table 1 summarizes the main

differences between these and our semantics.

In [61] a formal semantics for a sub-set of UML-

RT is presented using Structural Operational Semantics
(SOS) to define a labelled-transition system (LTS) as

the semantic domain. This has the advantage that the

meta-theory for SOS over LTSs is well developed. On
the other hand it does not deal with many essential as-

pects of UML-RT such as optional and plug-in capsules,

dynamic wiring or capsule-to-thread assignments, and
no action language is given. Furthermore that paper

also distinguishes between basic capsules (without sub-

capsules), non-behavioural capsules (without a state

machine) and behavioural capsules, whereas we do not
make such a distinction and the three cases are treated

uniformly.

In [5, 4] a semantics for UML-RT is proposed us-

ing the π-calculus. However this considers only a very
small subset of UML-RT, without hierarchical state ma-

chines, no group transitions or history, a very limited

form of rewiring, no optional or plug-in capsules, no
threads or controllers, and no attributes. Furthermore,

the presentation of this semantic mapping is by exam-

ple only, without an actual formal mapping or other

systematic way of translating models into π-calculus
terms.

The work in [31] is much more elaborate with re-

spect to UML-RT than any other attempt. The au-

thors propose a semantics for UML-RT in terms of
AsmL, an object-oriented language based on Abstract

State Machines (ASMs). They propose an architecture

to support alternative semantics for UML-RT by rely-
ing on object-oriented polymorphism in AsmL. Differ-

ent UML-RT concepts are represented as AsmL classes.

Unlike all previous papers they support optional and

plug-in classes as well as multiple controllers. However
they only support flat state machines and no dynamic

wiring of SPPs and SAPs. Furthermore they do not

provide an automatic translation of UML-RT models

so the modeller must manually represent the model as

an AsmL data-structure.
Finally we cite our previous work [10] where we in-

troduced early version of the mapping of state machines

without history or enabled-transition selection policy,
and without support for capsules.

7 Concluding remarks

We have proposed a formal syntax and semantics for
the UML-RT language in terms of a process algebra

called kiltera. We believe this is the most comprehen-

sive formalization of the semantics of UML-RT to date.
Unlike existing attempts, our formalization deals with

both fully hierarchical state machines and structure di-

agrams. On both aspects it supports features not avail-
able in other approaches, such as history or group tran-

sitions in state machines, or optional capsules and dy-

namic wiring in capsule diagrams. It is the only seman-

tics with explicit support for thread assignment.
In addition to these contributions, it should also

be noted that unlike much of the existing approaches,

we provide an actual mapping specifying the transla-
tion, whereas some papers simply propose their seman-

tics in an ad hoc by-example manner, without provid-

ing an actual translation. Furthermore, our mapping
has been implemented using IBM RSA’s transforma-

tion tool, providing a realization of the semantics. The

outcome of this translation can be used by the imple-

mentation of kiltera for simulation. The development of
this implementation itself helped validating the transla-

tion. We are currently working towards a kiltera model-

checker which will provide analysis capabilities. The
modular nature of the translation, including mapping

of states and capsules to processes can be leveraged

by the model-checker for the purpose of traceability, by
providing a simple way to link the results of analysis on

the generated kiltera code to the corresponding model

elements.

Semantic variation points are an issue whenever we
attempt to formalize a language for which the seman-

tics has been only partially given. This is the case with

the UML in general and with UML-RT in particular.
We have attempted to define our mapping as precise as

possible while marking semantic variation points explic-

itly. Nevertheless it is important to keep in mind that
there are different kinds of variation points, some of

which can be easily addressed and some which would

require major changes in the mapping. For example,

the action language can be changed or extended with
relative ease simply by providing an alternative map-

ping α to be invoked by the translation of state ma-

chines in Definition 6 and Definition 7. The transla-

37 An executable formal semantics for UML­RT

Features [61] [31] [5, 4] Ours

Underlying semantics LTS AsmL π­calculus πklt ­calculus
Semantics definition SOS Hard coded By example By translation
Executable No Yes No Yes
State Machines Hierarchy Yes No No Yes

Group transitions Yes No No Yes
Deep history Yes No No Yes
Enabled transition selection Yes No No Yes

Action language No Subset Subset Subset
Timer service No No No Yes
Capsules Fixed capsules Yes Yes Yes Yes

Optional capsules No Yes No Yes
Plugin capsules No Yes No Yes
Attributes No Yes No Yes
Services No No No Yes
Dynamic wiring No Yes No Yes
Capsule­thread assignment No Yes No Yes
Multiple controllers No Yes No Yes

Table 1 Comparison of formal semantics for UML­RT.

tion of state machines themselves can be replaced in

its entirety by providing an alternative definition of

TSM (Definition 8) which is invoked by the translation
of capsules in Definition 16. However, some semantic

variation points require more delicate “surgery”. For

example changing the enabled-transition selection pol-

icy from inside-out to outside-in would require replac-
ing the process Handler in the definition for composite

states Definition 7. Changing it to full non-determinism

would imply an even more radical change, even elimi-
nating the need for the accept/reject protocol. Similarly

in the mapping of capsules (Definition 16), details of the

difference between incarnation in the same thread or in
a different thread, or the bottom-up initialization of

capsules could be changed by an alternative definition

of TC .

One aspect that we did not touch was the enco d-

ing of protocols. This is because our mapping enco des
the dynamic behaviour of UML-RT, while protocols (in

UML-RT) contain only static type information, specifi-

cally the type of events allowed in a given port. In other
words, our mapping assumes that the input model is

well-typed, and under such assumption, it will give the

model’s behaviour.

We have proposed a semantics of UML-RT by means
of translation to another language with a well defined

formal semantics. In the introduction we motivated our

choice of kiltera as the target language on the basis
of its conceptual similarities to UML-RT. Nevertheless,

in spite of these similarities, the mapping is not triv-

ial. This observation is important because most of the

existing work on formalizing rich, expressive and real-
istic languages tends to oversimplify them, overlook-

ing many aspects that are often deemed “irrelevant”

tically meaningful, as is the case with thread assign-

ments in UML-RT. A common mistake is to assume

that similar concepts are mapped in a one-to-one fash-
ion between the source and the target language. But

the thread assignment issue illustrates the problem. For

example, in [5, 4], capsules are mapped onto π-calculus

processes without regard for their thread assignment.
This would be fine but only under the assumption that

each capsule executes on a separate physical thread.

Otherwise, analysis of the resulting π-calculus processes
would fail to detect possibilities for deadlock, or be-

haviours depending on message ordering. In short, it

would lead to incorrect analysis results. This highlights
the perils of using minimalistic and pure languages or

formalisms to define semantics of realistic languages.

Artifacts Our kiltera simulator prototype is available
at http://www.kiltera.org. Some sample UML-RT

models (for IBM’s RSA-RTE) together with their gen-

erated kiltera code and their meta-models are available
at the Repository for Model-Driven Development (Re-

MoDD: http://www.cs.colostate.edu/remodd/v1/).

The actual transformation is available directly from the

authors.

Acknowledgements We are indebted to Bran Selic for his
support and his insights into the semantics of UML­RT. We
also thank Malina Software, IBM Canada and the Natural Sci-
ences and Engineering Research Council of Canada (NSERC)
and the Ontario Centres for Excellence (OCE) which provided
financial support. We would also like to thank Eyrak Paen for
his implementation of the transformation which was instrumen-
tal in the proper definition of the mapping. Finally, Karolina
Zurowska and Eric Rapos also provided very useful input on

or “implementation-specific” but turn out to be seman- RoseRT and RSA­RTE.

38 Ernesto Posse, Juergen Dingel

References

1. K. Benghazi Akhlaki, M.I. Capel Tuñón, J.A. Holgado Ter-
riza, and L.E. Mendoza Morales. A methodological ap-
proach to the formal specification of real­time systems by
transformation of UML­RT design models. Science of Com-
puter Programming, (65):41–56, 2007.

2. J. A. Bergstra and J. W. Klop. Process algebra for syn-
chronous communication. Information and Control, 60(1–
3):109–137, 1984.

3. A. Bertolino, G. De Angelis, C. Bartolini, and G. Lipari.
A UML profile and a methodology for real­time systems
design. Technical report, Istituto di Scienza e Tecnologie
dell’Informazione "A. Faedo", 2005.

4. J. de M. Bezerra and C. M. Hirata. A Semantics for UML-
RT using π­calculus. In Proc. of Int. Workshop on Rapid
System Prototyping (RSP’07), 2007.

5. J. de M. Bezerra and C. M. Hirata. A polyadic pi­calculus
approach for the formal specification of UML­RT. Adv.
Software Engineering, 2009, 2009.

6. G. Boudol. Asynchrony and the π­calculus (Note). Tech-
nical Report 1702, INRIA­Sophia Antipolis, 1992.

7. M. I. Capel, L. E. Mendoza, K. B. Akhlaki, and J. A. Hol-
gado. A semantic formalization of UML­RT models with
CSP+T processes applicable to real­time systems verifica-
tion. In Proc. of Jornadas de Ingeniería del Software y
Bases de Datos (JISBD’06), pages 283–292, 2006.

8. S. M. Cho, H­H. Kim, S.D. Cha, and D­H. Bae. A seman-
tics of sequence diagrams. Information Processing Letters,
84(3):125–130, 2002.

9. W. Damm, B. Josko, A. Pnueli, and A. Votintseva. Under-
standing UML: A Formal Semantics of Concurrency and
Communication in Real­Time UML. In Proc. of FMCO’02,
LNCS, pages 71–98. Springer Verlag, 2002.

10. J. Dingel, E. Paen, E. Posse, R. Rahman, and K. Zurowska.
Definition and implementation of a semantic mapping for
UML­RT using a timed pi­calculus. In Proc. of the Second
International Workshop on Behaviour Modelling: Foun-
dation and Applications, BM­FA ’10, pages 1:1–1:8, New
York, NY, USA, 2010. ACM.

11. B. P. Douglass. Real­Time UML. In Formal Techniques
in Real­Time and Fault­Tolerant Systems, volume 2469 of
LNCS, pages 53–70. Springer, 2002.

12. G. Engels, R. Heckel, J. M. Küster, and L. Groenewegen.
Consistency­preserving model evolution through transfor-
mations. In Proc. Fifth International Conference on the
Unified Modeling Language ­ The Language and its Appli-
cations, pages 212–227. Springer, 2002.

13. R. Eshuis and R. Wieringa. A Formal Semantics for UML
Activity Diagrams ­ Formalising Workflow Models. Tech-
nical report, University of Twente, 2001.

