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An Existence Theorem for Optimal Control Systems
with State Variable in C, and Stochastic Control Problems*

Ricuarp F. Baum?®

Communicated by L. Cesari

Abstract. We consider an existence theorem for control systems whose
state variables for every ¢ are in C, the set of continuous functions varying
over a given set /. The dependence of the state variables upon ael is
induced by their dependence upon the initial state and the state equation
governing the system. In contrast, the control # = u(t) is taken as a measur-
able function of ¢ alone. The usual space constraints and boundary conditions
are also allowed to vary over a €1, and the cost functional is now taken to be
a continuous functional over a suitable class of continuous functions. We
also discuss an application of these results to control systems with stochastic
boundary conditions.

1. Introduction

In the present paper, we prove an existence theorem for control systems
whose state variables for every # are in C, the set of continuous functions
varying over a given set I. The dependence of the state variable upon a &7
is induced by its dependence upon the initial state and the state equation
governing the system. In contrast, the admissible controls # = u(¢) are taken
as measurable functions of ¢ alone. The usual space constraints and boundary
conditions are also allowed to vary with a €/, and the cost functional is now
taken to be a continuous functional over a suitable class of continuous functions.
We further assume that the initial time 73 is fixed and allow the final time
tx(a) to vary with a € I. Thus, the cost functional is of the form I = K[t,(a),
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x(t)(a), a)], ael. In particular, our existence theorem applies to control
systems with stochastic boundary conditions; for these, we can take as cost
functional the expectation I = [, g[t)(a), x(tx(a), a)] dP, where g is a con-
tinuous, real-valued function and P is a probability measure over I.

The central result of this paper is the existence theorem of Section 4
for control problems with state variable in C. In turn, this theorem is based on
a closure theorem with state variable in C which is new and is proved by the
use of a new technique along with the general approach of Cesari for the case
of state variables in E,, .

In Section 2, we formally present our control systems. In Section 3,
we prove various properties of the systems; and, in Section 4, using these
properties, we prove the closure theorem and the existence theorem. Finally,
in Section 5, we discuss an application of our results to control systems with
stochastic boundary conditions. In a future paper, we will present necessary
conditions for such systems, these conditions being analogous to Pontryagin’s
necessary conditions for usual control systems.

2. Description of the System

We consider control systems whose initial conditions are given in terms
of a known continuous function and whose state equations may also contain
a known continuous function. In contrast, the control is required to be a
function of time alone. More precisely, assume I C E;, I compact, and (a)
a known continuous function from I into E, . Let A(a), a €l, denote the
constraint sets, where A(a) are compact subsets of the fx-space E, X E,,
with ¢ in E;, and x = (% ,..., ,,), the space variable, in E, . We assume
that 4 = ey A(a) is compact. Let T, < T, be fixed times. For each ¢ in
[Ty, T,), let U(?), the control set, be a subset of the u-space E,,
# = (Uy ye-y Uy), the control variable. Let M(a) = {(¢, x, u) : (¢, x) € A(a),
u(t) € U(t)} and M = ye, M(a) = {(t, x, u) : (¢, x) € A, u € U(t)} be compact
subsets of Ey,, .., and let f = (f;,...,f,) be a continuous vector function
from M into E, (see also Remark 2.2). Let B(a), the terminal sets, a € I, be
closed subsets of points of Ey,, and let B = {),; B(a). Let T, denote the
fixed initial time, and let 7, the set of terminal times #,(a), a €I, be a given
family of equicontinuous functions, T < #)(a) < Ty, which is closed in
the uniform topology (see Remark 2.1). In order to guarantee that, for each
fixed ¢ in [T, T,), the state x(¢, a), a €I, is a member of C, the set of con-
tinuous functions over I, we assume that there is a finite constant d such that

lf(ty xlr u) ——f(t: xzy u)l < d! xt — x? l
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for all (¢, %, u), (¢, % ) in M, that is, f is Lipschitzian in x uniformly in f and «
over the set M.

