
An Exercise in the Formal Derivation
of Parallel Programs: Maximum
Flows in Graphs

EDGAR KNAPP

The University of Texas at Austin

We apply a new method for the development of parallel programs to the problem of finding maximum

flows in graphs. The method facilitates concurrent program design by separating the concerns of

correctness from those of hardware and implementation. It uses predicate transformer semantics to

define a set of basic operators for the specification and verification of programs. From an initial
specification program development proceeds by a series of refinement steps, each of which constitutes

a strengthening of the specification of the previous refinement. The method is completely formal in

the sense that all reasoning steps are performed within predicate calculus. A program is viewed as a

mathematical object enjoying certain properties, rather than in terms of its possible executions. We

demonstrate the usefulness of the approach by deriving an efficient algorithm for the Maximum Flow

Problem in a top-down manner.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed

Systems--distributed applications; D.1.3 [Programming Techniques]: Concurrent Programming;
D.2.1 [Software Engineering]: Requirements/Specifications-languages, methodologies; D.2.2

[Software Engineering]: Tools and Techniques-structuredprogramming, top-down programming;

D.2.4 [Software Engineering]: Program Verification-correctness proofs; D.3.3 [Programming

Languages]: Language Constructs-concurrent programming structures; D.4.7 [Operating Sys-

tems]: Organization and Design--d&i&ted systems; F.1.2 [Computation by Abstract Devices]:

Modes of Computation-alternation and nondeterminism, parallelism; F.2.2 [Analysis of Algo-

rithms and Problem Complexity]: Nonnumerical Algorithms and Problems-computations on

discrete structures; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and

Reasoning about Programs-assertions, invariants, logics of programs, specification techniques; G.2.2

[Discrete Mathematics]: Graph Theory-graph algorithms, network problems

General Terms: Algorithms, Design, Languages, Theory, Verification

Additional Key Words and Phrases: Derivation of algorithms, distributed algorithms, maximum flow,

program development, stepwise refinement, UNITY

INTRODUCTION

We use a novel method for the development of parallel programs to derive an
efficient algorithm for the Maximum Flow Problem. The formalism we use is
named UNITY, and was developed by Chandy and Misra [l]. It is new in the

This work was supported in part by the Office of Naval Research under contract ONR N0014-86-K-

0763. Author’s current address: 3601-C North Hills Drive, Austin, TX 78731-3043.
Permission to copy without fee all or part of this material is granted provided that the copies are not

made or distributed for direct commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

0 1990 ACM 0164-0925/90/0400-0203 $01.50

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 2, April 1990, Pages 203-223.

204 - Edgar Knapp

sense that it abandons the notion of a process as a fundamental concept of

parallel program design and that it facilitates program derivation by rigorously
separating the concerns of program correctness from those of hardware and
implementation (e.g., architectures, synchronization primitives, etc.). The
method is also completely formal in the sense that operational reasoning is
eliminated entirely; all inferences are done within predicate calculus. Further-
more, a program is viewed as a mathematical object enjoying certain properties
(e.g., invariants, stability), and not in terms of its possible executions.

Program development in UNITY proceeds by stepwise refinement. While most
methodologies of this type have programs as the object of refinement, our
approach consists of the refinement of specifications.

UNITY lends itself naturally to both procedural types of refinement (e.g., the
realization of a particular solution strategy into an algorithm) and to data
refinement (e.g., replacing a global data structure by a distributed one). In this
paper our focus is on the former; an example of the latter can be found in [13].

The goal of program development, the program proper, is only obtained in the
last step of this development process. This is typically done when the refined
specification is restrictive enough to suggest a translation into UNITY code.

As a consequence of this approach, proving the correctness of a refinement
becomes an exercise in logic, and is therefore simpler than proving two programs
equivalent, or that each in a series of refined programs meets a particular
specification.

We use the Maximum Flow Problem as an example of the usefulness of the
UNITY approach. The algorithm we are deriving is originally due to Goldberg
and Tarjan [5, 61. Starting from the problem specification, we derive a series of
top-down refinements, proving at each stage that the correctness of our solution
is preserved. Our refinement steps are motivated mostly by heuristics about the
syntactic shape of our formulas, that is, we strive to eliminate formulas that are
not easily manipulatable symbolically. For example, one of our refinement steps
consists of replacing reasoning about paths by reasoning about a function. In
addition, our development clearly shows which parts of the problem can be solved
routinely and which require more insight. The algorithm we will thus derive is a
generic version of-according to Goldberg and Tarjan-the most efficient algo-
rithms known today for both sequential and parallel architectures.

Our work differs from most others in the area of parallel program verification
(cf., [g-12]) in several important respects. First of all, unlike temporal logics and
I/O automata, the UNITY formalism is independent from an operational model
of program execution, even though operational notions such as execution se-
quences or histories may serve as the intuition behind UNITY logic. As a
consequence, fairness is not an issue: it is built into the ensures operator, the
basic notion of progress in UNITY. Second, our emphasis is not on a posteriori
verification of programs, that is, demonstrating that a given program meets its
specification, but on constructively deriving a program from its specification by
a succession of refinement steps. In this sense UNITY is very much in the spirit
of “verifying a program before it is written,” a paradigm advocated for sequential
programming most notably by Dijkstra [Z] and Gries 171.

Our paper is organized as follows: Section 1 contains an introduction to
our notation. The first part of this section presents some general notational

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 2, April 1990.

Formal Derivation of Parallel Programs l 205

conventions; the second contains a brief discussion of the proof format we will
be using, while the third part presents that subset of UNITY that is needed for
our refinements. This presentation of UNITY is necessarily incomplete, and the
reader is referred to [l] for an exhaustive treatment. The last part of this section
formalizes our notion of refinement of specifications.

Section 2 defines the Maximum Flow Problem formally. The specification we
obtain is the starting point for a series of stepwise refinements. These refinements
are presented in Section 3; they lead to a set of about ten properties, from which,
in Section 4, the program text is derived quite straightforwardly. A discussion of
the advantages and disadvantages of this approach concludes our paper.

