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�is paper studies the existence of solutions for a boundary value problem of nonlinear fractional hybrid di	erential inclusions by
using a 
xed point theorem due to Dhage (2006). �e main result is illustrated with the aid of an example.

1. Introduction

�e intensive development of fractional calculus in recent
years clearly indicates the popularity of the subject. It has been
mainly due to applications of the subject in various 
elds such
as physics, mechanics, chemistry, and engineering [1–3]. In
particular, the tools of fractional calculus have considerably
improved the modelling techniques and several important
models describing biological, ecological, and engineering
phenomena are now based on fractional derivatives and
integrals. Another factor attracting the attention of many
scientists is the nonlocal nature of fractional-order operators
which accounts for the hereditary properties of many mate-
rials and processes.

Much of the work on fractional di	erential equations
involves either Riemann-Liouville derivative or Caputo
derivative; for instance, see [4–33] and the references therein.
However, there is another concept of fractional derivative
in the literature which was introduced by Hadamard in
1892 [34]. �is derivative is known as Hadamard fractional
derivative and di	ers from aforementioned derivatives in the
sense that the kernel of the integral in its de
nition contains
logarithmic function of arbitrary exponent. Further details of
Hadamard fractional derivatives and integrals can be found
in [2].

In this paper, we study a Dirichlet boundary value
problem of nonlinear fractional hybrid di	erential inclusions
given by

�� ( � (�)� (�, � (�))) ∈ 	 (�, � (�)) , 1 < � < 
, 1 < � ≤ 2,
� (1) = � (
) = 0,

(1)

where �� is the Hadamard fractional derivative, � ∈([1, 
] ×R,R \ {0}), 	 : [1, 
] ×R → P(R) is a multivalued
map, andP(R) is the family of all nonempty subsets of R.

�e main objective of the present study is to establish
an existence result for the problem (1) under Lipschitz and
Carathéodory conditions by applying a 
xed point theorem
in Banach algebras due to Dhage [35]. Some recent details on
hybrid fractional di	erential equations can be found in [36–
40] and the references cited therein. We emphasize that our
work is new in the present con
guration and contributes to
the present literature on Hadamard type fractional di	eren-
tial equations and inclusions [41–44].

�e paper is organized as follows: in Section 2 we recall
some preliminary facts that we need in the sequel and Section
3 contains our main result.
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2. Preliminaries

2.1. Fractional Calculus

De
nition 1 (see [2]). �e Hadamard derivative of fractional
order � for a function � : [1,∞) → R is de
ned as

��� (�) = 1Γ (� − �)(� ���)
� ∫�
1
(log ��)

�−�−1� (�)� ��,
� − 1 < � < �, � = [�] + 1,

(2)

where [�] denotes the integer part of the real number � and
log(⋅) = log�(⋅).
De
nition 2 (see [2]). �e Hadamard fractional integral of
order � for a function � is de
ned as

��� (�) = 1Γ (�) ∫�
1
(log ��)

�−1� (�)� ��, � > 0, (3)

provided the integral exists.

Lemma 3. Let � ∈ ([1, 
],R). �en the integral solution of
the problem

�� ( � (�)� (�, � (�))) = � (�) , 1 < � < 
, 1 < � ≤ 2,
� (1) = � (
) = 0,

(4)

is given by

� (�)
= � (�, � (�)) ( 1Γ (�) ∫�

1
(log ��)

�−1� (�)� ��
− (log �)�−1 1Γ (�) ∫�

1
(log 
�)

�−1� (�)� ��) ,
� ∈ [1, 
] .

(5)

Proof . As argued in [2], the solution of Hadamard di	eren-
tial equation in (4) can be written as

� (�) = � (�, � (�)) ( 1Γ (�) ∫�
1
(log ��)

�−1� (�)� ��
+  1(log �)�−1 +  2(log �)�−2) ,

(6)

where  1,  2 ∈ R are arbitrary constants. Using the given
boundary conditions in (6), we 
nd that

 2 = 0,  1 = − 1Γ (�) ∫�
1
(log 
�)

�−1� (�)� ��. (7)

Substituting the values of  1,  2 in (6), we obtain (5).

Remark 4. It is interesting to note that solution (5) for � =2 corresponds to the one for a Dirichlet boundary value
problem of Cauchy-Euler type hybrid di	erential equation:

�2 �2��2 ( � (�)� (�, � (�))) + � ��� ( � (�)� (�, � (�))) = � (�) . (8)

2.2.Multivalued Analysis. Let us recall some basic de
nitions
on multivalued maps [45, 46].

