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We apply a new method for the development of parallel programs to the problem of finding maximum 

flows in graphs. The method facilitates concurrent program design by separating the concerns of 

correctness from those of hardware and implementation. It uses predicate transformer semantics to 

define a set of basic operators for the specification and verification of programs. From an initial 
specification program development proceeds by a series of refinement steps, each of which constitutes 

a strengthening of the specification of the previous refinement. The method is completely formal in 

the sense that all reasoning steps are performed within predicate calculus. A program is viewed as a 

mathematical object enjoying certain properties, rather than in terms of its possible executions. We 

demonstrate the usefulness of the approach by deriving an efficient algorithm for the Maximum Flow 

Problem in a top-down manner. 
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INTRODUCTION 

We use a novel method for the development of parallel programs to derive an 
efficient algorithm for the Maximum Flow Problem. The formalism we use is 
named UNITY, and was developed by Chandy and Misra [l]. It is new in the 
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sense that it abandons the notion of a process as a fundamental concept of 

parallel program design and that it facilitates program derivation by rigorously 
separating the concerns of program correctness from those of hardware and 
implementation (e.g., architectures, synchronization primitives, etc.). The 
method is also completely formal in the sense that operational reasoning is 
eliminated entirely; all inferences are done within predicate calculus. Further- 
more, a program is viewed as a mathematical object enjoying certain properties 
(e.g., invariants, stability), and not in terms of its possible executions. 

Program development in UNITY proceeds by stepwise refinement. While most 
methodologies of this type have programs as the object of refinement, our 
approach consists of the refinement of specifications. 

UNITY lends itself naturally to both procedural types of refinement (e.g., the 
realization of a particular solution strategy into an algorithm) and to data 
refinement (e.g., replacing a global data structure by a distributed one). In this 
paper our focus is on the former; an example of the latter can be found in [13]. 

The goal of program development, the program proper, is only obtained in the 
last step of this development process. This is typically done when the refined 
specification is restrictive enough to suggest a translation into UNITY code. 

As a consequence of this approach, proving the correctness of a refinement 
becomes an exercise in logic, and is therefore simpler than proving two programs 
equivalent, or that each in a series of refined programs meets a particular 
specification. 

We use the Maximum Flow Problem as an example of the usefulness of the 
UNITY approach. The algorithm we are deriving is originally due to Goldberg 
and Tarjan [5, 61. Starting from the problem specification, we derive a series of 
top-down refinements, proving at each stage that the correctness of our solution 
is preserved. Our refinement steps are motivated mostly by heuristics about the 
syntactic shape of our formulas, that is, we strive to eliminate formulas that are 
not easily manipulatable symbolically. For example, one of our refinement steps 
consists of replacing reasoning about paths by reasoning about a function. In 
addition, our development clearly shows which parts of the problem can be solved 
routinely and which require more insight. The algorithm we will thus derive is a 
generic version of-according to Goldberg and Tarjan-the most efficient algo- 
rithms known today for both sequential and parallel architectures. 

Our work differs from most others in the area of parallel program verification 
(cf., [g-12]) in several important respects. First of all, unlike temporal logics and 
I/O automata, the UNITY formalism is independent from an operational model 
of program execution, even though operational notions such as execution se- 
quences or histories may serve as the intuition behind UNITY logic. As a 
consequence, fairness is not an issue: it is built into the ensures operator, the 
basic notion of progress in UNITY. Second, our emphasis is not on a posteriori 
verification of programs, that is, demonstrating that a given program meets its 
specification, but on constructively deriving a program from its specification by 
a succession of refinement steps. In this sense UNITY is very much in the spirit 
of “verifying a program before it is written,” a paradigm advocated for sequential 
programming most notably by Dijkstra [Z] and Gries 171. 

Our paper is organized as follows: Section 1 contains an introduction to 
our notation. The first part of this section presents some general notational 
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conventions; the second contains a brief discussion of the proof format we will 
be using, while the third part presents that subset of UNITY that is needed for 
our refinements. This presentation of UNITY is necessarily incomplete, and the 
reader is referred to [l] for an exhaustive treatment. The last part of this section 
formalizes our notion of refinement of specifications. 

Section 2 defines the Maximum Flow Problem formally. The specification we 
obtain is the starting point for a series of stepwise refinements. These refinements 
are presented in Section 3; they lead to a set of about ten properties, from which, 
in Section 4, the program text is derived quite straightforwardly. A discussion of 
the advantages and disadvantages of this approach concludes our paper. 

1. NOTATION 

1 .O Notational Conventions 

We use the following notational conventions: quantified expressions are written 
in the format 

(CBx:r.x:t.x), 

where CB is any associative and symmetric operator. Furthermore, x is called the 
dummy, r.x is called the range, and t.x the term of the quantification. In case CB 
has an identity element e, (CBX: false: t.x) is well defined and equal to e. If in a 
quantified formula the range is omitted, quantification is over all elements of the 
domain of the dummy.’ 

For example, (Vi : 0 5 i A i < n : A.i > 0) holds if and only if all elements of A 
in the range between 0 and n - 1 are positive. Likewise (+i :: A.i) denotes the 
sum of all elements of A; in the latter example, the range of i is understood from 
the given context. 

The operators we use are summarized below, ordered by binding powers, with 
the top row having the weakest and the bottom row having the strongest binding 
power. Precise definitions of all new operators are given later in this section and 
in Section 1.2. 

unless, stable, invariant, ensures, H, 

A, v, 

7 

=, #, <, 2, >, I, 2, E, 

min, +, -, path 

The binary infix operator min is defined as: 

a=bminc=(a=bVa=c)Au~bAu<c. 