1. NOTATION

1 .O Notational Conventions

We use the following notational conventions: quantified expressions are written
in the format

(CBx:r.x:t.x),

where CB is any associative and symmetric operator. Furthermore, x is called the
dummy, r.x is called the range, and t.x the term of the quantification. In case CB
has an identity element e, (CBX: false: t.x) is well defined and equal to e. If in a
quantified formula the range is omitted, quantification is over all elements of the
domain of the dummy.’

For example, (Vi : 0 5 i A i < n : A.i > 0) holds if and only if all elements of A
in the range between 0 and n - 1 are positive. Likewise (+i :: A.i) denotes the
sum of all elements of A; in the latter example, the range of i is understood from
the given context.

The operators we use are summarized below, ordered by binding powers, with
the top row having the weakest and the bottom row having the strongest binding
power. Precise definitions of all new operators are given later in this section and
in Section 1.2.

unless, stable, invariant, ensures, H,

A, v,

7

=, #, <, 2, >, I, 2, E,

min, +, -, path

The binary infix operator min is defined as:

a=bminc=(a=bVa=c)Au~bAu<c.

It is symmetric, idempotent, and associative.
In a graph G, we define a predicate “path” on vertex pairs as:

x path y = there is a path from x to y in G.

1 When the term of the quantification is a predicate, we will write V instead of A and 3 instead of V.

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 2, April 1990.

206 l Edgar Knapp

We use the fact that the relation “path” is reflexive and transitive.
The value of the expression (t if b), where t is an integer expression, is defined

to be t in case b holds, and 0 otherwise.

1 .l Proof Format

Most of our proofs are purely calculational in the sense that they consist of a
number of syntactic transformations instead of semantic reasoning steps. We
use a proof format that was first proposed by Feijen, Dijkstra, and others, and
that greatly facilitates this kind of proof.

For example, a proof that A = D may be rendered in our format as

=&ntwhyA =BJ

= kint why B = C]

=iintwhyC=DJ
D

We also allow other transitive operators in the leftmost column. Among these
are the more traditional implies (+), but also, for reasons of symmetry, follows-
from (+). It turns out that the latter is more than a mere convenience: proofs
that strike the reader as requiring considerable clairvoyance when presented in
one direction, when written the other way round, have the pleasant property that
each manipulation is strongly suggested by what was done previously.

We leave this discussion at these very general remarks. For a more thorough
treatment of this subject, the reader is referred to [3].

1.2 An Introduction to UNITY

Parallel program design in UNITY is the subject of a recent book [11. We describe
that subset of UNITY that is relevant to our discussion; footnotes identify the
differences to full UNITY, as described in [11.

Programs in UNITY

A UNITY program consists of four parts:

(0) the declare-section, or declare for short, contains a series of Pascal-style
declarations;

(1) the initially-section, or initially for short, is a set of equations defining the
initial values for some or all the program variables;

(2) the always-section, or always for short, contains a set of defining equations
for a subset of program variables; there are certain restrictions on the form
these equations may assume;

(3) the assign-section, or assign for short, consists of a finite nonempty set of
multiple assignment statements.

The purpose of the first two sections should be quite obvious. Each equation in
always defines the value of some variable. The restrictions on the equations
serve to ensure that circular and conflicting definitions are excluded. These

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 2, April 1990.

Formal Derivation of Parallel Programs l 207

restrictions can be formalized quite straightforwardly. The interested reader is
referred to [l]. One property of the always-section worth noting is that each
equation in it is a program invariant.

Let J denote a list of program variables, and f.~ a list of expressions, possibly
depending on x and matching the variables in x in number and type. The assign-
section contains statements of the form

x := f.x if B

where x := f.x is a multiple assignment statement and B is a Boolean expression2
With wp standing for Dijkstra’s weakest precondition, we define the predicate
transformer semantics of such a statement as follows:

wp(“x := f.x if B”, Q) = (B + wp(“x := f.x”, Q)) A (1B - Q). (DO)

The semantics of the multiple assignment x := f.x are

wp(“x := f.x”, Q) = Q[x := f.x] 01)

where Q[x := f.x] stands for Q with all occurrences of variables in x simultaneously
replaced by the matching expressions in f.x.

As an example consider the statement

x, y := y, x if x < y.

To derive the weakest precondition such that this statement establishes the
predicate x > y we calculate

wp(“x, y := y, x if x < y”, x > y)
= (definition wp)

(x < y =9 wp(“X, y := y, x”, x > y)) A (x 2 y * x > y)
= (definition wp, simplify second conjunct)

(xcy=+y>x)Ax#y
= {first conjunct simplifies to true}

X#Y

Equations in initially and always and statements in assign are separated
by the operator Cl. This operator is symmetric, associative, and idempotent. When
used to separate equations, its semantics are those of logical conjunction (A). In
the assign-section it serves as a statement separator, and its identity element is
the empty assignment, commonly denoted by skip.

From an operational point of view, we can think of a UNITY program as being
executed by repeating the following, ad infinitum: select any statement from
assign and execute it. The only requirement we impose on the selection process
is that no statement in the set be ignored forever. A variable defined in always
can be thought of as being evaluated when it is accessed by the program.

As a consequence, UNITY programs do not terminate in the conventional
sense. We do however stipulate that each individual UNITY statement terminate.
Formally, this is expressed by

(VS :: wp(S, true) = true). (D2)

* Full UNITY has a slightly more general form of multiple assignment.

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 2, April 1990.

208 - Edgar Knapp

The Specification Language

Problem specifications in UNITY are written using three basic binary operators:
unless, ensures, and H (“leads to”). Using the predicate transformer semantics
of the individual statements in assign, we define

P unless Q = (VS:S E assign:P A 1Q + wp(S, P V Q)). (D3)

Intuitively, P unless Q means that whenever predicate P holds for a program
state, Q holds in this state, or P continues to hold at least until Q holds. Note
that this allows for the case that Q never holds; in such a case P continues to
hold forever.

