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1.1 Model-Driven Development of RTE systems 

The development of RTE systems consists of, broadly 

speaking, several major activities: design and modelling, 

reasoning and analysis, and implementation and de-

ployment. In design and modelling, engineers rely on 
languages and formalisms that provide adequate facil-

ities to describe the systems to build, at the desired 

level of abstraction. Reasoning and analysis reduce risk 
by providing assurance that the system will meet its 

requirements. Implementation and deployment realize 

the system on specific platforms. These activities may 
be supported by automated tools. For instance, imple-

mentation may be aided by automatic code generation, 

and analysis by automatic model (formal) verification. 

Model-Driven Development (MDD) is an approach 

to software development where models of a system and 
its components are the main artifact of the develop-

ment process. In the MDD approach, models provide 

the basis for the activities outlined above. The engineer 
designs models, from which an implementation may be 

automatically generated. The MDD approach also fa-

cilitates analysis, as models, by definition, are abstrac-
tions of a system, and therefore likely to be simpler and 

easier to analyze than the final product. 

An influential modelling language for the design of 

RTE systems which targets event-driven, soft real-time 

systems is the Real-Time Object Oriented Modeling 
language (ROOM) [56]. This language was later made 

into a UML profile called “UML-RT”, introduced in [57, 

54]. UML-RT is an industrial-strength language which 
has enjoyed considerable success with hundreds of large-

scale industrial projects and with users in a variety of 

sectors such as automotive, avionics and telecommuni-
cations, for which ROOM was originally designed. It 

has been supported by a number of commercial tools, 

including ObjectTime, Rational Rose RT, IBM’s Ra-

tional Rose Technical Developer toolkit [22], and IBM 
Rational Software Architect Real Time Edition (IBM 

RSA-RTE) [23]. 

In order to be able to analyze models in a language, 

the language must have a well-defined semantics, other-
wise, the meaning of models would be ambiguous, and 

the analysis results would be ad hoc, applicable only 

to, for example, specific models or specific implemen-
tations. Unfortunately, the semantics of UML-RT has 

only been defined informally. There have been some at-

tempts at formalizing the semantics of UML-RT (e.g., 

[61, 5, 4, 7, 16, 31]), but all of these attempts consider 
only limited subsets of the language, thus limiting the 

potential for analysis. 

Our goal is to provide a comprehensive formal se-

mantics for UML-RT, which can not only serve as a 

reference semantics but also supports both the execu-

tion and the analysis of models. 

1.2 UML-based modelling of RTE systems 

UML-RT, along with SDL [28] and Acme [17], heavily 

influenced the development of UML 2 [42, 44]. 

In addition to UML-RT, other UML profiles have 
been developed to account for timeliness and platform 

dependent issues, including the UML Schedulability, 

Performance and Time profile or UML SPTP [40] and 
its successor, the UML profile for Modeling and Analy-

sis of Real-Time and Embedded Systems (MARTE) [41], 

both of which are OMG standards. Other unrelated 
UML profiles which are not OMG standards have been 

proposed as well, such as “Real-time UML”, a.k.a. RT-

UML [11], and variants such as those in [3] and [38]. 

While there is some overlapping between UML-RT 

and UML SPTP and MARTE, there are significant dif-

ferences. At the top-level, MARTE consists of three 
packages: the core package, the design modelling pack-

age and the analysis modelling package. The core pack-

age provides constructs to describe non-functional prop-

erties, time, generic resource modelling and allocation 
modelling. The design modelling package provides fa-

cilities for generic components, high-level application 

modelling and detailed resource modelling. The anal-
ysis package provides facilities for generic quantitative 

analysis modelling, schedulability analysis, and perfor-

mance analysis. By contrast, UML-RT focuses on sys-
tem architecture based on the notion of capsules (called 

actors in ROOM), ports, connectors, services and cap-

sule structure diagrams, and event-driven behaviour de-

scribed by state machines. MARTE’s constructs and 
models are much more detailed than UML-RT’s con-

structs and models. For instance, in MARTE, the basic 

unit of concurrent execution is called the RtUnit, de-
fined in the HLAM package. This corresponds roughly 

to a capsule in UML-RT, but an RtUnit specifies many 

details such as memory size, message pool policies and 
waiting times, whereas a UML-RT capsule abstracts 

such details. 

UML SPTP, MARTE and other similar profiles tar-
get the time-driven and hard real-time side of the spec-

trum of real-time systems, where the primary concern 

is timeliness, scheduling and platform dependent mat-
ters. According to Bran Selic, one of the main authors 

of ROOM, UML-RT and UML SPTP, 

“MARTE deals with completely different aspects 
than UML-RT. MARTE addresses general is-

sues related to real-time systems as they are 

usually implemented. Thus, it provides facilities 
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for modeling time, resources, real-time operating 

systems (with their complex schedulers, light-
weight threading systems, mutual exclusion fa-

cilities, etc.). It also provides support for model-

ing platforms of all kinds (including hardware), 
as well as facilities for doing real-time analyses, 

such as schedulability and queuing network anal-

ysis. ROOM/UML-RT, on the other hand, is a 
level of abstraction above that and does not deal 

with any of that.” [55] 

Hence, while MARTE is an appropriate formalism for 

the design and analysis of time-driven, resource inten-

sive, and platform dependent, hard real-time systems, 
UML-RT may be better suited for soft-real time sys-

tems where such level of detail is a secondary concern. 

Why should we be concerned with defining a seman-

tics for UML-RT considering that the MARTE profile 
is available? We believe there are several important 

reasons: 1) UML-RT is in active industrial use, but 

there are no UML-RT development tools which pro-

vide formal analysis; a formal semantics would provide 
the basis for such analysis capabilities. 2) While the 

MARTE profile targets RTE systems, as argued above, 

UML-RT deals with related but different concerns and 
level of abstraction. 3) An executable formal semantics 

can also provide an analysis tool for simulation and 

validation of implementations. 4) Given that UML-RT 
played a central role in the definition of UML 2 and is 

fully aligned with it, a UML-RT formal semantics can 

help clarifying issues regarding the formal semantics of 

UML 2. 5) UML-RT has much in common with several 
architecture description languages such as AADL [53] 

and SysML [43], as well as a number of hardware de-

scription languages such as VHDL [25], Verilog [24], 
SystemVerilog [27], SystemC [26] and GDL [21], and a 

formal semantics for UML-RT can also suggest formal 

semantics for these languages, or can help elucidating 
their differences. 6) Formal semantics for foundational 

languages and calculi abound, but formal semantics for 

large, complex, industrial-strength languages are few. 

Our proposal can serve as a showcase for what such 
semantics can look like. 

1.3 UML-RT semantics by translation 

There are many approaches to formal semantics, such 

as denotational, operational, axiomatic, etc. Many such 

approaches do not yield an executable semantics. Even 

with operational semantics, which often takes the form 
of defining some form of transition system, considerable 

effort is required to obtain an executable artifact. The 

alternative is to define semantics by translating models 

to a language that already has a well-defined executable 

formal semantics. 
In this paper we follow this approach. There are 

many possible choices for the target language such as 

CSP or the π-calculus, and we find such examples in 
the literature (see Section 6). However, these alterna-

tives face many difficulties when formalizing a large, 

complex, high-level language such as UML-RT. Foun-
dational calculi provide a solid basis for a formal seman-

tics, but are limited in that the abstraction gap is often 

too wide. For example, these low-level calculi often lack 

higher level constructs to define complex data-types. 
Without such facilities in place, the task of defining a 

comprehensive formal semantics of a language such as 

UML-RT is almost unsurmountable. Hence we need a 
target language which is both executable and formal, 

as well as having higher level constructs to make the 

translation practical. 
The target language we have chosen is called kil-

tera [50, 49, 46, 51]. The main reasons for this choice are: 

1. kiltera’s semantic concepts have many similarities 
with those of UML-RT, providing a natural repre-

sentation of UML-RT concepts, 

2. kiltera has a well-defined formal semantics based on 
a real-time extension of the π-calculus [35], a process 

algebra for modelling and reasoning about concur-

rent, mobile systems, thus resting on a rich theory 
which provides a solid foundation for analysis, and 

3. kiltera is a real high-level language with features to 

ease development and with a working implemen-

tation thus, providing the capability of executing 
models. 

The goal of this article is to formally specify a trans-
lation from UML-RT models into kiltera. More con-

cretely, we define a map M[·] : UMLRTC → KLT 

from UML-RT models to kiltera process terms, where 
UMLRTC is the set of valid UML-RT models and 

KLT is the set of valid kiltera terms. 

UML-RT models describe both structural and be-

havioural aspects of a system. In the structural view, a 
model consists of a collection of interconnected compo-

nents called capsules, which may have a behaviour and 

may themselves contain sub-capsules. The behaviour of 
capsules is specified by state machines. In this article 

we break down the translation into the behavioural and 

the structural parts. This is, we define a mapping for 
state machines and a mapping for capsule diagrams. 

Due to the modular nature of both UML-RT and kil-

tera, the two mappings are largely independent, there-

fore we only need to invoke the state machine trans-
lation without reference to its internals, in the capsule 

diagram mapping. This, in turn, allows for experimen-

tation with alternative semantics, as it opens up the 
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possibility of replacing state machines with some other 

formalism to specify behaviour. 

1.4 Shortcomings of existing UML-RT semantics 

As we mentioned above, there have been some attempts 

at formalizing the semantics of UML-RT (e.g., [61, 5, 4, 

7, 16, 31], and also see Section 6). 

The existing approaches to formalizing UML-RT fall 

short not only because of their limited scope and lack 

of support for syntactic features, but also because they 
provide fundamentally incomplete semantics. Those ap-

proaches will not include behaviours that are possible, 

and in some cases necessary, of UML-RT models. As a 
consequence, analysis of system behaviour may be in-

complete or even erroneous. For example, as we will 

illustrate later, existing semantics are unable to distin-

guish between certain fair and unfair behaviours. The 
reason for this situation is that the existing approaches 

rely on incorrect assumptions. 

Two of these fundamental aspects of the semantics 

of UML-RT which, with the exception of [31], have been 

ignored by every other attempt to formalize the lan-
guage are the relation between capsules and threads, 

and the mechanism for communication between cap-

sules. Apart from [31], all previous approaches make 
the incorrect assumptions that each capsule is executed 

as an independent (concurrent) thread, and that com-

munication between them is direct, thus relying on the 

communication mechanism of the formalism or language 
used to describe the semantics (e.g., CSP or LOTOS), 

or assuming specific message-passing policies (e.g., syn-

chronous communication). But this is not the case: cap-
sules can be assigned to the same thread, sharing the 

same event queue, and the basic mechanism for message 

delivery is asynchronous and handled by a controller 
process. This however, is not a mere implementation 

issue or optimization issue, for it is semantically mean-

ingful: different thread assignments, and different deliv-

ery mechanisms can yield different behaviours, for the 
same UML-RT model. Hence, by ignoring these aspects, 

other approaches provide an incorrect semantics which 

can result in incorrect analysis of system behaviour. In 
this paper we address this specific issue by providing ex-

plicitly in our proposed semantics, the controller’s role, 

and the assignment of capsules to threads. 

As stated above, our goal is to obtain a compre-

hensive account of the UML-RT semantics. While this 

article fails to cover all elements of UML-RT in detail, 
we believe it goes well beyond previous attempts to do 

so, and given its extensible nature, we are increasing 

the coverage of UML-RT’s many features. 

1.5 Correctness and validation 

One of the main questions regarding the definition of a 
formal semantics for a language is validation. How do 

we know that our semantics is correct? Since the lan-

guage we are formalizing lacks a formal semantics, we 

cannot prove mathematically the correctness of our se-
mantics. How, then, can we be assured of our semantics’ 

validity? We have addressed this problem by: 1) care-

ful study of existing documentation on UML-RT and 
ROOM, 2) experimentation with the de facto reference 

implementations of UML-RT, specifically with Rational 

RoseRT and IBM’s RSA-RTE, 3) inspection of code 
generated by these tools and their run-time systems, 

4) consulting with Bran Selic, one of the lead designers 

of ROOM and UML-RT, and 5) developing a full imple-

mentation of the mapping using IBM’s RSA transfor-
mation tool. The implementation produces code which 

can be executed with kiltera’s simulator, allowing for 

validation against the output produced by RoseRT and 
RSA RTE. Having an actual implementation of the se-

mantics also differentiates our work from previous at-

tempts. 

Just like UML, UML-RT has several semantic varia-

tion points, where, intentionally or unintentionally, the 
precise semantics is unspecified. Our definition is in-

tended to be as close as possible to UML-RT as im-

plemented by IBM’s RSA-RTE. Nevertheless, some as-
pects can be considered to be implementation-specific 

and not mandatory for UML-RT models. In this paper 

we will mark such semantic variation points as SVP # 

and the alternatives are proposed in the appendix. 

Paper organization This article is organized as follows: 

In Section 2 we present background on UML-RT and kil-

tera. In Section 3 we present a motivating example that 

shows how thread allocation is essential to the seman-

tics of UML-RT. Section 4 deals with state machines. 
In Subsection 4.1 we present a formal syntax for state 

machines, and the translation into kiltera is presented 

in Subsection 4.2. Section 5 addresses capsule diagrams. 
In Subsection 5.1 we present a formal syntax for capsule 

diagrams, and their translation is presented in Subsec-

tion 5.2. In Section 6 we discuss some related work and 

finally Section 7 concludes. 

In the presentation of the formal translation of both 
state machines (Subsection 4.2) and capsule diagrams 

(Subsection 5.2), for each formal definition we proceed 

by first informally providing an overview of the concept 

being defined, and then we present the actual formal 
definition followed by a detailed explanation of the def-

inition, and in the most important cases, an illustrative 

example. 
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2 Background 

2.1 UML-RT 

In this section we describe informally the main con-
cepts of UML-RT, in particular we describe the notions 

of capsules and structure diagrams in Subsection 2.1.1 

and State Machines in Subsection 2.1.2. While UML-
RT covers other types of UML diagrams, we focus only 

on these two, as they are the most important for UML-

RT modelling. For more information on UML-RT we 
refer the reader to [54, 57, 56]. The official account of 

the UML can be found in [42, 44]. 

2.1.1 Structure diagrams: capsules 

UML-RT allows modelling a system’s structure through 

structure diagrams, also called capsule diagrams. Fig-

ure 1 shows a typical UML-RT capsule diagram. 

A capsule, as its name suggests, is a highly encap-
sulated active entity, which may have some behaviour 

specified via a state machine (see Subsection 2.1.2). 

Capsules may execute concurrently with other capsules 

and communicate with them only by sending and re-
ceiving signals through ports (p1, p2, ..., p13 in Figure 1). 

Ports in different capsules are linked by connectors (la-

belled l1, l2, ..., l5 in Figure 1). A connector links only 
two ports. Each port has a type specified with a proto-

col, which identifies signals that can be sent or received 

via the port. Communication may be asynchronous or 
synchronous. Capsules are organized hierarchically and 

each capsule may contain a number of instances of other 

capsules, called parts. External ports of these parts are 

connected (wired) statically or can be connected at run-
time. Connected ports must implement the same proto-

col and be “compatible”, i.e., the output (send) signals 

of one port must be the input (receive) signals of the 
other port and vice versa. In this case, one of the ports 

is said to be the base port and the other the conjugate 

port, e.g., p6 and p9 in Figure 1. A port marked with ∼ 
implements the conjugated version of a protocol, with 

the input and output signals inverted. 

The set of ports of a capsule defines its interface. 

There are three kinds of ports: external end ports, ex-

ternal relay ports and internal ports. External end ports 
are ports linked to external capsules, and used directly 

by the capsule’s state machine (if it has one) to either 

send or receive messages (e.g., port p2 in Figure 1). Ex-

ternal relay ports are ports directly connected to some 
sub-capsule (thus relay messages between some exter-

nal capsule and some sub-capsule, e.g., ports p1 and p3 

in Figure 1). Internal or protected ports, are used to 

communicate between the capsule’s state machine and 

some sub-capsule (e.g., port p4 in Figure 1). 

Some ports such as p12 and p13 may be declared as 

unwired, but they may become connected or wired at 
run-time by explicit actions on the part of the capsules 

that own these ports. This is achieved when one of the 

ports is registered at runtime by its capsule as a service 

provision point or SPP for short, under a unique service 
name, and the other port is registered by its capsule as 

a service access point or SAP for short, under the same 

unique service name. When both ports are registered 
(which may be done asynchronously), a new connector 

links them. It is also possible to deregister ports and 

reregistering them, thus allowing a dynamic reconfig-
uration of the connections among capsules. SPPs and 

SAPs were not originally intended by the designers of 

UML-RT to be used for dynamic wiring between peer 

capsules [55] such as C and D in Figure 1. SPPs and 
SAPs were intended to be used as a mechanism for 

capsules to access services in the underlying layer or 

platform, in a multi-layer architecture. Nevertheless the 
language does not prohibit the dynamic wiring within 

the same layer, among peer capsules. Furthermore it is 

useful for modelling certain kinds of structural changes. 
For this reason, our mapping considers this operation 

as any other in the language. 

A capsule is a class (in the OO sense) of compo-
nents with ports. A capsule may have parts, which are 

instances of sub-capsules (and are attributes of the cap-

sule’s instance). A sub-capsule part may have one of 
three possible roles: fixed, optional or plug-in. A fixed 

sub-capsule is created (resp. destroyed) when its con-

taining capsule is created (resp. destroyed) and is per-

manently attached to its containing capsule. An op-
tional sub-capsule may be incarnated (i.e., created) or 

destroyed at a different time. Plug-in capsule roles are 

“placeholders” for capsules which can be filled and re-
moved dynamically, and can be shared between differ-

ent capsules. In Figure 1, B is a fixed capsule, C is an 

optional role, indicated by its light gray colour, and D 
is a plug-in role, indicated by its blue colour. 

Each capsule is assigned to a logical thread of control 

which in turn is assigned to some physical thread. A log-
ical thread represents a conceptual concurrent thread of 

execution, while the physical thread is the actual run-

time processing thread used by the underlying platform. 
That is, several capsules/logical threads can share the 

same real system thread. Each physical thread has a 

controller. A controller drives the execution of all cap-

sules (logical threads) within a single physical thread. 
It contains the event pool for all events whose intended 

receiver is a capsule associated to the physical thread. 

It enforces run-to-completion semantics, this is, that 
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nected segments form a transition chain, which is 

executed as one step. 
3. In UML-RT entry points are by default connected 

to deep history pseudo-states. Suppose a composite 

state n is the target of a transition and that the 
associated entry point is not linked to a sub-state 

of n. If n has not been previously visited and there 

is an initial transition pointing to the default state, 
then the initial transition is followed and the de-

fault state entered. If, however, n has been visited 

previously, then the last sub-state visited in n is en-

tered. If it has not been visited and there is no initial 
transition, no sub-state is entered and the state ma-

chine remain “at the border” of n. This policy is 

applied recursively. Hence, entering a state can be 
interpreted as “resuming computation where it pre-

viously left off”. In standard UML state machines, 

on the other hand, it is possible not to connect entry 
points to deep history pseudo-states, but to “shal-

low” history pseudo states, or to the boundary of 

the state, in which case an initial state is always en-

tered, if an entry point is not explicitly connected 
to a sub-state. Since all states have deep-history se-

mantics, we avoid the common notation of depicting 

deep history pseudo-states explicitly, to avoid clut-
ter in the diagrams. 

4. Actions may be related to concepts specific to UML-

RT such as capsule operations. In particular an ac-
tion may send an event through a port, create or de-

stroy an optional capsule, import or deport a plug-in 

capsule, connect or disconnect unbound ports, and 

perform normal operations on objects. 
5. UML-RT supports timing requirements using a spe-

cial timing protocol and internal ports which im-

plement this protocol. A capsule, which contains 
a port that implements the timing protocol, can 

schedule an event by sending a signal through this 

port. Scheduling can be a part of the entry or exit 
behavior of a state or as an action on a transition. 

After a specified amount of time, the capsule will 

receive a timeout event from the port which it can 

process as any other signal. 

