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An Existence Theorem for Optimal Control Systems 
with State Variable in C, and Stochastic Control Problems ~ 

R~CHARD F. BAU~ ~ 

Communicated by L. Cesari 

Abstract. We consider an existence theorem for controi systems whose 
state variables for every t are in C, the set of continuous functions varying 
over a given set L The dependence of the state variables upon a ~ / i s  
induced by their dependence upon the initial state and the state equation 
governing the system. In contrast, the control u ---- u(t) is taken as a measur- 
able function of t alone. The usual space constraints and boundary conditions 
are also allowed to vary over a ~ l ,  and the cost functional is now taken to be 
a continuous functional over a suitable class of continuous functions. We 
also discuss an application of these results to control systems with stochastic 
boundary conditions. 

1. Introduction 

In  the present  paper ,  we prove  an existence theorem for control systems 
"whose state variables for  every t are in C, the set of  cont inuous funct ions 
varying over  a given set I .  T h e  dependence  of the state variable upon  a ~ I 
is induced by  its dependence  upon  the initial state and the state equat ion 
governing the  system. I n  contrast,  the admissible controls u = u(t)  are taken 
as measurable  funct ions of t alone. T h e  usual space constraints and boundary  
conditions are also allowed to vary with a e I ,  and the cost functional is now 
taken to be a cont inuous functional  over a suitable class of cont inuous functions. 
We fur ther  assume that  the initial t ime T 1 is fixed and allow the final t ime 
ts(a ) to vary with a ~ I .  Thus ,  the cost functional is of the fo rm I = K[t2(a) ,  
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x(t2(a), a)], a e I. In  particular, our existence theorem applies to control 
systems with stochastic boundary conditions; for these, we can take as cost 
functional the expectation I = fl  g[t~(a), x(t2(a), a)] dP, where g is a con- 
tinuous, real-valued function and P is a probability measure over I.  

The  central result of this paper is the existence theorem of Section 4 
for control problems with state variable in C. In  turn, this theorem is based on 
a closure theorem with state variable in C which is new and is proved by the 
use of a new technique along with the general approach of Cesari for the case 
of state variables in E~.  

In  Section 2, we formally present our control systems. In  Section 3, 
we prove various properties of the systems; and, in Section 4, using these 
properties, we prove the closure theorem and the existence theorem. Finally, 
in Section 5, we discuss an application of our results to control systems with 
stochastic boundary conditions. In a future paper, we will present necessary 
conditions for such systems, these conditions being analogous to Pontryagin's 
necessary conditions for usual control systems. 

2. D e s c r i p t i o n  o f  the System 

We consider control systems whose initial conditions are given in terms 
of a known continuous function and whose state equations may also contain 
a known continuous function. In contrast, the control is required to be a 
function of t ime alone. More precisely, assume I C Ez, I compact, and i(a) 
a known continuous function from I into E~.  Let  A(a),  a ~ I,  denote the 
constraint sets, where A(a)  are compact subsets of the tx-space E 1 × E~,  
with t in E l ,  and x = (x x ,..., x,), the space variable, in E n . We assume 
that A -~ Ua,z A(a) is compact. Let  T 1 < Tz be fixed times. For each t in 
IT1, T2], let U(t), the control set, be a subset of the u-space Era, 
u = (u 1 .... , u~), the control variable. Let  M(a)  = {(t, x, u ) :  (t, x) ~ d(a) ,  
u(t) a U(t)} and M = Ua~l M(a)  = {(t, x, u) : (t, x) E A, u ~ U(t)} be compact 
subsets of EI+~+ m , and let f = ( f l  , . . . , fn)  be a continuous vector function 
from M into E ,  (see also Remark 2.2). Le t  B(a),  the terminal sets, a ~ I, be 
closed subsets of points of El+ ~ and let B = LJa~1 B(a). Let  T 1 denote the 
fixed initial time, and let 7, the set of terminal times t2(a), a ~ I, be a given 
family of equicontinuous functions, T 1 ~ t2(a ) ~ T~,  which is closed in 
the uniform topology (see Remark 2.1). In order to guarantee that, for each 
fixed t in [T1, Tz], the state x(t, a), a ~ I,  is a member of C, the set of con- 
t inuous functions over I, we assume that there is a finite constant d such that 

I f( t ,  x t, u) - f ( t ,  x ~, u)] ~ d ! x  1 - x  ~] 
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for all (t, x 1, u), (t, x ~, u) in 3g, that i s , f  is Lipschitzian in x uniformly in t and u 
over the set 114. 