The following property of unless follows directly from its definition:

(P + Q) + P unless Q.

As an exampk of an unless property, consider the specification that “a hungry
philosopher rem ins hungry until he eats (if ever).” Formally,

(Vphil :: phiLhungry unless phiLeats).

There is a special case of unless that deserves special attention, because it
occurs quite frequently. Consider the property P unless false. Going back to the
definition of unless, we find that this specifies that each statement preserves P.
We call such a predicate a stable property, and define

stable P = P unless false. (D4)

An example of a stable property is the fact that sent.ch, the number of messages
sent along channel ch, does not decrease. We write this as

(Vk :: stable sent.ch L k).

Another concept that turns out to be of great importance is that of an
invariant. Its definition is straightforward:

invariant P = (initially + P) A stable P. (D5)

An example of an invariant property is the requirement that neighboring
philosophers do not eat simultaneously, i.e.,

invariant (VphilO, phi1 1:: l(philO.eats A phi1 Leats A phi10 neighbor phi1 1)).

The reader may have noticed that so far the properties one can specify are
limited to safety properties, i.e., properties that disallow certain transitions
between program states. When specifying concurrent programs, however, we are
often interested in stating that a certain predicate holds at some point in the
future. In UNITY, this requirement is expressed using H; informally, P H Q
states that if P holds in some state of the program, then eventually a state is
reached in which Q holds.

As an example, consider the requirement that a hungry philosopher eat
eventually. We write this as

(Vphil :: phil.hungry H phil.eats) .

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 2, April 1990.

Formal Derivation of Parallel Programs - 209

Next we want to investigate this new operator more closely. What properties
should H have? Clearly, we want it to be transitive, i.e.,

(P-Q) A (Q--R)-P-R. 03)

Furthermore, we have to supply a method to prove a H property from the text
of a program. In order to do this, we define an operator ensures, using predicate
transformer semantics in the following way:

P ensures Q
= (P unless Q) A (35:s E assign:P A 1Q 4 wp(S, Q)). (D7)

We refer to the two conjuncts in the above definition as the unless part and the
existential part, respectively. D7 formalizes the idea that, since no statement in
assign is ignored forever, some S that establishes Q will be executed eventually
in a state satisfying P. Note the following property of ensures:

(P ti Q) + P ensures Q.

Using ensures, we can now continue with the definition of H:

P ensures Q + P H Q. (D8)

This states that every ensures property is a H property. We, therefore, imme-
diately observe that

(P+ Q) + PH Q.

In particular, we get, using the transitivity of H:

LEMMA 0 (Strengthening lhs, weakening rhs of H).

(PtiQ) A (QHR)+PHR
(P H Q) A (Q + R) + P H R

To conclude our definition of H, we given the following induction principle3
for H: let M be a function from the program state to a well-founded set with
partial order >,

(Vk::PAM=k*M>k)+trueHlP. VW

Theorems About UNITY Operators

Using the operators we just defined, we can now prove a number of useful results.
They will come in handy when we refine specifications and reason about the
correctness of parallel programs. The theorems are given here without proof. For
detailed proofs, the interested reader is referred to [11.

THEOREM 0 (Finite Disjunction). For any finite index set I:

(Vi:i E I:P.i H Q.i) - (3i:i E I:P.i) H (3i:i E I:Q.i).

THEOREM 1 (PSP).

(X~Y)A(Wunless2)+XA WH(YA W)VZ.

3 Reference [1] contains a more general form of induction principle.

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 2, April 1990.

210 l Edgar Knapp

The acronym PSP stands for progress, safety, progress, since from a progress
and a safety property we derive another progress property.

1.3 Refinement of Specifications

We now formalize our notion of refinement. Let P, Q be specifications (e.g., sets
of UNITY properties). We say that P is a refinement of Q if and only if P + Q.

Each of the refinement steps of Section 3 will be of this form: a set of UNITY
properties is replaced by another that is shown to be logically stronger.

2. A SPECIFICATION OF THE MAXIMUM FLOW PROBLEM

We consider a set V of n vertices, n 2 2, which includes two distinguished vertices
s and t, called source and sink, respectively. All other vertices are internal vertices,
and their entirety is denoted by V-. Associated with each ordered pair (u, w) E
V x V is a finite real-valued capacity c (u, w) I 0.

The problem is to compute a real-valued function f on vertex pairs that satisfies
the constraints given below. For each vertex pair (u, w), f(u, w) is called the
direct flow from u to w.

The first constraint we impose is that the direct flow from u to w be limited
by the capacity c (u, w), for all u, w E V. Formally,

(t/u, w :: f(u, w) 5 c(u, w)). 60)

To simplify the formal treatment of the problem somewhat, we stipulate that
direct flows between the same vertex pair, but in opposite directions, be equal in
magnitude but opposite in sign, i.e.,

(Vu, w :: f(u, w) = -f(w, Ll)). (Sl)

Note that Sl implies (Vu :: f(u, u) = 0). For a vertex u, we define the net flow
into u to be e.u = (+x :: f (x, u)). W e re q uire that this net flow vanish for all
internal vertices. This gives us Kirchhoff’s Law:

(Vu:u E V-:e.u = 0). G3)

A flow is a function f satisfying the flow conditions SO, Sl, and S2. The ualue
of a flow is defined to be e. t, the net flow into the sink. A maximum flow is a flow
with the maximum value, i.e., one for which

e.t is maximum. 63)

A maximum flow can be shown to exist in all cases (cf., [O]). We say that our
solution is correct if our program establishes true H SO A Sl A S2 A S3.4

3. STEPWISE REFINEMENT OF THE SPECIFICATION

3.0 A First Solution

After stating the problem formally, our first design task is to decide on a general
solution strategy. Our design decision is to require that SO and Sl be invariants
of our program, giving us properties PO and Pl below. S2 seems to be far too

’ The reader may ask why we do not require stable SO A Sl A S2 A S3. This was omitted for simplicity.
However, the final program indeed satisfies this additional requirement.