2.1.3 Time 

In UML-RT, time is assumed to progress according to 
an external timing service (usually provided by the un-

derlying platform). The timing service adheres to a tim-

ing protocol with a distinguished timeout signal and a 

period or a deadline. The timing service is accessible 
by UML-RT models through a standard port with the 

corresponding timing protocol, so time signals can be 

treated as any other signal. Since the timing service 

is external, it can proceed in any way that maintains 

time consistency, i.e., if two timers with timeout sig-
nals tmo1 and tmo2 are set up at the same time t0 with 

timeouts t1 > t0 and t2 > t0 respectively, and such that 

t1 < t2, then the timing service must guarantee that 
signal tmo1 will be triggered before tmo2. Besides this 

requirement, the semantics of UML-RT does not make 

any assumptions about the rate of progress of these 
clocks. Furthermore, since UML-RT is not concerned 

with performance or scheduling, it makes no assump-

tions about the duration of specific actions. We assume 

that individual actions in the underlying action lan-
guage take a negligible amount of time with respect to 

the minimum time unit of the time services used. Fur-

thermore, other activities such as entering or exiting a 
state, or relaying a message on a relay port, also take a 

negligible amount of time. In the case of asynchronous 

communication between capsules, the amount of time 
between the sending of a message and its reception and 

consumption is undetermined. If a capsule is in a state 

listening to a normal port and a timeout port, and the 

environment sends the message before the timeout, the 
language does not guarantee that the message will be 

consumed before the timeout signal arrives. 

2.2 kiltera 

Our approach to formalize the semantics of UML-RT is 

to use a process calculus or process algebra to describe 

the behaviour of a model. Process calculi or process al-
gebras are mathematical formalisms for modelling and 

reasoning about concurrent systems in which a broad 

set of algebraic, logic and set theoretic techniques can 
be used to analyze system behaviour. Some of the best 

known process calculi are CCS [34], CSP [19], ACP [2] 

and the π-calculus [35]. 
kiltera [50, 49, 46, 51]. is a language for modelling and 

simulating concurrent, interacting, real-time processes 

with support for mobility and distributed systems. It is 

directly based on the πklt calculus [48] which is a real-
time extension of the asynchronous π calculus [35, 20, 

6], one of the best known variants of the π-calculus. 

Just as in the π-calculus, the central notions are 
those of process and channel. A πklt term represents a 

process or set of processes running concurrently. Pro-

cesses interact by asynchronous message passing over 
channels. In kiltera we identify events and channels: 

triggering an event start is the same as sending a mes-

sage over a channel named start, and listening to an 

event is the same as waiting for input on a channel. This 
event-oriented terminology is due to the fact that kil-

tera was originally designed in the context of modelling 

and simulation of discrete-event systems as treated in 
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[64, 63]. Just like the π calculus, kiltera supports chan-

nel mobility: the ability to send channels (i.e., events) 
as part of messages. This allows the topology of the 

network to change dynamically. 

In addition to communication primitives, πklt ex-
tends the asynchronous π-calculus by introducing tim-

ing constructs (e.g., delaying the execution of a pro-

cess, recording waiting times, and timeouts), primitive 

data values and data structures, pattern matching on 
input, nested process and function definitions with lex-

ical scoping. These characteristics make it a high-level 

language, which facilitates our description of the seman-
tics of UML-RT, while still having a formal semantics. 

The formal semantics of πklt is given in terms of 

a Plotkin-style structural operational semantics over 

timed-labelled transition systems. The meta theory of 
πklt extends that of the π calculus by a notion of time-

bounded equivalence and a notion of timed composi-

tionality and an associated timed congruence which al-
low reasoning about timed processes. 

We have developed an implementation of the lan-

guage based on an abstract machine which has been 

proven sound with respect to πklt ’s operational seman-
tics. The core simulation algorithm consists of event 

scheduling as known in discrete-event simulation [64]. 

The interpreter supports two modes: real-time and sim-
ulated time. In real-time mode, the wall-clock timing 

of events reflects delays and timeouts specified in the 

model, and thus the interpreter actually pauses during 

idle periods. In simulated time, execution proceeds ac-
cording to a logical clock, and events are processed as 

soon as they are available, thus avoiding idling when 

the model specifies events far apart in time. Conse-
quently, execution in simulated time mode is more effi-

cient, while execution in real-time mode is more reflec-

tive of the timing constraints. Our interpreter is a pro-
totype implemented in Python and does not use a real-

time operating system; thus, in real-time mode, timing 

constraints are only approximated. 

The full language also includes some constructs for 
distributed computing, allowing the execution of pro-

cesses in logical sites. The simulator allows assigning kil-

tera sites to different physical machines, and distributed 
simulation is performed using a variation of the Time-

Warp algorithm [29]. We have used kiltera in the mod-

elling of complex systems such as automobile traffic 

simulation and cloud computing environments. kiltera 

has been used for teaching in graduate courses at McGill 

and Queen’s universities. Our kiltera simulator is avail-

able for download at http://www.kiltera.org. 

2.2.1 Syntax 

To formally define the mapping we use the core of kil-

tera, the πklt calculus, which has a mathematical nota-

tion suitable to describe the mapping. 

Definition 1 (Syntax) The set of all πklt process 

terms, denoted KLT is defined by the BNF in Fig-

ure 3. The same BNF defines the set Expr of expres-

sions, ranged over by E, E ′ , ..., the set Patts of pat-

terns, ranged over by R, R ′ , ..., and the set Defs of 

definitions, ranged over by D, D ′ , .... We usually write 

a, b, c... for channel/event names, A, B, C, ... for process 
names, x, y, z, ... for variables. 

2.2.2 Informal semantics 

We now describe informally the language’s semantics. 
For a formal semantics of the language see [48]. For 

earlier versions of the semantics see [50, 47, 46]. 

–  Expressions E are either constants (null represents 

the null constant), variables (x), tuples of the form 

(E1, ..., Em) or function applications f(E1, ..., Em). 
Patterns R have the same syntax as expressions, ex-

cept that they do not include function applications. 

–  The term stop represents the stopped process: it 
has no actions. 

–  The process done represents successful termination. 

–  The process a!E is a trigger ; it triggers an event a 

with the value of E. Alternatively, we can say that 
it sends the value of E over a channel a. This is 

an asynchronous message sending, with no specific 

buffering policy mandated by the semantics. The 
expression E is optional: a! is shorthand for a!null. 

–  A process when {G1 → P1 | · · · | Gn → Pn} is a lis-

tener. Each Gi is a guard of the form ai ?Ri@yi 

where ai is an event/channel name, Ri is a pattern, 

and yi is an optional variable. This process listens to 

all channels (or events) ai, and when ai is triggered 

with a value V that matches the pattern Ri, the 
corresponding process Pi is executed with yi bound 

to the amount of time the listener waited, and the 

alternatives are discarded. Note that to enable an in-
put guard it is not enough for the channel to be trig-

gered: the message must match the guard’s pattern 

as well. Pattern-matching of inputs means that the 
input value must have the same “shape” as the pat-

tern, and if successful, the free names in the pattern 

are bound to the corresponding values of the input. 

For example, the value (3, true, 7) matches the pat-
tern (3, x, y) with the resulting binding {true/x, 7/y}. 

The scope of these bindings is the corresponding Pi. 

. The suffixes Ri and @yi are optional: a? → P is 
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P ::=  stop Stopped process 

| done Successful termination 

| a!E Trigger/Output 

| when {G1 → P1 | · · · | Gn → Pn} Listener/Input 

| new a1 , ..., an in P New/Hide 

| if E then P1 else P2 Conditional 

| wait E → P Delay 

| A(E1 , ..., En )  Instantiation/Call 

| def {D1; ...; Dn} in P Local definitions 

| P1 I P2 Parallel composition 

| P1; P2 Sequential composition 

| x := E Assignment 

G ::=  a?R@y  Listener/input guard 

D ::=  proc A(x1, ..., xn) = P Process definition 

| func f (x1, ..., xn) = E Function definition 

| var x = E Variable definition 

E ::=  null | r | true | false | “s”  | x 

| (E1, ..., Em) | f(E1, ..., Em) 

R ::=  null | r | true | false | “s”  | x 

| (R1, ..., Rm) 

Fig. 3 πklt syntax 

equivalent to a?x@y → P for some fresh names x is the entire term (so they can be invoked in P and 

and y. in other definitions). Each Di can be either a pro-
–  The process new a1 , ..., an in P hides the names ai cess definition proc A(x1, ..., xn) = P , a function 

from the environment, so that they are private to P . definition func f (x1, ..., xn) = E or a local variable 

Alternatively, new a1 , ..., an in P can be seen as the definition var x = E. 
creation of new names, i.e., , new events or channels, – The term x := E assigns the value of E to the local 

whose scope is P . variable x. 

–  The process wait E → P is a delay: it delays the – The process A(E1 , ..., En ) creates a new instance of 

execution of process P by an amount of time equal a process defined by proc A(x1, ..., xn) = P , defined 
to the value of the expression E. The value of E is in some enclosing scope, where the ports or param-

expected to be a non-negative real number. If the eters x1, ..., xn are substituted in the body P by the 

value of E is negative, wait E → P cannot perform values of expressions E1, ..., En, which may be chan-
any action. Similarly, terms with undefined values nel names. 

(e.g., , wait 1/0 → P ) or with incorrectly typed ex-

pressions (e.g., , wait true → P ) cause the process 2.2.3 Some examples and usage patterns 
to stop. Since the language is untyped we do not 

enforce these constraints statically. In order to give the reader some intuition about the se-
–  The process if E then P1 else P2 is a conditional mantics of πklt we present some representative examples 

with the standard meaning. if E then P is short- and common patterns.  
hand for if E then P else done.  

–  The process P1 I P2 is the parallel composition of P1 Interaction The process a! I when {a? → P} results in 
and P2. We also allow an indexed parallel composi- one interaction between the processes and then contin-
tion, written Pi to stand for P1 I P2 I · · · I Pn 

 

i∈I ues as done I P which is the same as just P .  
for some index set I = {1, 2, ..., n}.  

–  The term P1; P2 is the sequential composition of P1 Choice The term a! I when {a? → P |b? → Q} reduces 
and P2. to P , while b! I when {a? → P |b? → Q} reduces to Q. 

–  The term def {D1; ...; Dn} in P declares definitions If the environment of a listener triggers more than one 
Di and executes P . The scope of these definitions of the listener’s guards, the choice is non-deterministic: 
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a! I b! I when {a? → P |b? → Q} can reduce to either 

b! I P or a! I Q. 

Pattern matching For interaction to happen, data re-

ceived must match the expected pattern: the process 

a!“hi” I when {a?“hi” → P} reduces to P . On the other 
hand, a!“hi” I when {a?“hey” → P} does not result 

in an interaction because the data sent over a (“hi”) 

does not match the expected pattern (“hey”). Hence 
the two processes remain the same. If the pattern has 

variables, a successful communication results in sub-

stituting the corresponding variables by the received 

values: a!“hi” I when {a?x → P} results in P{“hi”/x}, 
this is, substituting every free occurrence of x in P by 

“hi”. The same holds for more complicated patterns: 

the term a!(“hi”, 6) I when {a?(“hi”, x) → P} results 
in P{6/x}. 

Local channels The new construct introduces new names 

and restricts their scope. For example, in the term a!1 I 
new a in (a!2 I when {a?x → P}) the a in a!1 is differ-
ent from the one in a!2. The whole term reduces to 

a!1 I P{2/x}. 

Barriers and joining It is common for a process to wait 
for several other processes before continuing. This can 

be achieved with nested listeners: in (wait 3 → a!) I 
b! I when {a? → when {b? → P}}, process P will begin 
only when both a and b have been triggered. This ex-

ample also shows that the triggers are persistent, this is, 

the trigger b! is not lost if no other process is listening to 

b, and remains available until some process is ready to 
accept it. So the whole process waits 3 time units and 

becomes a! I b! I when {a? → when {b? → P}} which 

then becomes b! I when {b? → P} which finally be-
comes P . This notion of nested listeners as barriers is 

so useful that we will write when {(a, b)? → P} as syn-

tactic sugar for when {a? → when {b? → P}}. The se-
quential composition operator is also useful for joining 

processes: in (P I Q); R process R will start only after 

both P and Q are done. 

Process definitions Process definitions allow us to en-
capsulate processes, giving them a specific interface and 

be reused in the scope of their definition. For example, 

def { proc P(x) = x!; proc C (y) = when {y? → Q} } 
in new a in (P(a) I C (a)) results in the same process 

as the term new a in (a! I when {a? → Q}). The param-

eters of a process definition can be thought of as its 

interface, its ports, so when we invoke the process defi-
nition we can visualize it as creating an instance of the 

process and “hooking up” channels to its ports; e.g., in 

P(a) we are instantiating P and hooking-up the local 

channel a to the new instance’s port x. Nevertheless, pa-

rameters are not required to be only channels or events, 
but they can be any value. This fact is used for example 

to keep track of additional state variables. 

Recursion The body of a process can refer to itself, or 

even to other processes in the same definition group (or 

any enclosing process definitions). Recursion is used by 

a process to keep itself alive, and possibly change its 
connections by invoking itself with different parame-

ters. For example consider the definition proc A(x, y) = 

when {x?z → (y! I A(z, y))}. Then, executing A(a, b) I 
a!c will result in when {a?z → (b! I A(z, b))} I a!c which 

will then reduce to b! I A(c, b). 

Lexical scoping This applies to names introduced with 
new, names introduced with def and pattern variables. 

This is, the occurrence of a name x always refers to 

the closest enclosing construct that declares it, e.g., in 
proc A(x, y, z) = when {x?y → new z in y!(x, z)}, in the 

innermost term y!(x, z), x refers to the first parame-

ter of A, y refers to the pattern in the listener’s guard 
x?y (not A’s second parameter) and z refers to the one 

introduced by new z (and not to A’s third parameter). 

Channel mobility Channels or events are first-class ob-
jects, so they can be included in messages: reducing 

a!b I when {a?x → x!c} results in b!c. This is allowed 

even for private or local names. For example the term 
when {a?x → x!c} I new b in (a!b I P ) reduces to the 

term new b in (b!c I P ). In this case, the right-hand sub-

process sent a private channel b to the left-hand sub-

process via a. Hence the left-hand process evolves into 
1b!c becoming aware of the private b. 

Asynchronous message passing As in the asynchronous 
π-calculus, asynchronous communication is modelled 

by syntactically restricting the output operator by not 

allowing it to have a continuation. In practice, however 

it is often desired to allow writing, e.g., a!1 → P . This 
however is only syntactic sugar for a!1 I P , as the pro-

cess P is free to continue without having to wait for the 

output a!1 to be consummated. 

Message acknowledgment and response Since commu-

nication is asynchronous, when sending a message, the 

sender does not wait for the receiver to get and ac-
knowledge the message, e.g., in a!“hi”; Q process Q can 

begin before any process receives the message sent over 

1 In the π­calculus literature this is known as scope extrusion 
as the lexical scope of the private name is effectively extended 
beyond its original scope. 



11 An executable formal semantics for UML­RT 

a. Nevertheless, we often wish to receive an acknowl-

edgment or response from a receiver. A common way 
to do this in the π-calculus is to use channel mobility: 

create a local channel, say r where the sender will ex-

pect the acknowledgment or response, send r as part 
of the query and listen to r before proceeding. The re-

sponse message on r may be empty to signal acknowl-

edgement, or may include data, such as the answer to 
the query. This can also be seen as a simple way to 

enco de synchronous message passing or remote proce-

dure calls. The response channel needs to be local to 

remain private, avoiding interference from other pro-
cesses. For example, the sender could be proc S(q) = 

new r in (q!r I when {r?x → P}) and the receiver could 

be proc R(q) = when {q?r → (Q; r !“result”)}. Thus, 
the sender sends a query on channel q including its pri-

vate channel r where it will expect the response, and 

then listens to r. Once the response arrives, it proceeds 
as P . The receiver waits for a query on q and when the 

query arrives it is expected to come with a response 

channel r. Then it proceeds to do some task Q and 

when it is done, it sends the result on channel r. We 
use this pattern repeatedly throughout our translation. 

Process names as parameters In process definitions, 

process invocations, expressions and patterns, we al-

low the names x to be process and function names 

as well. This is an essential feature that allows us to 
write generic processes, for example: def { proc A(x) = 

x!1; proc B(y, Z) = Z (y) } in new u in B(u, A). In this 

example, the second parameter passed to B is A, so 
executing B(u, A) results in A(u). 

Auxiliary functions 

While data structures such as lists and dictionaries (as-

sociative tables) are not primitive, they can be enco ded 

in this language. It is outside the scope of this paper 

to provide such enco dings, but for convenience we will 
assume the following functions as primitive: 

–  empty_list: the empty list constant, 

–  list_add(item, list): returns the list that has item 
as the first element and list as the remainder, 

–  list_pop(list): returns a pair (item, rem) where item 

was the first element of list and rem was the rest, 
–  list_del(item, list): returns the list without item, 

–  list_isempty(list): returns true if the list is empty, 

and false otherwise, 

–  empty_dict: the empty dictionary constant, 
–  dict_put(key, value, dict): returns a dictionary that 

adds the association (key, value) to the dictionary 

dict, if there was no pair with the given key, oth-

erwise, it replaces the existing association (key, v) 
with the association (key, value), 

–  dict_get(key, dict) returns the value associated with 

the key in the dictionary dict, or null if the key has 

no associated value, 
–  dict_del(key, dict) returns the dictionary dict with 

any association (key, v) removed. 

2.3 Additional preliminaries 

Here we define some additional notation used through-

out the paper. 

We write 1..k for the set {1, 2, ..., k}. Sequences will 

be enclosed in ( and ). A sequence name will be denoted 
with an arrow on top, and its elements subscripted with 

their index, beginning from 1: x̃ = (x1, x2, x3, ...). A 

finite sequence (a1, ..., ak) will be abbreviated as a1..k . 
The empty sequence is denoted (), or ǫ. We will also 

use standard set operators for sequences, in particular 

we write x ∈ x̃ for membership of x in the sequence x̃. 

3 The significance of thread allocation 

As suggested in the introduction, thread allocation is 

a fundamental aspect of UML-RT which is overlooked 
by the existing attempts to formalize its semantics. To 

illustrate the semantic importance of this issue we now 

present an example that highlights how thread alloca-
tion affects the semantics. This example also illustrates 

several of the UML-RT features that our proposed for-

mal semantics addresses. 

Example 1 Suppose that some system A uses some sub-

component B to perform a task, but B may fail to 

answer requests timely. For such situations, A includes 
an optional sub-component C as a fall-back. At first, A 

will attempt to make a request to B, and if B responds, 

then it will continue to behave in some specified way. 
But if B has not responded within a certain amount of 

time, A will send the request to C, while still listening 

to a possible response from B. If a response from C 
arrives, the behaviour of A will continue in a different 

way than if the response came from B. 

The model is shown in Figure 4. In this model we 

have a top-level capsule A with a fixed sub-capsule B 
and an optional sub-capsule C. A is connected to B 

via the l1 connector, so ports p1 (internal) of A and 

p3 of B are wired. However ports p2 of A and p4 of 

C are unwired. Their behaviour is as follows: capsule 
A registers p2 as an SAP under some service name “s” 

and incarnates a capsule in C in some logical thread L1. 

Then it sets up a timer to trigger in 1.0 time units, and 
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then it becomes evident that under the assignment of 

B and C to the same thread, C gets stuck in n11 so 
it never gets a chance to continue executing. In other 

words, the behaviour becomes unfair. 

It is not hard to make a simple model which, by using 

synchronous communication, exhibits deadlocks when 

the sender and receiver are on the same thread, but is 

deadlock-free when they are assigned to different threads. 
By ignoring thread assignment, existing proposals 

of formal semantics for UML-RT fail to discriminate 

between a system that will deadlock from a system that 
may not deadlock and it will fail to discriminate from 

a fair system and an unfair system. 

Thread allocation is important in practice, as it is 
related to optimization an deployment. The engineer 

may choose between different allocations depending on 

available resources or platform constraints. But, as this 

example shows, naively assuming that thread allocation 
is only a matter of optimization, or that it is only a plat-

form dependent issue is misleading at best, and may re-

sult in incorrect runtime-behaviours or incorrect anal-
ysis results at worst. Therefore, a truly useful formal 

semantics of UML-RT must take it into account. The 

semantics proposed in this paper accounts for thread 
assignment and therefore can distinguish between cer-

tain systems with respect to some safety, liveness and 

fairness properties that other semantics for UML-RT 

fail to distinguish. 