For a normed space (!, ‖ ⋅ ‖), let Pcl(!) = {# ∈ P(!) :# is closed}, P�(!) = {# ∈ P(!) : # is bounded},
Pcp(!) = {# ∈ P(!) : # is compact}, and Pcp,cv(!) ={# ∈ P(!) : # is compact and convex}. A multivalued
map $ : ! → P(!) is convex (closed) valued if $(�)
is convex (closed) for all � ∈ !. �e map $ is bounded
on bounded sets if $(B) = ∪�∈B$(�) is bounded in ! for
all B ∈ P�(!) (i.e., sup�∈B{sup{|�| : � ∈ $(�)}} < ∞).$ is called upper semicontinuous (u.s.c.) on ! if for each�0 ∈ !, the set $(�0) is a nonempty closed subset of !, and
if for each open set & of ! containing $(�0), there exists
an open neighborhood N0 of �0 such that $(N0) ⊆ &.$ is said to be completely continuous if $(B) is relatively
compact for every B ∈ P�(!). If the multivalued map $ is
completely continuous with nonempty compact values, then$ is u.s.c. if and only if$ has a closed graph; that is, �� → �∗,�� → �∗, and �� ∈ $(��) imply �∗ ∈ $(�∗). $ has a

xed point if there is � ∈ ! such that � ∈ $(�). �e 
xed
point set of the multivalued operator $ will be denoted by
Fix$. A multivalued map $ : [0; 1] → Pcl(R) is said to be
measurable if for every � ∈ R, the function

� *-→ � (�, $ (�)) = inf {3333� − 43333 : 4 ∈ $ (�)} (9)

is measurable.
Let ([1, 
],R) denote a Banach space of continu-

ous functions from [1, 
] into R with the norm ‖�‖ =
sup�∈[1,�]|�(�)|. Let 61([1, 
],R) be the Banach space of mea-
surable functions � : [1, 
] → R which are Lebesgue

integrable and normed by ‖�‖�1 = ∫�1 |�(�)|��.
De
nition 5. A multivalued map 	 : [1, 
] × R → P(R) is
said to be Carathéodory if

(i) � *→ 	(�, �) is measurable for each � ∈ R;

(ii) � *→ 	(�, �) is upper semicontinuous for almost all� ∈ [1, 
].
Further, a Carathéodory function 	 is called 61-

Carathéodory if

(iii) there exists a function � ∈ 61([1, 
],R+) such that

‖	 (�, �)‖ = sup {|V| : V ∈ 	 (�, �)} ≤ � (�) , (10)

for all � ∈ R and for a.e. � ∈ [1, 
].
For each � ∈ ([1, 
],R), de
ne the set of selections of 	

by

8�, := {V ∈ 61 ([1, 
] ,R) : V (�) ∈ 	 (�, � (�))
for a.e. � ∈ [1, 
] } . (11)
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�e following lemma is used in the sequel.

Lemma 6 (see [47]). Let! be a Banach space. Let 	 : [1, 
] ×
R → Pcp,cv(!) be an 61-Carathéodory multivalued map,

and let Θ be a linear continuous mapping from 61([1, 
], !)
to ([1, 
], !). �en the operator

Θ ∘ 8� :  ([1, 
] , !) -→ P��,�V ( ([1, 
] , !)) ,
� *-→ (Θ ∘ 8�) (�) = Θ (8�,�) (12)

is a closed graph operator in ([1, 
], !) × ([1, 
], !).
�e following 
xed point theorem due to Dhage [35] is

fundamental in the proof of our main result.

Lemma 7. Let ! be a Banach algebra, let B : ! → ! be a
single-valued, and let C : ! → P��,�V(!) be a multivalued
operator satisfying the following:

(a) B is single-valued Lipschitz with a Lipschitz constant D,
(b) C is compact and upper semicontinuous,

(c) 2ED < 1, where E = ‖C(!)‖.
�en either

(i) the operator inclusion � ∈ B�C� has a solution, or

(ii) the setE = {F ∈ ! | GF ∈ BFCF, G > 1} is unbounded.
3. Main result

De
nition 8. A function � ∈ B1([1, 
],R) is called a
solution of the problem (1) if there exists a function V ∈61([1, 
],R) with V(�) ∈ 	(�, �(�)), a.e. on [1, 
] such that��(�(�)/�(�, �(�))) = V(�), a.e. on [1, 
] and �(1) = �(
) = 0.
�eorem 9. Assume that