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 2, April 1990.

Formal Derivation of Parallel Programs - 211

restrictive to serve as an invariant. Therefore, we only require that S2 be
established eventually (giving us P2), and that upon its establishment S3 hold
(giving us P3).

We summarize the properties of our program below and note that the correct-
ness of the solution is immediate.

invariant (Vu, w :: f(u, w) 5 c(u, w)).
invariant (Vu, w :: f(u, w) = -f(w, u)).
true H (Vu:u E V-:e.u = 0).
invariant (Vu: u E V-: e.u = 0) + e.t is maximum.

3.1 Refinement 0: Preflow

(PO)
(PI)
03)
(P3)

Our first refinement is motivated by the notion of preflow introduced in [8]. A
preflow is a function f satisfying SO, Sl, and the following modified form of S2:

(Vu:u # s:e.u 2 0). (S4)

Whereas S2 was considered too strong a condition to be eligible as an invariant,
our design decision is to require the invariance of S4. So we strengthen our
specification by adding

invariant (Vu:u # s:e.u 2 0). (P4)

Since this addition constitutes a strengthening of our specification, the cor-
rectness of our solution is preserved trivially. Henceforth, fin general refers to a
preflow.

3.2 Refinement 1: Residual Capacity

Looking at P3 we realize that the rhs of the implication is not quite in a form
amenable to formal manipulation. Our next step is therefore to replace P3 by a
condition that can be manipulated more easily. To this end, we define the residual
capacity r (u, w) of a vertex pair (u, w) to stand for the “unused” portion of the
capacity c(u, w), formally r(u, w) = c(u, w) - f(u, w).

Now consider the residual graph R with vertex set V and the set of directed
edges consisting of all vertex pairs (u, w) such that r(u, w) > 0. Note that R
depends on f. Paths in R and flows are related by the following classical
result [4]:

THEOREM 2. For a flow f: (e.t is maximum = ~(s path t)).

Remark. We are considering only paths in the residual graph R. Therefore,
whenever we refer to paths, we mean paths in R.

We now replace P3 by

invariant l(s path t). (P5)

Observing that

(VU:UE V-:e.u=O) A-$spatht)
4 (by Theorem 2, since f is a flow)

e.t is maximum

establishes that this replacement preserves the correctness of our solution, and
concludes this refinement step.

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 2, April 1990.

212 l Edgar Knapp

3.3 Refinement 2: Altitudes

Our specification at this point consists of properties PO, Pl, P2, P4, and P5. Of
all these, the last one is the most difficult to manipulate formally, since it involves
paths. Let us therefore concentrate on how to refine P5. To this end, imagine
each node being endowed with an additional attribute, a natural number, which
we call the altitude of the node. Net flow is transferred only along downward
edges in R, i.e., from nodes with higher altitudes to nodes of lower altitude. We
arbitrarily choose the altitude of the sink equal to zero. The altitudes of internal
vertices may change. For the time being, we leave open the choice for the altitude
of the source. Formally, with a1t.x denoting the altitude of node x, we propose:

(Vu :: alt.u 2 0) A a1t.t = 0. (S5)

Our goal now is to replace reasoning about paths (as in P5) by reasoning about
altitudes. To this end, we require for an edge (u, w) in the residual graph u’s
altitude not to exceed w’s altitude by more than one, formally:

(Vu, w:r(u, w) > O:alt.u 5 aZt.w + 1). 033

To see how S6 can be used to maintain P5, consider a simple path p =

UOUl * * * uI in R. Note that 1< n, since there are at most n distinct vertices in p.
Now we observe that for any such p:

p is a path in R
+ (definition of R)

(Vi:0 5 i< .l:r(Ui, Ui+l) > 0)

* WI
(Vi:0 5 i< l:UZt.Ui 5 dt.U~+~ + 1)

* {arithmetic 1
alt.uo 5 alt.u, + 1

* (since 1 C n)
alt.u, C alt.uL + n

Since there is a path between a pair of vertices in a graph if and only if there
is a simple path between them, we have proved the following:

LEMMA 1. (Vu, w :: u path w + a1t.u < u1t.w + n).

From this we conclude that

l(s path t)
C= (instantiate the contrapositiue of Lemma 1 with u, w := s, t]

u1t.s z a1t.t + n
= (since aZt.t = 0)

u1t.s 2 n

This means that in order to guarantee P5, all we have to do is to place the
source high enough! That is, aZt.s 2 n will do. Summing up, we replace P5 by

invariant (Vu :: u1t.u 2 0) A a1t.t = 0 A a1t.s 2 n.
invariant (Vu, w: r(u, w) > 0:aZt.u 5 u1t.w + 1).

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 2, April 1990.

(W
(P7)

Formal Derivation of Parallel Programs - 213

3.4 Refinement 3: Progress

After three refinement steps, our specification now consists of the properties PO,
Pl, P2, P4, P6, and P7. Next we want to investigate what properties the altitude
function should have in order to guarantee progress. So our goal in this refinement
is to replace P2 by a series of properties.

What constitutes progress for our program ? Observe that eventually all net

flows of internal vertices vanish (by P2). So we have to aim at reducing net flows
of internal vertices. We call an internal vertex v with a positive net flow a surplus
vertex, and define

sur.v = v E V- A e.v > 0.

Recall that we imposed the requirement that net flow be transferred only along
downward edges in R. We call a vertex without any outgoing downward edges a
disabled vertex, i.e.,

dis.v = (tlw:r(v, w) > O:alt.v I a1t.w).