4 State Machines 

Now we begin the presentation of our semantics. In this 

section we show how to map UML-RT state machines 
into kiltera. We first introduce a syntax to describe these 

state machines in Subsection 4.1, and then we describe 

how to map them into πklt processes in Subsection 4.2. 

4.1 A syntax for UML-RT state machines 

We use a mathematical notation for state machines, 

adapted from [60], which allows us to define the map-
ping compositionally. 

In the sequel we will use the following sets: 

–  Nstates : the set of all possible state names; we use 

n, n1, n2, ..., m, ... for elements in Nstates ; 
–  Nenp : the set of all possible entry point names; we 

use a, a1, a2, ... for elements in Nenp ; 

–  Nexp : the set of all possible exit point names; we use 
b, b1, b2, ... for elements in Nexp ;  

def  
–  Ncp = Nenp ∪ Nexp : the set of all connection point 

names; we use c, c1, c2, ... for connection points. 

–  Nports : the set of all possible port names; we use 

p, p1, p2, ... for elements in Nports ; 
–  Nevt : the set of all possible event names including 

the “non-event” ⊥, used to mark transitions without 

a trigger; we use e, e1, e2, ... for elements in Nevt ; 
–  Trig: the set of all possible triggers: it is defined as 

Nports × Nevt . We write p.e for (p, e) ∈ Trig. 

–  Vals: is a set of possible data values. 
–  Guards: the set of possible transition guards (which 

are boolean expressions over port names, capsule 

attributes, and event data). We write g, g1, g2, ... for 

guards. 
–  Acts: the set of all possible actions including the 

“non-action” ⊥, i.e., the action that does nothing; 

we use f, f1, f2, ... for transition actions, en for entry 
actions and ex for exit actions in Acts; 

def 
–  B = {false, true} the set of boolean values; 

–  N: the set of natural numbers 

Furthermore, we make the following assumptions about 
these sets: 

–  Every state and connection point is labelled with a 
unique name. If this is not the case, a simple traver-

sal of the state machine can give unique names, for 

example by providing fully qualified names or at-

taching a unique id. 
–  For every state name n ∈ Nstates , there is an entry 

point name denn ∈ Nenp and an exit point name 

dexn ∈ Nexp . These denote the default entry and 
exit points of a state respectively, this is, when state 

n is the target of a transition, but the transition is 

not connected to any named entry point, it is as-
sumed to be connected to the default entry point 

denn. Analogously, when n is the source of a transi-

tion, and the transition doesn’t leave the state from 

a named exit point, it is assumed to begin at the 
default exit point dexn. 

Before we define state machine terms, we define the 
enco ding of transitions, which link connection points. 

We distinguish between three kinds of transition: in-

coming, outgoing and sibling. Incoming transitions are 
transitions from an entry point to some sub-state. Out-

going transitions are transitions from a sub-state to an 

exit point. Sibling transitions are transitions between 

sub-states. 

Definition 2 (Transitions) Let Kinds = {in, out, sib} 
represent the set of transition kinds, (respectively in for 

incoming, out for outgoing, and sib for sibling). The set 
def 

of all possible transitions is Trans = Kinds × B × 
Ncp × Ncp ×Trig ×Guards×Acts. Given a transition 

t = (k, l, c1, c2, e, g, f ) ∈ Trans we define the following 
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functions:2 

def 
kind(t) =  k The kind of transition 

def 
first(t) =  l Whether t is the first in a chain 

def 
src(t) = c1 The source of the transition 

def 
targ(t) =  c2 The target of the transition 

def 
trig(t) = e The trigger event of the transition 

def 
guard(t) = g The guard of the transition 

def 
act(t) = f The action of the transition 

Now we can define state machine terms. 

Definition 3 (State machine terms) The set SM 

of state machine terms is defined according to the fol-
lowing BNF: 

s ::= [n, A, B, en, ex] Basic-state 
| [n, A, B, S, d, T, en, ex] Composite state 

Here n ∈ Nstates is the name of a state, A ⊆ Nenp and 

B ⊆ Nexp are the sets of entry and exit points where 
A ∩ B = ∅ and denn ∈ A and dexn ∈ B, en, ex ∈ Acts 

are the entry and exit actions, S is a sequence (s1, ..., sk) 
of sub-states with each si ∈ SM, d is the index, in the 
sequence, of the default sub-state sd, and T ⊆ Trans 

is a set of transitions subject to the conditions stated 

below. 

We first define the following useful functions for a 
given basic state s = [n, A, B, ex, en]: 

def 
name(s) = n The name of the state s 

def 
entries(s)  = A The set of entry points of s 

def 
exits(s) = B The set of exit points of s 

def 
enact(s) = en The set of entry actions of s 

def 
exact(s) = ex The set of exit actions of s 

Note that since we assume unique names for all connection 
points, the source and target of a transition are well­defined. 

For a composite state s = [n, A, B, S, d, T, en, ex] 

with S = s1..k , we define 

def 
name(s) = n The name of the state s 

def 
entries(s)  = A The set of entry points s 

def 
exits(s) = B The set of exit points of s 

def 
substates(s) = S The set of substates of s 

def 
trans(s) = T The set of transitions of s 

def 
default(s)  = sd The default (initial) substate of s 

def 
enact(s) = en The set of entry actions of s 

def 
exact(s) = ex The set of exit actions of s 

and all transitions t ∈ T must satisfy the following con-

ditions: 

1. If first(t) = false then trig(t) = ⊥ 
2. kind(t) = sib if and only if there are sub-states si 

and sj in S such that src(t) ∈ exits(si) and targ(t) ∈ 
entries(sj ). 

3. kind(t) = in if and only if there is a sub-state si in 
S such that src(t) ∈ A and targ(t) ∈ entries(si). 

4. kind(t) = out if and only if there is a sub-state si in 

S such that src(t) ∈ exits(si) and targ(t) ∈ B. 

In the remainder we will omit the entry and exit actions 

when en = ⊥ and ex = ⊥, and if we omit a transition’s 

guard, it is assumed to be true. Also, in our examples, 

the transition’s labels have the general form t : p.e[g]/a 
where t is the transition’s name (only used for readabil-

ity, but not part of the formal definition), p.e ∈ Trig is 

the transition’s trigger with port p ∈ Nports and event 
e ∈ Nevt , g ∈ Guards is the transition’s guard, and 

a ∈ Acts is the transition’s action. All of these items 

are optional. 

Example 2 Consider the state machine shown in Fig-

ure 5. This is enco ded in our syntax as follows: 

def 
s1 = [n1, {denn1 

}, {dexn1 
}, (s2, s5), 1, {t1, t2}] 

def 
s2 = [n2, {denn2 

, a1, a2}, {dexn2 
, b1, b2}, 

(s3, s4), 1, {t3, t4, t5, t6, t7}] 
def 

s3 = [n3, {denn3 
}, {dexn3 

}] 
def 

s4 = [n4, {denn4 
, a3}, {dexn4 

}] 
def 

s5 = [n5, {denn5 
}, {dexn5 

}] 

2 
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such event occurs, the Handler tells its currently ac-

tive sub-state to exit and then waits for the sub-state 
to acknowledge the exit before jumping to the actual 

destination. Waiting for the sub-state to exit ensures 

that the sequence of exit actions will be executed in 
the correct order. 

Enabled-transition selection policy 

It is possible that two transitions are simultaneously 

enabled if their source is the currently active state and 
they share the same trigger event. In this case the tran-

sitions are said to be in conflict. If the source of one 

such transition is a sub-state of the source of the other 

transition, then the conflict is resolved by giving pri-
ority to the former, inner transition (SVP 1). In this 

section we implement such priority scheme. Note that 

this “priority” is different from the priority of events in 
the event pool. Such event priorities will be addressed 

later. 

The main idea is as follows. For each composite state 

n, the Handler receives the incoming event and before it 

compares this event with the triggers of the transitions 
from n, it forwards the event “down” to its currently ac-

′ tive sub-state n ′ . If n (or a sub-state) has a transition 

with this event as a trigger, then it handles the event 
and sends an “accepted” message back to n’s Handler . 

′ On the other hand, if n (or a sub-state) didn’t have 

such a transition, then it sends a “rejected” message 
′ back to n’s Handler . If n’s Handler receives from n an 

“accepted” message, it in turn sends an “accepted” mes-

sage to its containing state. If it receives a “rejected” 

message, it compares the event with the triggers of n’s 
transitions. If one trigger matches, an “accepted” mes-

sage is sent to the containing state of n and the transi-

tion is taken. Otherwise, a “rejected” message is sent. 

In order to implement this, we add an acc and a 

rej port to inform the containing state of acceptance or 
rejection of events. 

History 

Whenever a composite state is entered for the first time, 

its initial sub-state is entered. If, however, the com-

posite state was previously visited, and the composite 
state is entered through an entry point not explicitly 

connected to any sub-state, it enters the last visited 

sub-state, i.e., the sub-state which was active when the 
composite state exited. This behaviour is called history. 

The policy applies recursively for the sub-state, result-

ing in what is known as deep history. (SVP 2) 

To implement history we define, for each state nk a 

history cell hk, a process which stores nk’s last visited 

sub-state. In fact, whenever we take a transition inside 

a composite state nk, we store the target state of the 
transition nk’s history cell, and hence, hk always con-

tains nk’s currently active sub-state. Then, if we exit 

nk and reenter it later, the Dispatcher recalls the state 
stored in the history cell. 

Actions 

There are two main issues to be addressed in order to 

support actions: first, how are individual actions en-

coded in πklt and second, when should they be exe-
cuted? 

To address the first question, we consider an ex-
isting set of actions Acts without specifying what are 

these actions exactly. Normally these actions would be 

given in some action language (SVP 3). However, the 

order of execution (the second issue) is independent of 
such action language, and therefore it is useful to keep 

this set abstract, and assume that we have a transla-

tion α : Acts → KLT which maps each action to the 
corresponding πklt term. Later on we will provide a spe-

cific action language (Subsection 5.1.2) and a specific 

translation in the context of UML-RT capsules (Sub-
section 5.2.6). 

Once we assume the action translation, we can fo-

cus on where to put the resulting translations. We have 
three kinds of action: entry actions, exit actions and 

transition actions. Entry actions must be executed when-

ever we enter a state. Similarly, exit actions must be 
executed whenever we exit a state. Transition actions 

are executed whenever the transition is taking place, 

after exiting the source state and before entering the 

target state. This means that the process Sn for a state 
[n, ..., en, ex ] must begin by executing α(en) and that 

α(ex ) must be executed when leaving the state, in pro-

cess Bb for each exit point b. 

4.2.2 Formal mapping 

Actions 

As stated above, we need a translation for actions. The 
particular action language may vary, so we assume that 

an appropriate translation is provided. 

Definition 4 (Action translation) An action trans-

lation is a map α : Acts → C → KLT from the set 
of possible actions Acts to the set of πklt terms KLT, 

where C is some set of contextual information needed 

to do the translation. 
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History cells 

The history cell h for a given state m stores its last 

active sub-state Sn, as well as a boolean flag ini, which 

is set to true if the state m has been previously visited. 
History cells are instances of the following process: 

Definition 5 (History Cells) History Cells are rep-

resented by the following process definition: 

proc HistoryCell(h, ini, kill, Sn) = 
when { 
h?(“set”, Sn ′ ) → HistoryCell(h, true, kill, Sn ′ ) 

| h?(“get”, inp, acc, rej , exit, exack, sh, kill, enp) → 
(if ini then 

Sn(inp, acc, rej, exit, exack, sh, kill, enp) 

I HistoryCell(h, ini, kill, Sn)) 

| h?(“peek”, r) → 
(r!ini I HistoryCell(h, ini, kill, Sn)) 

| kill? → done } 

The way a history cell works is straight-forward. It ac-

cepts three kinds of messages: “set”, to store a sub-
state in the cell, “get” to execute the currently stored 

sub-state, and “peek” to determine whether the cell has 

been initialized. When a “set” message is received, it 
comes with the name Sn ′ of the sub-state process to 

be stored in the cell. This is kept as the third param-

eter in the definition of HistoryCell. In this case, the 

ini flag is set to true, indicating that the cell has been 
initialized and the state has been visited at least once. 

When a “get” message arrives, if the state has been ini-

tialized, it executes the sub-state Sn currently stored, 
linking the ports and parameters passed along with the 

request. These parameters are explained below. Finally, 

when a “peek” message is received, it returns the value 
of the ini flag along a given channel r . 

The process definition for states 

Each state nk is translated into a process definition Snk 

which has the following ports and parameters: 

–  inp: this is the port where input events are received, 

–  acc: this port is used to signal that an input event 
has been accepted by the state, 

–  rej: this port is used to signal the rejection of an 

input event, i.e., , that the event cannot be handled 
by the state because no outgoing transition from 

this state is enabled by the event. 

–  exit: this port is used by the state’s parent to request 

the state to exit, 
–  exack: this port is used to acknowledge an exit re-

quest, once the necessary (and possibly recursive) 

exit actions have been performed, 

–  sh: this port is used to signal that exiting this state 

also exits the enclosing state, and thus the Handler 
of the enclosing state must stop (hence sh for “stop 

handler”), 

–  kill: this port is used to stop the state and all pro-
cesses associated to it, including its Handler and 

sub-states. 

–  enp: is a parameter used only in composite states to 
pass the name of the entry point used to enter the 

state. 

The difference between exit, kill and sh is as follows: 

exit is signaled when executing a group transition, so 
the composite state taking the transition asks its cur-

rently active sub-state to exit and waits for it to exit be-

fore executing the corresponding Exit action; kill is sig-

naled when the entire state machine is being destroyed, 
when it’s capsule is being destroyed so the composite 

state being killed asks its active sub-state to be killed as 

well, without executing exit actions or waiting for sub-
states to finish; and sh is signaled when a transition 

chain is being taken and going through an exit point so 

the handler of the composite state is to be stopped. 
In the following, we assume that for each compos-

ite state nk there is a top-level channel hk for its his-

tory cell. We also assume a global event compl, used 

to indicate that we have reached a stable state, and 
thus signaling the end of a run-to-completion step. The 

following definition formalizes the translation of a ba-
′ sic state s whose containing (parent) state is s , as 

TS [s]s ,hist,hist′ ,compl,ports , where hist is the link to the ′ 

′ history cell for s, hist is the history link for its parent 
′ s , compl is the completion event, and ports is the list 

of ports of the capsule containing the state machine. 

Each transition is assumed to be annotated with 

a label (p, e, g) where p is a port name, e is an event 

name and g is a guard (a boolean expression). Incoming 
events are of the form (p, e, d) where p is a port name, 

e is an event name and d is some data associated to the 

event e. 
This translation assumes a translation for actions 

α : Acts → Cports → KLT, with context set Cports 

whose elements are pairs ((p, e, d), ports) of incoming 
events and lists of ports (so that the action can refer or 

use the event and/or the capsule’s ports). 

We now provide the definition of the translation 

TS [s]... for basic states in Definition 6 and composite 
states in Definition 7. 

Translation of basic states 

Definition 6 (Translation of basic states) Given a 

basic state 

s = [nk, A, B, en, ex] 
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def  
TS [s3]s2,hist 3,hist 2,compl, p1,p2 ,p3)  = 

proc Sn3 (inp, acc, rej, exit, exack, sh, kill, enp) = 
def { 

proc Entry() = α[en]((⊥, ⊥, ⊥), (p1, p2, p3)); 
proc Exit(p, e, d) = α[ex]((p, e, d), (p1, p2, p3)); 
proc Handler() = 

when { 
inp?(p, e, d) → Choice(p, e, d, acc, rej) 

| exit? → Exit(⊥, ⊥, ⊥); exack! 
| kill? → done } 

proc Choice(p, e, d, acc, rej ) = 
if p = “p1 ” and e = “x” and true then 

acc!; Exit(p, e, d); 
α[f1]((⊥, ⊥, ⊥), (p1, p2, p3)); Bb1(sh) 

else if p = “p3 ” and e = “z” and true then 
acc!; Exit(p, e, d); 
Sn4 (inp, acc, rej, exit, exack, sh, kill, “denn4 ”) 

else rej!; Handler() 
} in 

Entry(); hist2 !(“set”, Sn3 ); compl!; Handler() 

Fig. 8 Example: translation of state n3 from Figure 5. 

Example 3 Consider the basic state n3 from the state 
machine from Figure 5, inside state s2 with outgoing 

transitions t3 and t4. Figure 8 shows the result of the 

translation TS [s3]s2,hist3,hist2 ,compl,ports where ports = 
(p1, p2, p3). 

In this example one can see that the Choice pro-

cess has three branches: one for transition t3, one for 
transition t4 and the default branch for the case when 

the incoming event does not match the trigger of these 

transitions and the event is rejected. 

The first branch, corresponding to t3, informs its 

containing state (Sn2) that the event is accepted (acc!), 
executes the exit action, then executes the transition 

action f1 and then executes the process corresponding 

to the exit point b1 (process Bb1). The definition for 

Bb1 will be provided in the definition of the enclosing 
state Sn2. 

The second branch is similar, but the transition does 
not have an action to execute, and the target state is 

n4, thus it invokes the process Sn4 with entry point 

denn4 
, the default entry point. 

In the main body, the history cell for the parent, 

hist2 is set to this state Sn3, after executing the entry 

action. 

Translation of composite states 

Definition 7 (Translation of composite states) 

Given a composite state 

s = [nk, A, B, S, d, T, en, ex] 

def 
TS [s]s ,hist ,hist′ ,compl,ports = ′ 

proc Snk (inp, acc, rej, exit, exack, sh, kill, enp) = 
def { 

proc Entry() = α[en]((⊥, ⊥, ⊥), ports); 
proc Exit(p, e, d) = α[ex]((p, e, d), ports); 
DHand ler ; DForward ; DChoice ; DDispatcher ; 
DSn1 

; ...; DSnj 
; DBb1 

; ...; DBbl 

} in 
′  ′ new inp ′ , acc , rej ′ , exit ′ , exack ′ , sh ′ , kill  in 

(Entry(); 
hist ′ !(“set”, Snk ); 

′ (Dispatcher(inp ′ , acc , rej ′ , exit ′ , exack ′ , sh ′ , kill ′ , enp) 
′ I Handler(inp ′ , acc , rej ′ , exit ′ , exack ′ , sh ′ , kill ′ ))) 

Fig. 9 Translation of composite states. 