(H1) the function� : [1, 
]×R → R\{0} is continuous and
there exists a bounded functionI, with bound ‖I‖, such
that I(�) > 0, a.e � ∈ [1, 
] and

3333� (�, �) − � (�, �)3333 ≤ I (�) 3333� (�) − � (�)3333 ,
J.
. � ∈ [1, 
] , ∀�, � ∈ R; (13)

(H2) 	 : [1, 
] × R → P(R) is 61-Carathéodory and has
nonempty compact and convex values;

(H3) there exists a positive real number L such that

L > (2	0/Γ (�)) MMMM�MMMM�11 − (2 MMMMIMMMM /Γ (�)) MMMM�MMMM�1 , (14)

where (2‖I‖/Γ(�))‖�‖�1 < 1/2, 	0 = sup�∈[1,�]|	(�, 0)|.
�en, the boundary value problem (1) has at least one

solution on [1, 
].

Proof . Set! = ([1, 
],R). Transform the problem (1) into a

xed point problem. Consider the operatorN : ! → P(!)
de
ned by

N� (�)
= {ℎ ∈  ([1, 
] ,R) : ℎ (�) = � (�, � (�))

× ( 1Γ (�) ∫�
1
(log ��)

�−1
V (�)� ��

− (log �)�−1 1Γ (�)
× ∫�
1
(log 
�)

�−1
V (�)� ��) ,
V ∈ 8�,�} .

(15)

Now we de
ne two operatorsA : ! → ! by

A� (�) = � (�, � (�)) , � ∈ [1, 
] , (16)

andB : ! → P(!) by
B� (�) = {ℎ ∈  ([1, 
] ,R) : ℎ (�)

= 1Γ (�) ∫�
1
(log ��)

�−1
V (�)� ��

− (log �)�−1 1Γ (�)
× ∫�
1
(log 
�)

�−1
V (�)� ��,

V ∈ 8�,�} .

(17)

Observe thatN(�) = A�B�.Wewill show that the operators
A andB satisfy all the conditions of Lemma 7. For the sake
of convenience, we split the proof into several steps.

Step 1.A is a Lipschitz on!; that is, (a) of Lemma 7 holds.
Let �, � ∈ !. �en by (H1), we have3333A� (�) −A� (�)3333 = 3333� (�, � (�)) − � (�, � (�))3333

≤ I (�) 3333� (�) − � (�)3333
≤ MMMMIMMMM MMMM� − �MMMM

(18)

for all � ∈ [1, 
]. Taking the supremum over the interval [1, 
],
we obtain MMMMA� −A�MMMM ≤ MMMMIMMMM MMMM� − �MMMM (19)

for all �, � ∈ !. So A is a Lipschitz on ! with Lipschitz
constant ‖I‖.
Step 2. �e multivalued operator B is compact and upper
semicontinuous on!; that is, (b) of Lemma 7 holds.
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First, we show thatB has convex values. Let F1, F2 ∈ B�.
�en there are V1, V2 ∈ 8�,� such that

F� (�) = 1Γ (�) ∫�
1
(log ��)

�−1
V� (�)� ��

− (log �)�−1 1Γ (�) ∫�
1
(log 
�)

�−1
V� (�)� ��,

(20)

Q = 1, 2, � ∈ [1, 
]. For any R ∈ [0, 1], we have
RF1 (�) + (1 − R) F2 (�)

= 1Γ (�) ∫�
1
(log ��)

�−1 [RF1 (�) + (1 − R) F2 (�)]� ��
− (log �)�−1 1Γ (�)
× ∫�
1
(log 
�)

�−1 [RF1 (�) + (1 − R) F2 (�)]� ��
= 1Γ (�) ∫�

1
(log ��)

�−1
V (�)� ��

− (log �)�−1 1Γ (�) ∫�
1
(log 
�)

�−1
V (�)� ��,

(21)

where V(�) = RV1(�) + (1 − R)V2(�) ∈ 	(�, �(�)) for all � ∈ [1, 
].
Hence RF1(�) + (1 − R)F2(�) ∈ B� and consequently B� is
convex for each � ∈ !. As a result B de
nes a multivalued
operatorB : ! → Pcv(!).

Next we show that B maps bounded sets into bounded
sets in!. To see this, letS be a bounded set in!. �en there
exists a real number T > 0 such that ‖�‖ ≤ T, for all � ∈ S.

Now for each ℎ ∈ B�, there exists a V ∈ 8�,� such that

ℎ (�) = 1Γ (�) ∫�
1
(log ��)

�−1
V (�)� ��

− (log �)�−1 1Γ (�) ∫�
1
(log 
�)

�−1
V (�)� ��.

