BULL. AUSTRAL. MATH. SOC. VOL. 30 (1984), 449-456.

AN EXISTENCE THEOREM FOR ORDINARY DIFFERENTIAL EQUATIONS IN BANACH SPACES

BOGDAN RZEPECKI

We prove the existence of bounded solution of the differential equation y' = A(t)y + f(t, y) in a Banach space. The method used here is based on the concept of "admissibility" due to Massera and Schäffer when f satisfies the Caratheodory conditions and some regularity condition expressed in terms of the measure of noncompactness α .

We prove the existence of bounded solution of the differential equation y' = A(t)y + f(t, y) in a Banach space. The method used here is based on the concept of "admissibility" due to Massera and Schäffer [5] when f satisfies the Caratheodory conditions and some regularity condition expressed in terms of the measure of noncompactness α . Our result is closely related to the results of Szufla [7].

Throughout this paper J denotes the half-line $t \geq 0$, E a Banach space with norm $\|\cdot\|$, and L(E) the algebra of continuous linear operators from E into itself with induced norm $\|\cdot\|$. Further, we will use standard notation and some of the notation, definitions and results from the book of Massera and Schäffer [5].

Received 28 June 1984. The author is grateful to Professor S. Szufla for several helpful conversations.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84 \$A2.00 + 0.00.

Let us denote:

by $L(J,\,E)$ — the vector space of strongly measurable functions from J into E, Bochner integrable in every finite subinterval I of J, with the topology of the convergence in the mean, on every such I;

by $B(J, \mathbb{R})$ - a Banach function space, provided with the norm $\|\cdot\|_{B(\mathbb{R})}$, of real-valued measurable functions on J such that

- (1) $B(J, \mathbb{R})$ is stronger than $L(J, \mathbb{R})$,
- (2) $B(J, \mathbb{R})$ contains all essentially bounded functions with compact support,
- (3) if $u \in B(J, \mathbb{R})$ and v is a real-valued measurable function on J with $|v| \le |u|$, then $v \in B(J, \mathbb{R})$ and $\|v\|_{B(\mathbb{R})} \le \|u\|_{B(\mathbb{R})}$, and
- (4) if v_n $(n=1,\,2,\,\dots)$ are real-valued measurable functions on J such that $\lim_{n\to\infty}v_n(t)=0$ for almost all $t\in J$ and $|v_n|\leq u$ with $u\in B(J,\mathbb{R})$, then $\lim_{n\to\infty}\|v_n\|_{B(\mathbb{R})}=0\;;$

by $B^*(J, \mathbb{R})$ - the associate space to $B(J, \mathbb{R})$, that is, the Banach space of measurable functions $u: J \to \mathbb{R}$ such that

$$\|u\|_{B^*(\mathbb{R})} = \sup \left\{ \int_J |v(s)u(s)| ds : v \in B(J, \mathbb{R}), \|v\|_{B(\mathbb{R})} \le 1 \right\} < \infty ;$$

by B(J, E) (respectively $B^*(J, E)$) - the Banach space of all strongly measurable functions $u: J \to E$ such that $\|u\| \in B(J, \mathbb{R})$ (respectively $\|u\| \in B^*(J, \mathbb{R})$) provided with the norm $\|u\|_{B(E)} = \|\|u\|\|_{B(\mathbb{R})}$ (respectively $\|u\|_{B^*(E)} = \|\|u\|\|_{B^*(\mathbb{R})}$);

by $\mathcal{C}(J,\,E)$ — the vector space of all continuous functions from J to E endowed with the topology of uniform convergence on compact subsets of J .

Assume that $A \in L(J, L(E))$. Let E_0 denote the set of all points of E which are values for t=0 of bounded solutions of the

differential equation y' = A(t)y. Suppose that E_0 is closed and has a closed complement, that is, there exists a closed subspace E_1 of E such that E is the direct sum of E_0 and E_1 .