We shall now consider the class ~2 of all pairs x(t, a), u(t), T 1 <~ t <~ T~, 
T 1 <~ t~(a) <~ T=, a ~ I, of the family of vector functions x(t, a) and the vector 
function u(t), satisfying the following conditions: (a) x(t, a) is absolutely 
continuous (AC) in [T 1 , T~] for each fixed a e I ;  (b) u(t) is measurable in 
[2'1, Tel (a function of t alone); (c) (t, x(t, a)) ~ A(a), T1 <~ t ~< Tz, for each 
a EI ;  (d) u(t) ~ U(t), T 1 ~ t ~ T2; (e) x (T  I ,  a) = i(a); (f) Q(.) ~ r; 
(g) (Q(a), x(t2(a), a)) ~ B(a) for each a e I;  and (h) the state equation 

dx(t, a)/dt = f( t ,  x(t, a), u(t)) (t) 

is satisfied a.e. in IT1, T~] for each a e I (see also Remark 2.2). 
A pair x(t,a), u(t), T 1 <~ t <~ T2, T 1 ~ t~(a) ~ T~, a ~ I ,  satisfying 

conditions (a)-(h) is said to be an admissible pair, where x(t, a) is called 
a trajectory and u(t) is called a control. 

Let Kiwi(.), w2(.)] be a continuous functional, in the uniform topology, 
defined on the set of functions W == {(wl(a), w2(a)), a ~ I,: w I ~ C, (t2(a), 
w2(a)) E B(a) for each a ~ / ,  i = 1, 2}. Assume that K is bounded from below 
on W' = {(w,(a), w~(a)), u, i ~ C, (t2(a), u,i(a)) e B(a) r3 A(a), i = 1, 2} C W. 
Then,  the functional 

I [~ ,  u] = K[,7(*)(a)],  a e 1 

= Kit , (a) ,  4t~(a),  a)], a e I 

is called the cost functional, where ~(x)(a) = (t2(a), x(t2(a), a)), a c I. 
We seek the absolute min imum of I[x(., "), u(.)] in the class £2. If  

(2(-,-), g(.)) has the property that I[2(-, .), ,7(-)] ~< I[x(., .), u(.)] for all 
(x(' ,-),  u( ' ) ) e  ~ ,  then we say that 2(., .), ~(-) is an optimal pair; and we 
may say that zT(.) is an optimal control and ~(-, .) is an optimal trajectory. 
Though  the optimal pair o?(-, .), ,2(-) may not be unique in .Q, the value of the 
cost functional I[2(., -), ,2(.)] is the same for all optimal pairs. 

R e m a r k  2.1. In  the description of f2, the class of admissible pairs, 
we require, for various technical reasons, that there is a finite time T 2 such that 
T 1 ~ t2(a ) ~ T~ for all a ~ I and such that the solution to the state equation 
exists over all of [T 1 , T~]. Physically, we may interpret this as demanding that 
a safety margin exists, that is, we ask that, if we ignore our boundary conditions, 
we can extend our trajectories past the prescribed stopping time t~(a) to time 
T~. Moreover,  in condition (f), for the purpose of obtaining a minimizing 
sequence, we also require that t~(a), a e I, belongs to an equicontinuous 
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family ~- which is closed in the uniform topology. For example, we may 
require that t2(a) be constant for a ~ I or we may take ~ to be the class of all 
Lipschkz functions over I with a fixed Lipschitz constant. We can think of 
this requirement as arising from the nature of the instruments governing the 
stopping time. 