14. H. Fecher, M. Kyas, W­P. De Roever, and F. S. De Boer.
Compositional Operational Semantics of a UML­Kernel­
Model Language. Electronic Notes in Theoretical Computer
Science, (156):79 – 96, 2006.

15. P. Ferreira, A. Sampaio, and A. Mota. Viewing CSP Speci-
fications with UML­RT Diagrams. Electronic Notes in The-
oretical Computer Science, 195(0):57–74, 2008. Proc. of the
Brazilian Symposium on Formal Methods (SBMF 2006).

16. C. Fischer, E.­R. Olderog, and H. Wehrheim. A CSP view
on UML­RT structure diagrams. In Proc. Fundamental Ap-
proaches to Software Engineering (FASE’01), volume 2029
of LNCS, pages 91–108. Springer, 2001.

17. D. Garlan, R. T. Monroe, and D. Wile. Acme: Architec-
tural Description of Component­Based Systems. In Gary T.
Leavens and Murali Sitaraman, editors, Foundations of

Component­Based Systems, chapter 3, pages 47–67. Cam-
bridge University Press, New York, NY, 2000.

18. R. Grosu, M. Broy, B. Selic, and G. Stefanescu. Behav-
ioral Specifications of Businesses and Systems, chapter 6:
What is behind UML­RT?, pages 73–88. Kluwer Academic
Publishers, 1999.

19. C. A. R. Hoare. Communicating Sequential Processes.
Comm. of the ACM, 21(8):666–677, August 1978.

20. K. Honda and M. Tokoro. An object calculus for asyn-
chronous communication. In Proc. of ECOOP ’91, volume
512 of LNCS, pages 133 – 147. Springer, 1991.

21. IBM. General Description Language. IBM, 9 March 2005.
22. IBM. IBM Rational Rose Technical Developer, Version

7.0. IBM, 2010. http://www-01.ibm.com/software/
awdtools/developer/technical.

23. IBM. IBM Rational Software Architect, RealTime Edition,
Version 7.5.2. IBM, 2010. http://publib.boulder.ibm.
com/infocenter/rsarthlp/v7r5m1/index.jsp.

R24. IEEE Computer Society. IEEE Standard Verilog � Hard-
ware Description Language, IEEE Standard 1364TM ­2001,
28 September 2001.

25. IEEE Computer Society. IEEE Standard VHDL Language
Reference Manual, IEEE Standard 1076TM ­2008, 26 Jan-
uary 2009.

26. IEEE Computer Society. IEEE Standard for the SystemC
Language, IEEE Standard 1666TM ­2011, January 2012.

27. IEEE Computer Society. IEEE Standard for SystemVerilog
– Unified Hardware Design, Specification, and Verification
Language, IEEE Standard 1800TM ­2012, 21 February 2013.

28. International Telecommunications Union. Specification
and description language (SDL). ITU­T Recommendation
Z.100., November 1999.

29. D. R. Jefferson. Virtual Time. ACM­TOPLAS, 7(3):404–
425, July 1985.

30. K. Lano and D. Clark. UML 2 Semantics and Applications,
chapter Ch. 8 ­ Axiomatic Semantics of State Machines,
pages 179–204. Wiley, 2009.

31. S. Leue, A. Stefanescu, and W. Wei. An AsmL seman-
tics for dynamic structures and run time schedulability in
UML­RT. In Richard F. Paige and Bertrand Meyer, ed-
itors, Proc. of Objects, Components, Models and Patterns
(TOOLS EUROPE 2008), volume 11 of Lecture Notes in
Business Information Processing, pages 238–257. Springer,
2008.

32. X. Li, Z. Liu, and H. Jifeng. A formal semantics of UML se-
quence diagrams. In Proc. of the 2004 Australian Software
Engineering Conference, pages 168 – 177, 2004.

33. J. Merseguer, S. Bernardi, J. Campos, and S. Donatelli. A
Compositional Semantics for UML State Machines Aimed
at Performance Evaluation. In Proceedings of the 6th Inter-
national Workshop on Discrete Event Systems, pages 295 –
302. IEEE Computer Society Press, 2002.

34. R. Milner. A Calculus of Communicating Systems.
Springer, 1980.

35. R. Milner, J. Parrow, and D. Walker. A calculus of mobile
processes, parts I and II. Reports ECS­LFCS­89­85 and
ECS­LFCS­89­86 86, Computer Science Dept., University
of Edinburgh, March 1989.

36. M.O. Möller, A. David, and W. Yi. Verification of UML
statechart with real­time extensions. In Fundamental Ap-
proaches to Software Engineering (FASE’2002), volume
2306 of LNCS, pages 218–232. Springer­Verlag, 2003.

37. R. Mrowka and T. Szmuc. UML Statecharts Compositional
Semantics in LOTOS. In 2008 International Symposium on
Parallel and Distributed Computing, pages 459 – 463. IEEE
Computer Society Press, 2008.

39 An executable formal semantics for UML­RT

38. D. Muthiayen. Real­time reactive system development : a
formal approach based on UML and PVS. PhD thesis, Con-
cordia University, 2000.

39. M. Y. Ng and M. Butler. Towards Formalizing UML State
Diagrams in CSP. In Proc. of SEFM’03, pages 138–147.
IEEE Computer Society, 2003.

40. Object Management Group. UML Profile For
Schedulability, Performance, And Time v1.1.
http://www.omg.org/spec/SPTP/, January 2005.

41. Object Management Group. UML Profile For MARTE:
Modeling And Analysis Of Real­Time Embedded Systems
v1.1. http://www.omg.org/spec/MARTE/, June 2011.

42. Object Management Group. UML Superstructure Specifi-
cation v2.4.1. http://www.omg.org/spec/UML/2.4.1/, Au-
gust 2011.

43. Object Management Group. OMG Sys-
tems Modeling Language (OMG SysMLTM).
http://www.omg.org/spec/SysML/1.3/, June 2012.

44. Object Management Group. UML Superstructure Spec-
ification v2.5. http://www.omg.org/spec/UML/2.5/,
September 2012.

45. I. Paltor. The Semantics of UML State Machines. Technical
report, 1999.

46. E. Posse. Model ling and Simulation of dynamic structure,
discrete­event systems. Ph.D. Thesis, School of Computer
Science. McGill University, August 2008.

47. E. Posse. A real­time extension to the π­calculus. Tech. Re-
port 2009­557, School of Computing – Queen’s University,
http://www.cs.queensu.ca, 2009.

48. E. Posse. The πklt ­calculus: formal definition. Tech. Re-
port 2012­591, School of Computing – Queen’s University,
http://www.cs.queensu.ca, July 2012.

49. E. Posse and J. Dingel. kiltera: a language for timed,
event­driven, mobile and distributed simulation. In Proc.
of the 14th IEEE/ACM International Symposium on Dis-
tributed Simulation and Real Time Applications (DS­RT
2010), 2010.

50. E. Posse and J. Dingel. Theory and implementation
of a real­time extension to the π­calculus. In Proc.
Int. Conf. on Formal Techniques for Distributed Systems
(FMOODS&FORTE’10), LNCS, 2010.

51. E. Posse and H. Vangheluwe. kiltera: A simulation language
for timed, dynamic structure systems. In Proc. of the 40th
Annual Simulation Symposium (ANSS’07), 2007.

52. R. Ramos, A. Sampaio, and A. Mota. A semantics for
UML­RT active classes via mapping into Circus. In Proc.
Int. Conf. on Formal Methods for Open Object­Based Dis-
tributed Systems FMOODS’05, volume 3535 of LNCS,
pages 99–114. Springer, 2005.

53. SAE International. Architecture Analysis & Design Lan-
guage (AADL). SAE Standard AS5506b, 10 September
2012.

54. B. Selic. Using UML for modeling complex real­time
systems. In Frank Mueller and Azer Bestavros, edi-
tors, Languages, Compilers, and Tools for Embedded Sys-
tems (LCTES’98), volume 1474 of LNCS, pages 250–260.
Springer, 1998.

55. B. Selic. Personal Communication, 1 February 2012.
56. B. Selic, G. Gullekson, and P. T. Ward. Real­Time Object

Oriented Modeling. Wiley & Sons, 1994.
57. B. Selic and J. Rumbaugh. Using UML for modeling com-

plex real­time systems. Whitepaper, Rational Software
Corp., 1998.

58. S. Shankar and S. Asa. Formal semantics of UML with
real­time constructs. In UML, volume 2863 of LNCS, pages
60–75. Springer, 2003.

59. H. Störrle and J. H. Hausmann. Towards a formal se-
mantics of UML 2.0 activities. In In Proceedings German
Software Engineering Conference, volume 65 of LNI, pages
117–128, 2005.

60. M. von der Beeck. A structured operational semantics for
UML­statecharts. SoSyM, 1(2):130–141, 2002.

61. M. von der Beeck. A formal semantics of UML­RT. In
Proc. of MoDELS’06, pages 768–782, 2006.

62. W. L. Yeung, K R.P.H. Leung, J. Wang, and W. Dong.
Improvements Towards Formalizing UML State Diagrams
in CSP. In Proc. of APSEC­’05, pages 176 – 184. IEEE
Computer Society, 2005.

63. B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of
Modeling and Simulation. Academic Press, first edition,
1976.

64. B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of
Modeling and Simulation. Academic Press, second edition,
2000.

65. T. Zhang, S. Huang, and H. Huang. An Operational Se-
mantics for UML RT­Statechart in Model Checking Con-
text. In Proc. of the 4th Int. Conf. on Internet Computing
for Science and Engineering (ICICSE), 2009, pages 12–18,
2009.

Semantic Variation Points

1. Alternative semantics could include giving priority to the
states higher in the hierarchy, or to leave the choice as non-
deterministic.

2. In UML 2, alternative semantics include 1) shal low his-
tory, remembering only the immediate sub­state; 2) allow-
ing both deep and shallow history; 3) no history.

3. The action language is a major semantic variation point,
but it should include at least an action to send messages.
Other common actions concern operations on capsules such
as accessing/modifying attributes, incarnating/destroying
optional sub­capsules, or rewiring ports. IBM RSA­RTE
supports three action languages: C++, Java and UAL (UML
Action Language), a Java­like language closely related to
the OMG ALF standard.

4. This may be treated in a different way, and handle the
event in the same way regardless of whether the state was
previously visited.

5. The forwarding of events down to the active sub­state is
done in order to account for the priority of inner enabled
transitions over outer transitions. A different priority scheme
would be changed here. For example, giving outer transi-
tions priority would attempt the Choice process first and
if no alternative was there, the Forward process would be
tried instead. Allowing non­deterministic choice between
transitions at different levels of nesting would require a dif-
ferent approach with no forwarding involved.

6. There are many possible implementations of the event pool,
of which the most natural would be a priority queue, where
the priority is an attribute of the event itself.