It is symmetric, idempotent, and associative. 
In a graph G, we define a predicate “path” on vertex pairs as: 

x path y = there is a path from x to y in G. 

1 When the term of the quantification is a predicate, we will write V instead of A and 3 instead of V. 
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We use the fact that the relation “path” is reflexive and transitive. 
The value of the expression (t if b), where t is an integer expression, is defined 

to be t in case b holds, and 0 otherwise. 

1 .l Proof Format 

Most of our proofs are purely calculational in the sense that they consist of a 
number of syntactic transformations instead of semantic reasoning steps. We 
use a proof format that was first proposed by Feijen, Dijkstra, and others, and 
that greatly facilitates this kind of proof. 

For example, a proof that A = D may be rendered in our format as 

=&ntwhyA =BJ 

= kint why B = C] 

=iintwhyC=DJ 
D 

We also allow other transitive operators in the leftmost column. Among these 
are the more traditional implies (+), but also, for reasons of symmetry, follows- 
from (+). It turns out that the latter is more than a mere convenience: proofs 
that strike the reader as requiring considerable clairvoyance when presented in 
one direction, when written the other way round, have the pleasant property that 
each manipulation is strongly suggested by what was done previously. 

We leave this discussion at these very general remarks. For a more thorough 
treatment of this subject, the reader is referred to [3]. 

1.2 An Introduction to UNITY 

Parallel program design in UNITY is the subject of a recent book [ 11. We describe 
that subset of UNITY that is relevant to our discussion; footnotes identify the 
differences to full UNITY, as described in [ 11. 

Programs in UNITY 

A UNITY program consists of four parts: 

(0) the declare-section, or declare for short, contains a series of Pascal-style 
declarations; 

(1) the initially-section, or initially for short, is a set of equations defining the 
initial values for some or all the program variables; 

(2) the always-section, or always for short, contains a set of defining equations 
for a subset of program variables; there are certain restrictions on the form 
these equations may assume; 

(3) the assign-section, or assign for short, consists of a finite nonempty set of 
multiple assignment statements. 

The purpose of the first two sections should be quite obvious. Each equation in 
always defines the value of some variable. The restrictions on the equations 
serve to ensure that circular and conflicting definitions are excluded. These 
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restrictions can be formalized quite straightforwardly. The interested reader is 
referred to [l]. One property of the always-section worth noting is that each 
equation in it is a program invariant. 

Let J denote a list of program variables, and f.~ a list of expressions, possibly 
depending on x and matching the variables in x in number and type. The assign- 
section contains statements of the form 

x := f.x if B 

where x := f.x is a multiple assignment statement and B is a Boolean expression2 
With wp standing for Dijkstra’s weakest precondition, we define the predicate 
transformer semantics of such a statement as follows: 

wp(“x := f.x if B”, Q) = (B + wp(“x := f.x”, Q)) A (1B - Q). (DO) 

The semantics of the multiple assignment x := f.x are 

wp(“x := f.x”, Q) = Q[x := f.x] 01) 

where Q[x := f.x] stands for Q with all occurrences of variables in x simultaneously 
replaced by the matching expressions in f.x. 

As an example consider the statement 

x, y := y, x if x < y. 

To derive the weakest precondition such that this statement establishes the 
predicate x > y we calculate 

wp(“x, y := y, x if x < y”, x > y) 
= (definition wp) 

(x < y =9 wp(“X, y := y, x”, x > y)) A (x 2 y * x > y) 
= (definition wp, simplify second conjunct) 

(xcy=+y>x)Ax#y 
= {first conjunct simplifies to true} 

X#Y 

Equations in initially and always and statements in assign are separated 
by the operator Cl. This operator is symmetric, associative, and idempotent. When 
used to separate equations, its semantics are those of logical conjunction (A). In 
the assign-section it serves as a statement separator, and its identity element is 
the empty assignment, commonly denoted by skip. 

From an operational point of view, we can think of a UNITY program as being 
executed by repeating the following, ad infinitum: select any statement from 
assign and execute it. The only requirement we impose on the selection process 
is that no statement in the set be ignored forever. A variable defined in always 
can be thought of as being evaluated when it is accessed by the program. 

As a consequence, UNITY programs do not terminate in the conventional 
sense. We do however stipulate that each individual UNITY statement terminate. 
Formally, this is expressed by 

(VS :: wp(S, true) = true). (D2) 

* Full UNITY has a slightly more general form of multiple assignment. 
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The Specification Language 

Problem specifications in UNITY are written using three basic binary operators: 
unless, ensures, and H (“leads to”). Using the predicate transformer semantics 
of the individual statements in assign, we define 

P unless Q = (VS:S E assign:P A 1Q + wp(S, P V Q)). (D3) 

Intuitively, P unless Q means that whenever predicate P holds for a program 
state, Q holds in this state, or P continues to hold at least until Q holds. Note 
that this allows for the case that Q never holds; in such a case P continues to 
hold forever. 

The following property of unless follows directly from its definition: 

(P + Q) + P unless Q. 

As an exampk of an unless property, consider the specification that “a hungry 
philosopher rem ins hungry until he eats (if ever).” Formally, 

(Vphil :: phiLhungry unless phiLeats ). 