We shall now consider the class £ of all pairs x(t, @), u(2), T}, <t < 7T,,
Ty < tyla) < Ty, ael, of the family of vector functions x(¢, @) and the vector
function u(t), satisfying the following conditions: (a) x(Z, @) is absolutely
continuous (AC) in [T}, Ty] for each fixed a €l; (b) u(#) is measurable in
[Ty, T5] (a function of ¢ alone); (c) (¢, x(¢, ) € A(a), Ty <t < Ty, for each
acl; () u@®elUR), T, <t <Ty (e) 2(Ty,a)=1i(); () tf)emr
(g) (#a), #(ty(a), a)) € B(a) for each a € I; and (h) the state equation

dx(t, a)ldt = f(t, (2, @), u(t)) (0

is satisfied a.e. in [T, T,] for each a €I (see also Remark 2.2).

A pair x(t,a), w@), Ty <t <T,, Ty <tfa) <T,, acl, satisfying
conditions (a)~(h) is said to be an admissible pair, where x(f, a) is called
a trajectory and u(¢) is called a control.

Let K[m,(+), wy()] be a continuous functional, in the uniform topology,
defined on the set of functions W = {(wy(a), wy(a)), acl: w;eC, (ty(a),
wy(a)) € B(a) for each acl,i = 1, 2}. Assume that K is bounded from below
on W' = {(wy(a), wya)), w; € C, (t,(a), wla)) € B(a)y N Aa), i = 1,2} C W.
Then, the functional

1Tz, 4] = Kln(e)@)], acl
= K[t)(a), x(ts(a), all, acl

is called the cost functional, where n(x)(a) = (t,(a), x(f;(a), a)), a € L.

We seek the absolute minimum of ITx(-, -), #(*)] in the class Q. If
(%(-, -), 4(*)) has the property that I[&(, -), @(-)] < I[x(:, -), u(*)] for all
{%(-, ), u(*)) € 2, then we say that (-, -), #(-) is an optimal pair; and we
may say that #(:) is an optimal control and #(-, )} is an optimal trajectory.
Though the optimal pair &(-, -), #(-) may not be unique in @, the value of the
cost functional IT#(-, -}, #(-)] is the same for all optimal pairs.

Remark 2.1. In the description of £, the class of admissible pairs,
we require, for various technical reasons, that there is a finite time 7', such that
T, < ty(a) < T, for all @ €I and such that the solution to the state equation
exists over all of [T, , T,]. Physically, we may interpret this as demanding that
a safety margin exists, that is, we ask that, if we ignore our boundary conditions,
we can extend our trajectories past the prescribed stopping time ty(a) to time
T, . Moreover, in condition (f), for the purpose of obtaining a minimizing
sequence, we also require that f,(a), @ €l, belongs to an equicontinuous
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family + which is closed in the uniform topology. For example, we may
require that #,(a) be constant for a € I or we may take = to be the class of all
Lipschitz functions over I with a fixed Lipschitz constant. We can think of
this requirement as arising from the nature of the instruments governing the
stopping time.

Remark 2.2. The control systems described in this section also include
systems in which the state function f contains the parameter a, that is, where
Eq. (1) is replaced by

dx(t, a)ldt = f(t, x(t, a), u(t), a)

and where f is a continuous vector function from M X I into E, . Indeed,
in this case, we have only to consider the additional variables & == (%, ,...,

Xpip) sa’usfymg dx;ldt =0, x(Ty,8) =a, i =n+ 1,..,n + L. Then, if
T o= (X ey Xy y Xpyg reey Fpp) = (% ) and f; =0, i=n+ 1., 0+ I, we
have the system

di(z, a)ldt = f(t, (¢, a, b), u(?))