′ proc Dispatcher(inp ′ , acc , rej ′ , exit ′ , exack ′ , 
′ sh ′ , kill  , enp) = 

if enp = “a1 ”  then Q ′ 1 

else if enp = “a2 ”  then Q ′ 2 

· · · 
else if enp = “am ”  then Q ′ m 

′ ′ hist!(“get”, inp ′ , exit ′ else  , acc , rej  , 
′ exack ′ , sh ′ , kill  , enp) 

Fig. 10 Dispatcher: chooses a sub­state according to the entry 
point or history. 

whose parent (enclosing) state is4 

′ ′  ′ ′ s  = [nk′ , A ′ , B ′ , S ′ , d ′ , T , en , ex ′ ] 

and given an action translation α : Acts → Cports → 
KLT, the translation of s is the πklt term TS [s]··· shown 

in Figure 9 , where each DSni 
is the definition of sub-

state ni: 

def 
DSni 

= TS [si]s,hi,hk ,compl,ports 

with hi being the history cell for sub-state ni (state 

term si), hk being the history cell for nk (state term 
s); DBbj 

is the definition of exit point bj given be-

low; DHand ler , DForward , DChoice and DDispatcher are 

the definitions of the Handler , Forward, Choice and 
Dispatcher given below: 

–  The Dispatcher process definition DDispatcher is given 

in Figure 10, where as before, Q ′ is the target of i 

the transition segment i, the process that executes 
the transition’s action and goes to the target of the 

transition, defined as 
 

′ ′ ′ ′ ′ 
 Ti; Snj (inp ′ , acc , rej , exit , exack , sh ′ , kill , a) 
 
 
 
 
 if kind(ti) = in, a = targ(ti), 
 

def 
Q ′ = ∃sj ∈ S. a ∈ entries(sj ), and nj = name(sj )i 

 
 
 
 Ti; Bbj (sh ′ ) 
 
 
 

if kind(ti) = out and bj = targ(ti) ∈ B 

4 If  the  state  has  no  parent,  i.e.,  ,  it  is  the  top­most  state 
on the state­machine, the role of the parent will be taken by a 
special process called Sink, described in Definition 8. 
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′  ′ proc Handler(inp ′ , acc , rej ′ , exit ′ , exack ′ , proc Choice(p, e, d, acc, rej, inp ′ , acc , rej ′ ,  
sh ′ , kill ′ ) =  exit ′ , exack ′ , sh ′ , kill ′ ) =  

when { if p = “p1 ” and e = “e1 ” and g1 then  
inp?(p, e, d) → exit ′ ! →  

new visited in when {exack ′ ? → acc! → (Exit(p, e, d); Q1)} 
hist!(“peek”, visited) → else if p = “p2 ” and e = “e2 ” and g2 then 
when { exit ′ ! → 
visited?true →  when {exack ′ ? → acc! → (Exit(p, e, d); Q2)} 

′ Forward(p, e, d, acc, rej, inp ′ , acc , rej ′ , · · · 
exit ′ , exack ′ , sh ′ , kill ′ )  else if p = “pm ” and e = “em ” and gm then 

| visited?false → exit ′ ! → 
′ Choice(p, e, d, acc, rej, inp ′ , acc , rej ′ ,  when {exack ′ ? → acc! → (Exit(p, e, d); Qm)} 

exit ′ , exack ′ , sh ′ , kill ′ ) } else rej! → 
′ | exit? → exit ′ ! → Handler(inp ′ , acc , rej ′ , exit ′ , exack ′ , sh ′ , kill ′ ) 

when {exack ′ ? → (Exit(⊥, ⊥, ⊥); exack!)} 
Fig. 13 Composite state choice taker. | sh ′ ? → done  

| kill? → kill ′ ! → done }  

Fig. 11 Composite state handler.  transition’s action and goes to the target of the tran-

sition, defined (in the same way as for Bbj above) 
′ proc Forward(p, e, d, acc, rej, inp ′ , acc , rej ′ , 

as 
exit ′ , exack ′ , sh ′ , kill ′ ) = 

inp ′ !(p, e, d) 
 
 Ti; Snj (inp, acc, rej , exit, exack, sh, kill, a)→ when {  
 
 ′ ? →  acc  acc! →  
 if kind(ti) = sib, a = targ(ti),

′ ′  Handler(inp ′ , acc , rej  , exit ′ , exack ′ ,   
 
 ∃sj ∈ S ′ . a ∈ entries(sj ), and nj = name(sj )sh ′ , kill ′ )    
 
 
 ′ ′ ′ ′ ′| rej ′ ? →  def Ti; Snj (inp ′ , acc , rej , exit , exack , sh ′ , kill , a)

′ Choice(p, e, d, acc, rej, inp ′ , acc , rej ′ , Qi = 
 
 if kind(ti) = in, a = targ(ti),exit ′ , exack ′ , sh ′ , kill ′ ) }  
 
 
 
 ∃sj ∈ S. a ∈ entries(sj ), and nj = name(sj )

Fig. 12 Composite state event­forwarder.    
 
 
Ti; Bbj (sh)
 
 
 
 if kind(ti) = out and bj = targ(ti) ∈ B ′ 

and where each Ti is the process that executes the 
action of transition ti, α[act(ti)]((⊥, ⊥, ⊥), ports). 

Explanation –  DBbj 
is a process definition for exit point bj ∈ B,  

given by  
Figure 14 shows the control flow of the πklt definition for 

composite states. As with basic states, the definition of def 
DBbj 

= proc Bbj (sh) = sh! I Qj a composite state contains definitions for entry and exit 

actions (Entry and Exit) respectively, an event handler 
where sh is the parent’s stop-handler signal, and Qj (Handler) and a process to make the choice of what to 
is the target of the exit point, defined as follows: do with the event (Choice). In addition to these, it also 
 contains: 
Ti; Snj (inp, acc, rej , exit, exack, sh, kill, a)
 
 
 
  – a dispatcher to either follow an incoming transition 
 
 if kind(ti) = sib, a = targ(ti), 
 
  into some sub-state or recall history (Dispatcher), 
 
 ∃sj ∈ S ′ . a ∈ entries(sj ), and nj = name(sj ) 
  – a definition DSni 

for each sub-state ni, 
 
 ′ ′ ′ ′ ′ 

def Ti; Snj (inp ′ , acc , rej , exit , exack , sh ′ , kill , a) –  a definition DBbj 
for each exit point bj ,Qi = 

 
 if kind(ti) = in, a = targ(ti),  – and a forwarder process which forwards incoming 
 
 
 
  events down to the currently active sub-state, in or-
 ∃sj ∈ S. a ∈ entries(sj ), and nj = name(sj ) 
 
 
  der to implement the “deepest first” enabled-tran-
Ti; Bbj (sh)
 
 
  sition selection policy. 
 if kind(ti) = out and bj = targ(ti) ∈ B ′ 

In the main body, the state begins by executing its en-

–  DHandler is the process definition shown in Figure 11. try action (Entry()), then it updates the history cell 

of its parent with the currently active state by do-

–  DForward is the process definition shown in Figure 12. ing hist ′ !(“set”, Snk ), and then starts the Dispatcher 
and the event Handler . Both Dispatcher and Handler 

′ ′ ′ –  Finally, DChoice is the process definition shown in are invoked with primed channels inp ′ , acc , rej , exit , 
′ Figure 13, where Qi is the process that executes the exack , sh ′ , and kill ′ , which are used to interact with 
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The event Handler is somewhat more complex than 

that for basic states. It accepts three kinds of events: 
inp (input events), exit, and sh (stop Handler). On an 

input event, the Handler inquires its history cell if it 

has been previously visited. (SVP 4) 

If the state has been previously visited, (the history 

cell has been initialized with some sub-state) it proceeds 

to the normal case handled by the Forward process, 
which forwards the event down to the currently active 

sub-state (via inp ′ ) and waits to see if it was accepted 

(acc ′ ) or rejected (rej ′ ). If accepted by the sub-state, 
the acceptance is forwarded “up” to the parent (acc), 

and we wait for the next event. If rejected by the sub-

state, we attempt to handle the event at this level in 

the Choice process. (SVP 5) 

If the state has not been previously visited, no sub-

state has been activated, which is the case if there is 

no initial transition to some sub-state. In this case, 
the composite state remains “on the border”, and thus, 

events are not forwarded to any sub-state and are han-

dled by the Choice process. 

The exit event (exit) might be received from the 

parent state, in which case the request is forwarded to 
′ the currently active sub-state via exit and when ac-

knowledgement from the sub-state arrives (exack ′ ), the 

exit action is executed (Exit) and an acknowledgement 

is forwarded to the parent (exack). 

Finally, the stop Handler signal (sh) may be re-

ceived when leaving the state via an exit point bj . In 

this case it is not necessary to ask the currently active 
sub-state to stop, because it was precisely that sub-

state who has executed the outgoing transition and 

has performed its own exit sequence. Note that if a 

transition chain is executed, going through several exit 
points, each exit point triggers an sh event to stop 

the Handler of the composite state containing the exit 

point, thus, all Handlers in the chain are stopped as 
expected. The kill event is much like the stop-Handler 

event, but is used to stop the states in a “top-down” 

fashion: whenever the Handler receives a kill request, 
it kills its currently active sub-state by triggering kill ′ 

and then stops. This will be used later, in the mapping 

for capsules, to kill a state machine when we destroy its 

capsule. 

Example 4 Let us revisit the example from Figure 5. 

Consider the composite state n2 in that machine. The 
definitions for the Handler and Forward processes are 

fixed, only the definitions for Dispatcher , Choice and 

the sub-states, as well as the exit points are specific. 

First we have the Dispatcher . There are three possi-

ble ways to enter the state: through entry points a1 or 

a2 or through the default entry point, in which case his-

tory will be recalled, or if the state has not been visited 

before, the initial state. 

′ ′ ′ proc Dispatcher(inp ′ , acc , rej , exit ′ , exack , 
′ sh ′ , kill , enp) =  

if enp = “a1 ” then  
′ ′ ′ ′ ′ Sn4(inp ′ , acc , rej , exit , exack , sh ′ , kill , “a3”) 

′ ′ ′ ′ else hist!(“get”, inp ′ , acc , rej , exit , exack , 
′ sh ′ , kill , enp) 

In the case where we enter the state through a1, 
we have to take transition t5, which has no action, and 

then go to state n4, invoking Sn4, and enter n4 through 

entry point a3. In the case where we enter through a2, 
we have to recall history because there is no incoming 

transition connecting a2 to any sub-state. Similarly, for 

the default entry point we recall history. Note that when 

we recall history, if it is the first time, the resulting state 
will be the initial state. 

Second we have the choice process. There is only one 

(group) transition coming out of n2, namely t6. Thus 
the choice process is as follows: 

′ ′ proc Choice(p, e, d, acc, rej , inp ′ , acc , rej , 
′ exit ′ , exack , sh ′ , kill ′ ) = 

if p = “p2 ” and e = “x” and true then 

exit ′ ! → when {exack ′ ? → acc! → (Exit(p, e, d); 

Sn5 (inp, acc, rej, exit, exack, sh, kill, “denn5 
”)) } 

′ ′ else rej! → Handler(inp ′ , acc , rej , 
′ exit , exack ′ , sh ′ , kill ′ ) 

Note that the parameters passed to Sn5 are the un-
primed ports, as this is a sibling transition, so we pass 

the channels used by n2 and n5 to communicate with 

their common parent (n1), so that Sn1 can now interact 
with the new currently active sub-state Sn5. 

Definitions for the exit points are also generated. 

The only one actually invoked by a sub-state is for b1: 

proc Bb1 (sh) = 

sh! I Sn5(inp, acc, rej , exit, exack, sh, kill, “denn5 
”) 

This is executed when taking transition t1 (after t3). 

It sends a signal sh to the Handler process of Sn2 to 

stop it (the parameter sh is given when exiting n3; see 
the Choice process in Example 3, Figure 8). Then the 

process jumps to the target state Sn5. 

The rest of the definition of Sn2 consists of the def-

initions of Sn3 (Example 3, Figure 8) and Sn4. 

The process definition of a full state machine 

Having defined processes for basic and composite states, 

we are now in a position to define the process for a whole 



 

 

23 An executable formal semantics for UML­RT 

state machine, which acts essentially as a wrapper, pro-

viding history cells, a top level state, links to the capsule 
containing the state machine, a Sink process to catch 

the acceptance and acknowledgment events from the 

top-level state, and a process to handle kill requests, so 
when a kill event comes in, the states and history cells 

are stopped. 

A full state machine is represented as a process 
StateMachine with the following ports: 

–  inp: where input events of the form (p, e, d) are re-

ceived (where p is the port, e is the event, and d is 
some data value), 

–  compl : where the state machine signals the end of 

a run-to-completion step, when a stable state has 
been reached, 

–  kill: where requests to end the processes of the state 

machine are received, 
′ ′ –  e1, ..., e , i ′ 1, ..., i ′ : the containing capsule’s (out-nE nI 

put) ports, where the actions of the state machine 

can send events. 

The formal specification is as follows: 

Definition 8 (Translation of a full state machine) 

Let s ∈ SM be a state machine term. Its translation as 

a full state machine is TSM [s], given by 

proc StateMachine(inp, compl , kill, 
′ ′ e1, ..., e , i ′ 1, ..., i ′ ) = nE nI 

def { Ds; DHistoryCel l ; DSink } in 
′ new acc, rej, exit, exack, sh, kill , 

h1, h2, ..., h|s|, htop , 

kill1, kill2, ..., kill |s|, killtop in 

(HistoryCell(htop , false, killtop , ⊥) 
|s|I HistoryCell(hi , false, killi , ⊥)i=1 

′ I Sn1 (inp, acc, rej , exit, exack, sh, kill , “init”)  

I Sink(acc, rej , exit, exack, sh)  

I when {kill? → (kill ′ ! I killtop ! I |s| 
killi !)}) i=1 

where 

–  name(s) = n1 

–  |s| is the number of states in s, including all sub-

states, 

–  hi is a link to the history cell for state ni 

–  DHistoryCel l is the definition of HistoryCell from Def-

inition 5, 

–  Ds is the translation of s according to Definition 6 
or Definition 7: 

def  
Ds = TS [s]top,h1,htop,compl,ports  

def ′ ′ with ports = (e1, ..., e , i ′ 1, ..., i ′ ), and where top nE nI 

def 
is a dummy container state term defined as top = 

[ntop , ∅, ∅, (s), 1, ∅]. 

–  and DSink is the following definition: 

proc Sink(acc, rej , exit, exack, sh) =  

when {  
acc? → Sink(acc, rej, exit, exack, sh) 

| rej? → Sink(acc, rej, exit, exack, sh) 

| exack? → Sink(acc, rej , exit, exack, sh) 

| sh? → Sink(acc, rej , exit, exack, sh) } 

5 Capsules 

We now show how capsule diagrams are enco ded as 

kiltera processes. In this section we begin by defining 
a syntax for UML-RT capsule diagrams and models 

(Subsection 5.1) including an action language. Then we 

define the translation for this syntax (Subsection 5.2). 

The translation describes how to: 

–  associate capsules to threads (Subsection 5.2.1) 

–  represent (thread) controllers (Subsection 5.2.2) 

–  represent capsules themselves (Subsection 5.2.3) 
–  represent ports and services (Subsection 5.2.4) 

–  represent optional and plug-in parts (Subsection 5.2.5) 

–  represent actions (Subsection 5.2.6) 
–  represent the timer (Subsection 5.2.7) 

–  put all these together (Subsection 5.2.8) 

5.1 A syntax for UML-RT capsule diagrams 

We use a mathematical notation for capsule diagrams, 

which allows us to define the mapping compositionally. 

In the sequel we will use the following sets: 

–  Ncap : the set of all possible capsule names; we use  
m, m1, m2, ... for elements in Ncap ;  

–  Nparts : the set of all possible part names; we use  

b, b1, b2, ... for elements in Nparts  

–  Nports : the set of all possible port names; we use  

p, p1, p2, ... for elements in Nports ;  

–  Nconn : the set of all possible connector names; we  
use l, l1, l2, ... for elements in Nconn ;  

–  Nsm : the set of all possible state machine names;  

we use n, n1, n2, ... for elements in Nsm ;  

–  Nlthr : the set of all possible logical threads; we use  
L, L1, L2, ... for elements in Nlthr ;  

–  SM: the set of all state machine terms (defined in 
def 

Subsection 4.1); SM⊥ = SM ∪ {⊥} is the set of 

state machine terms extended with the “none” value 

⊥, representing the absence of a state machine. 

–  Vals: the set of possible values (data transmitted  
with events between capsules).  

Furthermore, we make the following assumptions about 

these sets: 



24  Ernesto Posse, Juergen Dingel 

–  Every capsule is labelled with a unique name. If this 

is not the case, a simple traversal of the capsule di-
agram can give unique names, for example by pro-

viding fully qualified names or attaching a unique 

id. 
–  Within a capsule, port names and connector names 

are unique. 

Before we define capsule diagram terms, we define the 

the syntax for port references and connectors. We dis-
tinguish between qualified and unqualified port refer-

ences. The former are used to refer to a port of a sub-

capsule within the capsule of interest, while the latter 
is used to refer to a port of the capsule itself. 

Definition 9 (Port references and connectors) We 

define the set Portref of port references according to 

the following BNF, with F ∈ Portref : 

F ::= p Unqualified port reference 

| m.p Qualified port reference 

where p ∈ Nports and m ∈ Ncap ∪ Nparts . 

We also define the set Conn of possible connectors 

according to the following BNF, with k ∈ Conn: 

k ::= l : F → F Relay or internal connector 

where l ∈ Nconn is the name of the connector, and 

F ∈ Portref is a port reference. For a connector k we 
define the following useful functions: 

def 
name(l : F1 → F2) = l The name of the connector 

def 
src(l : F1 → F2) = F1 The source of the connector 

def 
targ(l : F1 → F2) = F2 The target of the connector 

5.1.1 Capsules 

Now we can define capsule diagram terms. A capsule is 

fully defined by providing: 

–  A name, 

–  Its ports (end, relay and internal) 
–  An optional state machine 

–  A set of (sub-capsule) parts 

–  A set of connectors between ports 

The following definition formalizes this by providing 
syntax for capsule terms. 

Definition 10 (Capsule diagram terms) The set 

CAP of capsule diagram terms is defined according to 

the BNF shown in Figure 15, where: 

–  m ∈ Ncap is the name of a capsule, 
–  G is a set of pairs pi : wi gi where pi ∈ Nports is a 

port name, wi ∈ {w, u} and gi ∈ {end, int, rel} is its 

type, 

c ::= [m, G, s, P, K, A]  Capsule 

G ::= {p1 : w1 g1, ..., pn : wn gn} Ports (or gates) 

w ::= w Wired port  
u Unwired port  

g ::= end External end port  
int Internal port  
rel External relay port  

P ::= {b1 : o1 m1, ..., bn : on mn} Sub­capsule parts 

o ::= fix Fixed role  
| opt Optional role  
| plug Plugin role  

K ::= {k1, ..., kn ′ } Local connectors 

A ::= {a1, ..., an ′′ } Attribute names 

Fig. 15 Syntax of UML­RT capsule diagrams. 

–  s ∈ SM ∪ {⊥} is a state machine term (or ⊥ if the 

capsule has no state machine), (see Definition 3) 

–  P is the set of sub-capsule parts of n, more precisely 
a set of triples bi : oi mi where bi ∈ Nparts is a part 

name, oi is the part’s role and mi ∈ Ncap is a capsule 

name, 
–  K ⊆ Conn is a set of connectors subject to the 

conditions stated below, 

–  and A is a set of attribute names. 

We first define the following useful functions to extract 

the elements of a given capsule c = [m, G, s, P, K, A]: 

def 
name(c) = m The name of the capsule 

def 
ports(c) = G The set of ports of the capsule 

def 
capsm(c) = s The capsule’s state machine 

def 
parts(c) = P The set of sub-capsules 

def 
conn(c) = K The set of port connectors 

def 
attrs(c) = A The set of attribute names 

Furthermore, we also have some functions to extract 

particular types of ports: 

def 
endports(c) = {p | p : w end ∈ G} 

def 
intports(c) = {p | p : w int ∈ G} 

def 
relports(c) = {p | p : w rel ∈ G} 

def 
extports(c) = endports(c) ∪ relports(c) 

def 
wiredports(c) = {p | p : w g ∈ G} 

def 
unwiredports(c) = {p | p : u g ∈ G} 
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We generalize these functions over sets in the nat-

ural way. For example, if C = {c1, c2, ..., cn} is a set of 
def 

capsules, then name(C) = {name(ci) | ci ∈ C} is the 

set of names of all capsules in the set. Similarly for the 
rest of these functions. 

We assume that fix is the default role, so b : m is 

the same as b : fix m. We use the notation m.b to refer 
′ ′ to the part b of capsule m, i.e., , m.b = m iff b : o m ∈ 

parts(c). We write pcallroleb = o if b : o m ∈ parts(c). 

def 
fixedcaps(c) = {b : fix m ∈ P} 

def 
optcaps(c) = {b : opt m ∈ P} 

def 
plugincaps(c) = {b : plug m ∈ P} 

We also write l : F1 ↔ F2 ∈ K to mean that either 

l : F1 → F2 ∈ K or l : F2 → F1 ∈ K. All connectors in 

K must satisfy the following conditions: 

1. if l : p ↔ F ∈ K where p is an unqualified port 

reference, then p ∈ relports(c) ∪ intports(c) 
2. if l : m.p ↔ F ∈ K where m.p is a qualified port 

reference, then there is a sub-capsule ci ∈ C such 

that name(ci) = m and p ∈ extports(ci) 
3. every port p ∈ relports(c) ∪ intports(c) is linked to at 

most one connector k ∈ K (possibly none). 

4. no port p ∈ endports(c) is linked to any connector 

inside c. 
5. for all connectors l : m1.p1 ↔ m2.p2, {p1, p2} ⊆ 

wiredports(c) 

6. for every port p ∈ wiredports(c) there is a l : m.p ↔ 
F ∈ K 

7. for every port p ∈ unwiredports(c) there is no l : 

m.p ↔ F ∈ K. 