We call a vertex enabled if it is not disabled. Formally, we derive:

1dis.v
= (definition dis.v, de Morgan)

(3w:r(v, w) > O:alt.v > a1t.w)
= (P7 and arithmetic)

(3w:r(v, w) > O:alt.v = a1t.w + 1)

Progress can be made in two ways: either (0), by an increase in altitudes, or
(l), by a change in net flows.

Ad (0): We require that if there is a disabled surplus vertex, then some altitude
with increase eventually. If we also stipulate that altitudes do not decrease, an
appropriate measure of progress made by raising altitudes is any expression that
is increasing in each altitude. The simplest such expression we can think of is
a= (+v :: a1t.v). So we obtain the requirements:

a = k unless a > k. 0’8)
(3v:sur.v:dis.v) A a = k c-) a > k. (P9)

Ad (1): Now consider the case in which there exists an enabled surplus vertex.
Let b be an expression that characterizes progress made by net flow transfer.
Since there does not yet seem to be an obvious choice for b, we postpone the
construction of b. So we require that our program meet

(3v:sur.v:ldis.v) A b = 1 H b > 1. (PlO)

Proof of Correctness of this Refinement

Let us now see how the three properties we proposed above (viz., P8, P9, and
PlO) allow us to replace P2. Towards this end, we first combine P8 and PlO
using the PSP-Theorem, abbreviating ENA = (3v : sur.v : 1dis.v) and yielding,

ENAAa=kAb=l-(a=kAb>l)Va>k.

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 2, April 1990.

214 l Edgar Knapp

We combine this with P9, using the Finite Disjunction Theorem (abbreviating
in P9 DIS = (3v:sur.v:dis.v)):

(ENAAa=kAb=l)V(DISAa=k) H(a=kAb>l)Va>kVa>k
+ (strengthen lhs of H, simplify rhs)

(ENAAa=kAb=l)V(DISAa=kAb=l)~(a=kAb>l)Va>k
= {predicate calculus)

(ENAVDIS)Aa=kAb=lc,(a=kAb>l)Va>k

At this point, the introduction of a metric M = (a, b) with lexicographic order >
suggests itself. Observe that in order for (M, 2) to form a well-founded set, we
have to require that a and b be bounded from above.

Before we continue with the derivation, we first simplify ENA V DIS:

ENA V DIS
= (definitions ENA and DIS}

(3v:sur.v:~dis.v) V (3v:sur.v: dis.v)
= (combining terms)

(3v : sur.v : true)
= (definition of sur.v and trading)

(3v:v E V-:e.v > 0)

Now we resume our former calculation, using M = (k, 1) = a = k A b = 1 and
M > (k, 1) = (a = k A b > 1) V a > k:

(3v:v~ V-:e.v>O) AM=(k,l)wM>(k,l)
+ (D9, induction on H, provided a and b are bounded from above)

trueHl(3v:vE V-:e.v>O)
= (de Morgan)

true- (Vu:v E V-:e.u IO)
= (P4)

true- (Vv:u E V-:e.v = 0)

This establishes that P2 can be replaced by P8, P9, and PlO, provided a and b
are bounded from above. So we are left with investigating an appropriate choice
for b and proving bounds on a and b. Therefore, let us now look into some
consequences of our refinement so far.

3.5 Summary and Consequences of Our Design Decisions

In the course of our refinements, the following properties have emerged: PO, Pl,
P4, P6, P7, P8, P9, and PlO. We now prove the boundedness of a. Since by P6,
a is bounded from below by 0, we are left with establishing an upper bound for
altitudes.

Let v be a fixed surplus vertex. Define the predicate H on vertices as follows:

H.x = v path x.

Observe that by the reflexivity of path, H.v holds. Furthermore, note that by the
transitivity of path, we have

(Vx, y:H.x A lH.y:lx path y).

ACM Transactions on Programming Languages and Systems, Vol. 12, No. ‘2, April 1990.

Formal Derivation of Parallel Programs l 215

Our first goal is to establish H.s. Towards this end, we observe for any x and y
such that H.x and 1H.y:

0
I (by above observation, lx path y 1

r(x, Y)
= (definition of r)

cb, Y) - fh Y)
I {since c(x, y) 2 0)

-fb, Y)
= (PlJ

f (Y, xl

Keeping this result in mind, we compute next:

(+x:H.x:e.x)
= (definition e.x)

(+x:H.x: (+z :: f(z, x)))
= (range splitting)

(+x:H.n: (+z:H.z:f(z, x)) + (+z:lH.z:f(z, x)))
= (distribution, unnesting)

(+x, z:H.x A H.z:f(z, x)) + (+x, z:H.x A lH.z:f(z, x))
= {by Pl the first term drops out)

(+x, z:H.x A lH.z:f(z, x))
5 (by the result kept in mind)

0

From this, we get

(+x:H.x:e.x) 5 0
+ {since H.v and e.v > 0)

(3x:H.x:e.x < 0)

* lb P41
H.s

Hence we arrive at the following important result:

LEMMA 2. (Vu : sur.v : v path s).

Using this result, we can now establish the boundedness of the altitude
function. First, we observe for all surplus vertices VI

sur.v
* (Lemma 2)

v path s
* (Lemma 1)

a1t.v < a1t.s + n

This means that the existence of an upper bound for altitudes depends crucially
on the existence of an upper bound for a1t.s. By P6, we are free to choose such a
bound as long as it is at least n. In order to get the least possible bound, we add

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 2, April 1990.

216 . Edgar Knapp

the requirement a1t.s I n to our specification, replacing P6 by the stronger

invariant (Vu :: a1t.u 2 0) A aZt.t = 0 A a1t.s = n. Wl)

Using Pll and our previous observation, we now conlude that (Vu : sur.u : a1t.u
< 2n). Notice that from Pll we also get a1t.s < 2n and a1t.t < ?n. We now add
the additional constraint

invariant (Vu: u E V- A e.u = 0: aZt.u < 2n),

and sum up the results above in the following:

u-9

THEOREM 3. (Vu :: 0 5 aZt.u A aZt.u < 2n).