with fi(t, & u) = f{t, x, z,u), { = 1,..., n -+ I, which is of the form we first
presented. More generally, the control systems described in this section also
include systems in which the state function f contains a perturbation n(t, b) € E;,
that is, whose state equation is given by

dx(t, @, B)[dt = f(t, x(t, a, b), u(t), n(t, b))

where 7(-, *) satisfies conditions similar to those of x. In particular, assume
that (i) the parameter b varies over some compact set I, in Euclidean space
E,, (ii) for each fixed bely, 7'(s, b) exists a.e. in [T, Ty] and satisfies
7'(t, b) = y{t, 7, b) with (¢, n) e 4, C E,, compact, (iii) o(7, ) = j(b),j a
continuous function on I , and (iv) y is Lipschitzian in 5 and b, uniformly in ¢,
over the set Ay X I, . Such systems can now be rewritten in the previous form
by introducing the variable z € E,, and setting & = (x, 7, %), where 2(¢, b) =
We then obtain the system

di(t, a, bYdt = (f(t, x(t, a, b), n(z, b), u(®)), ¥z, 7(t, b), *(z, b)), 0)
= f(t, ¥(t, a, b), u(t))

with initial conditions &(7', a, b) = (i(a), j(b), b) and, hence, we are back to
our previous form.
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3. Properties of Equicontinuity of the State Variable

The following properties of the systems just described will be used in the
next section.

Property 3.1. Consider a control system as described in Section 2.
Then, x(t, @) is uniformly continuous for (¢, a) e [Ty, T,] X I. Moreover,
given a sequence [x,(", *), #,(+)] of admissible pairs, then x,(-,), 2 = 1, 2,...,
forms an equicontinuous and equibounded family of functions in [T}, T3] X 1.

Proof. Let (-, -), u(-) be an admissible pair. By the Lipschitz assump-
tionon f, if a,,a,€l,

| 2(2, ay) — x(t, ay)] < | i(ay) — #(az)| -+ }( ;] F(s, x(s, ay), u(s)) — f(s, x(s, ap), w(s))] ds

T;

<lil@) —i@) +d | Ixlsa)—aa)id, T<i<T
Hence, by Gronwall’s inequality,
| x(t, @) — x(t, a5)] < Cli(a) — i(ay)] 2

C = expld(Ty, — Ty)] < o0, Ty <t < T,. Note that C does not depend
upon #(+). Since f is continuous over the compact set M, there is a finite K, not
dependent upon u(-), such that | f| < K on M. Hence, by (2), for (¢, ay),
(t2§ az)in[Tla T‘a‘} X I’

[ #(ty, @) — lls, @) < | %(ty, &) — al(ty, o) + [ 2ty , @) — x(tz, )

<
< K|ty — ty| + Cli(ay) — i(an)i )

Since i(a) is continuous for @ € I, I compact, (a) is uniformly continuous over J.
Thus, from (3), it follows that x(¢, a) is uniformly continuous over [Ty, T3] X I.
Moreover, since K and C are independent of u(-), if [x,(:, ), u,(*)] is a
sequence of admissible pairs, (3) holds with x replaced by xy, , that is,

Lty @) — ity @)l S Kty — 8| + Cli(a) —iay)l, Rk =1,2,.
Hence, x,(t, a), (¢, ) [Ty, Ts] X I, k = 1, 2,..., forms an equicontinuous

family of functions over [Ty, T,] x I. Since A is assumed compact, this
family is also equibounded. Property 3.1 is thereby proved.
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Property 3.2. Consider a sequence [x,(, a), Ty <t < Ty, ael]of
equibounded and equicontinuous functions of (¢, @) in [T, Ty] X I. More-
over, suppose that, for each #, there is an associated function #,,(a), a €1,
T, < typ(@) < Ty, with #,(") e, # =1, 2,.... Then, there exists at least
one subsequence [x,,,(+, -)] of [%,(+, )] which converges uniformly in ¢ and a
to a continuous function x(t, a), Ty <t < Ty, acl, and for which t,,(a)
converges uniformly in a to a continuous function #,(a), a €I, with t,(") e
(see Ref. 1, Chapter 7).