R e m a r k  2.2. The control systems described in this section also include 
systems in which the state function f contains the parameter a, that is, where 
Eq. (1) is replaced by 

clx(t, a)/dt - f ( t ,  x(t, a), u(t), a) 

and where f is a continuous vector function from M × I into E n . Indeed, 
in this case, we have only to consider the additional variables z ----- (x~+l ,..., 
xn+~) satisfying dx i /d t  ~- 0, x~(T1 ,  a) - -  a, i = n + 1,..., n -I- I. Then, if 
2 =  (xt  .... , x ~ ,  x~+ 1 , . . . , x~+l )  - = ( x , z )  a n d f ~ = O , i ~ n +  t , . . . , n + l ,  we 
have the system 

a2(t, a)/dt = f ( t ,  ~(t, a, b), u(t)) 

with f d t ,  2, u) -= f~(t, x,  z ,  u), i = 1,..., n + t, which is of the form we first 
presented. More generally, the control systems described in this section also 
include systems in which the state funct ionf  contains a per turbat ion  v(t ,  b) ~ E~ ,  
that is, whose state equation is given by 

dx(t, a, b)/dt = f ( t ,  x(t, a, b), u(t), 71(t , b)) 

where ~(., ") satisfies conditions similar to those of x. In particular, assume 
that (i) the parameter b varies over some compact set Io in Euclidean space 
Ep,  (ii) for each fixed b E I o , ~)'(t, b) exists a.e. in IT 1 , 7"2] and satisfies 
~'(t ,  b) ~ v( t ,  7, b) with (t, ~?) ~ A 0 C EI+~ compact, (iii) ~ ( T 1 ,  b) = j(b) ,  j a 
continuous function on l o ,  and (iv) V is Lipschitzian in ~ and b, uniformly in t, 
over the set A 0 × I 0 . Such systems can now be rewritten in the previous form 
by introducing the variable z ~ E~ and setting 2 = (x, 7, z), where z( t ,  b) ~ b. 
We then obtain the system 

d~(t, a, b)/dt ~- ( f ( t ,  x(t, a, b), ~l(t, b), u(t)), ),(t, ~(t, b), z(t, b)), O) 

= f ( t ,  b), u(t)) 

with initial conditions off(T1, a, b) = ( i (a) , j (b) ,  b) and, hence, we are back to 
our previous form. 
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3. P r o p e r t i e s  of  E q u i e o n t i n u i W  of  the  S ta te  Var iab le  

The  following properties of the systems just described will be used in the 
next section. 

P r o p e r t y  3.1. Consider a control system as described in Section 2. 
Then,  x(t ,  a) is uniformly continuous for (t, a )~  [T 1 , Tz] × L Moreover, 
given a sequence [xk(., -), uk(-)] of admissible pairs, then xl~(.,.), h = I, 2,..., 
forms an equicontinuous and equibounded family of functions in [I"1, T2J × L 

P r o o f .  Let x(-, "), u(-) be an admissible pair. By the Lipschitz assump- 
tion on f, if a l ,  ae ~ / ,  

t 

t x(t, a:) --  x(t, as) i <~ ] i(aa) - -  i(ao) l + .  ( r l  f(s ,  x(s, al) , U(S)) - - f ( s ,  x(s, a~), u(s))! ds 

<-~ l i(al) - -  i(a~.)t -q- d f~ i  l x(s, a~) - -  x(s, a~)i ds, 

Hence, by Gronwall's inequality, 

t x(t, al) - -  x(t, a~)[ ~. C t i(al) - -  i(a2)[ (2) 

C =  e x p [ d ( ~ - -  T1) ] < 0% T 1 ~ t  ~ T~. Note that C does not depend 
upon u(.). S incef i s  continuous over the compact set M ,  there is a finite K ,  not 
dependent upon u(.),  such that f f l  < K on A/. Hence, by (2), for ( t l ,  at), 
(re, a~.) in [/ '1, T2] × I ,  