An immediate consequence of this result is the boundedness of a.

3.6 Refinement 4: Progress Again

This is our final refinement step. After this step, our specification will be in a
form that can be directly translated into a program. The properties that need
further refinement are P9 and PlO, since leads-to properties cannot be directly
transformed into program text.

We have to eliminate the existential quantifications in both P9 and PlO. We
do this by applications of the disjunction rule for M. Doing this for P9 we obtain,
omitting the range sur.u:

= Efinition)
u::dis.u) Aa=k-a>k

= Izredicate calculus)

(3u ::dis.uAa=k)++a>k
e= (disjunction rule for I+)

(Vu :: dis.u A a = k H a > k)
e= (definition of H)

(Vu :: dis.u A a = k ensures a > 12)

So we propose the refined:

(Vu:sur.u:dis.u A a = k ensures a > k). (Pl3)

We apply the same technique to PlO. For brevity’s sake, we omit the ranges
sur.u and r(u, w) > 0.

PlO
= (definition]

w :: a1t.u = a1t.w + 1)) A b = 1 w b > 1
= ~~rYicL?e calculus)

(3u, w :: a1t.u = a1t.w + 1) A b = 1 H b > 1
= f predicate calculus)

(3u, w :: a1t.u = a1t.w + 1 A b = 1) w b > 1
+ (disjunction rule)

(Vu, w :: a1t.u = a1t.w + 1 A b = 1 c, b > 1)
+ (definition of H)

(Vu, w :: a1t.u = a1t.w + 1 A b = 1 ensures b > Z)

ACM Transactions cm Programming Languages and Systems, Vol. 12, No. 2, April 1990.

Formal Derivation of Parallel Programs l 217

Hence, we propose the refined:

(Vu, w:sur.u A r(u, w) > 0: aZt.u = a1t.w + 1 A b = 1 ensures b > 1). (P14)

3.7 The Complete Refined Specification

The abbreviations we introduced are summarized below:

e.u = (+x :: f(x, u))

rb, w) = cb, w) - fb, WI
a = (+u :: ak.u)

sur.u = u E V- A e.u > 0
dis.u = (Vw:r(u, w) > O:alt.u 5 a1t.w)

Our specification consists of the following properties:

(PO) invariant (Vu, w :: f(u, w) 5 c(u, w)).

(PI) invariant (Vu, w :: f(u, w) = --f(w, u)).

(P4) invariant (Vu: u # s: e.u r 0).
(P7) invariant (Vu, w:r(u, w) > O:aZt.u 5 a1t.w + 1).

UW a = k unless a > k.

(Pll) invariant (Vu :: a1t.u 2 0) A a1t.t = 0 A ah = n.
(P12) invariant (Vu: u E V- A e.u = 0: aku < 2n).
(P13) (Vu:sur.u:dis.u A a = lz ensures a > k).
(P14) (Vu, w:sur.u A r(u, w) > 0:alt.u = a1t.w + 1 A b = 1 ensures b > I).

In addition, we require that b be bounded from above. This concludes our
refinements.

4. DERIVING THE PROGRAM FROM THE REFINED SPECIFICATION

The final step in our program development consists of writing the program text.
First we develop the always-section of the program to include our definitions of
e and r. The initial conditions are determined by the requirement to establish all
invariants initially. Finally, the statements are derived from P13 and P14, after
which our program is complete.

4.0 Always-Section

The always-section of the program holds the definitions of e and r. This gives
us

always
(0 u :: e.u = (+x :: f(x, u)))

Cl (Cl u, w :: r(u, w) = c(u, w) - f(u, w))

4.1 Initially-Section

We have to give initial values for f (which is mentioned in PO, Pl, P4, P7, and
P12) and for alt (which occurs in P7, Pll, and P12). By Pll, we have no choice
for the altitudes of source and sink: aZt.t = 0 and ah = n. But now, in general,
P7’s validity is in danger for u = s or w = t. We would be fine if either s had
no outgoing edges or t had no incoming edges in the initial R. But the latter
cannot be achieved in general without violating P4. So our only choice is to see

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 2, April 1990.

218 l Edgar Knapp

to it that initially

(Vw:r(s, w) = 0).

Solving this equation for f and setting all other values of f to zero, we define
initially (using - to separate the different cases):

(II u, w :: f(v, w) = 0 if v#sAw#s
CbJ, w) if v=s

-4u, WI if w=s >

Note that the last line is needed to establish Pl initially. Furthermore, note that
f is well defined, since c(s, s) = 0 by the definition of c.

If we now instantiate w := t in P7, we get for all internal vertices x: in general,
the requirement akx 5 1. Since we want to increase altitudes after all, we choose
initially:

(II u : v E V- : ah = 1) 0 a1t.s = n 0 aZt.t = 0.

4.2 Assign-Section

Next we derive two sets of statements from the two ensures properties of our
final specification.

Statements Derived from P13

PI3 serves to ensure that a is incremented eventually. The simplest way to
achieve this is to increment one altitude at a time. Let us now consider which
new value for the altitude is appropriate. Towards this end, we define the
expression M.u as follows:

M.v = (min w:r(u, w) > O:aZt.w).

Note that for a surplus vertex v, the range of the above min in nonempty, since
by Lemma 2, sur.u implies u path s; that is, in particular, the existence of some
vertex w with r(u, w) > 0.

The new value of the altitude has to be such that P7 is maintained. So this
new value can be at most one greater than Mm. On the other hand, it has to be
at least one greater than M.v to be guaranteed to increase at all. Hence, the only
possible choice is

a1t.v := M.v + 1.

The first set of statements of the program is now obtained by observing that

d&v
= (definition dis]

(Vw:r(u, w) > O:alt.v 5 aZt.w)
= (arithmetic 1

ah 5 (min w:r(u, w) > O:aZt.w)
= (definition M)

a1t.u % M.u

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 2, April 1990.