4. Closure and Existence Theorem

We now impose further requirements on the state equation and the
control set U(%) and prove a closure theorem and an existence theorem for the
resulting systems. The central result of this section is the closure theorem.
The main step in its proof is the construction of a new control system with the
state variable in E,, , this system being obtained from the general system by
fixing two points g, and g, in I. We then use the results of Cesari (Ref. 2) and
the form of the state function f given below in assumption («) to complete the
proof. In particular, let us assume that (&) f(t, x, u) = g(t, x) -+ k(¢, u) for
(¢, x, u) in M. We shall also require, as usual, the following assumptions:
(B) U(t) is a compact subset of E,, for ¢ in [T}, T,]; (y) U(t) is an upper
semicontinuous function of ¢ in [T, T,]; and (8) k(¢, U(t)) = {yeE,:y =
k(t, u), u € U(t)} is a convex subset of E,, for each ¢ in [Ty, T,]; consequently,
O(t, x) = f(t, x, U(t)) is a convex subset of E, for each (¢, x) € 4.

Closure Theorem. Let A(a), acl, and 4 be compact subsets of
Ey, ., let U(t) be a compact subset of E,, for every tin [Ty, T}, let U(t) be an
upper semicontinuous function of ¢ in [Ty, Ty, let f(¢, x, u) = g(t, x)-+k(t, u)
be a continuocus function on M into E, , let M{a), a €1, and M be compact
subsets of Ey ..., and let k(z, U(t)) be a convex subset of E, for every
(t,¥)e A. Let xi{t,a), Ty <t < T,, acl, with (iyfa),acl)er, be a
sequence of trajectories satisfying assumptions (a)—(f) and (h) of Section 2 and
converging uniformly toward a function x(t, a), T; <t < T,, ael, which
is ACin [T, T,] for each a € I. Also, suppose that #,,(-) converges uniformly
to Zy(-). Then, there exists a measurable uy ("), () e U(®), Ty <t < Ty,
such that the pair xy(t, @), u(f), Ty, < t < Ty, a€l, with ty(a), a € I, satisfies
conditions (a)}~(f) and (h) of Section 2; that is, with the exception of condition
(£), %(-, ) is an admissible trajectory with stopping time #y(-)&r, and
n[x(+, -)1(a) converges uniformly to n{x(:, -)l(2), a e L.
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Proof. For each acl, the vector functions x,(f, a), x,'(t, a) =
ft, 2t @), w(t, ), Ty <t < Ty, k=1, 2,.., are defined a.e. and are
L-integrable. We have to prove that, for each acl, (1 %4(¢, a)) € 4(a),
Ty <t < T,, that t,(:) €1, and that there is a measurable function u(z),
T, <t < T, ,suchthat, foreachacl,

% (t, @) = f(t, wi(t, @) ueD)), (1) € U(t)  ae.in [Ty, T3 Q)

First, from x,(, ) = (", -) {where =% denotes uniform convergence)
and the assumption that (2, (¢, a)) € 4{a), (¢, a) € [Ty, T,] X 1, A(a) closed,
it follows that (¢, x,(2, @) € A(a), (¢, a) [Ty, T,] x I. It is immediate from
condition (f) of Section 2 that #,(-) € 7. Since f is continuous on the compact
set M, there exists a finite K such that | f| <{ K over M. Hence, for each a €/,

[ %4ty @) — (1", @) < K[ — 1" | ()
for any ¢, ¢" in [Ty, T,). Thus, for acl,

[ %4(t21(a), @) - xo(ts(a), @)l < | wiltar(a), a) - 2i{tsa), )| + xy{ta(a), @) — xo(ty(a), a))
< K| tyfa) — to(a)] + | xk(tz(“)a “) - xo@a(“): “)E

from which it follows that x,(#,.(a), a) = x4(ts(@), a) and n[x(-, -)}(a) =
p[xo(*, *)](a). Hence, it only remains to find a measurable u(z) satisfying (4).