(22)

�en, for each � ∈ [1, 
], using (H2) we have
|B� (�)| = 33333333

1Γ (�) ∫�
1
(log ��)

�−1
V (�)� ��

−(log �)�−1 1Γ (�) ∫�
1
(log 
�)

�−1
V (�)� ��33333333

≤ 1Γ (�) ∫�
1
(log ��)

�−1� (�)� ��
+ (log �)�−1 1Γ (�) ∫�

1
(log 
�)

�−1� (�)� ��
≤ 2Γ (�)MMMM�MMMM�1 .

(23)

�is further implies that

‖ℎ‖ ≤ 2Γ (�)MMMM�MMMM�1 , (24)

and soB(!) is uniformly bounded.
Next we show that B maps bounded sets into equicon-

tinuous sets. Let S be, as above, a bounded set and ℎ ∈ B�
for some � ∈ S. �en there exists a V ∈ 8�,� such that

ℎ (�) = 1Γ (�) ∫�
1
(log ��)

�−1
V (�)� ��

− (log �)�−1 1Γ (�) ∫�
1
(log 
�)

�−1
V (�)� ��, � ∈ [1, 
] .

(25)

�en, for any U1, U2 ∈ [1, 
], we have
3333ℎ (U2) − ℎ (U1)3333

≤ MMMM�MMMM�1Γ (�)
33333333∫
�1

1
(log U1� )�−1 1� �� − ∫�2

1
(log U2� )�−1 1� ��

33333333
+ MMMM�MMMM�1 33333(log U2)�−1 − (log U1)�−133333Γ (�) ∫�

1
(log 
�)

�−1 1� ��
≤ MMMM�MMMM�1Γ (�)

33333333∫
�1

1
[(log U1� )�−1 − (log U2� )�−1] 1� ��

33333333
+ MMMM�MMMM�1Γ (�)

333333333∫
�2

�1
(log U2� )�−1 1� ��

333333333
+ MMMM�MMMM�1 33333(log U2)�−1 − (log U1)�−133333Γ (�) ∫�

1
(log 
�)

�−1 1� ��.
(26)

Obviously the right hand side of the above inequality
tends to zero independently of � ∈ S as �2 − �1 → 0.
�erefore, it follows by the Arzelá-Ascoli theorem that B :! → P(!) is completely continuous.

In our next step, we show that B has a closed graph. Let�� → �∗, ℎ� ∈ B(��) and ℎ� → ℎ∗. �en we need to
show that ℎ∗ ∈ B. Associated with ℎ� ∈ B(��), there exists
V� ∈ 8�,�� such that, for each � ∈ [1, 
],

ℎ� (�) = 1Γ (�) ∫�
1
(log ��)

�−1
V� (�)� ��

− (log �)�−1 1Γ (�) ∫�
1
(log 
�)

�−1
V� (�)� ��.

(27)

�us it su�ces to show that there exists V∗ ∈ 8�,�∗ such
that, for each � ∈ [1, 
],

ℎ∗ (�) = 1Γ (�) ∫�
1
(log ��)

�−1
V∗ (�)� ��

− (log �)�−1 1Γ (�) ∫�
1
(log 
�)

�−1
V∗ (�)� ��.

(28)
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Let us consider the linear operator Θ : 61([1, 
],R) →([1, 
],R) given by

� *-→ Θ (V) (�) = 1Γ (�) ∫�
1
(log ��)

�−1
V (�)� ��

− (log �)�−1 1Γ (�) ∫�
1
(log 
�)

�−1
V (�)� ��.

(29)

Observe that

MMMMℎ� (�) − ℎ∗ (�)MMMM
= MMMMMMMMM

1Γ (�) ∫�
1
(log ��)

�−1 (V� (�) − V∗ (�))� ��
− (log �)�−1 1Γ (�)
× ∫�
1
(log 
�)

�−1 (V� (�) − V∗ (�))� ��MMMMMMMMM -→ 0,
as � -→ ∞.

(30)

�us, it follows by Lemma 6 that Θ ∘ 8� is a closed graph
operator. Further, we have ℎ�(�) ∈ Θ(8�,��). Since �� → �∗,
therefore, we have

ℎ∗ (�) = 1Γ (�) ∫�
1
(log ��)

�−1
V∗ (�)� ��

− (log �)�−1 1Γ (�) ∫�
1
(log 
�)

�−1
V∗ (�)� ��

(31)

for some V∗ ∈ 8�,�∗ .
As a result we have that the operator B is compact and

upper semicontinuous operator on!.