7. Alternatively this could be changed to initializing the top
first and then the sub­capsules, or a more general approach
allowing initialization in any order.

8. In this definition we allow only binary connection, i.e., each
connector links only two ports, and ports have multiplicity
1. To support n­ary multiplicity the definition of the service
handler should be adapted accordingly.

	Untitled

	1.1 Model-Driven Development of RTE syst
	1.1 Model-Driven Development of RTE syst
	1.1 Model-Driven Development of RTE syst
	1.1 Model-Driven Development of RTE syst
	The development of RTE systems consists
	Model-Driven Development (MDD) is an app
	An inﬂuential modelling language for the
	In order to be able to analyze models in
	Our goal is to provide a comprehensive f
	Our goal is to provide a comprehensive f
	reference semantics but also supports bo

	1.2 UML-based modelling of RTE systems
	UML-RT, along with SDL [28] and Acme [17
	In addition to UML-RT, other UML proﬁles
	While there is some overlapping between
	UML SPTP, MARTE and other similar proﬁle
	“MARTE deals with completely diﬀerent as
	“MARTE deals with completely diﬀerent as
	An executable formal semantics for UML-R
	for modeling time, resources, real-time
	Hence, while MARTE is an appropriate for
	Why should we be concerned with deﬁning
	1.3 UML-RT semantics by translation
	There are many approaches to formal sema
	There are many approaches to formal sema
	to a language that already has a well-de

	In this paper we follow this approach. T
	The target language we have chosen is ca
	1.
	1.
	1.
	kiltera’s semantic concepts have many si

	2.
	2.
	kiltera has a well-deﬁned formal semanti

	3.
	3.
	kiltera is a real high-level language wi

	The goal of this article is to formally
	UML-RT models describe both structural a
	UML-RT models describe both structural a
	possibility of replacing state machines

	1.4 Shortcomings of existing UML-RT sema
	1.4 Shortcomings of existing UML-RT sema
	As we mentioned above, there have been s
	The existing approaches to formalizing U
	Two of these fundamental aspects of the
	As stated above, our goal is to obtain a

	1.5 Correctness and validation
	1.5 Correctness and validation
	One of the main questions regarding the
	Just like UML, UML-RT has several semant
	Paper organization This article is organ
	In the presentation of the formal transl
	An executable formal semantics for UML-R
	An executable formal semantics for UML-R

	2 Background
	2 Background
	2 Background
	2.1 UML-RT
	2.1 UML-RT
	In this section we describe informally t

	2.1.1 Structure diagrams: capsules
	2.1.1 Structure diagrams: capsules
	2.1.1 Structure diagrams: capsules
	UML-RT allows modelling a system’s struc
	A capsule, as its name suggests, is a hi
	The set of ports of a capsule deﬁnes its
	The set of ports of a capsule deﬁnes its
	communicate between the capsule’s state

	Some ports such as p12 and p13 may be de
	A capsule is a class (in the OO sense) o
	Each capsule is assigned to a logical th
	Figure
	An executable formal semantics for UML-R
	An executable formal semantics for UML-R
	nected segments form a transition chain,
	3.
	3.
	3.
	In UML-RT entry points are by default co

	4.
	4.
	Actions may be related to concepts speci

	5.
	5.
	UML-RT supports timing requirements usin

	2.1.3 Time
	2.1.3 Time
	2.1.3 Time
	In UML-RT, time is assumed to progress a
	In UML-RT, time is assumed to progress a
	is external, it can proceed in any way t

	2.2 kiltera
	2.2 kiltera
	Our approach to formalize the semantics
	kiltera [50, 49, 46, 51]. is a language
	Just as in the π-calculus, the central n
	Just as in the π-calculus, the central n
	[64, 63]. Just like the π calculus, kilt

	In addition to communication primitives,
	In addition to communication primitives,
	The formal semantics of πklt is given in
	We have developed an implementation of t
	The full language also includes some con
	http://www.kiltera.org

	2.2.1 Syntax
	2.2.1 Syntax
	To formally deﬁne the mapping we use the
	Deﬁnition 1 (Syntax) The set of all πklt
	′
	′
	′

	2.2.2 Informal semantics
	2.2.2 Informal semantics
	We now describe informally the language’
	–.
	–.
	–.
	Expressions E are either constants (null

	–.
	–.
	The term stop represents the stopped pro

	–.
	–.
	The process done represents successful t

	–.
	–.
	The process a!E is a trigger; it trigger

	–.
	–.
	A process when {G1 → P1 |· · · | Gn → Pn

	An executable formal semantics for UML-R
	An executable formal semantics for UML-R

	P ::= stop Stopped process | done Succes
	G ::= a?R@y. Listener/input guard
	D ::= proc A(x1, ..., xn)= P Process deﬁ
	E ::= null | r | true | false | “s” | x
	R ::= null | r | true | false | “s” | x
	Fig. 3 πklt syntax
	Fig. 3 πklt syntax

	equivalent to a?x@y → P for some fresh n
	–.
	–.
	–.
	The process new a1 ,..., an in P hides t

	–.
	–.
	The process wait E → P is a delay: it de

	2.2.3 Some examples and usage patterns
	2.2.3 Some examples and usage patterns
	to stop. Since the language is untyped w
	–.
	–.
	–.
	–.
	The process if Ethen P1 else P2 is a con

	with the standard meaning. if Ethen P is

	–.
	–.
	–.
	The process P1 IP2 is the parallel compo

	Interaction The process a! Iwhen {a? → P
	one interaction between the processes an
	
	

	i∈I ues as done IP which is the same as
	–. The term P1;P2 is the sequential comp
	–. The term P1;P2 is the sequential comp
	–. The term P1;P2 is the sequential comp
	–. The term P1;P2 is the sequential comp
	Choice The term a! Iwhen {a? → P|b? → Q}

	and P2.

	to P, while b! Iwhen {a? → P|b? → Q}redu
	–. The term def {D1;...;Dn}in P declares
	–. The term def {D1;...;Dn}in P declares
	–. The term def {D1;...;Dn}in P declares
	–. The term def {D1;...;Dn}in P declares
	–. The term def {D1;...;Dn}in P declares
	–. The term def {D1;...;Dn}in P declares
	If the environment of a listener trigger

	Di and executes P. The scope of these de

	of the listener’s guards, the choice is

	a! I b! I when {a? → P|b? → Q} can reduc

	Pattern matching For interaction to happ
	Pattern matching For interaction to happ
	Local channels The new construct introdu
	Barriers and joining It is common for a
	Process deﬁnitions Process deﬁnitions al
	def {proc P(x) = x!; proc C(y) = when {y
	def {proc P(x) = x!; proc C(y) = when {y
	channel a to the new instance’s port x.

	Recursion The body of a process can refe
	Lexical scoping This applies to names in
	Channel mobility Channels or events are
	1
	1

	b!c becoming aware of the private b.
	Asynchronous message passing As in the a
	Message acknowledgment and response Sinc
	1
	1

	In the π-calculus literature this is kno
	An executable formal semantics for UML-R
	An executable formal semantics for UML-R
	a. Nevertheless, we often wish to receiv
	Process names as parameters In process d
	Auxiliary functions
	While data structures such as lists and
	–.
	–.
	–.
	empty_list: the empty list constant,

	–.
	–.
	list_add(item,list): returns the list th

	–.
	–.
	list_pop(list): returns a pair (item,rem

	–.
	–.
	list_del(item,list): returns the list wi

	–.
	–.
	list_isempty(list): returns true if the

	–.
	–.
	empty_dict: the empty dictionary constan

	–.
	–.
	dict_put(key,value,dict): returns a dict

	erwise, it replaces the existing associa

	–.
	–.
	–.
	dict_get(key,dict) returns the value ass

	–.
	–.
	dict_del(key,dict) returns the dictionar

	2.3 Additional preliminaries
	2.3 Additional preliminaries
	Here we deﬁne some additional notation u
	We write 1..k for the set {1,2,..., k}.

	3 The signiﬁcance of thread allocation
	3 The signiﬁcance of thread allocation
	As suggested in the introduction, thread
	Example 1 Suppose that some system Auses
	The model is shown in Figure 4. In this
	Figure
	An executable formal semantics for UML-R
	An executable formal semantics for UML-R
	then it becomes evident that under the a
	It is not hard to make a simple model wh
	By ignoring thread assignment, existing
	Thread allocation is important in practi

	4 State Machines
	4 State Machines
	4 State Machines
	Now we begin the presentation of our sem

	4.1 A syntax for UML-RT state machines
	4.1 A syntax for UML-RT state machines
	4.1 A syntax for UML-RT state machines
	We use a mathematical notation for state
	In the sequel we will use the following
	–.
	–.
	–.
	Nstates : the set of all possible state

	–.
	–.
	Nenp : the set of all possible entry poi

	–.
	–.
	–.
	Nexp : the set of all possible exit poin

	b, b1, b2,... for elements in Nexp ;. de

	–.
	–.
	Ncp = Nenp ∪ Nexp : the set of all conne

	–.
	–.
	–.
	Nports : the set of all possible port na

	–.
	–.
	Nevt : the set of all possible event nam

	–.
	–.
	Trig: the set of all possible triggers:

	–.
	–.
	Vals: is a set of possible data values.