Formal Derivation of Parallel Programs l 219

Gathering this last term and the range of P13 into the conditional part, we
get, for the first set of statements:

(0 v :: a1t.v := M.v + 1 if sur.v A a1t.v 5 M.v). (TO)

We also add the definition of M to the always-section of the program.
That each statement in TO indeed preserves PO, Pl, P4, P7, P8, Pll, P12, and

the unless part of P13 and P14 is proved purely mechanically, and is therefore
omitted; the existential part of P13 holds by construction of TO.

Statements Derived from P14

Our refinement process with respect to P14 is aimed at guaranteeing that net
flow will be transferred from one vertex to another under invariance of Pl.
Translating P14 directly into this goal, adding the range of P14 to the conditional
part, we obtain

(0 u, l-0 :: f(u, w), fb, v) := f(u, w) + d(v, w), fb, u) - d(u, WI
if sur.v A r(u, w) > 0 A alt.v = a1t.w + l), (Tl)

with some positive d that is developed next. First of all, we want d to be as large
as possible. How big can d be at most? Since we need to maintain PO, d(u, w) 5
r(v, w). Similarly, by P4, d 5 e.v. So to maximize d, we set

d(u, w) = e.u min r(v, w),

which is positive, since both e.u and r(u, w) are. We add this definition to the
always-section.

The proofs of all properties except P14 are straightforward, and therefore
omitted here. What is left is finding a suitable choice for b and proving that Tl
satisfies P14. P14 being the ensures property established by some statement in
Tl, we need to prove two things: the unless part and the existential part. Let us
first concentrate on the existential part.

Since Tl is a set of conditional assignments, by DO of Section 1.2, we can
write the proof obligation for given u and w as two separate requirements.
After some straightforward simplification, we then get for all u, w, for which
sur.u A r(u, w) > 0:

a1t.v = a1t.w + 1 A b = 1+

wp(f(u, w),fb~ u) := f(u, w) + d(v, w),f(w VI - d(u, w), b > 0

and

false =+ b > 1.

We note that the second proof obligation is trivially satisfied.
In Section 3.4, b was introduced to capture progress made by vanishing net

flows and disappearing edges of the residual graph. The only net flows affected
by some fixed statement in Tl are e.u and e.w, and the only edges affected are
r(u, w) and r(w, v). Let us therefore investigate the preconditions under which

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 2, April 1990.

220 l Edgar Knapp

net flows vanish and edges of the residual graph disappear:

WP(fb, w), f(w, u) := f(u, w) + d(u, w), f(w, u) - d(v, w), e.u = 0)
= (definition wp, e.v has exactly one occurrence off (w, v))

e.u - d(u, w) = 0
= (definition d and arithmetic)

e.u = e.v min r(u, w)
= (property of min)

e.u I r(u, w) WV

wp(f(u, w),f(w, u) :=f(u, w) + db, w),f(w, u) - db, w), e.w = 0)
= (definition wp, e.w has exactly one occurrence off (u, w))

e.w + d(v, w) = 0
= (since e.w L 0, d(u, w) > 0)

false (Cl)

wp(f (u, w), f h ~1 := f h, WI + db, ~1, f (w, u) - db, w),
r(u, w) = 0)

= (definition wp and r(u, w))
r(u, w) - d(u, w) = 0

= {arithmetic)
r(u, w) = e.u min r(u, w)

= {property of min)
r(u, w) 5 e.u Kw

wp(f (u, w), f he u) := f (v, w) + d(u, w), f (w, u) -
d(u, w), r(w, u) = 0)

= (definition wp and r(w, u)]
r(w, u) + d(u, w) = 0

= (since r(w, u) 2 0, d(u, w) > 0)
false (C3)

We now consider two types of expressions based on these four possibilities.
Our goal is to find an expression that is increased by the assignment in all cases.

The first type is of the form

(akv if e.u = 0) + (alt.w if e.w = 0).

For its value pre0 in a state satisfying the precondition of the assignment, we
get, since e.v > 0 and (a1t.w if e.w > 0) 5 alt.w,

pre0 5 a1t.w.

Its value in a state satisfying the postcondition of the assignment is, using CO
and Cl:

post0 = (aku if e.u 5 r(u, w)).

The second type of expression is

(a1t.u if r(u, w) = 0 A a1t.v = a1t.w + 1)
+ (a1t.w if r(w, v) = 0 A a1t.w = a1t.v + 1).

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 2, April 1990.

Formal Derivation of Parallel Programs l 221

Using C2 and the fact that a1t.v = a1t.w + 1 holds in both pre- and postconditions,
we get the following values:

prel = 0
post1 = (alt.v if r(v, w) 5 e.v).

Now we add up corresponding values for pre- and postconditions:

post0 + post1
= (substitute)

(aZt.v if e.v 5 r(v, w)) + (aZt.v if r(v, w) 5 e.v)
2 (arithmetic]

a1t.v
> (since alt.v = aZt.w + 1)

a1t.w
L {substitute 1

pre0 + prel

Together with the fact that all other values of e and r besides the ones mentioned
are invariant under the assignment, this argument establishes that b satisfying

b = (+y:e.y = O:alt.y) + (+y, z:r(y, z) = 0 A alt.y = akz + 1:aZt.y)

increases when the execution of some statement in Tl is effective, i.e., that the
existential part of P14 is satisfied. Also, by Theorem 3, b is bounded from above.

It turns out, however, that the unless part of P14 with respect to the statements
in TO is not satisfied (the reader is encouraged to work out a counterexample).
But since a is increased by any effective statement in TO and is unchanged by
the statements in Tl, b’ = (a, b) with lexicographic ordering does the trick,
instead of b. For one, b’ is bounded from above since both a and b are. In
addition, Tl still satisfies the existential part of P14. Furthermore, it is straight-
forward to show that all statements in TO and Tl satisfy the unless part of P14,
so all requirements have been met.