It is immediate that, for each ael, x,(-, a) — x4(", a), x(t, a) AC in
[Ty, T,]. Moreover, for each a €l, if we consider the control system with
constraint set A(a), control set U(#), and state equation &’ = f(¢, x, u), with
T, <t < T,, then each of the pairs x,(-, @), wz(-), 2 = 1, 2,..., belongs to
£(a), the class of admissible pairs for this system. Hence, we can conclude
from Cesari’s closure theorem (see Ref. 2) that, for each g €, there exists
a measurable uy(-, a), u(t, @) e U(t), Ty < t < T,, such that

xﬂl(t’ a) zf(t: xﬂ(t’ d), u()(t’ ’2)) (6)

a.e. in [Ty, T,] and, in particular, (xe(+, ), #y(*, a@)) € 2(a). We will show that,
for any fixed a, € I, uy(-, a,) generates all the trajectories x4(+, @), a € I; that is,
for any acl,

xy'(, @) =f(t, xo(2, a), #(2, ao)) (7

a.e. in [Ty, Tyl. If one sets uy(t) = uy(t, a,), this will then complete the proof.
We now show that, for any a; , a, €I, u,(-, a;) generates xy(-, ;). To this
end, let us consider the control system consisting of the constraint set



342 JOTA: VOL. 5, NO. 5, 1970

4 = @ X): @t X,.., X,)) € A(ay), (&, Xpyq 5oy Xap) € A(az)} a compact

subset of the tX-space El X Eg, , with £ in E; and X =(X;,. in)
the state variable, in E,, . Let Ty, T, be given as before; and for each tin
[Ty, Ty], let the control set U(#) be the same as before, with u = (uy ,..., u,,)

the control variable. Hence, 1f M= {t, X, u): (t, X) € A u e U(t)}, then

= {(t X u’) (t Xl 3neey ‘?%3 u) € M(al) (t Xn-H. 3erey 271 H u) € M(a2)}
is a compact subset of E1 romam - et F o= (Fy,.., 2%) be a continuous
vector function from M into E,, , F(t, X, u) given by

F(t, X, u) = (f(t, D ST Xn » u)3f(t7 Xn+1 yervy in » u))

The class { of admissible pairs X(2), u(t), Ty < < T3, consists of those
pairs satlsfymg the following conditions: (A) X(2) is AC m [Ty, Tol; (B) u(?)
is measurable in [Ty, Ty; (C) (t, X)) € 4 for T, <t < Ty; (D) ult) € U(t)
for Ty <t < Ty; (B) X(t) = (i(ay), i(ay)); and (F) the state equation

dX(t)ldt = F(t, X(t), u(t))

is satisfied a.e. in [T}, T,].

By the construction of this control system, it is clear that (X;(*), #(-)) =
((o(> @), %,(s @0)), () € Q, k = 1,2,.... We wish to show that X(¢) =
(%o, ay), xo(t, an)), Ty <t < Ty, is an adrnissible trajectory for this system.
Again, it is immediate that X,(f) — X(1), Ty <t < Ty, O(t) ACin [Ty, Tj).
Moreover, since A(a;) and M(a;) were assumed compact, 7 = 1, 2, 4 and M
are compact. In addition, O(t X) = F(z, X, U(2)) is convex by assumption ()
since, for fixed (t, X)e 4 and any #, , u, in U(¥), we have, for 0 < o < 1,

ol [ty Xy Xy ) [ty Kt oeer X » 1))
+ (1 — a)(f (@t Xy yeres Xy s ), Sty Xpsq soees Xom » 1))
= (g(t, Xy 5o X) + ak(t, uy) + (1 — o) B2, ), 8(t, Xpsq seees Xon)
+ ak(t, 1) + (1 — a) A(t, uz))
= (gt Xy oy X)) + Rty 1), 808, Xippy yoees Xa) + K(2, 1)
= (f(t, Xy seves X s D [ (8 Xt seees X s ucc))

where, by assumption (8), there exists a #, € U(#) such that
R, u) = ok, uy) + (1 — o) k(2, up)