	–.
	–.
	Guards: the set of possible transition g

	–.
	–.
	Acts: the set of all possible actions in

	def
	def

	–.
	–.
	–.
	B = {false,true}the set of boolean value

	–.
	–.
	N: the set of natural numbers

	Furthermore, we make the following assum
	–.
	–.
	–.
	Every state and connection point is labe

	–.
	–.
	For every state name n ∈ Nstates , there

	Before we deﬁne state machine terms, we
	Deﬁnition 2 (Transitions) Let Kinds = {i
	def
	def

	of all possible transitions is Trans = K
	of all possible transitions is Trans = K
	functions:
	2

	def
	def
	kind(t) =. k The kind of transition
	def
	ﬁrst(t) =. l Whether t is the ﬁrst in a
	def
	src(t) = c1 The source of the transition
	def
	targ(t) =. c2 The target of the transiti
	def
	trig(t) = e The trigger event of the tra
	def
	guard(t) = g The guard of the transition
	def
	act(t) = f The action of the transition
	Now we can deﬁne state machine terms.
	Deﬁnition 3 (State machine terms) The se
	s ::= [n, A, B, en, ex] Basic-state | [n
	Here n ∈ Nstates is the name of a state,
	We ﬁrst deﬁne the following useful funct
	def
	name(s) = n The name of the state s
	def
	entries(s). = A The set of entry points
	def
	exits(s) = B The set of exit points of s
	def
	enact(s) = en The set of entry actions o
	def
	exact(s) = ex The set of exit actions of
	Note that since we assume unique names f

	For a composite state s = [n, A, B, S, d
	def
	def
	name(s) = n The name of the state s
	def
	entries(s). = A The set of entry points
	def
	exits(s) = B The set of exit points of s
	def

	substates(s) = S The set of substates of
	def
	def
	trans(s) = T The set of transitions of s
	def
	default(s). = sd The default (initial) s
	def
	enact(s) = en The set of entry actions o
	def
	exact(s) = ex The set of exit actions of

	and all transitions t ∈ T must satisfy t
	1.
	1.
	1.
	If ﬁrst(t) = false then trig(t) = ⊥

	2.
	2.
	kind(t) = sib if and only if there are s

	3.
	3.
	kind(t) = in if and only if there is a s

	4.
	4.
	kind(t) = out if and only if there is a

	In the remainder we will omit the entry
	Example 2 Consider the state machine sho
	def
	def

	s1 = [n1,{denn},{dexn},(s2, s5),1,{t1, t
	1
	1

	def
	def

	s2 = [n2,.{denn, a1, a2},{dexn, b1, b2},
	2
	2

	def
	def

	s3 = [n3,{denn},{dexn}]
	3
	3

	def
	def

	s4 = [n4,{denn, a3},{dexn}]
	4
	4

	def
	def

	s5 = [n5,{denn},{dexn}]
	5
	5

	Figure
	such event occurs, the Handler tells its
	such event occurs, the Handler tells its
	Enabled-transition selection policy
	It is possible that two transitions are
	The main idea is as follows. For each co
	′
	tive sub-state n . If n (or a sub-state)
	′

	′
	On the other hand, if n (or a sub-state)
	′
	back to n’s Handler. If n’s Handler rece
	In order to implement this, we add an ac
	History
	Whenever a composite state is entered fo
	To implement history we deﬁne, for each
	To implement history we deﬁne, for each
	sub-state. In fact, whenever we take a t

	Actions
	There are two main issues to be addresse
	To address the ﬁrst question, we conside
	Once we assume the action translation, w

	4.2.2 Formal mapping
	4.2.2 Formal mapping
	Actions
	As stated above, we need a translation f
	Deﬁnition 4 (Action translation) An acti
	An executable formal semantics for UML-R
	An executable formal semantics for UML-R
	History cells
	The history cell h for a given state m s
	Deﬁnition 5 (History Cells) History Cell
	proc HistoryCell(h, ini,kill,Sn) = when
	′
	′

	The way a history cell works is straight
	′

	The process deﬁnition for states
	Each state nk is translated into a proce
	–.
	–.
	–.
	inp: this is the port where input events

	–.
	–.
	acc: this port is used to signal that an

	–.
	–.
	rej: this port is used to signal the rej

	–.
	–.
	exit: this port is used by the state’s p

	–.
	–.
	exack: this port is used to acknowledge

	–.
	–.
	–.
	sh: this port is used to signal that exi

	–.
	–.
	kill: this port is used to stop the stat

	–.
	–.
	enp: is a parameter used only in composi

	The diﬀerence between exit, kill and sh
	In the following, we assume that for eac
	′
	′

	sic state s whose containing (parent) st
	′
	′
	′

	history cell for s, hist is the history
	′
	s , compl is the completion event, and p
	Each transition is assumed to be annotat
	This translation assumes a translation f
	We now provide the deﬁnition of the tran
	Translation of basic states
	Deﬁnition 6 (Translation of basic states
	s = [nk, A, B, en, ex]
	Figure
	An executable formal semantics for UML-R
	An executable formal semantics for UML-R
	def. TS [s3]s2,hist 3,hist 2,compl, p1,p
	=
	proc Sn3 (inp,acc, rej,exit,exack,sh,kil
	def { proc Entry() = α[en]((⊥,⊥,⊥),(p1,
	when {
	inp?(p, e, d) → Choice(p,e,d, acc,rej)
	|exit? → Exit(⊥, ⊥,⊥);exack!
	|kill? → done }
	proc Choice(p, e, d, acc,rej)=
	if p = “p1 ” and e = “x” and true then a
	else if p = “p3 ” and e = “z” and true t
	acc!; Exit(p, e,d);
	Sn4 (inp,acc,rej,exit, exack,sh,kill,“de
	else rej!; Handler()
	}in
	Entry(); hist2 !(“set”,Sn3); compl!; Ha
	Fig. 8 Example: translation of state n3
	Example 3 Consider the basic state n3 fr
	2
	3
	2

	(p1, p2, p3).
	In this example one can see that the Cho
	The ﬁrst branch, corresponding to t3, in
	The second branch is similar, but the tr
	4

	In the main body, the history cell for t
	Translation of composite states

	Deﬁnition 7 (Translation of composite st
	Deﬁnition 7 (Translation of composite st
	Deﬁnition 7 (Translation of composite st
	Given a composite state
	s = [nk, A, B, S, d, T, en, ex]
	def TS [s]s ,hist ,hist′ ,compl,ports =
	′
	proc Snk (inp, acc,rej,exit,exack, sh,ki
	def { proc Entry() = α[en]((⊥,⊥,⊥),ports
	DHand ler ;DForward ;DChoice ;DDispatche
	1
	j
	1
	l

	}in
	′. ′
	new inp ,acc ,rej , exit ,exack ,sh ,kil
	′
	′
	′
	′
	′
	′

	′
	(Dispatcher(inp ,acc ,rej ,exit , exack
	′
	′
	′
	′
	′
	′

	I Handler(inp ,acc ,rej , exit ,exack ,s
	′
	′
	′
	′
	′
	′

	Fig. 9 Translation of composite states.
	′
	′
	proc Dispatcher(inp ,acc ,rej ,exit ,exa
	′
	′
	′
	′

	′
	sh ,kill ,enp)=
	′

	if
	if
	if
	enp = “a1 ”
	then Q ′ 1

	else if
	else if
	enp = “a2 ”
	then Q ′ 2

	· · ·
	· · ·

	else if
	else if
	enp = “am ”
	then Q ′ m

	TR
	′ ′

	hist!(“get”,inp ,exit
	hist!(“get”,inp ,exit
	′
	′

	else. ,acc ,rej ,
	′
	exack ,sh ,kill ,enp)
	′
	′

	Fig. 10 Dispatcher: chooses a sub-state
	whose parent (enclosing) state is
	4

	′′. ′′
	s. = [n′ , A , B , S , d , T , en , ex]
	k
	′
	′
	′
	′
	′

	and given an action translation α : Acts
	i

	def DSni = TS [si]s,hi,hk ,compl,ports
	with hi being the history cell for sub-s
	j

	low; DHand ler , DForward , DChoice and
	–. The Dispatcher process deﬁnition DDis
	′

	i
	i
	the transition segment i, the process th
	
	′′′′ ′
	 Ti; Snj (inp ,acc ,rej ,exit ,exack ,s
	′
	′

	
	
	
	
	 if kind(ti) = in, a = targ(ti),
	
	def

	Q ′
	= ∃sj ∈ S. a ∈ entries(sj), and nj = na
	= ∃sj ∈ S. a ∈ entries(sj), and nj = na
	i
	
	
	
	 Ti; Bbj (sh)
	′

	
	
	
	if kind(ti) = out and bj = targ(ti) ∈ B

	If the state has no parent, i.e., , it i
	′. ′
	proc Handler(inp , acc , rej ,exit ,exac
	′
	′
	′
	′
	′
	′
	′
	′
	′
	′
	′
	′
	′

	new visited in when {exack ? → acc! → (E
	′
	′

	visited?true →. when {exack ? → acc! → (
	′

	′
	′

	Forward(p, e, d, acc,rej,inp ,acc ,rej ,
	′
	′
	′
	′
	′
	′
	′

	′
	′

	Choice(p, e, d, acc,rej,inp ,acc ,rej ,.
	′
	′
	′

	exit ,exack ,sh ,kill)} else rej! → ′
	′
	′
	′
	′

	|exit? → exit ! → Handler(inp ,acc ,rej
	′
	′
	′
	′
	′
	′
	′
	′

	Fig. 13 Composite state choice taker.
	|sh ? → done. |kill? → kill ! → done }.
	|sh ? → done. |kill? → kill ! → done }.
	′
	′

	Fig. 11 Composite state handler.
	transition’s action and goes to the targ
	′
	proc Forward(p, e, d, acc,rej, inp ,acc
	′
	′

	as
	exit , exack ,sh ,kill)=
	′
	′
	′
	′

	
	inp !(p, e, d)
	′

	
	 Ti; Snj (inp,acc,rej ,exit,exack,sh,ki

	→ when {. 
	
	

	′ 
	? →.

	acc acc! →.  if kind(ti) = sib, a = tar
	
	

	′ ′. 
	Handler(inp ,acc ,rej ,exit ,exack ,. 
	′
	′
	′

	
	
	 ∃sj ∈ S . a ∈ entries(sj), and nj = n
	′

	sh ,kill). 
	′
	′

	
	
	
	 ′′′′ ′

	|rej ? →. def Ti; Snj (inp ,acc ,rej ,ex
	′
	′
	′

	′
	′

	Choice(p, e, d, acc,rej,inp ,acc ,rej ,
	′
	′

	
	
	 if kind(ti) = in, a = targ(ti),

	exit ,exack ,sh ,kill)}. 
	′
	′
	′
	′

	
	
	
	 ∃sj ∈ S. a ∈ entries(sj), and nj = na
	

	Fig. 12 Composite state event-forwarder.
	
	
	
	Ti; Bbj (sh)
	
	
	
	

	if kind(ti) = out and bj = targ(ti) ∈ B
	′

	action of transition ti, α[act(ti)]((⊥,⊥
	action of transition ti, α[act(ti)]((⊥,⊥

	Explanation
	–. DBbis a process deﬁnition for exit po
	–. DBbis a process deﬁnition for exit po
	j

	Figure 14 shows the control ﬂow of the π
	composite states. As with basic states,
	def
	def
	DBb= proc Bbj (sh) = sh! I Qj
	DBb= proc Bbj (sh) = sh! I Qj
	DBb= proc Bbj (sh) = sh! I Qj
	DBb= proc Bbj (sh) = sh! I Qj
	DBb= proc Bbj (sh) = sh! I Qj
	j

	a composite state contains deﬁnitions fo

	where sh is the parent’s stop-handler si

	(Handler)and a process to make the choic

	is the target of the exit point, deﬁned

	do with the event (Choice). In addition
	Ti; Snj (inp,acc,rej ,exit,exack,sh,kil
	Ti; Snj (inp,acc,rej ,exit,exack,sh,kil
	
	
	

	. – a dispatcher to either follow an in
	
	
	 if kind(ti) = sib, a = targ(ti),
	

	. into some sub-state or recall history
	
	
	 ∃sj ∈ S . a ∈ entries(sj), and nj = n
	′

	

	. – a deﬁnition DSnfor each sub-state n
	i

	
	
	 ′′′′ ′
	def Ti; Snj (inp ,acc ,rej ,exit ,exack
	′
	′

	–. a deﬁnition DBbfor each exit point bj
	j

	Qi =
	Qi =
	

	 if kind(ti) = in, a = targ(ti),. – and
	
	
	
	

	. events down to the currently active s
	 ∃sj ∈ S. a ∈ entries(sj), and nj = na
	 ∃sj ∈ S. a ∈ entries(sj), and nj = na
	
	

	. der to implement the “deepest ﬁrst” e
	Ti; Bbj (sh)
	Ti; Bbj (sh)
	
	

	. sition selection policy.
	
