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Introduction. The equations governing small deformations superposed on a large

deformation for a body composed of viscoelastic material were established by Pipkin and

Rivlin [1], Recently Iesan [2] has presented equations for small thermoelastic deformations

superposed on a general nonlinear thermomechanical deformation and an existence and

uniqueness theorem for these equations was proven by Navarro and Quintanilla [3]. In

this paper equations are developed which describe motions of a viscoelastic body which

are incremental in the sense that they are close to a nonequilibrium nonlinear deformation

of the body and an existence and uniqueness theorem for these equations with Dirichlet

boundary conditions is proved. The paper is concluded with the remark that the Dirichlet

problem of incremental viscoelasticity is well posed.

Basic theory. Let J1 be a body whose particles X are identified with their referential

positions X e Br, where Br is some fixed reference configuration of 38. It is assumed that

Br is a bounded open subset of R" (n = 1,2 or 3) with smooth boundary 3Br. The motion

of the body is given by the deformation function,

x = x( X, t), (1)

which gives the spatial position x ^ B, at time t < /0 of the particle whose position in Br is

X: B, denotes the current configuration.

The deformation gradient F is defined by

ay sr?'8?" (2)

where <?,, /' = 1, 2, 3, and EA, A = 1, 2, 3, are orthonormal bases representing spatial and

referential cartesian coordinate systems. If the deformation (1) is to be possible in a real

material then

det F > 0.
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In this paper it is assumed that xt is continuously differentiable with respect to each of the

variables XA, t as many times as required.

The law of balance of linear momentum for the body 38 may be expressed as the field

equation

px = pb + Divs, (3)

where p(X) is the referential mass density, b(X, t) is, the body force per unit mass and

s( X, t) is the nominal stress tensor. Here Divs is given, in components, by dsAi/dXA.

The history a'( ■) of any function a up to time t is defined by

a'(^) = a(t — s), 0 < s < oo,

and it should be noted that a'( •) determines both the restricted history,

a'r(s) = a'(i), 0 < 5 < oo,

and also the present value a = a(t).

In the purely mechanical theory of simple materials the stress tensor is completely

determined by the history of the deformation gradient up to time t and is therefore given

by the constitutive equation,

? = S(F<) = S{Fr',F). (4)

It-is implicit in equation (4) that the material is homogeneous although the analysis that

follows remains valid for inhomogeneous materials.

Let h(-) be a fixed influence function which is positive, monotonic decreasing and

continuous on [0, oo) which decays to zero fast enough to be square integrable: h( •) is

referred to as the obliviator. It is clear that the space , consisting of all tensor-valued

functions U(-) defined on [0, oo) and such that

\\U(-)\\ = [Jo u(s) ■ u(s)h{s)2 ds^ Coo,1

is a Hilbert space. It is assumed henceforward that the material has fading memory and

instantaneous elastic response in the sense that the response function S(Fr', F) is

continuously differentiable with respect to F as many times as necessary and continuously

Frechet differentiable (as many times as required) with respect to Fr' which must be an

element of Jf?.

Following the generalisation by Williams [4] of the definitions of elastic moduli given by

Chadwick and Ogden [5] the fourth-order tensor-valued function

4(x, t) = ), aAiBj = dsA,/dFjB, (5)

is defined to be the tensor of first-order instantaneous elastic moduli and the tensor

A'( X, t, s) of first-order relaxation function slopes is implicitly defined by

°y4'(Ar, t, s)[t/(i)] ds = 8S(Fr', F\UT) VU{-)<ej? (6)f•'n
lU-V= »(UVT) = UiAV,A.
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where SS denotes the Frechet differential of S. It should be noted that the existence of A'

is assured by the Riesz representation theorem for linear functionals and that A'[U] has

the component form

Strictly speaking, the tensor A'(X, t, •) is only determined almost everywhere by Eq. (6).

The uniqueness of A' is guaranteed, however, by the assumption that the relaxation

function,

G{X, t, s) = A(X, t) + f A'( X, t,u) du, (7)
jo

possesses the continuous partial derivative

a
ds'
j~G(X, t,s) = A'(X, t,s). (8)

The relation

G(X, t, 0) = A(X, ?),

follows by setting 5 = 0 in Eq. (7).