There is a special case of unless that deserves special attention, because it 
occurs quite frequently. Consider the property P unless false. Going back to the 
definition of unless, we find that this specifies that each statement preserves P. 
We call such a predicate a stable property, and define 

stable P = P unless false. (D4) 

An example of a stable property is the fact that sent.ch, the number of messages 
sent along channel ch, does not decrease. We write this as 

(Vk :: stable sent.ch L k). 

Another concept that turns out to be of great importance is that of an 
invariant. Its definition is straightforward: 

invariant P = (initially + P) A stable P. (D5) 

An example of an invariant property is the requirement that neighboring 
philosophers do not eat simultaneously, i.e., 

invariant ( VphilO, phi1 1:: l(philO.eats A phi1 Leats A phi10 neighbor phi1 1)). 

The reader may have noticed that so far the properties one can specify are 
limited to safety properties, i.e., properties that disallow certain transitions 
between program states. When specifying concurrent programs, however, we are 
often interested in stating that a certain predicate holds at some point in the 
future. In UNITY, this requirement is expressed using H; informally, P H Q 
states that if P holds in some state of the program, then eventually a state is 
reached in which Q holds. 

As an example, consider the requirement that a hungry philosopher eat 
eventually. We write this as 

( Vphil :: phil.hungry H phil.eats) . 
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Next we want to investigate this new operator more closely. What properties 
should H have? Clearly, we want it to be transitive, i.e., 

(P-Q) A (Q--R)-P-R. 03) 

Furthermore, we have to supply a method to prove a H property from the text 
of a program. In order to do this, we define an operator ensures, using predicate 
transformer semantics in the following way: 

P ensures Q 
= (P unless Q) A (35:s E assign:P A 1Q 4 wp(S, Q)). (D7) 

We refer to the two conjuncts in the above definition as the unless part and the 
existential part, respectively. D7 formalizes the idea that, since no statement in 
assign is ignored forever, some S that establishes Q will be executed eventually 
in a state satisfying P. Note the following property of ensures: 

(P ti Q) + P ensures Q. 

Using ensures, we can now continue with the definition of H: 

P ensures Q + P H Q. (D8) 

This states that every ensures property is a H property. We, therefore, imme- 
diately observe that 

(P+ Q) + PH Q. 

In particular, we get, using the transitivity of H: 

LEMMA 0 (Strengthening lhs, weakening rhs of H). 

(PtiQ) A (QHR)+PHR 
(P H Q) A (Q + R) + P H R 

To conclude our definition of H, we given the following induction principle3 
for H: let M be a function from the program state to a well-founded set with 
partial order >, 

(Vk::PAM=k*M>k)+trueHlP. VW 

Theorems About UNITY Operators 

Using the operators we just defined, we can now prove a number of useful results. 
They will come in handy when we refine specifications and reason about the 
correctness of parallel programs. The theorems are given here without proof. For 
detailed proofs, the interested reader is referred to [ 11. 

THEOREM 0 (Finite Disjunction). For any finite index set I: 

(Vi:i E I:P.i H Q.i) - (3i:i E I:P.i) H (3i:i E I:Q.i). 

THEOREM 1 (PSP). 

(X~Y)A(Wunless2)+XA WH(YA W)VZ. 

3 Reference [ 1] contains a more general form of induction principle. 
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The acronym PSP stands for progress, safety, progress, since from a progress 
and a safety property we derive another progress property. 

1.3 Refinement of Specifications 

We now formalize our notion of refinement. Let P, Q be specifications (e.g., sets 
of UNITY properties). We say that P is a refinement of Q if and only if P + Q. 

Each of the refinement steps of Section 3 will be of this form: a set of UNITY 
properties is replaced by another that is shown to be logically stronger. 

2. A SPECIFICATION OF THE MAXIMUM FLOW PROBLEM 

We consider a set V of n vertices, n 2 2, which includes two distinguished vertices 
s and t, called source and sink, respectively. All other vertices are internal vertices, 
and their entirety is denoted by V-. Associated with each ordered pair (u, w) E 
V x V is a finite real-valued capacity c (u, w ) I 0. 

The problem is to compute a real-valued function f on vertex pairs that satisfies 
the constraints given below. For each vertex pair (u, w), f(u, w) is called the 
direct flow from u to w. 

The first constraint we impose is that the direct flow from u to w be limited 
by the capacity c (u, w), for all u, w E V. Formally, 

(t/u, w :: f(u, w) 5 c(u, w)). 60) 

To simplify the formal treatment of the problem somewhat, we stipulate that 
direct flows between the same vertex pair, but in opposite directions, be equal in 
magnitude but opposite in sign, i.e., 

(Vu, w :: f(u, w) = -f(w, Ll)). (Sl) 

Note that Sl implies (Vu :: f(u, u) = 0). For a vertex u, we define the net flow 
into u to be e.u = (+x :: f (x, u)). W e re q uire that this net flow vanish for all 
internal vertices. This gives us Kirchhoff’s Law: 

(Vu:u E V-:e.u = 0). G3) 

A flow is a function f satisfying the flow conditions SO, Sl, and S2. The ualue 
of a flow is defined to be e. t, the net flow into the sink. A maximum flow is a flow 
with the maximum value, i.e., one for which 

e.t is maximum. 63) 

A maximum flow can be shown to exist in all cases (cf., [O]). We say that our 
solution is correct if our program establishes true H SO A Sl A S2 A S3.4 

3. STEPWISE REFINEMENT OF THE SPECIFICATION 

3.0 A First Solution 

After stating the problem formally, our first design task is to decide on a general 
solution strategy. Our design decision is to require that SO and Sl be invariants 
of our program, giving us properties PO and Pl below. S2 seems to be far too 

’ The reader may ask why we do not require stable SO A Sl A S2 A S3. This was omitted for simplicity. 
However, the final program indeed satisfies this additional requirement. 
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restrictive to serve as an invariant. Therefore, we only require that S2 be 
established eventually (giving us P2), and that upon its establishment S3 hold 
(giving us P3). 