	

	if kind(ti) = out and bj = targ(ti) ∈ B
	′

	–.
	–.
	–.
	DHandler is the process deﬁnition shown

	–.
	–.
	DForward is the process deﬁnition shown
	′

	–.
	–.
	Finally, DChoice is the process deﬁnitio
	′

	′′ ′
	′′ ′
	′

	Figure 13, where Qi is the process that
	′
	′

	Figure
	The event Handler is somewhat more compl
	The event Handler is somewhat more compl
	If the state has been previously visited
	′
	′
	′

	If the state has not been previously vis
	The exit event (exit) might be received
	′
	the currently active sub-state via exit
	′

	Finally, the stop Handler signal (sh) ma
	′

	Example 4 Let us revisit the example fro
	First we have the Dispatcher. There are
	First we have the Dispatcher. There are
	tory will be recalled, or if the state h

	′′ ′
	′′ ′
	proc Dispatcher(inp ,acc ,rej ,exit ,exa
	′
	′

	′
	sh ,kill ,enp) =. if enp = “a1 ” then.
	′

	′′′′ ′
	Sn4(inp ,acc ,rej ,exit ,exack ,sh ,kill
	′
	′

	′′′ ′
	else hist!(“get”,inp ,acc ,rej ,exit ,ex
	′

	′
	sh ,kill ,enp)
	′

	In the case where we enter the state thr
	Second we have the choice process. There
	′ ′
	′ ′
	proc Choice(p, e, d, acc,rej ,inp ,acc ,
	′

	′
	exit ,exack ,sh ,kill) =
	′
	′
	′

	if p= “p2 ” and e = “x” and true then
	exit ! → when {exack ? → acc! → (Exit(p,
	′
	′

	Sn5 (inp,acc,rej,exit,exack,sh,kill,“den
	5

	′ ′
	else rej! → Handler(inp ,acc ,rej ,
	′

	′
	exit ,exack ,sh ,kill)
	′
	′
	′

	Note that the parameters passed to Sn5 a
	Deﬁnitions for the exit points are also
	proc Bb1 (sh) = sh! I Sn5(inp,acc,rej ,e
	proc Bb1 (sh) = sh! I Sn5(inp,acc,rej ,e
	5

	This is executed when taking transition
	The rest of the deﬁnition of Sn2 consist
	The process deﬁnition of a full state ma
	Having deﬁned processes for basic and co
	An executable formal semantics for UML-R
	An executable formal semantics for UML-R
	state machine, which acts essentially as
	A full state machine is represented as a
	–.
	–.
	–.
	inp: where input events of the form (p,

	–.
	–.
	compl : where the state machine signals

	–.
	–.
	kill: where requests to end the processe

	′ ′
	–. e,..., e , i ,..., i : the containing
	1
	′
	1
	′

	nE nI
	put) ports, where the actions of the sta
	The formal speciﬁcation is as follows:
	Deﬁnition 8 (Translation of a full state
	proc StateMachine(inp,compl ,kill,
	′ ′
	e,..., e , i ,..., i) =
	1
	′
	1
	′

	nE nI
	def {Ds; DHistoryCel l ; DSink }in
	′
	new acc,rej,exit,exack,sh,kill ,
	h1, h2,..., h|s|, htop ,
	kill1,kill2,..., kill|s|,killtop in
	(HistoryCell(htop ,false,killtop ,⊥)
	|s|
	I HistoryCell(hi ,false,killi ,⊥)
	i=1
	′
	I Sn1 (inp,acc,rej ,exit,exack,sh,kill ,
	′
	|s|

	i=1
	where
	–.
	–.
	–.
	name(s) = n1

	–.
	–.
	|s| is the number of states in s, includ

	–.
	–.
	hi is a link to the history cell for sta

	–.
	–.
	DHistoryCel l is the deﬁnition of Histor

	–.
	–.
	Ds is the translation of s according to

	def. Ds = TS [s]top,h1,htop,compl,ports.
	def
	′ ′
	with ports = (e,..., e , i ,..., i), an
	1
	′
	1
	′

	nE nI
	def
	is a dummy container state term deﬁned a

	–. and DSink is the following deﬁnition:
	4
	proc Sink(acc,rej ,exit,exack,sh) =. whe
	proc Sink(acc,rej ,exit,exack,sh) =. whe
	acc? → Sink(acc,rej,exit,exack,sh) |rej?

	5 Capsules
	5 Capsules
	We now show how capsule diagrams are enc
	–.
	–.
	–.
	associate capsules to threads (Subsectio

	–.
	–.
	represent (thread) controllers (Subsecti

	–.
	–.
	represent capsules themselves (Subsectio

	–.
	–.
	represent ports and services (Subsection

	–.
	–.
	represent optional and plug-in parts (Su

	–.
	–.
	represent actions (Subsection 5.2.6)

	–.
	–.
	represent the timer (Subsection 5.2.7)

	–.
	–.
	put all these together (Subsection 5.2.8

	5.1 A syntax for UML-RT capsule diagrams
	5.1 A syntax for UML-RT capsule diagrams
	We use a mathematical notation for capsu
	–.
	–.
	–.
	Ncap : the set of all possible capsule n

	–.
	–.
	Nparts : the set of all possible part na

	–.
	–.
	Nports : the set of all possible port na

	–.
	–.
	Nconn : the set of all possible connecto

	–.
	–.
	Nsm : the set of all possible state mach

	–.
	–.
	Nlthr : the set of all possible logical

	–.
	–.
	SM: the set of all state machine terms (

	def
	def
	Subsection 4.1); SM⊥ = SM ∪ {⊥} is the s

	–. Vals: the set of possible values (dat
	Furthermore, we make the following assum
	–.
	–.
	–.
	–.
	Every capsule is labelled with a unique

	–.
	–.
	Within a capsule, port names and connect

	Before we deﬁne capsule diagram terms, w
	Deﬁnition 9 (Port references and connect
	F ::= p Unqualiﬁed port reference | m.p
	where p∈ Nports and m ∈ Ncap ∪ Nparts .
	We also deﬁne the set Conn of possible c
	k ::= l : F → F Relay or internal connec
	where l ∈ Nconn is the name of the conne
	def
	name(l : F1 → F2) = l The name of the co
	def
	src(l : F1 → F2) = F1 The source of the
	def
	targ(l : F1 → F2) = F2 The target of the

	5.1.1 Capsules
	5.1.1 Capsules
	5.1.1 Capsules
	Now we can deﬁne capsule diagram terms.
	–.
	–.
	–.
	A name,

	–.
	–.
	Its ports (end, relay and internal)

	–.
	–.
	An optional state machine

	–.
	–.
	A set of (sub-capsule) parts

	–.
	–.
	A set of connectors between ports

	The following deﬁnition formalizes this
	Deﬁnition 10 (Capsule diagram terms) The
	–.
	–.
	–.
	m ∈ Ncap is the name of a capsule,

	–.
	–.
	G is a set of pairs pi : wi gi where pi

	c ::= [m, G, s, P, K, A] Capsule
	G ::= {p1 : w1 g1,..., pn : wn gn} Ports
	w ::= w Wired port. u Unwired port.
	g ::= end External end port. int Interna
	P ::= {b1 : o1 m1,..., bn : on mn} Sub-c
	o ::= ﬁx Fixed role. | opt Optional role
	K ::= {k1,..., kn ′ } Local connectors
	A ::= {a1,..., an ′′ } Attribute names
	Fig. 15 Syntax of UML-RT capsule diagram
	–.
	–.
	–.
	s ∈ SM ∪ {⊥} is a state machine term (or

	–.
	–.
	P is the set of sub-capsule parts of n,

	–.
	–.
	K ⊆ Conn is a set of connectors subject

	–.
	–.
	and A is a set of attribute names.

	We ﬁrst deﬁne the following useful funct
	def
	def

	name(c) = m The name of the capsule
	def
	def

	ports(c) = G The set of ports of the cap
	def
	def

	capsm(c) = s The capsule’s state machine
	def
	def

	parts(c) = P The set of sub-capsules
	def
	def
	conn(c) = K The set of port connectors
	def
	attrs(c) = A The set of attribute names

	Furthermore, we also have some functions
	def
	def
	endports(c) = {p|p: w end ∈ G}
	def
	intports(c) = {p|p: w int ∈ G}
	def
	relports(c) = {p|p: w rel ∈ G}
	def
	extports(c) = endports(c) ∪relports(c)
	def
	wiredports(c) = {p|p: w g ∈ G}
	def

	unwiredports(c) = {p|p: u g ∈ G}
	An executable formal semantics for UML-R
	An executable formal semantics for UML-R
	We generalize these functions over sets
	def
	capsules, then name(C) = {name(ci) |ci ∈
	We assume that ﬁx is the default role, s
	′ ′
	to the part b of capsule m, i.e., , m.b
	def
	ﬁxedcaps(c) = {b : ﬁx m ∈ P}
	def
	optcaps(c) = {b : opt m ∈ P}
	def
	plugincaps(c) = {b : plug m ∈ P}
	We also write l : F1 ↔ F2 ∈ K to mean th
	l : F1 → F2 ∈ K or l : F2 → F1 ∈ K. All
	1.
	1.
	1.
	if l : p ↔ F ∈ K where p is an unqualiﬁe

	2.
	2.
	if l : m.p ↔ F ∈ K where m.p is a qualiﬁ

	3.
	3.
	every port p ∈ relports(c) ∪intports(c)

	4.
	4.
	no port p ∈ endports(c) is linked to any

	5.
	5.
	for all connectors l : m1.p1 ↔ m2.p2, {p

	6.
	6.
	for every port p∈ wiredports(c) there is

	7.
	7.
	for every port p ∈ unwiredports(c) there

	m.p ↔ F ∈ K.
	If any component of a capsule diagram is
	Note that this deﬁnition does not includ
	Deﬁnition 11 (Capsule models) The set UM
	U ::= [c0, c1,..., cn] UML-RT model
	where c0 is designated the model’s top-c