I x ( t , ,  al) - -  x(t2,  as)[ ~ I x ( t l ,  aO - -  x ( t s ,  a~)I + i x ( t s ,  al) - -  x(t2,  as)i 

<~ K i  tt  - t~ { + c[  i(al) - i(as)i (3) 

Since i(a) is continuous for a ~ I ,  I compact, i(a) is uniformly continuous over I. 
Thus,  from (3), it follows that x(t ,  a) is uniformly continuous over [T1, Ts] × I. 
Moreover, since K and C are independent of u(-), if [xk(', "), uk(')] is a 
sequence of admissible pairs, (3) holds with x replaced by x k , that is, 

I x~(h, al) - -  xk(t2, as)I ~ KI  tl - -  ts 1 + Ct i(at) -- /(as)! ,  k ----- 1, 2,... 

Hence, xk(t, a), (t, a) ~ IT 1 , T2] × / ,  k ----- 1, 2,..., forms an equicontinuous 
family of functions over [/11, T~] × L Since A is assumed compact, this 
family is also equibounded. Property 3.1 is thereby proved. 
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P r o p e r t y  3.2. Consider a sequence [xn(t, a), T 1 <~ t ~ T2, a ~I]  of 
equibounded and equicontinuous functions of (t, a) in [T~, T~] × I. More- 
over, suppose that, for each n, there is an associated function t2,~(a), a E I, 
T1 <~ t2n(a) <~ T2,  with t2n(. ) ~ ~-, n = 1, 2, .... Then, there exists at least 
one subsequence [x~s(., .)] of [xn(., .)] which converges uniformly in t and a 
to a continuous function x(t, a), T~ <~ t <~ Te ,  a ~ 1, and for which te~s(a ) 
converges uniformly in a to a continuous function t~(a), a ~ I ,  with t~(.)e r 
(see ReL 1, Chapter 7). 

4. Closure and Existence Theorem 

We now impose further requirements on the state equation and the 
control set U(t) and prove a closure theorem and an existence theorem for the 
resulting systems. The central result of this section is the closure theorem. 
The main step in its proof is the construction of a new control system with the 
state variable in E ~ ,  this system being obtained from the general system by 
fixing two points a~ and a~ in I. We then use the results of Cesari (Ref. 2) and 
the form of the state func t ionf  given below in assumption (~) to complete the 
proof. In particular, let us assume that (~) f ( t ,  x, u) ~- g(t, x) + k(t, u) for 
(t, x, u) in M. We shall also require, as usual, the following assumptions: 
(~) U(t) is a compact subset of E~ for t in [7'1, T~]; (7) U(t) is an upper 
semicontinuous function of t in [7'1, T2]; and (~) k(t, U(t)) = {y ~ E~ : y = 
k(t, u), u e U(t)} is a convex subset of E~ for each t in [T1, T~]; consequently, 
Q(t, x) ~- f ( t ,  x, u(t)) is a convex subset of E~ for each (t, x) ~ A. 