If any component of a capsule diagram is not specified, 
we write it as −. This is useful for describing partially 

specified models, or abstracted models. 

Note that this definition does not include any ref-

erence to protocols. This is by design. Our goal is to 
provide a behavioural semantics of UML-RT models, 

but protocols play a static, syntactic role in UML-RT. 

Protocols can be understood as port types. As future 
work we will formalize such a type system, but we leave 

it out of our present formalization as it would distract 

us from the behavioural aspects. 

Definition 11 (Capsule models) The set UMLRT 

capsule models is defined by the following BNF: 

U ::= [c0, c1, ..., cn] UML-RT model 

where c0 is designated the model’s top-capsule, and 

such that for each capsule ci, for each part b : o mj ∈ 
parts(ci), there is a capsule cj such that mj = name(cj ), 
this is, all sub-capsules must be defined in the model. 

Example 5 Consider the capsule diagram from Figure 1. 

Suppose that in that diagram, capsule B is fixed, cap-
sule C is optional and capsule D is a plug-in part. Fur-

thermore, suppose that s1 is the term representing the 

state machine of the capsule according to the syntax 
from Definition 3. Then the model is represented by 

def 
U = [c1, c2, c3, c4] 

where each ci is a term representing the capsules as 

follows: 

def 
c1 = [A, {p1 : w rel, p2 : u end, p3 : u rel, p4 : w int} 

s1, 

{b1 : fix B, b2 : opt C, b3 : plug D}, 

{l1 : p1 → B.p5, l2 : p4 → C.p8, 

l3 : p3 → D.p11 , l4 : B.p6 → C.p9, 
l5 : B.p7 → D.p10 }, ∅] 

def 
c2 = [B, {p5 : w −, p6 : w −, p7 : w −}, −, −, −, ∅] 

def 
c3 = [C, {p8 : w −, p9 : w −, p13 : u −}, −, −, −, ∅] 

def 
c4 = [D, {p10 : w −, p11 : w −, p12 : u −}, −, −, −, ∅] 

We note the following. First, in the set of connec-

tors, we can use either the capsule name or the name 

of the part (bi) in qualified port references, as per Defi-
nition 9, so for example l1 : p1 → B.p5 could have been 

written l1 : p1 → b1.p5. Also, the direction of the arrow 

is not relevant, as messages can flow in either direction, 
so we could have written l1 : B.p5 → p1. We also allow 

a bidirectional arrow as well: l1 : p1 ↔ B.p5, however 

the designer may intend a specific direction for infor-
mation flow, so the arrow can be used as a suggestion. 

This does not have an impact on the translation. Fi-

nally, a particular wiring of the capsules ports has been 

assumed. 

Also note that in capsules c2, c3 and c4 we have left 
the kinds of ports, state machines, parts and connec-

tors unspecified. We could interpret this as a partially 

specified model, or an abstracted model. However, to 

obtain the actual semantics with our translation, the 
model must be fully specified. 

5.1.2 An action language 

In UML-RT actions are used in state machines, but 

most significant actions perform operations related to 

capsules, such as sending messages, or creating new cap-
sules. For this reason, we introduce a syntax for actions 

in this section. 

The syntax presented here includes only a subset of 

all possible operations in UML-RT. Nevertheless, these 

seem to form a core subset of actions. 
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C ::= send e(d) to p 

| inform p in t 
| registerspp p on s 

| registersap p on s 

| deregisterspp p on s 

| deregistersap p on s 

| incarnate b on t 
| destroy b 

| import m in b 

| deport m from b 

| let x = E in C 

| a :=  E 

| if E then C1 else C2 

| C1; C2 

Fig. 16 Syntax for the action language. 

Definition 12 (Actions) The set Acts of all possi-
ble actions from Subsection 4.1 is defined according to 

the BNF shown in Figure 16, (SVP 3) where C ranges 

over Acts, and where p ∈ Nports , e ∈ Nevt , d ∈ Vals, 
b ∈ Nparts , and t ∈ Nlthr . Expressions E can include 

attribute access. 

Informally, these actions do the following: 

–  send e(d) to p sends event e with data d through 

port p. 
–  inform p in t sets up a timeout event on port p 

after t seconds. 

–  registerspp p on s registers the unwired port p as 
an SPP with unique service name s. 

–  registersap p on s registers the unwired port p as 

an SAP with unique service name s. 
–  deregisterspp p on s deregisters the unwired port 

p as an SPP with unique service name s. 

–  deregistersap p on s deregisters the unwired port 

p as an SAP with unique service name s. 
–  incarnate b on t incarnates optional capsule part b 

on logical thread t. 

–  destroy b destroys optional capsule part b. 
–  import m in b imports capsule instance m in plug-

in capsule role b. 

–  deport m from b removes capsule instance m from 
plug-in capsule role b. 

–  let x = E in C declares a local variable x initialized 

to the value of E with scope C, and executes C. 

–  a := E assigns the value of expression E to the 
capsule’s instance attribute a. 

–  if E then C1 else C2 executes C1 if the value of 

E is true, otherwise, executes C2. 
–  C1; C2 executes C1 and then C2. 

5.2 Translating capsule diagrams 

Mapping UML-RT models to πklt involves the follow-
ing: 

–  Mapping state machine diagrams to process defini-

tions 

–  Mapping capsule diagrams to process definitions 
–  Representing UML-RT “controllers”, which guide 

the execution of the system 

–  Representing the association of capsules to threads 

Each of these issues is largely independent of the others, 
and thus the combined map has a modular structure. 

We describe each of these in the following subsections. 

We begin by defining the association of capsules to 

threads in Subsection 5.2.1, then describe how to rep-

resent controllers in Subsection 5.2.2 followed by the 
enco ding of capsules in Subsection 5.2.3. In Subsec-

tion 5.2.4 we detail the behaviour of ports and services. 

In Subsection 5.2.5 we deal with optional and plug-in 
parts. In Subsection 5.2.6 we translate the action lan-

guage into πklt terms. In Subsection 5.2.7 we define the 

timing mechanism. Finally, in Subsection 5.2.8 we de-

fine the full translation, integrating all of the above. 

5.2.1 Mapping capsules to threads 

In order to support some deployment requirements, in 

UML-RT it is possible to associate each capsule to a 

logical thread. Each logical thread can in turn be as-
signed to a physical thread. Each physical thread cor-

responds to exactly one controller, and each controller 

corresponds to exactly one physical thread. Hence, in 
addition to the UML-RT model, we must take into ac-

count: 

–  the map from capsules to logical threads, and 

–  the map from logical threads to physical threads 

Since the assignment to physical threads determines 
the controller of a capsule, this assignment is seman-

tically meaningful, as capsules associated to different 

controllers will be able to execute simultaneously and 

use separate event pools. On the other hand, multiple 
logical threads on the same physical thread behave just 

as one logical thread. Therefore what we are interested 

in is the composition of these two maps. 

Let us assume that Nlthr denotes the set of possi-
ble logical thread names, and Npthr denotes the set of 

physical thread names. 

Definition 13 (Capsule-to-thread assignment) 

Let NC ⊆ Ncap be a set of capsule names, NL ⊆ Nlthr 

be a set of logical thread names, and NP ⊆ Npthr a 

set of physical thread names. A capsule-to-logical-thread 
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assignment over NC and NL is a function θL : NC → 
NL, i.e., a map from capsule names to logical-thread 
names. A logical-to-physical-thread assignment over NL 

and NP is a function θP : NL → NP , mapping logical 

thread names to physical threads. The capsule-to-thread 
def 

assignment is the composition of these two maps: θ = 
θP ◦ θL : NC → NP . For convenience we also define 

CAP2TH as the set of all possible capsule-to-thread 

assignments. 

This assignment is used in the translation by creating 
a new instance of a controller for each physical thread, 

and linking a capsule m to the controller for the thread 

θ(m) (Subsection 5.2.8). 

5.2.2 Controllers 

Each capsule is associated with a controller. Controllers 

are objects which guide the execution of a capsule or 
set of capsules. Controllers are responsible for imple-

menting the run-to-completion semantics. A controller 

contains an event pool, and thus, all capsules associated 
to it share the same event pool. Hence at any point in 

time, amongst all capsules associated to a controller, 

there will be only one capsule, or more precisely one 

state machine active, i.e., executing an event. 

During execution, capsules send each other mes-
sages or events. An event is sent to a specific port in the 

target capsule, and may have additional data associated 

with it which is transmitted as part of the message. 

In our mapping, capsule ports and connectors are 

represented as kiltera events or channels, so sending an 
event e with data d to a port p will be represented as 

triggering the event p with the pair (e, d) as parameter. 

On reception, if the port is a relay port, the message 
will go directly to the final receiver. If the port is an 

end port, the capsule must have a state machine. In 

this case, the receiving capsule forwards this informa-
tion, the tuple (p, e, d) to its controller, to be queued 

so that it is processed when the controller decides. The 

capsule must also forward to the controller, the state 

machine’s input port smi, and the event smc where 
the machine will signal it has completed the execution 

of an event. The smc port is called ctrl in the defini-

tion of states (see Definition 6, Definition 7 and Defi-
nition 8). Thus, capsules send each other messages of 

the form (e, d), controllers queue messages of the form 

(smi, smc, p, e, d) and state machines expect messages 
of the form (p, e, d). 

Definition 14 (Controller events and event pools) 

An inter-capsule message is a pair (e, d) where 

–  e is the name of a UML-RT event 

–  d is a reference to some data object, carried by the 

event 

A state machine input message is a triple of the form 

(p, e, d) where 

–  p is the name of the target port in the receiving 

capsule, 
–  e is the name of a UML-RT event, 

–  d is a reference to some data object, carried by the 

event 

A controller message is a tuple of the form: 

(smi , smc, p, e, d) 

where: 

–  smi is the input port of the state machine that must 

deal with the event, 
–  smc is the state machine’s event which signals com-

pletion, 

–  p is the name of the target port in the receiving 
capsule, 

–  e is is the name of a UML-RT event, 

–  d is a reference to some data object, carried by the 

event 

Controllers consist of two components: an event pool, 

and a Dispatcher . 

An event pool process is a πklt process which has the 

following interface: 

proc EventPool(put, get) 

where put is a port where events are received by the 

queue, get is a port to get and remove the first item 

in the queue. The event pool process in a controller 
expects, on port put a message of the form of controller 

messages described above. We do not provide a specific 

implementation of such process in order to leave open 
the particular queuing policy desired. (SVP 6) 

A Dispatcher is a process that takes the first event avail-
able in the queue and forwards it to the appropriate 

capsule, more specifically to the target capsule’s state 

machine. Since the event pool holds tuples of the form 
(smi , smc, p, e, d) which come with the channel smi to 

the target state machine, all the Dispatcher has to do 

is to forward the tuple (p, e, d) to that channel and wait 
for the event smc which signals that the state machine 

has finished processing the event. Once this smc event is 

received, the controller can process the next event in the 

queue. Since a new event is taken from the queue and 
dispatched only when the completion event has been re-

ceived, the controller guarantees the run-to-completion 

semantics. 
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Definition 15 (Controllers) A controller is an in-

stance of the following process: 

proc Controller(inp) = 

def { 
proc EventQueue(put, get) = Q; 

proc Dispatcher(qget) = 

new first in 
(qget!first → 
when { first ?(smi, smc, p, e, d) → 

smi !(p, e, d) → 
when {smc? → Dispatcher(qget)}} ) 

} in 

new q in (EventQueue(inp, q) I Dispatcher(q)) 

where Q is the implementation of the event pool. 

5.2.3 Translating capsules 

Each capsule is represented as a single process definition 
which, when instantiated, contains: 

–  An instance of the capsule’s state machine (called 

StateMachine) 
–  An instance of each sub-capsule (called Cmi for each 

fixed capsule named mi, Opt for each optional part 

and Plugin for each plug-in part.) 

–  An instance, for each port, of a port-handling pro-
cess (called WiredEIPort and UnwiredEIPort de-

pending on its type), and 

–  An instance of a process CapsuleHandler which han-
dles operations on the capsule itself, such as those 

performed by actions in the action language, 

Every UML-RT connector is represented by a pair of 
channels: one for sending messages in each direction. 

For each port/channel p where input is expected, there 
′ is a port/channel p which is used for output. 

The interface of the capsule’s process definitions 
′ contains a pair of ports for each end-p ort (ep, e ) and p 

′ relay-port (rp, r ) of the capsule6, a ctrl port to link the p 

capsule to its controller, and a hook channel where the 

capsule may receive certain instructions and queries. 
The hook channel is unique for each capsule, and thus 

can be thought of as the capsule’s address or identifier. 

Internally the definition includes the process defini-

tion corresponding to the state machine (this is called 
DStateMachine below), and a definition of the capsule 

handler (DCapsuleHand ler ). Additionally, there is a pair 

of local events/channels for each internal-port (ip, i ′ )p 

In  kiltera,  channels  are  bidirectional,  allowing  both  input 
and output on the same port. Nevertheless, we represent each 
UML­RT port (resp. connector) by a pair of kiltera ports (resp. 
channels) to differentiate between input and output on a port. 

and and for each port connector (lp, l ′ ). There is also a p 

hooki channel for each sub-capsule instance (fixed, op-
tional or plug-in), a port handle hp linking each port p 

to its port handler process, and a local variable ai for 

each attribute. Furthermore, there are local events/channels 
smi, smc, and smk representing, respectively, the state-

machine’s input and completion, this is, smi is where 

the state machine receives events, smc is where the 
state-machine signals that an event has been fully pro-

cessed, smk used to kill the state machine when de-

stroying the capsule. 

The translation of a capsule c is parametrized by 

an assignment θ ∈ CAP2TH of capsule names to 

controllers, or more precisely to the input channel of 
the capsule’s controller. We also assume a global event 

name sink, used as a receptor for unconnected ports. 

We will use the following conventions for naming 
ports and channels: 

′ ′ –  End ports will be written as e, e , e1, e 1, ... 
′ ′ –  Relay ports will be written as r, r , r1, r 1, ... 

–  Internal ports will be written as i, i ′ , i1, i ′ 1, ... 

–  Local connectors will be written as l, l ′ , l1, l 1 
′ , ... 

–  Capsule attributes will be written as a, a1, ... 

Definition 16 (Capsules to processes) Given some 

UML-RT model U = [c0, c1, ..., cn] and a capsule c = 

[m, G, s, P, K, A] in U , with endports(c) = {e1, ..., enE 
}, 

relports(c) = {r1, ..., rnR 
}, intports(c) = {i1, ..., inI 

}, 
parts P = {b1 : o1m1, ..., bnP 

: onP 
mnP 

}, with each 
def 

mi = name(ci) for some capsule ci ∈ U , connectors 

K = {k1, ..., knK 
}, and attributes A = {a1, ..., an}, we 

define c’s translation into πklt by the function TC [·] : 
CAP → CAP2TH → KLT, as shown in Figure 17, 

where: 

def 
–  L = {name(ki)|ki ∈ K} = {l1, ..., lnK 

} 
–  DStateMachine is the translation of the capsule’s state 

machine, if s � ⊥, more precisely DStateMachine =  is 
′ TSM [s] according to Definition 8 (The e and i ′ p p 

ports of the state machine are used by the state 

machine only to send events to sub-capsules (i ′ )p 
′ or to other capsules (e ). All inputs to the state p 

machine, including those from internal ports are re-

ceived through the inp port of the state machine, 

as, according to the run-to-completion semantics, a 
state machine must handle one and only one input 

event at a time.) 

–  DCapsuleHandler is the definition of CapsuleHandler 

given in Definition 17, 
–  each Cmj is the name of the process definition for 

the (sub)capsule named mj , subject to the require-

ments described below, 
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def 
TC [c]θ = 

′ ′ proc Cm(hook, e1, e 1, ..., enE , e ,nE 
′ ′ r1, r 1, ..., rnR , r , ctrl, async) = 

new smi , smc , smk , 
i1, i ′ 1, ..., i ′ , 

nR 

nI 

l1, l 1 
′ , ..., lnK , l 

′ ,nK 

h1, ..., h|G|,  

hook1 , ..., hook|P| in  
def {  

DStateMachine ; DCapsuleHandler ; DBody ; 
var a1 = null; · · · ; var a|A| = null 

} in 
if async then 

′ new smc  in 
′ ctrl !(smi , smc , “sys”, “init”, null) → 

when { smi ?(“sys”, “init”, null) → 
′ Body(smc , true) } 

else Body(smc, false) 

where DBody is 

′ proc Body(smc , async) = 
′ WiredEIPort(hj , pj , pj , ctrl , smi , smc, “pj”) 

pj :wend∈G  
′  I WiredEIPort(hj , pj , pj , ctrl , smi , smc, “pj”) 

pj :wint∈G  
′  I WiredRPort(hj , pj , pj , lk , l ′ )

pj :wrel∈G  k 
′ I UnwiredEIPort(hj , pj , pj , ctrl , smi , smc, “pj”) 

pj :uend∈G  
′  I UnwiredEIPort(hj , pj , pj , ctrl , smi , smc, “pj”) 

pj :uint∈G  
′  I UnwiredRPort(hj , pj , pj , lk , l ′ )

pj :urel∈G  k 
′ ′ ′ I Cmj (hookj , pj,1, p j,1, pj,2, p j,2, ..., pj,h , p 

bj :fix mj ∈P  j,h , 

θ(mj ), false) 

I Opt(hook, hookj , Cmj ,bj :opt mj ∈P 
′ ′ ′ pj,1, p j,1, pj,2, p j,2, ..., pj,h , p j,h , ctrl ) 

I Plugin(hook, hookj , Cmj ,bj :plug mj ∈P 
′ ′ ′ pj,1, p j,1, pj,2, p j,2, ..., pj,h , p )j,h 

I when { (hook1 , hook2 , · · · , hook|P|)? →  
(CapsuleHandler((hook1 , ..., hook|P|))  

′ ′ I StateMachine(smi , smc , smk , e 1, ..., e ,nE 

i ′ 1, ..., i ′ )nI 

I when {smc ? → hook! → if async then smc ′ !}) 

Fig. 17 Translation of capsules. 

–  the port handling process definitions WiredEIPort, 
WiredRPort, UnwiredEIPort and UnwiredRPort are 

given in Definition 18, 

–  the process definitions Opt and Plugin are given in 
Definition 20 and Definition 21 (Subsection 5.2.5). 

These definitions are not nested inside the capsule’s 

definition as they are generic, independent of the 
capsule’s specific and so they can be defined glob-

ally, as is done in Definition 25. 

–  Each Cmj is the name of the process definition for 

capsule ci such that mj = name(ci). This definition 
is TC [ci]ρ and is of the form: 

′ ′ ′ proc Cmj (hook, p1, p 1, p2, p 2, ..., ph, p h, ctrl, async) = ... 

In the invocation of Cmj , the actual port sequence 
′ ′ ′ arguments pj,1, p j,1, pj,2, p j,2, ..., pj,h , p is such that: j,h 

′ – either pj,j′ ∈ R ∪ I and l : pj,j′ ↔ mj .pj ∈ K 

′ –  or pj,j′ = l ∈ L and l : mj .pj ↔ mk.pk ∈ K for 

some port reference mk.pk 

– or pj,j′ = sink and there is no connector l : 

mj .pj′ ↔ F ∈ K 

Explanation 

The Body in the definition of a capsule creates all its 

parts: 1) an instance of the CapsuleHandler process, 
2) an instance of the StateMachine of the capsule, 3) an 

instance of the WiredEIPort process for each wired end 

or internal port, 4) an instance of the WiredRPort pro-

cess for each wired relay port, 5) an instance of the 
UnwiredEIPort process for each unwired end or internal 

port, 6) an instance of UnwiredRPort for each unwired 

relay port, 7) an instance of Cmi for each fixed sub-
capsule mi, 8) an instance of Opt for each optional part, 

and 9) an instance of Plugin for each plug-in part. The 

arguments of fixed, optional and plugin sub-capsules 
are such that they correspond to the connectors in the 

model. Figure 18 shows an overview of the structure of 

this process. 