	Example 5 Consider the capsule diagram f
	def
	def

	U = [c1, c2, c3, c4]
	where each ci is a term representing the
	def
	def
	c1 = [A, {p1 : w rel, p2 : u end, p3 : u
	s1,
	{b1 : ﬁx B, b2 : opt C, b3 : plug D},
	{l1 : p1 → B.p5, l2 : p4 → C.p8,
	l3 : p3 → D.p11 , l4 : B.p6 → C.p9,
	l5 : B.p7 → D.p10 },∅]
	def
	c2 = [B, {p5 : w −, p6 : w −, p7 : w −},
	def
	c3 = [C, {p8 : w −, p9 : w −, p13 : u −}
	def
	c4 = [D, {p10 : w −, p11 : w −, p12 : u−

	We note the following. First, in the set
	Also note that in capsules c2, c3 and c4

	5.1.2 An action language
	5.1.2 An action language
	In UML-RT actions are used in state mach
	The syntax presented here includes only
	C ::= send e(d)to p | inform p in t | re
	C ::= send e(d)to p | inform p in t | re
	Fig. 16 Syntax for the action language.
	Deﬁnition 12 (Actions) The set Acts of a
	Informally, these actions do the followi
	–.
	–.
	–.
	send e(d) to p sends event e with data d

	–.
	–.
	inform p in t sets up a timeout event on

	–.
	–.
	registerspp p on s registers the unwired

	–.
	–.
	registersap p on s registers the unwired

	–.
	–.
	deregisterspp p on s deregisters the unw

	–.
	–.
	deregistersap p on s deregisters the unw

	–.
	–.
	incarnate b on t incarnates optional cap

	–.
	–.
	destroy b destroys optional capsule part

	–.
	–.
	import m in b imports capsule instance m

	–.
	–.
	deport m from b removes capsule instance

	–.
	–.
	let x = E in C declares a local variable

	–.
	–.
	a := E assigns the value of expression E

	–.
	–.
	if E then C1 else C2 executes C1 if the

	–.
	–.
	C1; C2 executes C1 and then C2.

	5.2 Translating capsule diagrams
	5.2 Translating capsule diagrams
	Mapping UML-RT models to πklt involves t
	–.
	–.
	–.
	Mapping state machine diagrams to proces

	–.
	–.
	Mapping capsule diagrams to process deﬁn

	–.
	–.
	Representing UML-RT “controllers”, which

	–.
	–.
	Representing the association of capsules

	Each of these issues is largely independ
	We begin by deﬁning the association of c

	5.2.1 Mapping capsules to threads
	5.2.1 Mapping capsules to threads
	In order to support some deployment requ
	–.
	–.
	–.
	the map from capsules to logical threads

	–.
	–.
	the map from logical threads to physical

	Since the assignment to physical threads
	Let us assume that Nlthr denotes the set
	Deﬁnition 13 (Capsule-to-thread assignme
	Let NC ⊆ Ncap be a set of capsule names,
	An executable formal semantics for UML-R
	An executable formal semantics for UML-R
	assignment over NC and NL is a function
	def
	assignment is the composition of these t
	This assignment is used in the translati

	5.2.2 Controllers
	5.2.2 Controllers
	5.2.2 Controllers
	Each capsule is associated with a contro
	During execution, capsules send each oth
	In our mapping, capsule ports and connec
	Deﬁnition 14 (Controller events and even
	An inter-capsule message is a pair (e, d
	–. e is the name of a UML-RT event

	–. d is a reference to some data object,
	A state machine input message is a tripl
	–.
	–.
	–.
	p is the name of the target port in the

	–.
	–.
	e is the name of a UML-RT event,

	–.
	–.
	d is a reference to some data object, ca

	A controller message is a tuple of the f
	(smi ,smc, p, e, d)
	where:
	–.
	–.
	–.
	smi is the input port of the state machi

	–.
	–.
	smc is the state machine’s event which s

	–.
	–.
	p is the name of the target port in the

	–.
	–.
	e is is the name of a UML-RT event,

	–.
	–.
	d is a reference to some data object, ca

	Controllers consist of two components: a
	An event pool process is a πklt process
	proc EventPool(put,get)
	where put is a port where events are rec
	ADispatcher is a process that takes the
	Deﬁnition 15 (Controllers) A controller
	Deﬁnition 15 (Controllers) A controller
	proc Controller(inp) =
	def {
	proc EventQueue(put, get) = Q;
	proc Dispatcher(qget) =
	new ﬁrst in
	(qget!ﬁrst →
	when {ﬁrst ?(smi,smc, p, e, d) →
	smi !(p, e, d) →
	when {smc? → Dispatcher(qget)}})
	}in
	new qin (EventQueue(inp,q) I Dispatcher(
	where Q is the implementation of the eve

	5.2.3 Translating capsules
	5.2.3 Translating capsules
	5.2.3 Translating capsules
	Each capsule is represented as a single
	–.
	–.
	–.
	An instance of the capsule’s state machi

	–.
	–.
	An instance of each sub-capsule (called

	–.
	–.
	An instance, for each port, of a port-ha

	–.
	–.
	An instance of a process CapsuleHandler

	Every UML-RT connector is represented by
	′
	is a port/channel p which is used for ou
	′
	contains a pair of ports for each end-p
	p
	′
	relay-port (rp, r)of the capsule, a ctr
	6

	p
	capsule to its controller, and a hook ch
	Internally the deﬁnition includes the pr
	′

	p
	In kiltera, channels are bidirectional,

	and and for each port connector (lp, l)
	′

	p
	p

	hooki channel for each sub-capsule insta
	The translation of a capsule c is parame
	We will use the following conventions fo
	′ ′
	′ ′

	–. End ports will be written as e, e , e
	1

	′ ′
	′ ′

	–.
	–.
	–.
	Relay ports will be written as r, r , r1
	1

	–.
	–.
	Internal ports will be written as i, i ,
	′
	′
	1

	–.
	–.
	Local connectors will be written as l, l
	′
	1
	′

	–.
	–.
	Capsule attributes will be written as a,

	Deﬁnition 16 (Capsules to processes) Giv
	E
	R
	I
	P
	P
	P

	def
	def

	mi = name(ci) for some capsule ci ∈ U, c
	K

	def
	def

	–.
	–.
	–.
	L = {name(ki)|ki ∈ K}= {l1,..., ln}
	K

	–.
	–.
	DStateMachine is the translation of the

	=. is
	=. is
	′
	TSM [s] according to Deﬁnition 8 (The e
	′

	p p
	ports of the state machine are used by t
	′

	p
	′
	or to other capsules (e). All inputs to
	p
	machine, including those from internal p

	–.
	–.
	–.
	DCapsuleHandler is the deﬁnition of Caps

	–.
	–.
	each Cmj is the name of the process deﬁn

	An executable formal semantics for UML-R
	An executable formal semantics for UML-R
	def
	TC [c]θ =
	′ ′
	proc Cm(hook, e1, e 1,..., enE , e ,
	nE
	′ ′
	r1, r 1,..., rnR , r ,ctrl,async)= new s
	′
	′

	nR
	nI
	l1, l 1 ,..., lnK , l ,
	′
	′

	nK
	h1,..., h|G|,. hook1 ,..., hook|P| in. d
	DStateMachine ;DCapsuleHandler ;DBody ;
	′
	new smc in
	′
	ctrl !(smi ,smc ,“sys”,“init”,null) → wh
	′
	Body(smc ,true)} else Body(smc, false)
	where DBody is
	′
	proc Body(smc ,async)=
	′
	WiredEIPort(hj , pj ,pj ,ctrl ,smi ,smc,
	pj :wend∈G. ′.
	I WiredEIPort(hj ,pj ,pj ,ctrl ,smi , sm
	pj :wint∈G. ′.
	I WiredRPort(hj ,pj ,pj ,lk ,l)
	′

	pj :wrel∈G. k
	′
	I UnwiredEIPort(hj , pj ,pj ,ctrl ,smi ,
	pj :uend∈G. ′.
	I UnwiredEIPort(hj ,pj ,pj ,ctrl ,smi ,
	pj :uint∈G. ′.
	I UnwiredRPort(hj ,pj ,pj ,lk ,l)
	′

	pj :urel∈G. k
	′′ ′
	I Cmj (hookj , pj,1, p j,1, pj,2, p j,2,
	bj :ﬁx mj ∈P. j,h
	,

	θ(mj),false)
	I Opt(hook, hookj ,Cmj ,
	bj :opt mj ∈P
	′′ ′
	pj,1, p j,1, pj,2, p j,2, ..., pj,h , p
	j,h

	I Plugin(hook,hookj ,Cmj ,
	bj :plug mj ∈P
	′′ ′
	pj,1, p j,1, pj,2, p j,2,..., pj,h , p)
	j,h
	I when {(hook1 ,hook2 ,· · · ,hook|P|)?
	′ ′
	I StateMachine(smi ,smc ,smk , e 1,...,
	nE
	i 1,..., i)
	′
	′

	nI
	I when {smc ? → hook! → if async then sm
	′

	Fig. 17 Translation of capsules.
	–.
	–.
	–.
	the port handling process deﬁnitions Wir

	–.
	–.
	the process deﬁnitions Opt and Plugin ar

	–.
	–.
	Each Cmj is the name of the process deﬁn

	′′ ′
	proc Cmj (hook, p1, p , p2, p ,..., ph,
	1
	2
	h

	In the invocation of Cmj , the actual po
	′′ ′
	arguments pj,1, p , pj,2, p ,..., pj,h ,
	j,1
	j,2

	j,h
	′
	– either pj,j′ ∈ R∪I and l : pj,j′ ↔ mj
	′
	–. or pj,j′ = l ∈ L and l : mj .pj ↔ mk.
	some port reference mk.pk – or pj,j′ = s

	Explanation
	The Body in the deﬁnition of a capsule c
	The Body of the capsule is initialized d
	′
	′

	passing a dummy completion event smc to
	The last part of the deﬁnition of Body h
	′
	′

	completion event smc to tell the control
	Deﬁnition 17 (Capsule handler) The deﬁni
	Figure
	An executable formal semantics for UML-R
	An executable formal semantics for UML-R
	out
	proc WiredEIPort(h, p, p ,ctrl ,smi ,smc
	in
	in

	in out
	→ WiredEIPort(h,p , p ,ctrl ,smi ,smc,pn
	|h?(“send”, e, d)→. p !(e, d).
	out

	in out
	→ WiredEIPort(h,p , p ,ctrl ,smi ,smc,pn
	→ UnwiredEIPort(h,ctrl, smi ,smc ,pname)
	in out
	|h?(“bind”, p , p)
	1 1
	out
	→ WiredEIPort(h, p, p ,ctrl ,smi ,smc,pn
	in