We summarize the properties of our program below and note that the correct- 
ness of the solution is immediate. 

invariant (Vu, w :: f(u, w) 5 c(u, w)). 
invariant (Vu, w :: f(u, w) = -f(w, u)). 
true H (Vu:u E V-:e.u = 0). 
invariant (Vu: u E V-: e.u = 0) + e.t is maximum. 

3.1 Refinement 0: Preflow 

(PO) 
(PI) 
03) 
(P3) 

Our first refinement is motivated by the notion of preflow introduced in [8]. A 
preflow is a function f satisfying SO, Sl, and the following modified form of S2: 

(Vu:u # s:e.u 2 0). (S4) 

Whereas S2 was considered too strong a condition to be eligible as an invariant, 
our design decision is to require the invariance of S4. So we strengthen our 
specification by adding 

invariant (Vu:u # s:e.u 2 0). (P4) 

Since this addition constitutes a strengthening of our specification, the cor- 
rectness of our solution is preserved trivially. Henceforth, fin general refers to a 
preflow. 

3.2 Refinement 1: Residual Capacity 

Looking at P3 we realize that the rhs of the implication is not quite in a form 
amenable to formal manipulation. Our next step is therefore to replace P3 by a 
condition that can be manipulated more easily. To this end, we define the residual 
capacity r (u, w) of a vertex pair (u, w ) to stand for the “unused” portion of the 
capacity c(u, w), formally r(u, w) = c(u, w) - f(u, w). 

Now consider the residual graph R with vertex set V and the set of directed 
edges consisting of all vertex pairs (u, w) such that r(u, w) > 0. Note that R 
depends on f. Paths in R and flows are related by the following classical 
result [4]: 

THEOREM 2. For a flow f: (e.t is maximum = ~(s path t)). 

Remark. We are considering only paths in the residual graph R. Therefore, 
whenever we refer to paths, we mean paths in R. 

We now replace P3 by 

invariant l(s path t). (P5) 

Observing that 

(VU:UE V-:e.u=O) A-$spatht) 
4 (by Theorem 2, since f is a flow) 

e.t is maximum 

establishes that this replacement preserves the correctness of our solution, and 
concludes this refinement step. 
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3.3 Refinement 2: Altitudes 

Our specification at this point consists of properties PO, Pl, P2, P4, and P5. Of 
all these, the last one is the most difficult to manipulate formally, since it involves 
paths. Let us therefore concentrate on how to refine P5. To this end, imagine 
each node being endowed with an additional attribute, a natural number, which 
we call the altitude of the node. Net flow is transferred only along downward 
edges in R, i.e., from nodes with higher altitudes to nodes of lower altitude. We 
arbitrarily choose the altitude of the sink equal to zero. The altitudes of internal 
vertices may change. For the time being, we leave open the choice for the altitude 
of the source. Formally, with a1t.x denoting the altitude of node x, we propose: 

(Vu :: alt.u 2 0) A a1t.t = 0. (S5) 

Our goal now is to replace reasoning about paths (as in P5) by reasoning about 
altitudes. To this end, we require for an edge (u, w) in the residual graph u’s 
altitude not to exceed w’s altitude by more than one, formally: 

(Vu, w:r(u, w) > O:alt.u 5 aZt.w + 1). 033 

To see how S6 can be used to maintain P5, consider a simple path p = 

UOUl * * * uI in R. Note that 1< n, since there are at most n distinct vertices in p. 
Now we observe that for any such p: 

p is a path in R 
+ (definition of R) 

(Vi:0 5 i< .l:r(Ui, Ui+l) > 0) 

* WI 
(Vi:0 5 i< l:UZt.Ui 5 dt.U~+~ + 1) 

* {arithmetic 1 
alt.uo 5 alt.u, + 1 

* (since 1 C n) 
alt.u, C alt.uL + n 

Since there is a path between a pair of vertices in a graph if and only if there 
is a simple path between them, we have proved the following: 

LEMMA 1. (Vu, w :: u path w + a1t.u < u1t.w + n). 

From this we conclude that 

l(s path t) 
C= (instantiate the contrapositiue of Lemma 1 with u, w := s, t ] 

u1t.s z a1t.t + n 
= (since aZt.t = 0) 

u1t.s 2 n 

This means that in order to guarantee P5, all we have to do is to place the 
source high enough! That is, aZt.s 2 n will do. Summing up, we replace P5 by 

invariant (Vu :: u1t.u 2 0) A a1t.t = 0 A a1t.s 2 n. 
invariant (Vu, w: r(u, w) > 0:aZt.u 5 u1t.w + 1). 
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3.4 Refinement 3: Progress 

After three refinement steps, our specification now consists of the properties PO, 
Pl, P2, P4, P6, and P7. Next we want to investigate what properties the altitude 
function should have in order to guarantee progress. So our goal in this refinement 
is to replace P2 by a series of properties. 

What constitutes progress for our program ? Observe that eventually all net 

flows of internal vertices vanish (by P2). So we have to aim at reducing net flows 
of internal vertices. We call an internal vertex v with a positive net flow a surplus 
vertex, and define 

sur.v = v E V- A e.v > 0. 