Closure  T h e o r e m .  Let A(a), a ~I ,  and A be compact subsets of 
EI+•, let U(t) be a compact subset of E m for every t in [T1, T2], let U(t) be an 
upper semicontinuous function of t in [T1, T~], le t f( t ,  x, u) = g(t, x )+k( t ,  u) 
be a continuous function on M into E~, let hi(a), a ~ 1, and M be compact 
subsets of Et+~+m, and let k(t, U(t)) be a convex subset of E m for every 
( t , x ) ~ A .  Let xk(t ,a) ,  ~I~ ~ t ~ T z ,  a ~ 1 ,  with ( t z ~ ( a ) , a ~ I ) ~ %  be a 
sequence of trajectories satisfying assumptions (a)-(f) and (h) of Section 2 and 
converging uniformly toward a function xo(t , a), T 1 ~ t ~ T~ , a ~ 1, which 
is AC in [T1, T~] for each a ~ L Also, suppose that te~(.) converges uniformly 
to t2(. ). Then, there exists a measurable u0(.), uo(t ) E U(t), T 1 ~ t ~ T~,  
such that the pair Xo(t, a), %(t), T 1 ~ t ~ T 2 , a ~ 1, with tz(a), a ~ 1, satisfies 
conditions (a)-(f) and (h) of Section 2; that is, with the exception of condition 
(g), x0(. , -) is an admissible trajectory with stopping time t2(. ) ~r ,  and 
~/[xk(., .)](a) converges uniformly to ~?[x0(., .)](a), a ~/ .  
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P r o o f .  For each a t / ,  the vector functions x0'(t, a), xk'(t , a) 
f ( t ,  xk(t, a), uk(t ,a)) ,  T 1 ~< t~<  T~, k = 1, 2,..., are defined a.e. and are 
L-integrable. We have to prove that, for each a e / ,  (t, Xo(t , a ) ) ~ A ( a ) ,  
T1 ~ t ~< T~, that t~(-)~ T, and that there is a measurable function Uo(t), 
T 1 ~< t ~ Te,  such that, for each a ~ I,  

xo'(t, a) = f ( t ,  Xo(t , a), u~(t)), uo(t) ~ U(t) a.e. in [T1, T~] (4) 

First, f rom xk(.,-) zz~ xo(. , .) (where ~ denotes uniform convergence) 
and the assumption that (t, xk(t , a)) ~ A(a), (t, a) ~ IT 1 , T~] x / ,  A(a)  closed, 
it follows that (t, Xo(t, a)) e A(a), (t, a) ~ [T 1 , T2] × L It  is immediate  f rom 
condition (f) of Section 2 that t2(') e r. Since f is continuous on the compact 
set M ,  there exists a finite K such that I f i ~< K over M. Hence, for each a ~ / ,  

t xe(t', a) - -  xk(t", a)l ~ K] t' -- t" (5) 

for any t', t" in [T1, T2]. Thus,  for a ~ / ,  

I < f a)l + 

from which it follows that xk(t2t;(a), a)zz~ Xo(t2(a), a) and ~)[xk(-,-)](a) =2; 
~?[x0(', .)](a). Hence, it only remains to find a measurable uo(t ) satisfying (4). 

I t  is immediate that, for each a e / ,  xk(- , a)--> x0(., a), Xo(t, a) AC in 
[T1, T~]. Moreover,  for each a e l ,  if we consider the control system with 
constraint set A(a), control set U(t), and state equation x' = f ( t ,  x, u), with 
T 1 ~< t ~< T2, then each of the pairs xk(. , a), Uk(-), k = 1, 2,..., belongs to 
~f2(a), the class of admissible pairs for this system. Hence, we can conclude 
from Cesari's closure theorem (see Ref. 2) that, for each a ~ / ,  there exists 
a measurable uo(-, a), Uo(t, a) ~ U(t), T 1 ~ t <~ :I'2, such that 

Xo'(t, a) = / ( t ,   o(t, a), .0(t, (6) 

a.e. in IT 1 , T~] and, in particular, (Xo(. , a), u0(., a)) ~ .Q(a). We will show that, 
for any fixed a 0 ~ I, Uo(- , a0) generates all the trajectories x0(., a), a E I; that is, 
for any a E I, 

Xo'(t, a) ~- f ( t ,  xo(t , a), uo(t , %)) (7) 

a.e. in IT1, T2]. I f  one sets Uo(t ) = uo(t , ao) , this will then complete the proof. 
We now show that, for any a l ,  a s ~ / ,  Uo(., a~) generates Xo(., a~). To  this 