4.3 The Complete Program

Below is the complete program that we have derived.

program Maximum Flow

initially
(Ou, w :: f(u, w) = 0 if v#sAw#s-

c(u, WI if v=s

-c(u, WI if w=s >
O(Uu:uEV~:alt.u=l)UaZt.s=nOalt.t=O

always
(II v, w :: r(u, w) = c(u, w) - f(u, w))

II (0 v :: e.u = (+x :: f(n, u)))
0 (0 v :: M.u = (min w:r(u, w) > O:aZt.w))
0 (0 u, w :: d(u, w) = e.u min r(u, w))

assign

(Ou :: a1t.v := M.v + 1 if sur.v A a1t.v 5 M.u)
0 (17 u, w :: f(u, w), f(w, v) := f(v, w) -I d(v, w), f(w, v) - d(v, w)

if sur.v A r(u, w) > 0 A a1t.v = a1t.w + 1)
end

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 2, April 1990.

222 - Edgar Knapp

5. DISCUSSION

The program we obtained exhibits a high degree of nondeterminism. It can be
further refined to exploit the characteristics of specific architectures. Below we
give a sketch of what such further refinements would look like.

For a sequential architecture, the refinement has to deal with scheduling
the execution of statements and efficiently evaluating their conditions
to avoid expensive recomputations. Work in this direction is described in
detail in [5]. The sequential algorithm obtained there has a time complexity
of O(nm log(n’/m)), where m is the number of edges with positive capacity.

Refinement for a distributed architecture consists of mapping statements to
processes and of replacing global data structures by local ones. Again, [5] contains
an extensive discussion on how to implement the algorithm efficiently on
both synchronous and asynchronous architectures, achieving a time bound of
O(n’log n) using O(n) processors and O(m) local storage.

The derivation we presented is instructive in several respects. An algorithm
that, when presented in conjunction with the usual a-posteriori proof, might
strike the reader as a miraculous invention can be derived with top-down design
by a sequence of more or less consequential refinement steps. This is not to say
that there is not a great deal of creativity involved in this process. But, in this
way of design, the inventive steps are more easily distinguished from results that

have been obtained by mere calculations.
The main problem in this kind of development is to decide at each step which

property to refine next. Even though there are a number of useful heuristics
(such as identifying formulas that cannot be easily manipulated syntactically),
more research is needed to identify additional criteria for refinement.

In our example, there were two main inventions: one was the idea of a preflow,
while the other was the introduction of altitudes, together with invariant P7.
Most of the other steps were suggested by the syntactic shape of our formulas
and the UNITY formalism. Furthermore, the derivation of the actual program
text was a straightforward task, once our refinements had progressed down to
the level of ensures properties.

The advantage of this approach is that all the reasoning about correctness is
done in the domain of logic rather than in the domain of program executions.
Experience has shown that proving parallel programs by looking at their possible
executions is cumbersome and error prone, and therefore had best be avoided.
The UNITY view of a program is that of a mathematical object which is the
result of a series of stepwise refinements of specifications and which, in a final
step, can be mapped to a variety of different target architectures.

UNITY is the subject of much ongoing research with many questions still
waiting to be answered. Our experience so far suggests that it is a powerful tool
in all stages of the design of concurrent programs.

ACKNOWLEDGMENTS

We are indebted to Jay Misra for his continued help and encouragement. We are
also grateful to the members of the Austin Tuesday Afternoon Club and the
Eindhoven Tuesday Afternoon Club for their numerous suggestions. Comments

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 2, April 1990.

Formal Derivation of Parallel Programs l 223

from Wim Feijen helped to improve the presentation of the paper. C. S. Scholten
provided valuable insights on an earlier draft of the article. Thanks are also due
to the referees who provided valuable criticisms of this paper.

REFERENCES
0. BOLLOB~S, B. Graph Theory, An Introductory Course. Springer Verlag, New York, 1979.

1. CHANDY, K. M., AND MISRA, J. Parallel Program Design: A Foundation. Addison-Wesley,

Reading, Mass., 1988.

2. DIJKSTRA, E. W. A Discipline of Programming. Prentice-Hall, Englewood, Cliffs, N.J., 1976.

3. DIJKSTRA, E. W. Our proof format. EWD 999, Univ. of Texas at Austin, Jan. 1987.

4. FORD, L. R., AND FULKERSON, D. R. Flows in Networks. Princeton University Press, Princeton,

N.J., 1962.

5. GOLDBERG, A. V. Efficient graph algorithms for sequential and parallel computers. Ph.D.

dissertation, MIT, Feb. 1987. MIT/LCS/TR-374.

6. GOLDBERG, A. V., TARJAN, R. E. A new approach to the maximum flow problem. In Proceedings

18th ACM Symposium on Theory of Computing. ACM, New York, 1986, 136-146.

7. GRIES, D. The Science of Programming. Springer-Verlag, New York, 1981.

8. KARZANOV, A. V. Determining the maximal flow in a network by the method of preflows. Souiet

Math. Dokl. (1974), 434-437.

9. LYNCH, N. A., AND TUTTLE, M. R. Hierarchical correctness proofs for distributed algorithms.

In Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing

(Vancouver, B.C., 1987). ACM, New York, 1987.

10. MANNA, Z., AND PNUELI, A. How to cook a temporal proof system for your pet language. In

Proceedings 10th Annual ACM Symposium on Principles of Programming Languages (Austin,
Tex. 1983). ACM, New York, 1983.

11. GWICKI, S., AND GRIES, D. An axiomatic proof technique for parallel programs. Acta Znf. 6, 1

(1976), 319-340.

12. OWICKI, S., AND LAMPORT, L. Proving liveness properties of concurrent programs. ACM Trans.

Program. Lang. Syst. 4, 3 (July 1982), 445-495.

13. STASKAUSKAS, M. The formal specification and design of a distributed electronic funds transfer

system. IEEE Trans. Comput. 37,12 (Dec. 1988). 1515-1528.

Received August 1988; revised August 1989; accepted September 1989

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 2, April 1990.