Recall that we imposed the requirement that net flow be transferred only along 
downward edges in R. We call a vertex without any outgoing downward edges a 
disabled vertex, i.e., 

dis.v = (tlw:r(v, w) > O:alt.v I a1t.w). 

We call a vertex enabled if it is not disabled. Formally, we derive: 

1dis.v 
= (definition dis.v, de Morgan) 

(3w:r(v, w) > O:alt.v > a1t.w) 
= (P7 and arithmetic) 

(3w:r(v, w) > O:alt.v = a1t.w + 1) 

Progress can be made in two ways: either (0), by an increase in altitudes, or 
(l), by a change in net flows. 

Ad (0): We require that if there is a disabled surplus vertex, then some altitude 
with increase eventually. If we also stipulate that altitudes do not decrease, an 
appropriate measure of progress made by raising altitudes is any expression that 
is increasing in each altitude. The simplest such expression we can think of is 
a= (+v :: a1t.v). So we obtain the requirements: 

a = k unless a > k. 0’8) 
(3v:sur.v:dis.v) A a = k c-) a > k. (P9) 

Ad (1): Now consider the case in which there exists an enabled surplus vertex. 
Let b be an expression that characterizes progress made by net flow transfer. 
Since there does not yet seem to be an obvious choice for b, we postpone the 
construction of b. So we require that our program meet 

(3v:sur.v:ldis.v) A b = 1 H b > 1. (PlO) 

Proof of Correctness of this Refinement 

Let us now see how the three properties we proposed above (viz., P8, P9, and 
PlO) allow us to replace P2. Towards this end, we first combine P8 and PlO 
using the PSP-Theorem, abbreviating ENA = ( 3v : sur.v : 1dis.v) and yielding, 

ENAAa=kAb=l-(a=kAb>l)Va>k. 
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We combine this with P9, using the Finite Disjunction Theorem (abbreviating 
in P9 DIS = (3v:sur.v:dis.v)): 

(ENAAa=kAb=l)V(DISAa=k) H(a=kAb>l)Va>kVa>k 
+ (strengthen lhs of H, simplify rhs) 

(ENAAa=kAb=l)V(DISAa=kAb=l)~(a=kAb>l)Va>k 
= {predicate calculus ) 

(ENAVDIS)Aa=kAb=lc,(a=kAb>l)Va>k 

At this point, the introduction of a metric M = (a, b) with lexicographic order > 
suggests itself. Observe that in order for (M, 2) to form a well-founded set, we 
have to require that a and b be bounded from above. 

Before we continue with the derivation, we first simplify ENA V DIS: 

ENA V DIS 
= (definitions ENA and DIS} 

(3v:sur.v:~dis.v) V (3v:sur.v: dis.v) 
= (combining terms ) 

(3v : sur.v : true) 
= (definition of sur.v and trading) 

(3v:v E V-:e.v > 0) 

Now we resume our former calculation, using M = (k, 1) = a = k A b = 1 and 
M > (k, 1) = (a = k A b > 1) V a > k: 

(3v:v~ V-:e.v>O) AM=(k,l)wM>(k,l) 
+ (D9, induction on H, provided a and b are bounded from above) 

trueHl(3v:vE V-:e.v>O) 
= (de Morgan) 

true- (Vu:v E V-:e.u IO) 
= (P4) 

true- (Vv:u E V-:e.v = 0) 

This establishes that P2 can be replaced by P8, P9, and PlO, provided a and b 
are bounded from above. So we are left with investigating an appropriate choice 
for b and proving bounds on a and b. Therefore, let us now look into some 
consequences of our refinement so far. 

3.5 Summary and Consequences of Our Design Decisions 

In the course of our refinements, the following properties have emerged: PO, Pl, 
P4, P6, P7, P8, P9, and PlO. We now prove the boundedness of a. Since by P6, 
a is bounded from below by 0, we are left with establishing an upper bound for 
altitudes. 

Let v be a fixed surplus vertex. Define the predicate H on vertices as follows: 

H.x = v path x. 

Observe that by the reflexivity of path, H.v holds. Furthermore, note that by the 
transitivity of path, we have 

(Vx, y:H.x A lH.y:lx path y). 
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Our first goal is to establish H.s. Towards this end, we observe for any x and y 
such that H.x and 1H.y: 

0 
I (by above observation, lx path y 1 

r(x, Y) 
= (definition of r) 

cb, Y) - fh Y) 
I {since c(x, y) 2 0) 

-fb, Y) 
= (PlJ 

f (Y, xl 

Keeping this result in mind, we compute next: 

(+x:H.x:e.x) 
= (definition e.x) 

(+x:H.x: (+z :: f(z, x))) 
= (range splitting) 

(+x:H.n: (+z:H.z:f(z, x)) + (+z:lH.z:f(z, x))) 
= (distribution, unnesting) 

(+x, z:H.x A H.z:f(z, x)) + (+x, z:H.x A lH.z:f(z, x)) 
= {by Pl the first term drops out) 

(+x, z:H.x A lH.z:f(z, x)) 
5 (by the result kept in mind) 

0 

From this, we get 

(+x:H.x:e.x) 5 0 
+ {since H.v and e.v > 0) 

(3x:H.x:e.x < 0) 

* lb P41 
H.s 

Hence we arrive at the following important result: 

LEMMA 2. (Vu : sur.v : v path s). 