Let P be the projection of E onto E_0 , and let $U:J\to L(E)$ be the solution of the equation U'=A(t)U with the initial condition U(0)=I (the identity mapping). For any $t\in J$ we define a function $G(t,\bullet)\in L(J,L(E))$ by

$$G(t, s) = \begin{cases} U(t)PU^{-1}(s) & \text{for } 0 \le s \le t \\ -U(t)(I-P)U^{-1}(s) & \text{for } s > t \end{cases}.$$

Assume in addition that there exists a constant C>0 such that, for any $t\in J$, $G(t,\bullet)\in B^*\bigl(J,\,L(E)\bigr)$ and $\|G(t,\bullet)\|_{B^*\bigl(L(E)\bigr)}\leq C$.

Let α denote the Kuratowski measure of noncompactness in E, the properties of which may be found in [2] and [3]. Suppose $f: J \times E \to E$ is a function which satisfies the following conditions:

- l°. for each $x \in E$ the mapping $t \mapsto f(t, x)$ is strongly measurable, and for each $t \in J$ the mapping $x \mapsto f(t, x)$ is continuous;
- 2°. $||f(t, x)|| \le m(t)$ for all $(t, x) \in J \times E$, where $m \in B(J, \mathbb{R})$;
- 3°. for any $\varepsilon > 0$, $t_0 > 0$ and bounded subset X of E there exists a closed subset Q of $\left[0, t_0\right]$ such that $\max\left(\left[0, t_0\right] \setminus Q\right) < \varepsilon \text{ and }$

$$\alpha(f[I \times X]) \leq \sup\{g(t) : t \in I\} \cdot h(\alpha(X))$$

for each closed subset $\,I\,$ of $\,Q\,$, where $\,g\,$ and $\,h\,$ are functions of $\,J\,$ into itself, $\,g\,$ is measurable, $\,h\,$ is non-decreasing and

$$\sup \left\{ \int_{J} |G(t, s)| g(s) ds : t \in J \right\} \cdot h(t) < t$$

for all t > 0.

Under the above hypotheses our result reads as follows.

THEOREM. For each $x_0 \in E_0$ with sufficiently small norm there exists a bounded solution of the differential equation

$$y'(t) = A(t)y(t) + f(t, y(t))$$

on J such that $Py(0) = x_0$.

Proof. The result can be proved by the fixed point theorem given in
[6] as Theorem 2.

According to Theorem 4.1 of [4] there is a constant M>0 such that every bounded solution of y'=A(t)y satisfies the estimate $\|y(t)\| \leq M\|y(0)\| \quad \text{for} \quad t \in J \quad \text{Pick} \quad r>C\|m\|_{B(\mathbb{R})} \quad \text{and assume that}$

$$x_0 \in E_0$$
 with $||x_0|| \le M^{-1} (r - C||m||_{B(\mathbb{R})})$.

Denote by K the set of all $y \in \mathcal{C}(J,E)$ such that $\|y(t)\| \leq r$ on J , and

$$\|y\left(t_{1}\right)-y\left(t_{2}\right)\|\leq r\left|\int_{t_{1}}^{t_{2}}\|A(s)\|ds\right|+\left|\int_{t_{1}}^{t_{2}}m(s)ds\right|$$

for t_1 , t_2 in J . Define a mapping T as follows:

$$(Ty)(t) = U(t)x_0 + \int_J G(t, s)(Fy)(s)ds$$

for $y \in K$, where (Fy)(t) = f(t, y(t)).

Let $y_0 \in K$. By the Hölder inequality

$$\| (Ty_0)(t) \| \le M \| U(0)x_0 \| + \int_J \| G(t, s) \| m(s) ds$$

$$\le M \| x_0 \| + C \| m \|_{B(\mathbb{R})} \le r$$

on J . Since Ty_0 is a solution of the equation $y' = A(t)y + Fy_0$, we have

$$\| \left(Ty_0 \right) \left(t_1 \right) - \left(Ty_0 \right) \left(t_2 \right) \| \leq \left| \int_{t_1}^{t_2} \| A(s) \left(Ty_0 \right) (s) + \left(Fy_0 \right) (s) \| ds \right|$$

for $t_1, t_2 \in J$. Thus $Ty_0 \in K$. Evidently,

$$\|(Tu)(t)-(Tv)(t)\| \le C\|Fu-Fv\|_{B(E)}$$
 for $u, v \in K$.