The Body of the capsule is initialized depending on 
the value of the parameter async. This boolean param-

eter specifies whether the capsule is in the same phys-

ical thread of its parent (i.e., connected to the same 
controller) or not. If async is false, the capsule is in 

the same thread, and Body is executed right away. If 

not, the capsule is initialized by sending a special “sys-
tem initialization” event (“sys”) to the controller, thus 

treating capsule initialization as any other event, and 
′ passing a dummy completion event smc to the con-

troller. The capsule will start executing its Body (creat-
ing its state machine and sub-capsules) when the con-

troller tells it that it can go ahead and do that (on 

reception of the message (“sys”, “init”, null)). 
The last part of the definition of Body holds the 

instantiation of the CapsuleHandler and StateMachine 

processes until all sub-capsules have triggered their hook 
event. This ensures that all sub-capsules are initial-

ized in a bottom-up fashion. (SVP 7) Once all sub-

capsules have triggered their hook, we instantiate the 

StateMachine and CapsuleHandler processes and we 
wait for the state machine to signal on its comple-

tion channel smc when it is ready. The smc event is 

triggered whenever the state machine reaches a stable 
state, namely when entering a basic state. When this 

event is received, the capsule can trigger its hook to in-

dicate its readiness to its parent. Furthermore, if it is an 
asynchronous instantiation, we also trigger the dummy 

′ completion event smc to tell the controller that the 

capsule has been created. 

Definition 17 (Capsule handler) The definition 
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out proc WiredEIPort(h, pin , p , ctrl , smi , smc, pname) =  
when {  
p in ?(e, d) →  

ctrl!(smi , smc, pname, e, d)  
in out → WiredEIPort(h, p  , p  , ctrl , smi , smc, pname) 

| h?(“send”, e, d) →  
p out !(e, d)  

in out → WiredEIPort(h, p  , p  , ctrl , smi , smc, pname) 
| h?“unbind” 

→ UnwiredEIPort(h, ctrl, smi , smc , pname) 
in out | h?(“bind”, p , p )1 1 

out → WiredEIPort(h, pin , p , ctrl , smi , smc, pname)1 1 

| h?“destroy” → done } 

Fig. 19 Wired end or internal ports. 

out in out )proc WiredRPort(h, pin , p , q , q = 
when { 
p in ?(e, d) → 

q in !(e, d) 
in out in out )→ WiredRPort(h, p  , p  , q  , q 

| q out ?(e, d) →  
p out !(e, d)  

in out in out )→ WiredRPort(h, p  , p  , q  , q 
| h?“unbind” 

in out )→ UnwiredRPort(h, q  , q 
in out | h?(“bind”, p , p )1 1 

out in out )→ WiredRPort(h, pin , p , q , q 1 1 

| h?“destroy” → done } 

Fig. 20 Wired relay ports. 

– When a “bind” message arrives with new channels 
in out p , p , the process simply replaces the old links 1 1 

with the new ones. 
– When a “destroy” message arrives, the process stops. 

For a wired relay port, the behaviour is as follows: 

–  When a message (e, d) arrives on the port’s pin , it 
in is resent to the sub-capsule though q . 

out –  When a message arrives on port q from a sub-
capsule, it is resent to the outside through the port 

out p . 

–  Messages “bind”, “unbind” and “destroy” are han-
dled in the same way as end and internal ports. 

For an unwired port, the behaviour is: 

– When a “bind” message arrives with new channels 
in out p , p , the process switches to the wired mode 1 1 

with these new channels as parameters. 

–  When a “destroy” message arrives, the process stops. 

Formally we define these processes below. 

Definition 18 (Ports) The definition DWiredEIPort for 

wired end or internal ports is given in Figure 19. The 

definition DWiredRPort for wired relay ports is given in 

Figure 20. The definition DUnwiredEIPort for unwired 
end or internal ports is given in Figure 21. The defini-

tion DUnwiredRPort for unwired relay ports is given in 

Figure 22. 

proc UnwiredEIPort(h, ctrl , smi , smc, pname) =  
when {  

in out h?(“bind”, p , p )1 1 
out → WiredEIPort(h, pin , p , ctrl, smi , smc, pname)1 1 

| h?“destroy” → done } 

Fig. 21 Unwired end or internal ports. 

out )proc UnwiredRPort(h, qin , q = 
when { 

in out h?(“bind”, p , p )1 1 
out in out )→ WiredRPort(h, pin , p , q , q 1 1 

| h?“destroy” → done } 

Fig. 22 Unwired relay ports. 

The request to send a message may come directly from 

an action (see Definition 22), and the request to be de-

stroyed may come from the capsule’s handler (see Def-
inition 17) but the request to bind or unbind a port 

always comes from a global “service handler”. This is 

because to bind wired ports a globally unique service 
name must be provided for ports to be linked: ports can 

be registered as either service provision points (SPPs) 

or service access points (SAPs). Connections are estab-

lished only between SPPs and SAPs: when an SPP is 
registered under the same service name as some SAP, 

the two become bound (connected). When an action 

registers an unwired port, it sends the registration re-
quest to the service handler, which keeps track of all 

registered ports, and links them whenever two ports 

match the same service name. (SVP 8) 

Definition 19 (Service handler) The definition of 

the service handler process DServiceHand ler is as shown 
in Figure 23. 

The service handler receives requests in the req port. It 

keeps two dictionaries spps and saps. These dictionaries 
are indexed by the service name, and the values are 

(channels to) port handlers. When a request to register 

a port as an SPP arrives for a service name sname, the 
service handler looks up the service name in the saps 

dictionary. If there was an SAP already there under the 

service name, it creates a new pair of channels l, l ′ and 
sends a “bind” message to the port handler of both the 

SPP and SAP, linking them. After this, the new port 

handler is added to the spps dictionary. If there was no 

matching SAP, we only add the new port handler spps. 
A request to register a port as an SAP is symmetric. 

Deregistering is achieved in a similar fashion, sending 

“unbind” messages to the corresponding ports. 

5.2.5 Optional and plug-in parts 

Definition 20 (Optional Parts) The definition DOpt 

of the optional part handler process is defined as shown 

in Figure 24. 
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proc ServiceHandler(req, spps, saps) = 
when { 
req?(“registerspp”, spp, sname) → 
(def { var sap = dict_get(sname , saps) } in 

if sap! = null then 
new l, l ′ in 

(sap!(“bind”, l ′ , l)) I spp!(“bind”, l, l ′ )) 
I ServiceHandler(req, dict_put(sname, spp, spps), saps)) 

| req?(“registersap”, sap, sname) → 
(def { var spp = dict_get(sname , spps) } in 

if spp  � null then = 
new l, l ′ in 

(sap!(“bind”, l ′ , l)) I spp!(“bind”, l, l ′ )) 
I ServiceHandler(req, spps, dict_put(sname, sap, saps))) 

| req?(“deregisterspp”, spp, sname) → 
(def { var sap = dict_get(sname, saps) } in 

(sap!“unbind” I spp!“unbind”) 
I ServiceHandler(req, dict_del(sname, spps) 

dict_del(sname, saps))) 
| req?(“deregistersap”, sap, sname) → 

(def { var spp = dict_get(sname , spps) } in 
(sap!“unbind” I spp!“unbind”) 

I ServiceHandler(req, dict_del(sname, spps) 
dict_del(sname, saps))) } 

Fig. 23 Service handler 

proc Opt(parenthook, hook, 
′ ′ ′ Cm, p1, p 1, p2, p 2, ..., ph, p h, ctrl) = 

when { 
hook?(“incarnate”, pthread) → 

new newhook in 
(parenthook!(“addhook”, newhook) 
I (if pthread = ctrl then 

′ ′ ′ Cm(newhook, p1, p 1, p2, p 2, ..., ph, p h, 

ctrl, false) 
else 

′ ′ ′ Cm(newhook, p1, p 1, p2, p 2, ..., ph, p h, 

pthread, true)) 
I Opt(parenthook, hook, 

′ ′ ′ Cm, p1, p 1, p2, p 2, ..., ph, p h, ctrl)) 
| hook?“destroy” → done } 

Fig. 24 Optional parts. 

In this definition, an optional part acts as a placeholder, 
which can receive requests to incarnate a capsule Cm 

in some thread t (or in the same thread as its parent, 

if pthread is ctrl ). When a request to incarnate a new 

instance arrives, a message is sent to the containing cap-
sule’s handler to add the new Cm is instantiated with 

the proper connections. When a request to be destroyed 

arrives, the part simply stops. In this case, the parent’s 
capsule handler takes care of destroying all created in-

stances. This destroys only the part, not the capsules 

incarnated in it. Their destruction is addressed by the 
capsule handler itself. 

Definition 21 (Plug-in Parts) The following auxil-

iary process is used to connect ports: 

proc Plugin(parenthook, hook, 
′ ′ ′ Cm, p1, p 1, p2, p 2, ..., ph, p h, plugs) = 

when { 
hook?(“import”, targethook) → 

new unboundports, u1, ..., uh in 
(targethook!(“reqimport”, unboundports) → 

′ ′ ′ when { unboundports?(p̄1, p̄1, p̄2, p̄2, ..., p̄h, p̄ ) → h 
h ′ ′ Plug(pi , pi , p̄i , p̄i , ui ) }
i=1 

I Plugin(parenthook, hook, 
′ ′ ′ Cm, p1, p 1, p2, p 2, ..., ph, p h, (u1, ..., uh))) 

| hook?(“deport”, targethook) →  
(  u!  

u∈plugs 

I Plugin(parenthook, hook, 
′ ′ ′ Cm, p1, p 1, p2, p 2, ..., ph, p h, ())) 

| hook?“destroy” → u! }
u∈plugs 

Fig. 25 Plugin parts. 

′ ′ proc Plug(p1, p 1, p2, p 2, unplug) = 
when { 

′ ′ ′ p ?x → (p2 !x I Plug(p1 , p1 , p2 , p2 , unplug)) 1 
′ ′ ′ | p ?x → (p1 !x I Plug(p1 , p1 , p2 , p2 , unplug)) 2 

| unplug? → done } 

The definition DPlugin of the plug-in part handler 
process is defined as shown in Figure 25. 

The Plug process simply binds two port pairs, by act-
′ ing as a message forwarder, connecting the output p1 

′ to the input p2 and the output p to the input p2. The 2 

Plugin waits for import requests which come with the 

imported (targethook). The plug-in part asks that cap-

sule to provide a list of its (unbounded) ports to be 
bound. When the answer arrives, these ports are bound 

by the P lug instances. The plugs parameter keeps a list 

of the unplug port for each plug. When a “deport” or 

“destroy” message arrives a signal is sent to unplug all 
plugs. 

Example 6 Let us revisit the capsule from Figure 1 and 

Example 5. Figure 26 shows the (top-level) translation 
of this capsule. See also Figure 18. 

Note that the order of ports in the definition is such 

that end-ports (p2) go first and they are followed by 

relay ports (p1 and p3). We list the connectors for in-
ternal ports (l2, l ′ ) before the rest. The process CB is 2 

the process defined for capsule B. Similarly for capsules 

C and D. Their definitions will be of the form: 

′ ′ ′ proc CB(hook, p5 , p5 , p6 , p6 , p7 , p7 , ctrl) = ... 
′ ′ ′ proc CC (hook, p8 , p8 , p9 , p ctrl ) = ... 9 , p13 , p13 

′ ′ ′ proc CD(hook, p10 , p10 , p11 , p11 , p12 , p12 , ctrl ) = ... 

Note how the ports and links passed to the process 

invocation CB (in Body) correspond to the (positional) 
parameters of its definition according to the connections 

in the diagram. So for example, parameter p5 of CB 

receives as argument p1 since there is a relay link l1 
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def 
TC [c1]θ = 

′ ′ ′ proc CA(hook, p2 , p2 , p1 , p1 , p3 , p3 , ctrl ) = 
new smi , smc , smk ,  

l2, l 2 
′ ,  

l1, l 1 
′ , l3, l 3 

′ , l4, l 4 
′ , l5, l 5 

′ ,  

h1, h2, h3, h4,  

hook1 , hook2 , hook3 in 
def {DStateMachine ; DCapsuleHand ler ; DBody } in 

if async then 
′ new smc  in 

′ ctrl !(smi , smc , “sys”, “init”, null) → 
when { smi ?(“sys”, “init”, null) → 

′ Body(smc , true) } 
else Body(smc, false) 

where Body  is 

′ proc Body(smc , async) = 
′ WiredRPort(h1 , p1 , p1 , l1 , l1 

′ ) 
I WiredEIPort(h4 , l2 , l2 

′ , ctrl, smi , smc , “p4”) 
′ I UnwiredEIPort(h2 , p2 , p2 , ctrl, smi , smc, “p2”) 
′ ′ I UnwiredRPort(h3 , p3 , p3 , l3 , l3 ) 

′ I CB(hook1 , l1 , l1 
′ , l4 , l4 

′ , l5 , l5 , θ(B), false) 
′ I Opt(hook, hook2 , CC , l2 , l2 , l4 , l4 

′ , ctrl) 
′ I Plugin(hook, hook3 , CD, l5 , l5 

′ , p3 , p3 , ()) 
I when { (hook1 , hook2 , hook3 )? → 

(CapsuleHandler((hook1 , hook2 , hook3 )) 
′  ′ I StateMachine(smi , smc , smk , p2 , l2 )  

I when {smc? → hook! → if async then smc ′ !})  

Fig. 26 Translation of capsule c1 from Example 5. 

between them, and parameter p6 receives l4, the local 
channel that represents the connector with the same 

name. The same applies to the optional and plug-in 

parts. 
The hook1 links CA’s capsule handler and state ma-

chine with sub-capsule B. Similarly, hook2 is used to 

interact with part C and hook3 to interact with part 

D. 
The definition DCapsuleHandler of the capsule han-

dler is as follows: 

proc CapsuleHandler(hooklist) =  
when {  
hook?“destroy” →  

(smk! I h!“destroy”  h∈hooklist 

I h1 !“destroy” I h2 !“destroy” 

I h3 !“destroy” I h4 !“destroy”) 

| hook?(“addhook”, subhook) → 
CapsuleHandler(list_add(subhook, hooklist)) 

| hook?(“delhook”, subhook) → 
CapsuleHandler(list_del(subhook, hooklist)) 

| hook?(“reqimport”, ports) → 
′ ′ ′ ports!(p2, p 2, p1, p 1, p3, p )3 

→ CapsuleHandler(hooklist) } 

5.2.6 Translating actions 

We now present the translation α for the action lan-

guage from Definition 12. 

def 
α[send e(d) to pi]c =  hi !(“send”, e, d) 

def 
α[inform p in t]c =  timer !(t, p) 

def 
α[registerspp pi on s]c =  shr !(“registerspp”, hi, s) 

def 
α[registersap pi on s]c =  shr !(“registersap”, hi, s) 

def 
α[deregisterspp pi on s]c =  shr !(“deregisterspp”, hi, s) 

def 
α[deregistersap pi on s]c =  shr !(“deregistersap”, hi, s) 

def 
α[incarnate bj on L]c =  hookj !(“incarnate”, θP (L)) 

def 
α[destroy bj ]c =  hookj !“destroy” 

def 
α[import mk in bj ]c =  hookj !(“import”, hookk ) 

def 
α[deport mk from bj ]c =  hookj !(“deport”, hookk ) 

def 
α[let x = E in C]c =  def {var x = E} in α[C]c 

def 
α[x :=  E]c =  x :=  E 

def 
α[if E then C1 else C2]c =  if E then α[C1]c else α[C2]c 

def 
α[C1; C2]c =  α[C1]c; α[C2]c 

Fig. 27 Mapping actions 

Definition 22 (Actions to processes) We define the 
map α : Acts → C → KLT, where Acts is the ac-

tion language from Definition 12, with context set C 
whose elements are triples ((p, e, d), ports, θ) of incom-
ing events, lists of ports and thread assignment as shown 

in Figure 27. In this definition: 

–  in the case of inform, the channel timer is the global 

channel to request a timeout event from the Timer 

process (Definition 23) declared in Definition 25, 

–  in the cases for send and inform as well as for the 
sap/spp (de)registering operations, hi is the name 

of the handle channel for port pi, and shr is the 

(global) request channel for the ServiceHandler (Def-
inition 19), declared at the top level (Definition 25). 

–  in the case for incarnate, hookj is the name of the 

channel corresponding to part bj and 
–  in the cases for import and deport, hookk is the mk 

and hookj is the name of the channel corresponding 

to part bj . Note that we assume that t is the name 

of a channel which corresponds to a physical thread 
(see Definition 25 below). 

The actions corresponding to local variables, assign-

ment, conditionals and sequential composition are trans-

lated directly into their corresponding constructs in kil-

tera. Note however, that these constructs can them-

selves be expressed purely in terms of the other con-

structs. Here we do not elaborate on such enco ding, as 

it falls beyond the scope of this paper. 

5.2.7 The timer 

The timer process accepts requests to schedule time-

out signals on a given port. When it receives a request 
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(t, p), it will schedule an event trigger on p after a de-

lay t. This is done asynchronously so that multiple cap-
sules/threads can make such scheduling requests with-

out blocking or delaying each other. 

Definition 23 (Timer) The definition DTimer of the 

timer process is as follows: 

proc Timer(timer) = 

when { timer?(time, port) → 
wait time → port!“timeout” → 
Timer(timer) } 

5.2.8 The full system 

The meaning and behaviour of a UML-RT model de-
pends on the assignment of capsules to threads (and 

therefore to controllers). Thus the input of the transla-

tor must include: 

–  The UML-RT model (the top-level capsule, includ-
ing the definitions of all capsules and state ma-

chines): a CAP element. 

–  The maps from capsules to logical-threads and to 
physical threads: the pair of maps θL and θP . 

The kiltera process simulates the entire model by col-

lecting all capsule definitions, and instantiating the top 
capsule and the controllers, with one controller for each 

thread. 

Definition 24 (UML-RT configuration) A UML-
RT configuration is a tuple (U, NL, NP , θL, θP ) where 

–  U ∈ UMLRT, i.e., U = [c0, c1, ..., cn] 

–  c0 ∈ CAP is U ’s top-level capsule term, 
–  NL ⊆ Nlthr is a set of logical-thread names, 

–  NP ⊆ Npthr is a set of physical-thread names, 

–  θL : NC → NL is a capsule-to-logical-thread assign-
def 

ment where NC = {name(c) | c ∈ U} is the set of 
names of all capsules in the model, 

–  and θP : NL → NP is a logical-to-physical-thread 

assignment. 

We call UMLRTC the set of all possible UML-RT con-
figurations. 

Now we can provide the translation of a full input model. 
We create a sink to serve as sink for state machine 

events, an event shr where the service handler will re-

ceive requests, an event timer where timer will receive 
requests, a channel tophook to serve as the hook chan-

nel for the top-level capsule, and an event/channel Ti 

for each thread, which will be specific to each controller. 

The main construction simply creates an instance of the 
service handler, of the timer, the controllers (one for 

each thread) and the top-level capsule, which in turn 

will instantiate its sub-capsules. 

Definition 25 (Translation of a full configuration) 

Given a UML-RT configuration M = (U, NL, NP , θL, θP ) 
with a model U = [c0, ..., ck] ∈ UMLRT, and NP = 

{T1, T2, ..., Tn} the set of physical thread names, the 

translation of M is M[M] where the function M[·] : 
UMLRTC → KLT is defined as follows: 

def 
M[M] =  

new sink, shr , timer in  

def {  
Dc0 

; Dc1 
; Dc2 

; · · · ; Dcm 
;  

DControl ler ; DServiceHandler ; DTimer ;  

DOpt ; DPlugin ;  

DWiredEIPort ; DUnwiredEIPort ;  

DWiredRPort ; DUnwiredRPort ;  
} in 

new tophook, T1, T2, ..., Tn in 

(Cm0 (tophook, θ(m0 )) 
I ServiceHandler(shr , empty_dict, 

empty_dict) 

I Timer(timer) 
nI Controller(Ti )) i=1 

def 
where m0 = name(c0) is the top-capsule’s name, θ = 

θP ◦ θL is the capsule-to-thread assignment, 

def 
Dci 

= TC [ci]θ 

is the translation of capsule ci (see Definition 16) and 
where DControl ler is the definition of Controller (see 

Definition 15), DServiceHandler is the definition of the 

ServiceHandler process from Definition 19, DTimer is 
the definition of Timer from Definition 23, DOpt is the 

definition of Opt (see Definition 20), DPlugin is the def-

inition of Plugin (see Definition 21), and DWiredEIPort 

and DUnwiredEIPort are the definitions of the processes 

for port-handling given in Definition 18. . 