Using this result, we can now establish the boundedness of the altitude 
function. First, we observe for all surplus vertices VI 

sur.v 
* (Lemma 2) 

v path s 
* (Lemma 1) 

a1t.v < a1t.s + n 

This means that the existence of an upper bound for altitudes depends crucially 
on the existence of an upper bound for a1t.s. By P6, we are free to choose such a 
bound as long as it is at least n. In order to get the least possible bound, we add 
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the requirement a1t.s I n to our specification, replacing P6 by the stronger 

invariant (Vu :: a1t.u 2 0) A aZt.t = 0 A a1t.s = n. Wl) 

Using Pll and our previous observation, we now conlude that (Vu : sur.u : a1t.u 
< 2n). Notice that from Pll we also get a1t.s < 2n and a1t.t < ?n. We now add 
the additional constraint 

invariant (Vu: u E V- A e.u = 0: aZt.u < 2n), 

and sum up the results above in the following: 

u-9 

THEOREM 3. (Vu :: 0 5 aZt.u A aZt.u < 2n). 

An immediate consequence of this result is the boundedness of a. 

3.6 Refinement 4: Progress Again 

This is our final refinement step. After this step, our specification will be in a 
form that can be directly translated into a program. The properties that need 
further refinement are P9 and PlO, since leads-to properties cannot be directly 
transformed into program text. 

We have to eliminate the existential quantifications in both P9 and PlO. We 
do this by applications of the disjunction rule for M. Doing this for P9 we obtain, 
omitting the range sur.u: 

= Efinition) 
u::dis.u) Aa=k-a>k 

= Izredicate calculus ) 

(3u ::dis.uAa=k)++a>k 
e= (disjunction rule for I+) 

(Vu :: dis.u A a = k H a > k) 
e= (definition of H) 

(Vu :: dis.u A a = k ensures a > 12) 

So we propose the refined: 

(Vu:sur.u:dis.u A a = k ensures a > k). (Pl3) 

We apply the same technique to PlO. For brevity’s sake, we omit the ranges 
sur.u and r(u, w) > 0. 

PlO 
= (definition] 

w :: a1t.u = a1t.w + 1)) A b = 1 w b > 1 
= ~~rYicL?e calculus ) 

(3u, w :: a1t.u = a1t.w + 1) A b = 1 H b > 1 
= f predicate calculus) 

(3u, w :: a1t.u = a1t.w + 1 A b = 1) w b > 1 
+ (disjunction rule) 

(Vu, w :: a1t.u = a1t.w + 1 A b = 1 c, b > 1) 
+ (definition of H) 

(Vu, w :: a1t.u = a1t.w + 1 A b = 1 ensures b > Z) 
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Hence, we propose the refined: 

(Vu, w:sur.u A r(u, w) > 0: aZt.u = a1t.w + 1 A b = 1 ensures b > 1). (P14) 

3.7 The Complete Refined Specification 

The abbreviations we introduced are summarized below: 

e.u = (+x :: f(x, u)) 

rb, w) = cb, w) - fb, WI 
a = (+u :: ak.u) 

sur.u = u E V- A e.u > 0 
dis.u = (Vw:r(u, w) > O:alt.u 5 a1t.w) 

Our specification consists of the following properties: 

(PO) invariant (Vu, w :: f(u, w) 5 c(u, w)). 

(PI) invariant (Vu, w :: f(u, w) = --f(w, u)). 

(P4) invariant (Vu: u # s: e.u r 0). 
(P7) invariant (Vu, w:r(u, w) > O:aZt.u 5 a1t.w + 1). 

UW a = k unless a > k. 

(Pll) invariant (Vu :: a1t.u 2 0) A a1t.t = 0 A ah = n. 
(P12) invariant (Vu: u E V- A e.u = 0: aku < 2n). 
(P13) (Vu:sur.u:dis.u A a = lz ensures a > k). 
(P14) (Vu, w:sur.u A r(u, w) > 0:alt.u = a1t.w + 1 A b = 1 ensures b > I). 

In addition, we require that b be bounded from above. This concludes our 
refinements. 

4. DERIVING THE PROGRAM FROM THE REFINED SPECIFICATION 

The final step in our program development consists of writing the program text. 
First we develop the always-section of the program to include our definitions of 
e and r. The initial conditions are determined by the requirement to establish all 
invariants initially. Finally, the statements are derived from P13 and P14, after 
which our program is complete. 

4.0 Always-Section 

The always-section of the program holds the definitions of e and r. This gives 
us 

always 
(0 u :: e.u = (+x :: f(x, u))) 

Cl (Cl u, w :: r(u, w) = c(u, w) - f(u, w)) 

4.1 Initially-Section 

We have to give initial values for f (which is mentioned in PO, Pl, P4, P7, and 
P12) and for alt (which occurs in P7, Pll, and P12). By Pll, we have no choice 
for the altitudes of source and sink: aZt.t = 0 and ah = n. But now, in general, 
P7’s validity is in danger for u = s or w = t. We would be fine if either s had 
no outgoing edges or t had no incoming edges in the initial R. But the latter 
cannot be achieved in general without violating P4. So our only choice is to see 
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to it that initially 

(Vw:r(s, w) = 0). 

Solving this equation for f and setting all other values of f to zero, we define 
initially (using - to separate the different cases): 

(II u, w :: f(v, w) = 0 if v#sAw#s 
CbJ, w) if v=s 

-4u, WI if w=s > 

Note that the last line is needed to establish Pl initially. Furthermore, note that 
f is well defined, since c(s, s) = 0 by the definition of c. 