	1 1
	|h?“destroy” → done }
	Fig. 19 Wired end or internal ports.
	out in out
)

	proc WiredRPort(h, p, p , q , q = when {
	in
	in
	in

	in out in out
)

	→ WiredRPort(h, p ,p ,q ,q
	|q ?(e, d) →. p !(e, d).
	out
	out

	in out in out
)

	→ WiredRPort(h, p ,p ,q ,q |h?“unbind”
	in out
)

	→ UnwiredRPort(h,q ,q
	in out
	|h?(“bind”, p , p)
	1 1
	out in out
)

	→ WiredRPort(h, p, p , q , q
	in

	1 1
	|h?“destroy” → done }
	Fig. 20 Wired relay ports.
	– When a “bind” message arrives with new
	in out
	p, p, the process simply replaces the ol
	1 1
	with the new ones.
	–
	–
	–
	When a “destroy” message arrives, the pr

	–.
	–.
	When a message (e, d) arrives on the por
	in

	in
	is resent to the sub-capsule though q.
	out
	–. When a message arrives on port qfrom
	out
	p.
	–. Messages “bind”, “unbind” and “destro
	For an unwired port, the behaviour is:
	– When a “bind” message arrives with new
	in out
	p, p, the process switches to the wired
	1 1
	with these new channels as parameters.
	–. When a “destroy” message arrives, the
	Formally we deﬁne these processes below.
	Deﬁnition 18 (Ports) The deﬁnition DWire
	proc UnwiredEIPort(h, ctrl ,smi , smc, p
	in out
	h?(“bind”, p , p)
	1 1
	out
	→ WiredEIPort(h, p, p ,ctrl,smi ,smc,pna
	in

	1 1
	|h?“destroy” → done }

	Fig. 21 Unwired end or internal ports.
	out
	out
)

	proc UnwiredRPort(h, q, q = when {
	in

	in out
	h?(“bind”, p , p)
	1 1
	out in out
)

	→ WiredRPort(h, p, p , q , q
	in

	1 1
	|h?“destroy” → done }

	Fig. 22 Unwired relay ports.
	The request to send a message may come d
	Deﬁnition 19 (Service handler) The deﬁni
	The service handler receives requests in
	′

	5.2.5 Optional and plug-in parts
	5.2.5 Optional and plug-in parts
	Deﬁnition 20 (Optional Parts) The deﬁnit
	proc ServiceHandler(req,spps,saps)= when
	proc ServiceHandler(req,spps,saps)= when
	′
	′
	′

	=
	new l, l in (sap!(“bind”, l , l)) I spp!
	′
	′
	′

	Fig. 23 Service handler
	proc Opt(parenthook,hook,
	′′ ′
	Cm, p1, p 1, p2, p 2,..., ph, p ,ctrl)=
	h

	when { hook?(“incarnate”,pthread)→ new n
	′′ ′
	Cm(newhook, p1, p 1, p2, p 2,..., ph, p
	h

	′′ ′
	Cm(newhook, p1, p 1, p2, p 2,..., ph, p
	h

	′′ ′
	Cm, p1, p 1, p2, p 2,..., ph, p ,ctrl))
	h

	Fig. 24 Optional parts.
	In this deﬁnition, an optional part acts
	Deﬁnition 21 (Plug-in Parts) The followi
	proc Plugin(parenthook,hook,
	′′ ′
	Cm, p1, p 1, p2, p 2,..., ph, p h,plugs)
	when { hook?(“import”,targethook) → new
	′′ ′
	when {unboundports?(p¯1,p¯1,p¯2,p¯2,...,
	h h ′ ′
	Plug(pi ,pi ,¯pi ,¯pi ,ui)}
	i=1
	I Plugin(parenthook,hook,
	′′ ′
	Cm, p1, p 1, p2, p 2,..., ph, p h,(u1,..
	|hook?(“deport”,targethook) →. (u!.
	u∈plugs
	I Plugin(parenthook,hook,
	′′ ′
	Cm, p1, p 1, p2, p 2,..., ph, p h,()))
	|hook?“destroy” → u!}
	u∈plugs

	Fig. 25 Plugin parts.
	′ ′
	′ ′
	proc Plug(p1, p , p2, p ,unplug) =
	1
	2

	when {
	′ ′′
	p ?x → (p2 !x I Plug(p1 ,p,p2 ,p,unplug)
	1
	2

	1
	′ ′′
	|p ?x → (p1 !x I Plug(p1 ,p,p2 ,p,unplug
	1
	2

	2
	|unplug? → done }

	The deﬁnition DPlugin of the plug-in par
	The Plug process simply binds two port p
	′
	′

	ing as a message forwarder, connecting t
	1
	1
	′

	to the input p2 and the output p to the
	2
	2

	Plugin waits for import requests which c
	Example 6 Let us revisit the capsule fro
	Note that the order of ports in the deﬁn
	′

	2
	2

	the process deﬁned for capsule B. Simila
	′ ′ ′
	′ ′ ′
	proc CB(hook,p5 ,p,p6 ,p,p7 ,p,ctrl) = .
	5
	6
	7

	′′ ′
	proc CC(hook,p8 ,p,p9 ,p ctrl) = ...
	8

	9 13 13
	,p
	,p

	′ ′ ′
	proc CD(hook,p10 ,p,p11 ,p,p12 ,p,ctrl)
	10
	11
	12

	Note how the ports and links passed to t
	An executable formal semantics for UML-R
	An executable formal semantics for UML-R
	def
	TC [c1]θ =
	′ ′ ′
	proc CA(hook,p2 ,p2 ,p1 ,p1 ,p3 ,p3 ,ctr
	new smi , smc , smk ,. l2, l 2 ,. l1, l
	′
	′
	′
	′
	′

	hook1 ,hook2 ,hook3 in
	def {DStateMachine ;DCapsuleHand ler ;DB
	′
	new smc in
	′
	ctrl !(smi ,smc ,“sys”,“init”,null) → wh
	′
	Body(smc ,true)} else Body(smc, false)
	where Body is
	′
	proc Body(smc ,async)=
	′
	WiredRPort(h1 ,p1 ,p1 ,l1 ,l1) I WiredE
	′
	′

	′
	I UnwiredEIPort(h2 ,p2 ,p2 ,ctrl,smi ,sm
	′ ′
	I UnwiredRPort(h3 ,p3 ,p3 , l3 ,l3)
	′
	I CB(hook1 ,l1 ,l1 ,l4 ,l4 ,l5 ,l5 , θ(B
	′
	′

	′
	I Opt(hook,hook2 ,CC, l2 ,l2 ,l4 ,l4 ,ct
	′

	′
	I Plugin(hook,hook3 ,CD,l5 , l5 ,p3 , p3
	′

	′. ′
	I StateMachine(smi ,smc ,smk ,p2 ,l2).
	′

	Fig. 26 Translation of capsule c1 from E
	between them, and parameter p6 receives
	The hook1 links CA’s capsule handler and
	D.
	The deﬁnition DCapsuleHandler of the cap
	proc CapsuleHandler(hooklist) =. when {.
	h∈hooklist I h1 !“destroy” I h2 !“destro
	′ ′ ′
	ports!(p2, p , p1, p , p3, p)
	2
	1

	3
	→ CapsuleHandler(hooklist) }

	5.2.6 Translating actions
	5.2.6 Translating actions
	5.2.6 Translating actions
	We now present the translation α for the
	def
	α[send e(d)to pi]c = hi !(“send”, e, d)
	def
	α[inform p in t]c = timer!(t, p)
	def
	α[registerspp pi on s]c = shr !(“registe
	def
	α[registersap pi on s]c = shr !(“registe
	def

	α[deregisterspp pi on s]c = shr !(“dereg
	def
	def

	α[deregistersap pi on s]c = shr !(“dereg
	def
	def
	α[incarnate bj on L]c = hookj !(“incarna
	def
	α[destroy bj]c = hookj !“destroy”
	def
	α[import mk in bj]c = hookj !(“import”,
	def
	α[deport mk from bj]c = hookj !(“deport
	def
	α[let x = E in C]c = def {var x = E}in α
	def
	α[x := E]c = x := E
	def

	α[if E then C1 else C2]c = if Ethen α[C1
	def
	def
	α[C1;C2]c = α[C1]c;α[C2]c

	Fig. 27 Mapping actions
	Deﬁnition 22 (Actions to processes) We d
	–.
	–.
	–.
	in the case of inform, the channel timer

	–.
	–.
	in the cases for send and inform as well

	–.
	–.
	in the case for incarnate, hookj is the

	–.
	–.
	in the cases for import and deport, hook

	The actions corresponding to local varia

	5.2.7 The timer
	5.2.7 The timer
	The timer process accepts requests to sc
	The timer process accepts requests to sc
	(t, p), it will schedule an event trigge

	Deﬁnition 23 (Timer) The deﬁnition DTime
	Deﬁnition 23 (Timer) The deﬁnition DTime
	proc Timer(timer) =
	when {timer?(time, port) →
	wait time → port!“timeout” →
	Timer(timer) }

	5.2.8 The full system
	5.2.8 The full system
	The meaning and behaviour of a UML-RT mo
	–.
	–.
	–.
	The UML-RT model (the top-level capsule,

	–.
	–.
	The maps from capsules to logical-thread

	The kiltera process simulates the entire
	Deﬁnition 24 (UML-RT conﬁguration) A UML
	–.
	–.
	–.
	U ∈ UMLRT, i.e., U = [c0, c1,..., cn]

	–.
	–.
	c0 ∈ CAP is U’s top-level capsule term,

	–.
	–.
	NL ⊆ Nlthr is a set of logical-thread na

	–.
	–.
	NP ⊆ Npthr is a set of physical-thread n

	–.
	–.
	θL : NC → NL is a capsule-to-logical-thr

	def
	ment where NC = {name(c) |c ∈ U} is the
	–. and θP : NL → NP is a logical-to-phys
	We call UMLRTC the set of all possible U
	Now we can provide the translation of a

	Deﬁnition 25 (Translation of a full conﬁ
	Deﬁnition 25 (Translation of a full conﬁ
	Given a UML-RT conﬁguration M = (U, NL,
	def
	def
	M[M] =. new sink, shr , timer in. def {.
	Dc; Dc; Dc; · · · ; Dc;. DControl ler ;
	0
	1
	2
	m