end, let us consider the control system consisting of the constraint set 
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d = {(t, X)  : (t, X,..., Xn) e A(al) , (t, Xn+ 1 .... , X~,r~ ) ~ A(a2)}, a compact 
subset of the tX-space E~ × E~, ,  with t in E~ and X = (X1 ,..., X~ ,..., X~n), 
the state variable, in E ~ .  Let  T 1 , T~ be given as before; and, for each t in 
[T1, T2], let the control set U(t) be the same as before, with u = (u, ,..., urn) 
the control variable. Hence, if 2~r = {(t, X, u) : (t, X )  E A ,  u ~ U(t)}, then 
~7I -~ {(t, X, u) : (t, X I .... , X,~, u) e M(a~), (t, X,,+, ,..., X~,,, u) ~ 3//(de)} 
is a compact subset of El+2,~+,,. Let F = (F, .... , F2~ ) be a continuous 
vector function frmn 2~ into E2,~, F( t ,  X ,  u) given by 

F(t, X ,  u) = ( f ( t ,  X1 .... , X .  , u) , f ( t ,  Xn+, , .... X2.  , u)) 

The  class ~ of admissible pairs X(t) ,  u(t), T1 ~ t ~ T=, consists of those 
pairs satisfying the following conditions: (A) X(t) is AC in [T1, T~]; (B) u(t) 
is measurable in [ T , ,  T~]; (C) (t, X( t ) )  ~ ~ for T1 ~ t ~ T=; (D) u(t) E U(t) 
for T 1 ~ t ~ T2; (E) X( t , )  = (i(a,), i(a2)); and (F) the state equation 

dX(t)/dt = F(t, X(t), u(t)) 

is satisfied a.e. in [:/'1, T2]. 
By the construction of this control system, it is clear that (X~(.), uk(-)) == 

((xk(., al) , xx(-, as)), uk(.)) ~ ~ ,  k = 1, 2,. . . .  We wish to show that Xo(t  ) 
(Xo(t, al), x0(t, a2) ), T~ ~ t ~ T~, is an admissible trajectory for this system. 
Again, it is immediate that Xk( t  ) -+ X0(t), T 1 ~ t ~ Te , Xo(t  ) AC in [T1, T2]. 
Moreover,  since A(a~) and M(ai)  were assumed compact, i = 1, 2, ./i and ~ r  
are compact. In  addition, O(t, X )  ---- F(t ,  X ,  U(t)) is convex by assumption (a) 
since, for fixed (t, X)  ~ _~ and any u l ,  u~ in U(t), we have, for 0 ~ a ~ 1, 

~(f(t ,  X I .... , Xn , u l ) , f  (t, Xn+, ..... X.a. , ul)) 

+ ( I  - -  a)(f(t, X~ ..... X , ,  ui),f(t, Xn+~ ,..., X~n, u=)) 
= (g(t, X~ ..... Xa) + ak(t, u~) + (1 -- a) k(t, u=), g(t, X.+,  .... , X=.) 

-~- o~k(t, gl) + (1 - -  o~) k(t, ~/.'a)) 

= (g(t, X~,. . . ,  X . )  + k(t, u~), g(t, X.+x ..... X~,~) + k(t, u~)) 

= ( f ( t ,  X~ ,..., X . ,  u~),f(t,  Xn+, ,..., X=n, u~)) 

where, by assumption (8), there exists a u~ ~ U(t) such that 

k(t, u~) = ~ ( t ,  u~) + (1 - ~) ~(t, ~) 

Hence,  we can apply Cesari's closure theorems (Ref. 2) to conclude that there 
exists a measurable control function uo(t), T~ ~ t ~ T~,  such that 

Xo'(t ) = F(t, Xo(t), Uo(t)) , Uo(t ) ~ U(t) 
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a.e. in [ / ' i ,  T~.]. By the construction of Xo(t ), F(t, x, u), and (6), it thus follows 
that 

f( t ,  xo(t, al), uo(t, aa)) = f(t ,  Xo(t , a~), Uo(t)) 

f( t ,  xo(t, as), uo(t, aa)) -~ f(t ,  xo(t, ae), uo(t)) 

a.e. in ITs ,  T2]. Hence, k(t, uo(t, at) ) = k(t, Uo(t, a2)) a.e. in IT1, T2] and, 
therefore, f ( t ,  xo(t, a~), Uo(t, a~)) - - f ( t ,  Xo(t, as), uo(t, al)) a.e. in [/ '1,  T2], 
that is, u0(t, al) generates xo(t, a~), 7'1 <~ t <~ T2. Since a 1 and a2 were chosen 
arbitarily from 1, we have thereby verified relation (7); and, by previous 
remarks, the closure theorem is thereby proved. 