If we now instantiate w := t in P7, we get for all internal vertices x: in general, 
the requirement akx 5 1. Since we want to increase altitudes after all, we choose 
initially: 

(II u : v E V- : ah = 1) 0 a1t.s = n 0 aZt.t = 0. 

4.2 Assign-Section 

Next we derive two sets of statements from the two ensures properties of our 
final specification. 

Statements Derived from P13 

PI3 serves to ensure that a is incremented eventually. The simplest way to 
achieve this is to increment one altitude at a time. Let us now consider which 
new value for the altitude is appropriate. Towards this end, we define the 
expression M.u as follows: 

M.v = (min w:r(u, w) > O:aZt.w). 

Note that for a surplus vertex v, the range of the above min in nonempty, since 
by Lemma 2, sur.u implies u path s; that is, in particular, the existence of some 
vertex w with r(u, w) > 0. 

The new value of the altitude has to be such that P7 is maintained. So this 
new value can be at most one greater than Mm. On the other hand, it has to be 
at least one greater than M.v to be guaranteed to increase at all. Hence, the only 
possible choice is 

a1t.v := M.v + 1. 

The first set of statements of the program is now obtained by observing that 

d&v 
= (definition dis] 

(Vw:r(u, w) > O:alt.v 5 aZt.w) 
= (arithmetic 1 

ah 5 (min w:r(u, w) > O:aZt.w) 
= (definition M) 

a1t.u % M.u 
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Gathering this last term and the range of P13 into the conditional part, we 
get, for the first set of statements: 

(0 v :: a1t.v := M.v + 1 if sur.v A a1t.v 5 M.v). (TO) 

We also add the definition of M to the always-section of the program. 
That each statement in TO indeed preserves PO, Pl, P4, P7, P8, Pll, P12, and 

the unless part of P13 and P14 is proved purely mechanically, and is therefore 
omitted; the existential part of P13 holds by construction of TO. 

Statements Derived from P14 

Our refinement process with respect to P14 is aimed at guaranteeing that net 
flow will be transferred from one vertex to another under invariance of Pl. 
Translating P14 directly into this goal, adding the range of P14 to the conditional 
part, we obtain 

(0 u, l-0 :: f(u, w), fb, v) := f(u, w) + d(v, w), fb, u) - d(u, WI 
if sur.v A r(u, w) > 0 A alt.v = a1t.w + l), (Tl) 

with some positive d that is developed next. First of all, we want d to be as large 
as possible. How big can d be at most? Since we need to maintain PO, d(u, w) 5 
r(v, w). Similarly, by P4, d 5 e.v. So to maximize d, we set 

d(u, w) = e.u min r(v, w), 

which is positive, since both e.u and r(u, w) are. We add this definition to the 
always-section. 

The proofs of all properties except P14 are straightforward, and therefore 
omitted here. What is left is finding a suitable choice for b and proving that Tl 
satisfies P14. P14 being the ensures property established by some statement in 
Tl, we need to prove two things: the unless part and the existential part. Let us 
first concentrate on the existential part. 

Since Tl is a set of conditional assignments, by DO of Section 1.2, we can 
write the proof obligation for given u and w as two separate requirements. 
After some straightforward simplification, we then get for all u, w, for which 
sur.u A r(u, w) > 0: 

a1t.v = a1t.w + 1 A b = 1+ 

wp(f(u, w),fb~ u) := f(u, w) + d(v, w),f(w VI - d(u, w), b > 0 

and 

false =+ b > 1. 

We note that the second proof obligation is trivially satisfied. 
In Section 3.4, b was introduced to capture progress made by vanishing net 

flows and disappearing edges of the residual graph. The only net flows affected 
by some fixed statement in Tl are e.u and e.w, and the only edges affected are 
r(u, w) and r(w, v). Let us therefore investigate the preconditions under which 
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net flows vanish and edges of the residual graph disappear: 

WP(fb, w), f(w, u) := f( u, w) + d(u, w), f(w, u) - d(v, w), e.u = 0) 
= (definition wp, e.v has exactly one occurrence off (w, v)) 

e.u - d(u, w) = 0 
= (definition d and arithmetic) 

e.u = e.v min r(u, w) 
= (property of min) 

e.u I r(u, w) WV 

wp(f(u, w),f(w, u) :=f(u, w) + db, w),f(w, u) - db, w), e.w = 0) 
= (definition wp, e.w has exactly one occurrence off (u, w)) 

e.w + d(v, w) = 0 
= (since e.w L 0, d(u, w) > 0) 

false (Cl) 

wp(f (u, w), f h ~1 := f h, WI + db, ~1, f (w, u) - db, w), 
r(u, w) = 0) 

= (definition wp and r(u, w)) 
r(u, w) - d(u, w) = 0 

= {arithmetic) 
r(u, w) = e.u min r(u, w) 

= {property of min) 
r(u, w) 5 e.u Kw 

wp(f (u, w), f he u) := f (v, w) + d(u, w), f (w, u) - 
d(u, w), r(w, u) = 0) 

= (definition wp and r(w, u)] 
r(w, u) + d(u, w) = 0 

= (since r(w, u) 2 0, d(u, w) > 0) 
false (C3) 

We now consider two types of expressions based on these four possibilities. 
Our goal is to find an expression that is increased by the assignment in all cases. 

The first type is of the form 

(akv if e.u = 0) + (alt.w if e.w = 0). 