Incremental viscoelasticity. Suppose that the body force b(X,t) and the boundary

conditions,

sTN = [(X,t) when X e £2, (10)

x = d(X,t) when X e dBr — 12, (11)

are prescribed then the primary state [6] is defined to be a motion whose deformation

function (1) satisfies the equation at motion (3) subject to the consitutive equation (4) and

the boundary conditions (10) and (11). It should be noted that, in the conditions (10) and

(11) 3Br denotes the boundary of Br, Q, is some subset of 3Br and N is the outward unit

normal on 3Br.

A secondary state [6] of the body SS is a motion, defined by the deformation,

x* = x*(X, t).

In the secondary state the current configuration is denoted by B* and dynamic quantities

associated with this state will be denoted by an asterisk. Thus the secondary state satisfies

the equation of motion,

px* = pb* + Divj*, (12)

subject to the constitutive equation,

= S(F*') = S(F*'r, F), (13)

and the boundary conditions,

s*TN = t*( X, t) when X e 12, (14)

x* = d*{X, t) when X e dBr - 12. (15)
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In what follows the secondary state is regarded as a perturbation of the primary state.

To this end the incremental quantities,

u = x* - x, (16)

H = F* - F = 9m/3x, (17)

f=b*-b, (18)

and

(19)

are introduced. The incremental equation of motion,

pii = pf + Diva, (20)

now follows on the subtraction of the primary momentum Eq. (3) from the corresponding

Eq. (12) in the secondary state.

The first approximation to the constitutive equation for the incremental stress a is given

by

? = + SS(F/, F\H'r) + o(\\H'|| + ||tf||) (21)

from which it follows that a satisfies the linear constitutive equation,

a = G(t,0)[HT] + jf° ^G(r,S)[{A/;(.)}r], (22)

where the dependence of G on X has, for the sake of clarity, been suppressed and use has

been made of Eq. (5) to (9). Therefore, substituting the relation (22) into Eq. (20), making

use of the definition (17) and writing V for 9/3x the linearised equation of motion,

pit = pf+ Div{G(r,0)[( V«)r]}

+ Diwj jjj<?(r,.?)[{ Vi^(-s)} T] ds, (23)

is arrived at. Equation (23) should be supplemented by the incremental boundary

conditions,

°Tiy=T(X'>) whence £2, (24)

u = D{X,t) when X g dBr - Q, (25)

where T = t* - t and D = d* - d. Equation (23) together with the conditions (24) and

(25) represents the mixed boundary value problem of linearised incremental viscoelastic-

ity.

The existence and uniqueness theorem. The theorem that is proved in this section is

concerned only with the Dirichlet problem, that is when S2 = 0 and D = 0, so that the
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conditions (24) and (25) reduce to the Dirichlet condition

u = 0 when X e 3Br. (26)

Further assumptions which are necessary preliminaries to the theorem are listed below.

(a) p(X) ^ p0 > 0, X ^ Br.

(b) The relaxation function G(X, t, s) is continuously differentiable with respect to X

and, for each fixed X e Br, is twice continuously differentiable on the domain [0, ;0]

X [0, go).

(c) The relaxation function slope 3G(X, t, s)/ds is continuously differentiable with

respect to X.

(d) The relaxation function is symmetric, that is

f-{G(A\/,j)[e]} = Q{G(X, r,j)[P]}, X^Br,t e [0, /„],* 6 [0, oo),

(27)

where P and Q are arbitrary second order tensors. (Equation (27) is equivalent to

^AiBj = G BjA,-)

(e) The relaxation function satisfies the global monotonicity conditions

-j (v«)r~G(J,?,s)[(v«)'] dV> 0 on t €= [0, ?0], s £= [0, oo), (28)

f ( Vu)T ■ -^—G(X, t, s)f( vw)1 dV > 0, on t e [0, f0], s e [0, oo),
JBr 3 J

for all u e C™(Br), where C™(Br) denotes the set of «-dimensional vector fields which

vanish on 3Br and possess continuous derivatives of all orders.

(f) There exists a positive constant 8 such that

J (Vu)T-G(r, oo)[( V«)r] dV > S J (vu)T(vu)dV on ( G [0, (0] (29)
Br Br

for all u e C™(Br).

(g) There exists K > 0 such that,

SJ~ (^(^))rg^G(,)[(vz(,))"] dsdV

^ K f f ( V^(5'))r^-G(^)f( Vz(s))rl dsdV, on / e [0, r0]
JBrJ 0 ~ °s

(30)

for all z e Co°°{[0, oo); C^(Br)}.