Example 7 Let us finish by revisiting Example 1. As-

sume that c0, c1, c2 are the representations of capsules 

A, B and C, and Li and Ti are the names of logical and 
physical threads. The model, or more precisely, the con-

figuration with all capsules mapped to the same physi-

cal thread is 

M0 = ({c0, c1, c2}, {L0, L1}, {T0, T1}, 

{A  → L0, B  → L0, C  → L1}, {L0  → T0, L1  → T0}) 

and the configuration with capsule C mapped to a dif-

ferent physical thread is 

M1 = ({c0, c1, c2}, {L0, L1}, {T0, T1}, 

{A  → L0, B  → L0, C  → L1}, {L0  → T0, L1  → T1}) 
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def 
M[Mi] = 

new sink , shr , timer in  
def {  

Dc0 ; Dc1 ; Dc2 ;  
DControl ler ; DServiceHand ler ; DTimer  

DOpt ; DPlugin ;  
DWiredEIPort ; DUnwiredEIPort ;  
DWiredRPort ; DUnwiredRPort ;  

} in  
new tophook, T0, T1 in  

(CA(tophook, T0 ) 
I ServiceHandler(shr , empty_dict, empty_dict) 
I Timer(timer) 
I Controller(T0 ) I Controller(T1 )) 

Fig. 28 Generated  πklt model  for  Mi (Example  1  with  two 
physical threads). 

In both cases C is associated with logical thread L1 

but in the first, L1 is assigned to physical thread T0 

(the same as A and B) whereas in the second it is as-
signed to T1. Then, the resulting πklt according to Defi-

nition 25, is shown in Figure 28. So while in both cases 

we have two physical threads (and two controllers), the 
second controller is used only in M1. More precisely, the 

incarnate action in state n2 of A (incarnate C on L1) 

is translated according to Definition 22 into the term 

hook2 !(“incarnate”, θP (L1)) where hook2 is the input 
channel for CC ’s control handler. This means that for 

M0 this action is hook2 !(“incarnate”, T0) and for M1 

it is hook2 !(“incarnate”, T1). Hence, according to Def-
inition 20, when the Opt process inside the top-level 

capsule CA receives this incarnation message, it will 

create a newhook link to the new capsule instance and 
send an (“addhook”, newhook) message to CA’s capsule 

handler. Then it will invoke the process CC to instanti-

ate the new capsule, but in the first case the invocation 
′ will be CC (newhook, p4 , p4 , T0 , false) whereas in the 

′ second case it will be CC (newhook, p4 , p4 , T1 , true). 

As a result, in the first case the instance of CC will 

communicate with the controller on T0 thus sharing the 
same event pool with CA and CB, and in the second, 

with the controller on T1 with its own separate event 

pool. We could modify the example to have only one 
physical thread and one or more logical threads with 

the same effects. 

6 Related work 

There have been many approaches proposed in the liter-

ature, aiming to formalize different aspects of UML. For 

example, [13] proposes a semantics of activity diagrams 
using labelled transition systems, while [59] presents a 

semantics of activity diagrams using Petri Nets. In [32] 

a semantics of sequence diagrams is proposed in terms 

of certain kind of transition system, while [8] uses a 

custom temporal logic for defining the semantics of se-
quence diagrams. Aspects of UML state machines have 

been formalized, amongst others, in [33] using General-

ized Stochastic Petri Nets, in [45] using term rewriting 
systems, in [39] and in [62] using CSP, or in [37] using 

LOTOS. A semantics for a kernel action language for 

UML has been proposed in [14] using labelled transition 
systems. 

Other related work includes [9] where a subset of the 

UML for real-time systems called krtUML is proposed 

and its semantics formalized with symbolic transition 
systems. In [58], a semantics is presented for a subset 

of UML consisting of flat state machines and sequence 

diagrams with no hierarchical structure diagrams using 
linear temporal logic. [36] studies a real-time extension 

of UML state machines providing a semantics in terms 

of timed-automata. In [65] a semantics for a real-time 

variant of standard UML state machines is presented 
in terms of transition systems. 

The book UML 2 Semantics and Applications [30] 

includes several articles proposing formal semantics for 
fragments of UML 2, including non-flattening seman-

tics for state machines. Nevertheless, UML-RT itself is 

not the same as UML or real-time UML, and work for-

malizing it is less common. 

A number of papers have presented formal seman-

tics for small subsets of UML-RT using either CSP or 

some timed variant of CSP [16, 12, 15, 7, 1]. 

In [16], only capsule diagrams are translated into 
CSP processes, assuming synchronous communication 

(the default in CSP), no state machines, and no sup-

port for dynamic features such as optional or plug-in 
capsules, dynamic wiring or thread assignments. 

In [12], a translation to CSP is also provided with 

the aim of studying the preservation of consistency in 

model evolution. This translation deals only with flat 
state machines and flat structure diagrams and no dy-

namic structure features or thread assignments. 

The translation in [15] actually goes in the opposite 

direction, from CSP processes to UML-RT. 

In [7], and later in [1], a transformation of UML-RT 
models into a timed variant of CSP called CSP+T is 

proposed. It addresses hierarchical state machines but 

without group transitions or history, and like the previ-
ous papers, it relies on CSP’s synchronous communica-

tion and has no support for dynamic features or thread 

assignment. 

A similar approach has been proposed in [52] where 
the target language is Circus, a combination of CSP and 

Z. This translation suffers from the same limitations of 

the previous ones. 
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It should be noted that all existing approaches to 

the semantics of UML-RT state machines, unlike ours, 
flatten the state machine. This forgets the hierarchical 

structure, which in turn means that there is no obvi-

ous way to enco de the priority of inner transitions over 
outer transitions. Furthermore it complicates traceabil-

ity between model elements and the generated artifact. 

A very different approach is presented in [18] where 

the semantics of a very small subset of UML-RT is de-
scribed as an algebra of flow-graphs. This is an inter-

esting approach, but not only is it limited in its scope 

and coverage of UML-RT but it is also unclear how it 
could be leveraged for analysis. 

The work most closely related to our own is that 

of [61], [31] and [5, 4]. Table 1 summarizes the main 

differences between these and our semantics. 

In [61] a formal semantics for a sub-set of UML-

RT is presented using Structural Operational Semantics 
(SOS) to define a labelled-transition system (LTS) as 

the semantic domain. This has the advantage that the 

meta-theory for SOS over LTSs is well developed. On 
the other hand it does not deal with many essential as-

pects of UML-RT such as optional and plug-in capsules, 

dynamic wiring or capsule-to-thread assignments, and 
no action language is given. Furthermore that paper 

also distinguishes between basic capsules (without sub-

capsules), non-behavioural capsules (without a state 

machine) and behavioural capsules, whereas we do not 
make such a distinction and the three cases are treated 

uniformly. 

In [5, 4] a semantics for UML-RT is proposed us-

ing the π-calculus. However this considers only a very 
small subset of UML-RT, without hierarchical state ma-

chines, no group transitions or history, a very limited 

form of rewiring, no optional or plug-in capsules, no 
threads or controllers, and no attributes. Furthermore, 

the presentation of this semantic mapping is by exam-

ple only, without an actual formal mapping or other 

systematic way of translating models into π-calculus 
terms. 

The work in [31] is much more elaborate with re-

spect to UML-RT than any other attempt. The au-

thors propose a semantics for UML-RT in terms of 
AsmL, an object-oriented language based on Abstract 

State Machines (ASMs). They propose an architecture 

to support alternative semantics for UML-RT by rely-
ing on object-oriented polymorphism in AsmL. Differ-

ent UML-RT concepts are represented as AsmL classes. 

Unlike all previous papers they support optional and 

plug-in classes as well as multiple controllers. However 
they only support flat state machines and no dynamic 

wiring of SPPs and SAPs. Furthermore they do not 

provide an automatic translation of UML-RT models 

so the modeller must manually represent the model as 

an AsmL data-structure. 
Finally we cite our previous work [10] where we in-

troduced early version of the mapping of state machines 

without history or enabled-transition selection policy, 
and without support for capsules. 

7 Concluding remarks 

We have proposed a formal syntax and semantics for 
the UML-RT language in terms of a process algebra 

called kiltera. We believe this is the most comprehen-

sive formalization of the semantics of UML-RT to date. 
Unlike existing attempts, our formalization deals with 

both fully hierarchical state machines and structure di-

agrams. On both aspects it supports features not avail-
able in other approaches, such as history or group tran-

sitions in state machines, or optional capsules and dy-

namic wiring in capsule diagrams. It is the only seman-

tics with explicit support for thread assignment. 
In addition to these contributions, it should also 

be noted that unlike much of the existing approaches, 

we provide an actual mapping specifying the transla-
tion, whereas some papers simply propose their seman-

tics in an ad hoc by-example manner, without provid-

ing an actual translation. Furthermore, our mapping 
has been implemented using IBM RSA’s transforma-

tion tool, providing a realization of the semantics. The 

outcome of this translation can be used by the imple-

mentation of kiltera for simulation. The development of 
this implementation itself helped validating the transla-

tion. We are currently working towards a kiltera model-

checker which will provide analysis capabilities. The 
modular nature of the translation, including mapping 

of states and capsules to processes can be leveraged 

by the model-checker for the purpose of traceability, by 
providing a simple way to link the results of analysis on 

the generated kiltera code to the corresponding model 

elements. 

Semantic variation points are an issue whenever we 
attempt to formalize a language for which the seman-

tics has been only partially given. This is the case with 

the UML in general and with UML-RT in particular. 
We have attempted to define our mapping as precise as 

possible while marking semantic variation points explic-

itly. Nevertheless it is important to keep in mind that 
there are different kinds of variation points, some of 

which can be easily addressed and some which would 

require major changes in the mapping. For example, 

the action language can be changed or extended with 
relative ease simply by providing an alternative map-

ping α to be invoked by the translation of state ma-

chines in Definition 6 and Definition 7. The transla-
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Features  [61]  [31]  [5, 4]  Ours 

Underlying semantics  LTS  AsmL  π­calculus  πklt ­calculus 
Semantics definition  SOS  Hard coded  By example  By translation 
Executable  No  Yes  No  Yes 
State Machines  Hierarchy  Yes  No  No  Yes 

Group transitions  Yes  No  No  Yes 
Deep history  Yes  No  No  Yes 
Enabled transition selection  Yes  No  No  Yes 

Action language  No  Subset  Subset  Subset 
Timer service  No  No  No  Yes 
Capsules  Fixed capsules  Yes  Yes  Yes  Yes 

Optional capsules  No  Yes  No  Yes 
Plugin capsules  No  Yes  No  Yes 
Attributes  No  Yes  No  Yes 
Services  No  No  No  Yes 
Dynamic wiring  No  Yes  No  Yes 
Capsule­thread assignment  No  Yes  No  Yes 
Multiple controllers  No  Yes  No  Yes 

Table 1 Comparison of formal semantics for UML­RT. 

tion of state machines themselves can be replaced in 

its entirety by providing an alternative definition of 

TSM (Definition 8) which is invoked by the translation 
of capsules in Definition 16. However, some semantic 

variation points require more delicate “surgery”. For 

example changing the enabled-transition selection pol-

icy from inside-out to outside-in would require replac-
ing the process Handler in the definition for composite 

states Definition 7. Changing it to full non-determinism 

would imply an even more radical change, even elimi-
nating the need for the accept/reject protocol. Similarly 

in the mapping of capsules (Definition 16), details of the 

difference between incarnation in the same thread or in 
a different thread, or the bottom-up initialization of 

capsules could be changed by an alternative definition 

of TC . 

One aspect that we did not touch was the enco d-

ing of protocols. This is because our mapping enco des 
the dynamic behaviour of UML-RT, while protocols (in 

UML-RT) contain only static type information, specifi-

cally the type of events allowed in a given port. In other 
words, our mapping assumes that the input model is 

well-typed, and under such assumption, it will give the 

model’s behaviour. 

We have proposed a semantics of UML-RT by means 
of translation to another language with a well defined 

formal semantics. In the introduction we motivated our 

choice of kiltera as the target language on the basis 
of its conceptual similarities to UML-RT. Nevertheless, 

in spite of these similarities, the mapping is not triv-

ial. This observation is important because most of the 

existing work on formalizing rich, expressive and real-
istic languages tends to oversimplify them, overlook-

ing many aspects that are often deemed “irrelevant” 

tically meaningful, as is the case with thread assign-

ments in UML-RT. A common mistake is to assume 

that similar concepts are mapped in a one-to-one fash-
ion between the source and the target language. But 

the thread assignment issue illustrates the problem. For 

example, in [5, 4], capsules are mapped onto π-calculus 

processes without regard for their thread assignment. 
This would be fine but only under the assumption that 

each capsule executes on a separate physical thread. 

Otherwise, analysis of the resulting π-calculus processes 
would fail to detect possibilities for deadlock, or be-

haviours depending on message ordering. In short, it 

would lead to incorrect analysis results. This highlights 
the perils of using minimalistic and pure languages or 

formalisms to define semantics of realistic languages. 

Artifacts Our kiltera simulator prototype is available 
at http://www.kiltera.org. Some sample UML-RT 

models (for IBM’s RSA-RTE) together with their gen-

erated kiltera code and their meta-models are available 
at the Repository for Model-Driven Development (Re-

MoDD: http://www.cs.colostate.edu/remodd/v1/). 

The actual transformation is available directly from the 

authors. 
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Semantic Variation Points 

1.  Alternative  semantics  could  include  giving  priority  to  the 
states higher in the hierarchy, or to leave the choice as non-
deterministic. 

2.  In  UML  2,  alternative  semantics  include  1)  shal low  his-
tory, remembering only the immediate sub­state; 2) allow-
ing both deep and shallow history; 3) no history. 

3.  The  action  language  is  a  major  semantic  variation  point, 
but  it  should  include at  least an action to  send messages. 
Other common actions concern operations on capsules such 
as  accessing/modifying  attributes,  incarnating/destroying 
optional  sub­capsules,  or  rewiring  ports.  IBM  RSA­RTE 
supports three action languages: C++, Java and UAL (UML 
Action  Language),  a  Java­like  language  closely  related  to 
the OMG ALF standard. 

4.  This  may  be  treated  in  a  different  way,  and  handle  the 
event in the same way regardless of whether the state was 
previously visited. 

5.  The  forwarding  of  events  down  to  the  active  sub­state  is 
done  in order  to account  for  the priority of  inner  enabled 
transitions over outer transitions. A different priority scheme 
would  be  changed  here.  For  example,  giving  outer  transi-
tions  priority  would  attempt  the Choice  process  first  and 
if no alternative was there,  the Forward  process would be 
tried  instead.  Allowing  non­deterministic  choice  between 
transitions at different levels of nesting would require a dif-
ferent approach with no forwarding involved. 

6.  There are many possible implementations of the event pool, 
of which the most natural would be a priority queue, where 
the priority is an attribute of the event itself. 

7.  Alternatively this could be changed to  initializing the top 
first and then the sub­capsules, or a more general approach 
allowing initialization in any order. 

8.  In this definition we allow only binary connection, i.e., each 
connector links only two ports, and ports have multiplicity 
1. To support n­ary multiplicity the definition of the service 
handler should be adapted accordingly. 
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	visited?true →. when {exack ? → acc! → (
	′ 

	′ 
	′ 

	Forward(p, e, d, acc,rej,inp ,acc ,rej ,
	′ 
	′ 
	′ 
	′ 
	′ 
	′ 
	′ 

	′ 
	′ 

	Choice(p, e, d, acc,rej,inp ,acc ,rej ,.
	′ 
	′ 
	′ 

	exit ,exack ,sh ,kill )} else rej! → ′ 
	′ 
	′ 
	′ 
	′ 

	|exit? → exit ! → Handler(inp ,acc ,rej 
	′ 
	′ 
	′ 
	′ 
	′ 
	′ 
	′ 
	′ 

	Fig. 13 Composite state choice taker. 
	|sh ? → done. |kill? → kill ! → done }. 
	|sh ? → done. |kill? → kill ! → done }. 
	′ 
	′ 

	Fig. 11 Composite state handler. 
	transition’s action and goes to the targ
	′ 
	proc Forward(p, e, d, acc,rej, inp ,acc 
	′ 
	′ 

	as 
	exit , exack ,sh ,kill )= 
	′ 
	′ 
	′ 
	′ 

	
	inp !(p, e, d) 
	′ 

	 
	 Ti; Snj (inp,acc,rej ,exit,exack,sh,ki

	→ when {.  
	 
	 

	′ 
	? →. 

	acc acc! →.  if kind(ti) = sib, a = tar
	
	

	′ ′. 
	Handler(inp ,acc ,rej ,exit ,exack ,.  
	′ 
	′ 
	′ 

	 
	 
	 ∃sj ∈ S . a ∈ entries(sj ), and nj = n
	′ 


	sh ,kill ).  
	′ 
	′ 

	 
	 
	 
	 ′′′′ ′

	|rej ? →. def Ti; Snj (inp ,acc ,rej ,ex
	′ 
	′ 
	′ 

	′ 
	′ 

	Choice(p, e, d, acc,rej,inp ,acc ,rej , 
	′ 
	′ 

	 
	 
	 if kind(ti) = in, a = targ(ti),

	exit ,exack ,sh ,kill )}.  
	′ 
	′ 
	′ 
	′ 

	 
	 
	 
	 ∃sj ∈ S. a ∈ entries(sj ), and nj = na
	

	Fig. 12 Composite state event-forwarder.
	 
	 
	 
	Ti; Bbj (sh)
	 
	 
	 
	 

	if kind(ti) = out and bj = targ(ti) ∈ B 
	′ 

	action of transition ti, α[act(ti)]((⊥,⊥
	action of transition ti, α[act(ti)]((⊥,⊥

	Explanation 
	–. DBbis a process deﬁnition for exit po
	–. DBbis a process deﬁnition for exit po
	j 


	Figure 14 shows the control ﬂow of the π
	composite states. As with basic states, 
	def 
	def 
	DBb= proc Bbj (sh) = sh! I Qj 
	DBb= proc Bbj (sh) = sh! I Qj 
	DBb= proc Bbj (sh) = sh! I Qj 
	DBb= proc Bbj (sh) = sh! I Qj 
	DBb= proc Bbj (sh) = sh! I Qj 
	j 

	a composite state contains deﬁnitions fo

	where sh is the parent’s stop-handler si

	(Handler)and a process to make the choic

	is the target of the exit point, deﬁned 


	do with the event (Choice). In addition 
	Ti; Snj (inp,acc,rej ,exit,exack,sh,kil
	Ti; Snj (inp,acc,rej ,exit,exack,sh,kil
	 
	 
	 

	. – a dispatcher to either follow an in
	 
	 
	 if kind(ti) = sib, a = targ(ti), 
	 

	. into some sub-state or recall history
	 
	 
	 ∃sj ∈ S . a ∈ entries(sj ), and nj = n
	′ 

	 

	. – a deﬁnition DSnfor each sub-state n
	i 

	 
	 
	 ′′′′ ′ 
	def Ti; Snj (inp ,acc ,rej ,exit ,exack 
	′ 
	′ 


	–. a deﬁnition DBbfor each exit point bj
	j 

	Qi = 
	Qi = 
	 

	 if kind(ti) = in, a = targ(ti),. – and
	 
	 
	 
	 

	. events down to the currently active s
	 ∃sj ∈ S. a ∈ entries(sj ), and nj = na
	 ∃sj ∈ S. a ∈ entries(sj ), and nj = na
	 
	 

	. der to implement the “deepest ﬁrst” e
	Ti; Bbj (sh)
	Ti; Bbj (sh)
	 
	 

	. sition selection policy. 
	 