For its value pre0 in a state satisfying the precondition of the assignment, we 
get, since e.v > 0 and (a1t.w if e.w > 0) 5 alt.w, 

pre0 5 a1t.w. 

Its value in a state satisfying the postcondition of the assignment is, using CO 
and Cl: 

post0 = (aku if e.u 5 r(u, w)). 

The second type of expression is 

(a1t.u if r(u, w) = 0 A a1t.v = a1t.w + 1) 
+ (a1t.w if r(w, v) = 0 A a1t.w = a1t.v + 1). 

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 2, April 1990. 



Formal Derivation of Parallel Programs l 221 

Using C2 and the fact that a1t.v = a1t.w + 1 holds in both pre- and postconditions, 
we get the following values: 

prel = 0 
post1 = (alt.v if r(v, w) 5 e.v). 

Now we add up corresponding values for pre- and postconditions: 

post0 + post1 
= (substitute) 

(aZt.v if e.v 5 r(v, w)) + (aZt.v if r(v, w) 5 e.v) 
2 (arithmetic ] 

a1t.v 
> (since alt.v = aZt.w + 1) 

a1t.w 
L {substitute 1 

pre0 + prel 

Together with the fact that all other values of e and r besides the ones mentioned 
are invariant under the assignment, this argument establishes that b satisfying 

b = (+y:e.y = O:alt.y) + (+y, z:r(y, z) = 0 A alt.y = akz + 1:aZt.y) 

increases when the execution of some statement in Tl is effective, i.e., that the 
existential part of P14 is satisfied. Also, by Theorem 3, b is bounded from above. 

It turns out, however, that the unless part of P14 with respect to the statements 
in TO is not satisfied (the reader is encouraged to work out a counterexample). 
But since a is increased by any effective statement in TO and is unchanged by 
the statements in Tl, b’ = (a, b) with lexicographic ordering does the trick, 
instead of b. For one, b’ is bounded from above since both a and b are. In 
addition, Tl still satisfies the existential part of P14. Furthermore, it is straight- 
forward to show that all statements in TO and Tl satisfy the unless part of P14, 
so all requirements have been met. 

4.3 The Complete Program 

Below is the complete program that we have derived. 

program Maximum Flow 

initially 
(Ou, w :: f(u, w) = 0 if v#sAw#s- 

c(u, WI if v=s 

-c(u, WI if w=s > 
O(Uu:uEV~:alt.u=l)UaZt.s=nOalt.t=O 

always 
(II v, w :: r(u, w) = c(u, w) - f(u, w)) 

II (0 v :: e.u = (+x :: f(n, u))) 
0 (0 v :: M.u = (min w:r(u, w) > O:aZt.w)) 
0 (0 u, w :: d(u, w) = e.u min r(u, w)) 

assign 

(Ou :: a1t.v := M.v + 1 if sur.v A a1t.v 5 M.u) 
0 (17 u, w :: f(u, w), f(w, v) := f(v, w) -I d(v, w), f(w, v) - d(v, w) 

if sur.v A r(u, w) > 0 A a1t.v = a1t.w + 1) 
end 
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5. DISCUSSION 

The program we obtained exhibits a high degree of nondeterminism. It can be 
further refined to exploit the characteristics of specific architectures. Below we 
give a sketch of what such further refinements would look like. 

For a sequential architecture, the refinement has to deal with scheduling 
the execution of statements and efficiently evaluating their conditions 
to avoid expensive recomputations. Work in this direction is described in 
detail in [5]. The sequential algorithm obtained there has a time complexity 
of O(nm log(n’/m)), where m is the number of edges with positive capacity. 

Refinement for a distributed architecture consists of mapping statements to 
processes and of replacing global data structures by local ones. Again, [5] contains 
an extensive discussion on how to implement the algorithm efficiently on 
both synchronous and asynchronous architectures, achieving a time bound of 
O(n’log n) using O(n) processors and O(m) local storage. 

The derivation we presented is instructive in several respects. An algorithm 
that, when presented in conjunction with the usual a-posteriori proof, might 
strike the reader as a miraculous invention can be derived with top-down design 
by a sequence of more or less consequential refinement steps. This is not to say 
that there is not a great deal of creativity involved in this process. But, in this 
way of design, the inventive steps are more easily distinguished from results that 

have been obtained by mere calculations. 
The main problem in this kind of development is to decide at each step which 

property to refine next. Even though there are a number of useful heuristics 
(such as identifying formulas that cannot be easily manipulated syntactically), 
more research is needed to identify additional criteria for refinement. 

In our example, there were two main inventions: one was the idea of a preflow, 
while the other was the introduction of altitudes, together with invariant P7. 
Most of the other steps were suggested by the syntactic shape of our formulas 
and the UNITY formalism. Furthermore, the derivation of the actual program 
text was a straightforward task, once our refinements had progressed down to 
the level of ensures properties. 

The advantage of this approach is that all the reasoning about correctness is 
done in the domain of logic rather than in the domain of program executions. 
Experience has shown that proving parallel programs by looking at their possible 
executions is cumbersome and error prone, and therefore had best be avoided. 
The UNITY view of a program is that of a mathematical object which is the 
result of a series of stepwise refinements of specifications and which, in a final 
step, can be mapped to a variety of different target architectures. 

UNITY is the subject of much ongoing research with many questions still 
waiting to be answered. Our experience so far suggests that it is a powerful tool 
in all stages of the design of concurrent programs. 
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