	}in new tophook, T1, T2,..., Tn in (Cm0
	n
	I Controller(Ti))
	i=1
	def

	where m0 = name(c0) is the top-capsule’s
	def
	def

	Dc= TC [ci]θ
	i

	is the translation of capsule ci (see De
	Example 7 Let us ﬁnish by revisiting Exa
	M0 = ({c0, c1, c2},{L0, L1},{T0, T1}, {A
	and the conﬁguration with capsule C mapp
	M1 = ({c0, c1, c2},{L0, L1},{T0, T1}, {A
	An executable formal semantics for UML-R
	An executable formal semantics for UML-R
	def
	M[Mi] =
	new sink , shr , timer in. def {.
	Dc0 ;Dc1 ;Dc2 ;. DControl ler ;DServiceH
	}.in. new tophook, T0, T1 in.
	(CA(tophook,T0) I ServiceHandler(shr ,e
	Fig. 28 Generated πklt model for Mi (Exa
	In both cases C is associated with logic
	′
	will be CC(newhook,p4 ,p,T0 ,false) wher
	4

	′
	second case it will be CC(newhook,p4 ,p,
	4

	6 Related work
	6 Related work
	6 Related work
	There have been many approaches proposed
	There have been many approaches proposed
	of certain kind of transition system, wh

	Other related work includes [9] where a
	The book UML 2 Semantics and Application
	A number of papers have presented formal
	In [16], only capsule diagrams are trans
	In [12], a translation to CSP is also pr
	The translation in [15] actually goes in
	In [7], and later in [1], a transformati
	A similar approach has been proposed in
	Z. This translation suﬀers from the same
	It should be noted that all existing app
	It should be noted that all existing app
	A very diﬀerent approach is presented in
	The work most closely related to our own
	In [61] a formal semantics for a sub-set
	In [5, 4] a semantics for UML-RT is prop
	The work in [31] is much more elaborate
	The work in [31] is much more elaborate
	so the modeller must manually represent

	Finally we cite our previous work [10] w

	7 Concluding remarks
	7 Concluding remarks
	We have proposed a formal syntax and sem
	In addition to these contributions, it s
	Semantic variation points are an issue w
	An executable formal semantics for UML-R
	An executable formal semantics for UML-R

	Table
	TR
	Features
	[61]
	[31]
	[5, 4]
	Ours

	Underlying semantics
	Underlying semantics
	LTS
	AsmL
	π-calculus
	πklt -calculus

	Semantics deﬁnition
	Semantics deﬁnition
	SOS
	Hard coded
	By example
	By translation

	Executable
	Executable
	No
	Yes
	No
	Yes

	State Machines
	State Machines
	Hierarchy
	Yes
	No
	No
	Yes

	TR
	Group transitions
	Yes
	No
	No
	Yes

	TR
	Deep history
	Yes
	No
	No
	Yes

	TR
	Enabled transition selection
	Yes
	No
	No
	Yes

	Action language
	Action language
	No
	Subset
	Subset
	Subset

	Timer service
	Timer service
	No
	No
	No
	Yes

	Capsules
	Capsules
	Fixed capsules
	Yes
	Yes
	Yes
	Yes

	TR
	Optional capsules
	No
	Yes
	No
	Yes

	TR
	Plugin capsules
	No
	Yes
	No
	Yes

	TR
	Attributes
	No
	Yes
	No
	Yes

	TR
	Services
	No
	No
	No
	Yes

	TR
	Dynamic wiring
	No
	Yes
	No
	Yes

	TR
	Capsule-thread assignment
	No
	Yes
	No
	Yes

	TR
	Multiple controllers
	No
	Yes
	No
	Yes

	Table 1 Comparison of formal semantics f
	Table 1 Comparison of formal semantics f
	tion of state machines themselves can be
	One aspect that we did not touch was the
	We have proposed a semantics of UML-RT b
	We have proposed a semantics of UML-RT b
	tically meaningful, as is the case with

	Artifacts Our kiltera simulator prototyp
	http://www.kiltera.org
	http://www.cs.colostate.edu/remodd/v1

	Acknowledgements We are indebted to Bran
	or “implementation-speciﬁc” but turn out

	References
	References
	References
	1.
	1.
	1.
	K. Benghazi Akhlaki, M.I. Capel Tuñón, J

	2.
	2.
	J. A. Bergstra and J. W. Klop. Process a

	3.
	3.
	A. Bertolino, G. De Angelis, C. Bartolin

	4.
	4.
	J. de M. Bezerra and C. M. Hirata. A Sem

	5.
	5.
	J. de M. Bezerra and C. M. Hirata. A pol

	6.
	6.
	G. Boudol. Asynchrony and the π-calculus

	7.
	7.
	M. I. Capel, L. E. Mendoza, K. B. Akhlak

	8.
	8.
	S. M. Cho, H-H. Kim, S.D. Cha, and D-H.

	9.
	9.
	W. Damm, B. Josko, A. Pnueli, and A. Vot

	10.
	10.
	J. Dingel, E. Paen, E. Posse, R. Rahman,

	11.
	11.
	B. P. Douglass. Real-Time UML. In Formal

	12.
	12.
	G. Engels, R. Heckel, J. M. Küster, and

	13.
	13.
	R. Eshuis and R. Wieringa. A Formal Sema

	14.
	14.
	H. Fecher, M. Kyas, W-P. De Roever, and

	15.
	15.
	P. Ferreira, A. Sampaio, and A. Mota. Vi

	16.
	16.
	C. Fischer, E.-R. Olderog, and H. Wehrhe

	17.
	17.
	D. Garlan, R. T. Monroe, and D. Wile. Ac

	Component-Based Systems, chapter 3, page

	18.
	18.
	18.
	R. Grosu, M. Broy, B. Selic, and G. Stef

	19.
	19.
	C. A. R. Hoare. Communicating Sequential

	20.
	20.
	K. Honda and M. Tokoro. An object calcul

	21.
	21.
	IBM. General Description Language. IBM,

	22.
	22.
	22.
	IBM. IBM Rational Rose Technical Develop

	7.0. IBM, 2010. / awdtools/developer/tec
	7.0. IBM, 2010. / awdtools/developer/tec
	http://www-01.ibm.com/software

	23.
	23.
	IBM. IBM Rational Software Architect, Re
	http://publib.boulder.ibm

	R
	R

	24.
	24.
	24.
	IEEE Computer Society. IEEE Standard Ver
	Ł
	TM

	25.
	25.
	IEEE Computer Society. IEEE Standard VHD
	TM

	26.
	26.
	IEEE Computer Society. IEEE Standard for
	TM

	27.
	27.
	27.
	IEEE Computer Society. IEEE Standard for

	– Uniﬁed Hardware Design, Speciﬁcation,
	– Uniﬁed Hardware Design, Speciﬁcation,
	TM

	28.
	28.
	International Telecommunications Union.

	29.
	29.
	D. R. Jeﬀerson. Virtual Time. ACM-TOPLAS

	30.
	30.
	K. Lano and D. Clark. UML 2 Semantics an

	31.
	31.
	S. Leue, A. Stefanescu, and W. Wei. An A

	32.
	32.
	X. Li, Z. Liu, and H. Jifeng. A formal s

	33.
	33.
	33.
	J. Merseguer, S. Bernardi, J. Campos, an

	302. IEEE Computer Society Press, 2002.
	302. IEEE Computer Society Press, 2002.

	34.
	34.
	R. Milner. A Calculus of Communicating S

	35.
	35.
	R. Milner, J. Parrow, and D. Walker. A c

	36.
	36.
	M.O. Möller, A. David, and W. Yi. Veriﬁc

	37.
	37.
	R. Mrowka and T. Szmuc. UML Statecharts

	An executable formal semantics for UML-R
	An executable formal semantics for UML-R
	38.
	38.
	38.
	D. Muthiayen. Real-time reactive system

	39.
	39.
	M. Y. Ng and M. Butler. Towards Formaliz

	40.
	40.
	Object Management Group. UML Proﬁle For
	http://www.omg.org/spec/SPTP

	41.
	41.
	Object Management Group. UML Proﬁle For
	http://www.omg.org/spec/MARTE

	42.
	42.
	Object Management Group. UML Superstruct
	cation v2.4.1. http://www.omg.org/spec/U

	43.
	43.
	Object Management Group. OMG Sys­tems Mo
	TM
	http://www.omg.org/spec/SysML/1.3

	44.
	44.
	Object Management Group. UML Superstruct
	http://www.omg.org/spec/UML/2.5

	45.
	45.
	I. Paltor. The Semantics of UML State Ma

	46.
	46.
	E. Posse. Model ling and Simulation of d

	47.
	47.
	E. Posse. Areal-time extension to the π-
	http://www.cs.queensu.ca

	48.
	48.
	E. Posse. The πklt -calculus: formal deﬁ
	http://www.cs.queensu.ca

	49.
	49.
	E. Posse and J. Dingel. kiltera: a langu

	50.
	50.
	E. Posse and J. Dingel. Theory and imple

	51.
	51.
	E. Posse and H. Vangheluwe. kiltera: A s

	52.
	52.
	R. Ramos, A. Sampaio, and A. Mota. A sem

	53.
	53.
	SAE International. Architecture Analysis

	54.
	54.
	B. Selic. Using UML for modeling complex

	55.
	55.
	B. Selic. Personal Communication, 1 Febr

	56.
	56.
	B. Selic, G. Gullekson, and P. T. Ward.

	57.
	57.
	B. Selic and J. Rumbaugh. Using UML for

	58.
	58.
	S. Shankar and S. Asa. Formal semantics

	59.
	59.
	59.
	H. Störrle and J. H. Hausmann. Towards a

	60.
	60.
	M. von der Beeck. A structured operation

	61.
	61.
	M. von der Beeck. A formal semantics of

	62.
	62.
	W. L. Yeung, K R.P.H. Leung, J. Wang, an

	63.
	63.
	B. P. Zeigler, H. Praehofer, and T. G. K

	64.
	64.
	B. P. Zeigler, H. Praehofer, and T. G. K

	65.
	65.
	T. Zhang, S. Huang, and H. Huang. An Ope

	Semantic Variation Points
	1.
	1.
	1.
	Alternative semantics could include givi

	2.
	2.
	In UML 2, alternative semantics include

	3.
	3.
	The action language is a major semantic

	4.
	4.
	This may be treated in a diﬀerent way, a

	5.
	5.
	The forwarding of events down to the act

	6.
	6.
	There are many possible implementations

	7.
	7.
	Alternatively this could be changed to i

	8.
	8.
	In this deﬁnition we allow only binary c

	1. To support n-ary multiplicity the deﬁ
	1. To support n-ary multiplicity the deﬁ