Hence, we can apply Cesari’s closure theorems (Ref 2) to conclude that there
exists a measurable control function u,(?), T} < t << T, such that

Xy/(2) = F(t, X(1), uo(t)), wuo(t) € U(t)
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a.e. in [Ty , T,]. By the construction of X(2), F(¢, x, ), and (6), it thus follows
that

f(t! xo(t, ay), wo(t, al)) = f(t’ xo(t, @) uﬂ(t))
f(t: xo(t» d-z): uo(t: ‘12)) = f(ta xo(t, a2)’ uﬂ(t))

a.e. in [Ty, T,]. Hence, k(t, uy(t, ay)) = k(t, uy(t, a5)) ae. in [Ty, Ty} and,
therefore, f(t, xo(t, @), oty @) = f(t, %o(t, a0), (8, @) ae. in [Ty, Ty},
that is, u,(t, a,) generates x(2, a5), Ty < ¢ << T, . Since @, and a, were chosen
arbitarily from I, we have thereby verified relation (7); and, by previous
remarks, the closure theorem is thereby proved.

Existence Theorem. Consider a control system as described in
Section 2 and satisfying conditions {«)-{8). Assume that the class of admissible
pairs £2 is nonempty. Then, there exists an admissible pair xy(-, *), #{*)
such that ITay(", *), #e()] < I[a(-, +), u(-)] for all admissible pairs x(-, *), ().

Proof. By assumption, if (%(-, ), #(-))e2, then nix(-, )]J(-)e W"
Since K[n[x(:, -)(@)], a €1, is assumed to be bounded from below on W,
i = jnf/ [x( ) u( }] > — oo. Since there exists at least one admissible pair
by assumptlon, 7 is therefore finite. Thus, there exists a minimizing sequence
of admissible pairs x,(t, @), w,(3), Ty <t < Ty, acl, with () e, such
that ITw, (-, -), up(*)] — i as k — co.

By Property 3.1, x,(-,-) forms an equicontinuous and equibounded
family of functions in [Ty, T3] X I, k=1, 2,.... By Property 3.2, there
exists a subsequence, which we still call [x,(-, -)], which converges uniformly
to a continuous function x4, 4), (¢, a) [Ty, Ty] X I and for which ty(a)
converges uniformly to a continuous function #y(a)e7, acl. Moreover,
from (5), it follows that, for any a €l, | x(t', a) — x(t", a)] < K for any
', " in [Ty, Ty, so that xy(-, @) is Lipschitzian, and hence AC, in [Ty, T3},
for any a € I. Consequently, by the closure theorem, there exists a measurable
u{t), u($) e U@), Ty <t < T,, such that the pair xy(-, -), #() satisfies
assumptions (a)-(f) and (h) of Section 2 and such that n{x,(-, -}}(a) converges
uniformly to 5[x,(", )l(a), @ €l. Since B(a) is assumed closed for each ael
by assumption, it follows that nlxy(:, )](a) = (ts(a), %o(t:(a), a) € B(a)) for
each a€l; that is, assumption (g) of Section 2 is also satisfied. Thus,
(%(s *), uo(*)) € £2. Finally, since K is assumed continuous in W,

Ty ), o)) = fim I, ), ()] = .

The existence theorem is thereby proved.
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5. Stochastic Systems

Let us now consider a class of control systems with stochastic boundary
conditions. Specifically, let us particularize the control systems considered
thus far by making #(a), a €I, a random variable, and by writing the cost
functional as an expectation. In particular, let us assume that we are given a
probability measure P over the Borel sets restricted to I. Again, we consider
a control system as described in Section 2, with the cost functional now given
as follows.