	 

	if kind(ti) = out and bj = targ(ti) ∈ B 
	′ 

	–. 
	–. 
	–. 
	DHandler is the process deﬁnition shown 

	–. 
	–. 
	DForward is the process deﬁnition shown 
	′ 


	–. 
	–. 
	Finally, DChoice is the process deﬁnitio
	′ 



	′′ ′ 
	′′ ′ 
	′ 

	Figure 13, where Qi is the process that 
	′ 
	′ 

	Figure
	The event Handler is somewhat more compl
	The event Handler is somewhat more compl
	If the state has been previously visited
	′ 
	′ 
	′ 

	If the state has not been previously vis
	The exit event (exit) might be received 
	′ 
	the currently active sub-state via exit 
	′ 

	Finally, the stop Handler signal (sh) ma
	′ 

	Example 4 Let us revisit the example fro
	First we have the Dispatcher. There are 
	First we have the Dispatcher. There are 
	tory will be recalled, or if the state h


	′′ ′ 
	′′ ′ 
	proc Dispatcher(inp ,acc ,rej ,exit ,exa
	′ 
	′ 

	′ 
	sh ,kill ,enp) =. if enp = “a1 ” then. 
	′ 

	′′′′ ′ 
	Sn4(inp ,acc ,rej ,exit ,exack ,sh ,kill
	′ 
	′ 

	′′′ ′ 
	else hist!(“get”,inp ,acc ,rej ,exit ,ex
	′ 

	′ 
	sh ,kill ,enp) 
	′ 


	In the case where we enter the state thr
	Second we have the choice process. There
	′ ′ 
	′ ′ 
	proc Choice(p, e, d, acc,rej ,inp ,acc ,
	′ 

	′ 
	exit ,exack ,sh ,kill ) = 
	′ 
	′ 
	′ 

	if p= “p2 ” and e = “x” and true then 
	exit ! → when {exack ? → acc! → (Exit(p,
	′ 
	′ 

	Sn5 (inp,acc,rej,exit,exack,sh,kill,“den
	5 

	′ ′ 
	else rej! → Handler(inp ,acc ,rej , 
	′ 

	′ 
	exit ,exack ,sh ,kill ) 
	′ 
	′ 
	′ 


	Note that the parameters passed to Sn5 a
	Deﬁnitions for the exit points are also 
	proc Bb1 (sh) = sh! I Sn5(inp,acc,rej ,e
	proc Bb1 (sh) = sh! I Sn5(inp,acc,rej ,e
	5 


	This is executed when taking transition 
	The rest of the deﬁnition of Sn2 consist
	The process deﬁnition of a full state ma
	Having deﬁned processes for basic and co
	An executable formal semantics for UML-R
	An executable formal semantics for UML-R
	state machine, which acts essentially as
	A full state machine is represented as a
	–. 
	–. 
	–. 
	inp: where input events of the form (p, 

	–. 
	–. 
	compl : where the state machine signals 

	–. 
	–. 
	kill: where requests to end the processe


	′ ′ 
	–. e,..., e , i ,..., i : the containing
	1
	′ 
	1
	′ 

	nE nI 
	put) ports, where the actions of the sta
	The formal speciﬁcation is as follows: 
	Deﬁnition 8 (Translation of a full state
	proc StateMachine(inp,compl ,kill, 
	′ ′ 
	e,..., e , i ,..., i ) = 
	1
	′ 
	1
	′ 

	nE nI 
	def {Ds; DHistoryCel l ; DSink }in 
	′ 
	new acc,rej,exit,exack,sh,kill , 
	h1, h2,..., h|s|, htop , 
	kill1,kill2,..., kill|s|,killtop in 
	(HistoryCell(htop ,false,killtop ,⊥) 
	|s|
	I HistoryCell(hi ,false,killi ,⊥)
	i=1 
	′ 
	I Sn1 (inp,acc,rej ,exit,exack,sh,kill ,
	′ 
	|s| 

	i=1 
	where 
	–. 
	–. 
	–. 
	name(s) = n1 

	–. 
	–. 
	|s| is the number of states in s, includ

	–. 
	–. 
	hi is a link to the history cell for sta

	–. 
	–. 
	DHistoryCel l is the deﬁnition of Histor

	–. 
	–. 
	Ds is the translation of s according to 


	def. Ds = TS [s]top,h1,htop,compl,ports.
	def 
	′ ′ 
	with ports = (e,..., e , i ,..., i ), an
	1
	′ 
	1
	′ 

	nE nI 
	def 
	is a dummy container state term deﬁned a

	–. and DSink is the following deﬁnition:
	4 
	proc Sink(acc,rej ,exit,exack,sh) =. whe
	proc Sink(acc,rej ,exit,exack,sh) =. whe
	acc? → Sink(acc,rej,exit,exack,sh) |rej?

	5 Capsules 
	5 Capsules 
	We now show how capsule diagrams are enc
	–. 
	–. 
	–. 
	associate capsules to threads (Subsectio

	–. 
	–. 
	represent (thread) controllers (Subsecti

	–. 
	–. 
	represent capsules themselves (Subsectio

	–. 
	–. 
	represent ports and services (Subsection

	–. 
	–. 
	represent optional and plug-in parts (Su

	–. 
	–. 
	represent actions (Subsection 5.2.6) 

	–. 
	–. 
	represent the timer (Subsection 5.2.7) 

	–. 
	–. 
	put all these together (Subsection 5.2.8


	5.1 A syntax for UML-RT capsule diagrams
	5.1 A syntax for UML-RT capsule diagrams
	We use a mathematical notation for capsu
	–. 
	–. 
	–. 
	Ncap : the set of all possible capsule n

	–. 
	–. 
	Nparts : the set of all possible part na

	–. 
	–. 
	Nports : the set of all possible port na

	–. 
	–. 
	Nconn : the set of all possible connecto

	–. 
	–. 
	Nsm : the set of all possible state mach

	–. 
	–. 
	Nlthr : the set of all possible logical 

	–. 
	–. 
	SM: the set of all state machine terms (


	def 
	def 
	Subsection 4.1); SM⊥ = SM ∪ {⊥} is the s

	–. Vals: the set of possible values (dat
	Furthermore, we make the following assum
	–. 
	–. 
	–. 
	–. 
	Every capsule is labelled with a unique 

	–. 
	–. 
	Within a capsule, port names and connect


	Before we deﬁne capsule diagram terms, w
	Deﬁnition 9 (Port references and connect
	F ::= p Unqualiﬁed port reference | m.p 
	where p∈ Nports and m ∈ Ncap ∪ Nparts . 
	We also deﬁne the set Conn of possible c
	k ::= l : F → F Relay or internal connec
	where l ∈ Nconn is the name of the conne
	def 
	name(l : F1 → F2) = l The name of the co
	def 
	src(l : F1 → F2) = F1 The source of the 
	def 
	targ(l : F1 → F2) = F2 The target of the


	5.1.1 Capsules 
	5.1.1 Capsules 
	5.1.1 Capsules 
	Now we can deﬁne capsule diagram terms. 
	–. 
	–. 
	–. 
	A name, 

	–. 
	–. 
	Its ports (end, relay and internal) 

	–. 
	–. 
	An optional state machine 

	–. 
	–. 
	A set of (sub-capsule) parts 

	–. 
	–. 
	A set of connectors between ports 


	The following deﬁnition formalizes this 
	Deﬁnition 10 (Capsule diagram terms) The
	–. 
	–. 
	–. 
	m ∈ Ncap is the name of a capsule, 

	–. 
	–. 
	G is a set of pairs pi : wi gi where pi 



	c ::= [m, G, s, P, K, A] Capsule 
	G ::= {p1 : w1 g1,..., pn : wn gn} Ports
	w ::= w Wired port. u Unwired port. 
	g ::= end External end port. int Interna
	P ::= {b1 : o1 m1,..., bn : on mn} Sub-c
	o ::= ﬁx Fixed role. | opt Optional role
	K ::= {k1,..., kn ′ } Local connectors 
	A ::= {a1,..., an ′′ } Attribute names 
	Fig. 15 Syntax of UML-RT capsule diagram
	–. 
	–. 
	–. 
	s ∈ SM ∪ {⊥} is a state machine term (or

	–. 
	–. 
	P is the set of sub-capsule parts of n, 

	–. 
	–. 
	K ⊆ Conn is a set of connectors subject 

	–. 
	–. 
	and A is a set of attribute names. 


	We ﬁrst deﬁne the following useful funct
	def 
	def 

	name(c) = m The name of the capsule 
	def 
	def 

	ports(c) = G The set of ports of the cap
	def 
	def 

	capsm(c) = s The capsule’s state machine
	def 
	def 

	parts(c) = P The set of sub-capsules 
	def 
	def 
	conn(c) = K The set of port connectors 
	def 
	attrs(c) = A The set of attribute names 

	Furthermore, we also have some functions
	def 
	def 
	endports(c) = {p|p: w end ∈ G} 
	def 
	intports(c) = {p|p: w int ∈ G} 
	def 
	relports(c) = {p|p: w rel ∈ G} 
	def 
	extports(c) = endports(c) ∪relports(c) 
	def 
	wiredports(c) = {p|p: w g ∈ G} 
	def 

	unwiredports(c) = {p|p: u g ∈ G} 
	An executable formal semantics for UML-R
	An executable formal semantics for UML-R
	We generalize these functions over sets 
	def 
	capsules, then name(C) = {name(ci) |ci ∈
	We assume that ﬁx is the default role, s
	′ ′ 
	to the part b of capsule m, i.e., , m.b 
	def 
	ﬁxedcaps(c) = {b : ﬁx m ∈ P} 
	def 
	optcaps(c) = {b : opt m ∈ P} 
	def 
	plugincaps(c) = {b : plug m ∈ P} 
	We also write l : F1 ↔ F2 ∈ K to mean th
	l : F1 → F2 ∈ K or l : F2 → F1 ∈ K. All 
	1. 
	1. 
	1. 
	if l : p ↔ F ∈ K where p is an unqualiﬁe

	2. 
	2. 
	if l : m.p ↔ F ∈ K where m.p is a qualiﬁ

	3. 
	3. 
	every port p ∈ relports(c) ∪intports(c) 

	4. 
	4. 
	no port p ∈ endports(c) is linked to any

	5. 
	5. 
	for all connectors l : m1.p1 ↔ m2.p2, {p

	6. 
	6. 
	for every port p∈ wiredports(c) there is

	7. 
	7. 
	for every port p ∈ unwiredports(c) there


	m.p ↔ F ∈ K. 
	If any component of a capsule diagram is
	Note that this deﬁnition does not includ
	Deﬁnition 11 (Capsule models) The set UM
	U ::= [c0, c1,..., cn] UML-RT model 
	where c0 is designated the model’s top-c

	Example 5 Consider the capsule diagram f
	def 
	def 

	U = [c1, c2, c3, c4] 
	where each ci is a term representing the
	def 
	def 
	c1 = [A, {p1 : w rel, p2 : u end, p3 : u
	s1, 
	{b1 : ﬁx B, b2 : opt C, b3 : plug D}, 
	{l1 : p1 → B.p5, l2 : p4 → C.p8, 
	l3 : p3 → D.p11 , l4 : B.p6 → C.p9, 
	l5 : B.p7 → D.p10 },∅] 
	def 
	c2 = [B, {p5 : w −, p6 : w −, p7 : w −},
	def 
	c3 = [C, {p8 : w −, p9 : w −, p13 : u −}
	def 
	c4 = [D, {p10 : w −, p11 : w −, p12 : u−

	We note the following. First, in the set
	Also note that in capsules c2, c3 and c4

	5.1.2 An action language 
	5.1.2 An action language 
	In UML-RT actions are used in state mach
	The syntax presented here includes only 
	C ::= send e(d)to p | inform p in t | re
	C ::= send e(d)to p | inform p in t | re
	Fig. 16 Syntax for the action language. 
	Deﬁnition 12 (Actions) The set Acts of a
	Informally, these actions do the followi
	–. 
	–. 
	–. 
	send e(d) to p sends event e with data d

	–. 
	–. 
	inform p in t sets up a timeout event on

	–. 
	–. 
	registerspp p on s registers the unwired

	–. 
	–. 
	registersap p on s registers the unwired

	–. 
	–. 
	deregisterspp p on s deregisters the unw

	–. 
	–. 
	deregistersap p on s deregisters the unw

	–. 
	–. 
	incarnate b on t incarnates optional cap

	–. 
	–. 
	destroy b destroys optional capsule part

	–. 
	–. 
	import m in b imports capsule instance m

	–. 
	–. 
	deport m from b removes capsule instance

	–. 
	–. 
	let x = E in C declares a local variable

	–. 
	–. 
	a := E assigns the value of expression E

	–. 
	–. 
	if E then C1 else C2 executes C1 if the 

	–. 
	–. 
	C1; C2 executes C1 and then C2. 




	5.2 Translating capsule diagrams 
	5.2 Translating capsule diagrams 
	Mapping UML-RT models to πklt involves t
	–. 
	–. 
	–. 
	Mapping state machine diagrams to proces

	–. 
	–. 
	Mapping capsule diagrams to process deﬁn

	–. 
	–. 
	Representing UML-RT “controllers”, which

	–. 
	–. 
	Representing the association of capsules


	Each of these issues is largely independ
	We begin by deﬁning the association of c

	5.2.1 Mapping capsules to threads 
	5.2.1 Mapping capsules to threads 
	In order to support some deployment requ
	–. 
	–. 
	–. 
	the map from capsules to logical threads

	–. 
	–. 
	the map from logical threads to physical


	Since the assignment to physical threads
	Let us assume that Nlthr denotes the set
	Deﬁnition 13 (Capsule-to-thread assignme
	Let NC ⊆ Ncap be a set of capsule names,
	An executable formal semantics for UML-R
	An executable formal semantics for UML-R
	assignment over NC and NL is a function 
	def 
	assignment is the composition of these t
	This assignment is used in the translati


	5.2.2 Controllers 
	5.2.2 Controllers 
	5.2.2 Controllers 
	Each capsule is associated with a contro
	During execution, capsules send each oth
	In our mapping, capsule ports and connec
	Deﬁnition 14 (Controller events and even
	An inter-capsule message is a pair (e, d
	–. e is the name of a UML-RT event 

	–. d is a reference to some data object,
	A state machine input message is a tripl
	–. 
	–. 
	–. 
	p is the name of the target port in the 

	–. 
	–. 
	e is the name of a UML-RT event, 

	–. 
	–. 
	d is a reference to some data object, ca


	A controller message is a tuple of the f
	(smi ,smc, p, e, d) 
	where: 
	–. 
	–. 
	–. 
	smi is the input port of the state machi

	–. 
	–. 
	smc is the state machine’s event which s

	–. 
	–. 
	p is the name of the target port in the 

	–. 
	–. 
	e is is the name of a UML-RT event, 

	–. 
	–. 
	d is a reference to some data object, ca


	Controllers consist of two components: a
	An event pool process is a πklt process 
	proc EventPool(put,get) 
	where put is a port where events are rec
	ADispatcher is a process that takes the 
	Deﬁnition 15 (Controllers) A controller 
	Deﬁnition 15 (Controllers) A controller 
	proc Controller(inp) = 
	def { 
	proc EventQueue(put, get) = Q; 
	proc Dispatcher(qget) = 
	new ﬁrst in 
	(qget!ﬁrst → 
	when {ﬁrst ?(smi,smc, p, e, d) → 
	smi !(p, e, d) → 
	when {smc? → Dispatcher(qget)}}) 
	}in 
	new qin (EventQueue(inp,q) I Dispatcher(
	where Q is the implementation of the eve


	5.2.3 Translating capsules 
	5.2.3 Translating capsules 
	5.2.3 Translating capsules 
	Each capsule is represented as a single 
	–. 
	–. 
	–. 
	An instance of the capsule’s state machi

	–. 
	–. 
	An instance of each sub-capsule (called 

	–. 
	–. 
	An instance, for each port, of a port-ha

	–. 
	–. 
	An instance of a process CapsuleHandler 


	Every UML-RT connector is represented by
	′ 
	is a port/channel p which is used for ou
	′ 
	contains a pair of ports for each end-p 
	p 
	′ 
	relay-port (rp, r )of the capsule, a ctr
	6

	p 
	capsule to its controller, and a hook ch
	Internally the deﬁnition includes the pr
	′ 

	p 
	In kiltera, channels are bidirectional, 

	and and for each port connector (lp, l )
	′ 

	p 
	p 

	hooki channel for each sub-capsule insta
	The translation of a capsule c is parame
	We will use the following conventions fo
	′ ′ 
	′ ′ 

	–. End ports will be written as e, e , e
	1

	′ ′ 
	′ ′ 

	–. 
	–. 
	–. 
	Relay ports will be written as r, r , r1
	1


	–. 
	–. 
	Internal ports will be written as i, i ,
	′ 
	′ 
	1


	–. 
	–. 
	Local connectors will be written as l, l
	′ 
	1 
	′ 


	–. 
	–. 
	Capsule attributes will be written as a,


	Deﬁnition 16 (Capsules to processes) Giv
	E 
	R 
	I 
	P 
	P 
	P 

	def 
	def 

	mi = name(ci) for some capsule ci ∈ U, c
	K 

	def 
	def 

	–. 
	–. 
	–. 
	L = {name(ki)|ki ∈ K}= {l1,..., ln} 
	K 


	–. 
	–. 
	DStateMachine is the translation of the 


	=. is 
	=. is 
	′ 
	TSM [s] according to Deﬁnition 8 (The e 
	′ 

	p p 
	ports of the state machine are used by t
	′ 

	p 
	′ 
	or to other capsules (e ). All inputs to
	p 
	machine, including those from internal p

	–. 
	–. 
	–. 
	DCapsuleHandler is the deﬁnition of Caps

	–. 
	–. 
	each Cmj is the name of the process deﬁn


	An executable formal semantics for UML-R
	An executable formal semantics for UML-R
	def 
	TC [c]θ = 
	′ ′ 
	proc Cm(hook, e1, e 1,..., enE , e ,
	nE 
	′ ′ 
	r1, r 1,..., rnR , r ,ctrl,async)= new s
	′ 
	′ 

	nR 
	nI 
	l1, l 1 ,..., lnK , l ,
	′ 
	′ 

	nK 
	h1,..., h|G|,. hook1 ,..., hook|P| in. d
	DStateMachine ;DCapsuleHandler ;DBody ; 
	′ 
	new smc in 
	′ 
	ctrl !(smi ,smc ,“sys”,“init”,null) → wh
	′ 
	Body(smc ,true)} else Body(smc, false) 
	where DBody is 
	′ 
	proc Body(smc ,async)= 
	′ 
	WiredEIPort(hj , pj ,pj ,ctrl ,smi ,smc,
	pj :wend∈G. ′. 
	I WiredEIPort(hj ,pj ,pj ,ctrl ,smi , sm
	pj :wint∈G. ′. 
	I WiredRPort(hj ,pj ,pj ,lk ,l )
	′ 

	pj :wrel∈G. k 
	′ 
	I UnwiredEIPort(hj , pj ,pj ,ctrl ,smi ,
	pj :uend∈G. ′. 
	I UnwiredEIPort(hj ,pj ,pj ,ctrl ,smi , 
	pj :uint∈G. ′. 
	I UnwiredRPort(hj ,pj ,pj ,lk ,l )
	′ 

	pj :urel∈G. k 
	′′ ′ 
	I Cmj (hookj , pj,1, p j,1, pj,2, p j,2,
	bj :ﬁx mj ∈P. j,h 
	, 

	θ(mj ),false) 
	I Opt(hook, hookj ,Cmj ,
	bj :opt mj ∈P 
	′′ ′ 
	pj,1, p j,1, pj,2, p j,2, ..., pj,h , p 
	j,h 

	I Plugin(hook,hookj ,Cmj ,
	bj :plug mj ∈P 
	′′ ′ 
	pj,1, p j,1, pj,2, p j,2,..., pj,h , p )
	j,h 
	I when {(hook1 ,hook2 ,· · · ,hook|P|)? 
	′ ′ 
	I StateMachine(smi ,smc ,smk , e 1,..., 
	nE 
	i 1,..., i )
	′ 
	′ 

	nI 
	I when {smc ? → hook! → if async then sm
	′ 

	Fig. 17 Translation of capsules. 
	–. 
	–. 
	–. 
	the port handling process deﬁnitions Wir

	–. 
	–. 
	the process deﬁnitions Opt and Plugin ar

	–. 
	–. 
	Each Cmj is the name of the process deﬁn


	′′ ′ 
	proc Cmj (hook, p1, p , p2, p ,..., ph, 
	1
	2
	h

	In the invocation of Cmj , the actual po
	′′ ′ 
	arguments pj,1, p , pj,2, p ,..., pj,h ,
	j,1
	j,2

	j,h 
	′ 
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