Ex i s tence  T h e o r e m .  Consider a control system as described in 
Section 2 and satisfying conditions (~)-(3). Assume that the cIass of admissible 
pairs f~ is nonempty. Then,  there exists an admissible pair xo(. , .), uo(. ), 
such that I[xo(., .), Uo(')] ~< I[x(., .), u(')] for all admissible pairs x(., "), u('). 

P r o o f .  By assumption, if (x(., .), u(.))~Y2, then ~?[x(., .)](.)e W'. 
Since K[~/[x(., .)](a)], a E/ ,  is assumed to be bounded from below on W', 
i = infI [x( ' , - ) ,  u(')] > --oo. Since there exists at least one admissible pair 
by assumption, i is therefore finite. Thus,  there exists a mmnmzlng sequence 
of admissible pairs xk(t, a), Uk(t), T 1 <~ t <~ T~, a e I ,  with tsk(. ) a % such 
that I[xk(', "), uk(')] -~ i as k --~ Go. 

By Property 3.1, xk(', ") forms an equicontinuous and equibounded 
family of functions in [T t ,  T~] × / ,  k = 1, 2, . . . .  By Property 3.2, there 
exists a subsequence, which we still catl [xk(-, -)], which converges uniforMy 
to a continuous function xo(t , a), (t, a )e  [T1, T2] × I and for which Qk(a) 
converges uniformly to a continuous function t~(a)~ r, a e L  Moreover, 
from (5), it follows that, for any a e / ,  E xo(t', a) -- xo(t", a)! <~ K for any 
t', t" in [T 1 , Tz], so that xo(-, a) is Lipschitzian, and hence AC, in [T 1 , /12], 
for any a E L Consequently, by the closure theorem, there exists a measurable 
uo(t), uo(t ) e U(t), T1 <~ t <~ T2, such that the pair xo(-, .), uo(- ) satisfies 
assumptions (a)-(f) and (h) of Section 2 and such that ~[aS~(-, -)](a) converges 
uniformly to ~[x0(', .)](a), a e L  Since B(a) is assumed closed for each a e I  
by assumption, it follows that ~[x0(., . ) ] ( a )=  (t~(a), xo(Q(a), a)~ B(a)) for 
each a e l ;  that is, assumption (g) of Section 2 is also satisfied. Thus,  
(x0(', "), uo(')) e £2. Finally, since K is assumed continuous in W, 

"), = -), = i. 

The  existence theorem is thereby proved. 
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5. S tochas t i c  S y s t e m s  

Let us now consider a class of control systems with stochastic boundary 
conditions. Specifically, let us particularize the control systems considered 
thus far by making i(a), a E I, a random variable, and by writing the cost 
functional as an expectation. In particular, let us assume that we are given a 
probability measure P over the Borel sets restricted to L Again, we consider 
a control system as described in Section 2, with the cost functional now given 
as follows. 

Assume that h(t, y) is a real-valued, continuous function on the set 
B C/71+ ~ . Then, the cost functional is given by 

I[x(', "), u(')] = Ek(t~(a), x(t2(a), a)) = f ,  k(t~(a), x(te(a), a)) dP 

where the letter E denotes the expectation with respect to the probability 
measure P. We also assume that the set B is closed in EI+~. Thus, h(., .) is 
continuous, and hence bounded, on the compact set B c3 A; and it is then 
immediate that this cost functional has all the required properties of the 
functional K. Therefore, these systems are subsumed by those described in 
Section 2. In other words, the state equation is a differential equation with 
stochastic initial conditions i(a), with probability distribution P on the space I 
of the variable a. Hence, for a given control u(.), we obtain, for each t, a 
family x(t, a) of vector-valued functions of a in I. Again, the probability 
measure P and the function h are also used to describe explicitly the cost 
functional K. Consequently, the results of Section 4 are applicable to these 
stochastic systems. 