Consider the elements w(t) = (u(x, /), v(x, t), z(x, t, i1)) which give the state of the

body at time t by means of the incremental displacement u, the incremental velocity v and

the displacement history z, where

v(x, t) = u(x, t), z(x, t, s) = y(x, I — s). (31)
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The Hilbert space obtained by the completion of the set C0X(Z?,.) X C™(Br) X C0X{[0, oo);

Cx( Br)} under the norm induced by the inner product,

((m, v, z), (u, v, z)) = f ( Vm) ' ■ G(oo)f( Vm)71 dV + f p(v ■ v) dV
JB ~ ~ - Jgr

-f f ( Vm - V2(5))r^-<J(5)f( Vm - Vz(^))rl dsdV,
JB J0 05

is denoted by Xr It should be noted that the hypotheses (a) to (g) imply that the

completions are equivalent for all t.

Defining the matrix operator,

0 / 0

A(t) = COM

0 0 N J
(33)

where

Cm = i Div{G(0)[(VM)r]}, (34)

1 rx 0
Mz = — Div / —

P JQ

ds-

the abstract evolutionary equation on 0 < t < /0

1 0

f(')

9 I

Nz=-j-z, (36)

d_

dt

u(t)

v(t)

j(<)

= A(t)

u(t)

y(0
[i(OJ

+
1 m(0)^

«(0)

\m)

/«o\

\ -o I
(37)

follows from the incremental equation of motion (23). In equation (33) the domain £>

matrix operator A(t) is given by

D-D\A{t)\- v e X A
z

l»\
V

\z~l

e A' and z( X, z,0) = u{X, t)\

The existence and uniqueness theorem may now be stated as follows.

Theorem. If the conditions (a) to (g) on the viscoelastic coefficients hold and the source

term satisfies / e (^{[O, f0]; L2{Br)} then, for any (m0, v0, z0) e D there exists a unique

solution

(«(/), v(t),z(t)) e C>([0, /(,]; X) n C°([0, /„]; D)

of the evolutionary Eq. (37). Furthermore, there exists y > 0 such that

||(w(f), v(t), z(0)ll < y(||(«o. Vq< *o)II + A)> ' G [°- hi (38)
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The proof of this theorem is via the following lemmas.

Lemma 1 The conditions (a) to (f) on the coefficients imply that, for each fixed

t e [0, r0], A(t) is the generator of a contractive semigroup.

The proof of this lemma can be found in Navarro [7] or Dafermos [8].

Lemma 2. There exists a positive constant a such that

IK?*' V, z)||,/||(w, V, z)||5 < ea""s| (39)

holds for each (m, v, z) e X and each 5, t e [0, ?0],

Proof. Let <#>(/) = ||(m, v, z)!!,2 then, differentiating with respect to t, it follows that

«/>(')=/ (V")r-^G(A',/,«i)[(v«)r] dV

-J J (vu - Vz(^))^-^G(A",r^)[(VM - Vz(s))r] dsdV

f ( Vu)T ■ -irG(X, t, oo)[( V«)T1 dV
J Br

-/ J ( Vu - Vz(s))Tt^G(X, t, s)[( Vu - Vz(5))r] dsdV. (40)

The application of the Cauchy-Schwarz and Young inequalities together with the condi-

tions (f) and (g) yields

<j>(t) < 2a<j>(t) where a > 0.

This inequality may be integrated between the limits s and t to obtain

4>(t) < <t>(s)eal'-°l

which is the result (39).

Proof of the theorem. It is clear that Lemmas 1 and 2 imply that the family of operators

[A(t)\t e [0, r0]} is stable in the sense of Kato [9] with stability constants 7 = e2o"° and

zero. Thus there exists an evolution operator U(t, s) defined on {0 < s < t < ?0} which

satisfies ||f/(f, s)|| < y and the solutions of the evolution equation can be written

(u(t),v(t), z(t)) = U(t,0)(u0, v0, z0) + (' U(t,s){Q). /(j),0) ds. (41)

The inequality (38) follows immediately.

Remark 1. The inequality (38) implies the solution depends continuously on the initial

conditions, that is the problem is well posed.

Remark 2. A similar proof to that given by Chirita [10] leads to a theorem of

uniqueness and continuous dependence for the mixed boundary value problem of incre-

mental viscoelasticity.

Remark 3. Arguments similar to those given by Navarro [7] show that the symmetry

and monotonicity conditions (d) and (e) follow from the assumption that A(t) is the

generator of a contractive semigroup for all t e [0, f0].
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