Assume that A{t, y) is a real-valued, continuous function on the set
BCE,,,. Then, the cost functional is given by

I[x(, ), u()] = Eh(ty(a), x(to(a), @) = L h(ty(a), x(t:(a), @) 4P

where the letter E denotes the expectation with respect to the probability
measure P. We also assume that the set B is closed in E;, . Thus, A(-, +) is
continuous, and hence bounded, on the compact set B N A; and it is then
immediate that this cost functional has all the required properties of the
functional K. Therefore, these systems are subsumed by those described in
Section 2. In other words, the state equation is a differential equation with
stochastic initial conditions (@), with probability distribution P on the space I
of the variable a. Hence, for a given control u(-), we obtain, for each ¢, a
family (¢, @) of vector-valued functions of a in I. Again, the probability
measure P and the function % are also used to describe explicitly the cost
functional K. Consequently, the results of Section 4 are applicable to these
stochastic systems.

Such systems can arise, for example, if the interval [T, T,} is thought
of as an interval of ignorance for a usual control system, during which the
initial conditions and the state of the system are unknown. Alternately, such
a system can arise if we are forced to choose a control u(-) before the initial
conditions are known. For a further discussion of such systems, see also
Ref. 3, Chapter 2.

Remark 5.1. As shown in Remark 2.2, if we consider control systems
whose state equation is of the form x' = g(¢, x, ) + k(¢, #), v a random
variable or a stochastic process whose sample paths possess the same differen-~
tiability properties as x(¢, a), then clearly we can transform such systems into
systems with stochastic initial conditions; hence, the results of Section 4
pertain to such systems as well (see Example 5.3; see also Ref. 3, Section 8.6).
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Example 5.1. Let us consider the control system & = X, , %, =1,
%(0, @) = 0, (0, a) = a, where u(t)e U = [—1 < u <1} and « is any
real number between O and [, with probability density one. We wish to find
admissible pairs which minimize I[x(-, -), (‘)] within 2, I[x(-, -), u(")] =
ElxAT, a2 = [o[x(T, @)]? da, with 0 <t < T, T fixed. If we further
require that (z, ¥{t, @)) lie in some compact set 4, then clearly this control
system satisfies all the relevant conditions; hence, by the results of Section 4,
an optimal palr exists. Since x,(t, a) = a + [, u(s) ds, it can be easily shown
that, if 4 is large enough to contain the trajectories described below, the
optimal pairs can be described as follows:

Case 1: T < 1. Set u(t) = —1 on [0, T]. Hence, xy(T, a) = a — T.

Case 2: T > 4. Any admissible control such that Ex(T, a}) = 0 and
such that the space constraints are satisfied is optimal. For example, we may
set u(t) = —1 on [0, 3] and «(t) = 0 on (3, T1.

1, 2
vy = - 5y

g
(€. 84
o= +1 u = __1 L 2
u = -1
Y1
u = +1
1 2
v = 59y
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Example 5.2. Let us consider the control system of Example 5.1, with
the cost functional now given by Eg(xy( T', a)), whereg(x) = 2x,x >0, g(x) = ~—4x,
x < 0. Again, if the constraint set is large enough, the results of Section 4
apply and the optimal pairs can be described as follows:

Case 1: T < %. Set u(t) = —1 on [0, T].

Case 2: T > 4. Any admissible control such that Ex,(T, d) = % is
optimal.

Note that, unlike Example 5.1, the optimal solution cannot be obtained
by replacing x with Ex throughout the system.

Example 5.3. Let us consider the control system of Example 5.1, with
the state equation now given by #; = ax, , &, = u, with fixed initial conditions
(1,62, 0 <t T, T free, and where the cost functional is given by
E[(xy(T, a)* + (%5(T, a))?]. From the above remarks, if the constraint set
is large enough, the results of Section 4 are applicable. Moreover, the optimal
pairs can be shown to be those admissible pairs with Eax,(T, 4) = 0 and
Exy(T, a) = Exy(T) = 0. If we set y, = Eax(t, a), y, = Exy(t, a), then
Y1 = ¥¥s, ¥ = u, with y,(0) = 3£, , 7,(0) = &, . In particular, one set of
optimal trajectories is described in Fig. 1.
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