Such systems can arise, for example, if the interval [T1, T~] is thought 
of as an interval of ignorance for a usual control system, during which the 
initial conditions and the state of the system are unknown. Alternately, such 
a system can arise if we are forced to choose a control u(.) before the initial 
conditions are known. For a further discussion of such systems, see also 
Ref. 3, Chapter 2. 

R e m a r k  5.1. As shown in Remark 2.2, if we consider control systems 
whose state equation is of the form x' = g(t, x, 7 ) +  k(t, u), ~ a random 
variable or a stochastic process whose sample paths possess the same differen- 
tiability properties as x(t, a), then clearly we can transform such systems into 
systems with stochastic initial conditions; hence, the results of Section 4 
pertain to such systems as well (see Example 5.3; see also Ref. 3, Section 8.6). 
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E x a m p l e  5.1. Let us consider the control system 2! = xe, ~?~ = u, 
xl(0, a) = 0, x2(0, a) -= a, where u(t) e U = [--1 ~ u <~ 1] and a is any 
real nmnber between 0 and I, with probability density one. We wish to find 
admissible pairs which minimize I[x(., .), u(-)] within D, I[x(. ,-) ,  u(.)] = 
E[x2(T, a)] 2 =  Io ~ [x2(T, a)]2da, with 0 ~ t ~ T, T fixed. If we further 
require that (t, x(t, a)) lie in some compact set A, then clearly this control 
system satisfies all the reIevant conditions; hence, by the results of Section 4, 
an optimal pair exists. Since x.2(t, a) -~ a + S*o u(s) ds, it can be easily shown 
that, if A is large enough to contain the trajectories described below, the 
optimal pairs can be described as follows: 

Case 1: T < - ~ . S e t u ( t ) = - - I  on [0, T]. Hence, x~(T,a) ~ a - -  T. 

Case 2: T >i ~. Any admissible control such that Ex(T,  a) = 0 and 
such that the space constraints are satisfied is optimal. For example, we may 
set u(t) = --1 on [0, ~] and u(t) = 0 on (½, T]. 

Y! = - 

/ 
U : +i ? u = -i 

(~i~2) 

1 2 
~-(Y2 ) 

Y2 

U = -1 

Yl 

= +i 

Fig, t 
Yl : 
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E x a m p l e  5.2. Let us consider the control system of Example 5.1, with 
the cost functional now given by Eg(x~(T, a)), whereg(x) -~ 2x, x ~ 0,g(x) ~ --4x, 
x ~ 0. Again, if the constraint set is large enough, the results of Section 4 
apply and the optimal pairs can be described as follows: 

Case 1: T ~ ½. Set u(t) = --1 on [0, T]. 

Case 2: T ~ ½. Any admissible control such that Ex~(T, a) = ~ is 
optimal. 

Note that, unlike Example 5.1, the optimal solution cannot be obtained 
by replacing x with Ex throughout the system. 

E x a m p l e  5.3. Let us consider the control system of Example 5.1, with 
the state equation now given by x l = axe, ~ -~ u, with fixed initial conditions 
(~1, ~2), 0 ~ t ~ T, T free, and where the cost functional is given by 
E[(xl(T, a)) ~ + (x2(T, a))~]. From the above remarks, if the constraint set 
is large enough, the results of Section 4 are applicable. Moreover, the optimal 
pairs can be shown to be those admissible pairs with Eaxl(T , a) ~ 0 and 
Ex~(T, a) = Ex~(T) = 0. If we set Yl ~-~ Eaxl(t, a), Y2 = Ex2(t, a), then 
Yl = ½Y~, Y~ = u, with yl(0) = ½~1, y2(0) = ~2. In particular, one set of 
optimal trajectories is described in Fig. 1. 
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