Step 3. Now we show that 2ED < 1; that is, (c) of Lemma 7
holds.

�is is obvious by (H3) since we have E = ‖C(!)‖ =
sup{|B�| : � ∈ !} ≤ (2/Γ(�))‖�‖�1 and D = ‖I‖.

�us all the conditions of Lemma 7 are satis
ed and a
direct application of it yields that either conclusion (i) or
conclusion (ii) holds. We show that conclusion (ii) is not
possible.

Let F ∈ E be arbitrary. �en we have, for X > 1, XF ∈
AF(�)BF(�). �en there exists V ∈ 8�,� such that, for any X >1, one has
F (�) = X−1 [� (�, F (�))]

× ( 1Γ (�) ∫�
1
(log ��)

�−1
V (�)� ��

−(log �)�−1 1Γ (�) ∫�
1
(log 
�)

�−1
V (�)� ��) ,

(32)

for all � ∈ [1, 
]. �en we have

|F (�)| ≤ X−1 3333� (�, F (�))3333
× ( 1Γ (�) ∫�

1
(log ��)

�−1 |V (�)|� ��
+ (log �)�−1 1Γ (�) ∫�

1
(log 
�)

�−1 |V (�)|� ��)
≤ [3333� (�, F (�)) − � (�, 0)3333 + 3333� (�, 0)3333]

× ( 1Γ (�) ∫�
1
(log ��)

�−1 |V (�)|� ��
+ (log �)�−1 1Γ (�) ∫�

1
(log 
�)

�−1 |V (�)|� ��)
≤ [MMMMIMMMM ‖F‖ + 	0] 2Γ (�)MMMM�MMMM�1 ,

(33)

where we have put 	0 = sup�∈[1,�]|�(�, 0)|. �en with ‖F‖ = L,
we have

L ≤ (2	0/Γ (�)) MMMM�MMMM�11 − (2 MMMMIMMMM /Γ (�)) MMMM�MMMM�1 . (34)

�us condition (ii) of Lemma 7 does not hold by (14).
�erefore the operator equation A�B� and consequently
problem (1) have a solution on [1, 
]. �is completes the
proof.

�eorem 10. Assume that (H1) holds. In addition, one sup-
poses that

(H2) there exists a continuous nondecreasing function Y :[0,∞) → (0,∞) and a function Z ∈ ([1, 
],R+)
such that

‖	(�, �)‖P := sup {3333�3333 : � ∈ 	 (�, �)}
≤ Z (�) Y (|�|) �̂ T 
J ℎ (�, �) ∈ [1, 
] ×R; (35)

(H3) there exists a constant T > 0 such that
T > (2	0/Γ (�)) MMMMZMMMM Y (T)

1 − (2 MMMMIMMMM /Γ (�)) MMMMZMMMM Y (T) , (36)

where

2 MMMMIMMMMΓ (�) MMMMZMMMM Y (T) < 12 , (37)

and 	0 = sup�∈[1,�]|	(�, 0)|.
�en the boundary value problem (1) has at least one

solution on [1, 
].
Proof. �e proof is similar to that of �eorem 9 and is
omitted.
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Example 11. Consider the boundary value problem

�3/2 [ � (�)(1/12) 
1−�tan−1� + 2] ∈ 	 (�, � (�)) , 1 < � < 
,
� (1) = � (
) = 0,

(38)

where 	 : [1, 
] ×R → P(R) is a multivalued map given by

� -→ 	 (�, �) = [ |�|3
10 (|�|3 + 3) ,

|sin�|9 (|sin�| + 1) + 89] . (39)

By condition (H1), I(�) = 
1−�/12 with ‖I‖ = 1/12. For�̃ ∈ 	, we have
33333�̃33333 ≤ max( |�|3

10 (|�|3 + 3) ,
|sin�|9 (|sin�| + 1) + 89) ≤ 1,

� ∈ R,
‖	 (�, �)‖ = sup {3333�3333 : � ∈ 	 (�, �)} ≤ 1 = � (�) , � ∈ R.

(40)

Clearly,

2 MMMMIMMMM MMMM�MMMM�1Γ (�) = (
 − 1)3√j ≃ 0.323146 < 12 (41)

and L > 24(
 − 1)/(1 + 3√j − 
). Hence all the conditions
of �eorem 9 are satis
ed and, accordingly, the problem (38)
has a solution on [1, 
].
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