Now, from this and from 2° , (3) and (4), we conclude that T is continuous as a map of K into itself.

Let us put $\Phi(Y) = \sup\{\alpha(Y(t)) : t \in J\}$ for any nonempty subset Y of K; here Y(t) stands for the set of all y(t) with $y \in Y$. By the corresponding properties of α , $\Phi(Y_1) \leq \Phi(Y_2)$ whenever $Y_1 \subset Y_2$, $\Phi(Y \cup \{y\}) = \Phi(Y)$ for $y \in K$, and $\Phi(\overline{\operatorname{conv}} Y) = \Phi(Y)$. If $\Phi(Y) = 0$ then $\overline{Y(t)}$ is compact for every $t \in J$; therefore Ascoli's theorem implies that \overline{Y} is compact in C(J, E).

Assume that Y is a nonempty subset of K with $\Phi(Y) > 0$. We shall prove that $\Phi(T[Y]) < \Phi(Y)$.

Let $t\in J$ be fixed. Let $\varepsilon>0$ be arbitrary. Since $\lim_{n\to\infty}\|\chi_{[t,\infty)}^m\|_{B(\mathbb{R})}=0 \text{ , so } C\|\chi_{[a,\infty)}^m\|_{B(\mathbb{R})}<\varepsilon \text{ for some } a\geq t \text{ . Further,}$ let $\delta=\delta(\varepsilon)>0$ be a number such that $\int_A\|G(t,s)\|m(s)ds<\varepsilon \text{ for each}$ measurable $A\subset[0,a]$ with $\max(A)<\delta$. By the Luzin theorem there exists a closed subset Z_1 of [0,a] with $\max([0,a]\backslash Z_1)<\delta/2$ and the function g is continuous on Z_1 .

Let $X_0 = U\{Y(s): 0 \le s \le a\}$. It follows from 3° that there exists a closed subset Z_2 of [0,a] such that $\operatorname{mes}\left([0,a]\backslash Z_2\right) < \delta/2$ and $\operatorname{call}\left(f[I\times X_0]\right) \le \sup\{g(s): s\in I\} \cdot h\left(\operatorname{call}\left(x_0\right)\right)$ for each closed subset I of Z_2 .

Define $A = ([0, a] \setminus Z_1) \cup ([0, a] \setminus Z_2)$ and $Z = [0, a] \setminus A$. For any given $\varepsilon' > 0$ there exists a $\eta > 0$ such that if $|s'-s''| < \eta$ with $s', s'' \in [0, t] \cap Z$ or $s', s'' \in [t, a] \cap Z$, then $\|G(t, s') - G(t, s'')\| < \varepsilon'$ and $|g(s') - g(s'')| < \varepsilon'$. Now we devide the interval [0, a] into 2n parts:

$$t_0 = 0 < t_1 < \dots < t_n = t < \dots < t_{2n} = a$$

with t_i - t_{i-1} < η . Denote by I_i (i = 1, 2, ..., 2n) the set $[t_{i-1}, t_i] \setminus A$. Moreover, let

$$c_1 = \sup \{ \lVert G(t, s) \rVert : s \in \mathbf{Z} \} \ , \ c_2 = \sup \{ g(s) : s \in \mathbf{Z} \} \ ,$$

and let p_i , r_i be points in I_i such that

$$\|G(t, p_i)\| = \sup \{ \|G(t, s)\| : s \in I_i \}$$

and

$$g(r_i) = \sup\{g(s) : s \in I_i\} .$$

It is not hard to see that if H is a continuous mapping from a compact subinterval I to L(E) and W is a bounded subset of E, then $\alpha \left(\bigcup \{ H(s)W : s \in I \} \right) \leq \sup \{ \| H(s) \| : s \in I \} \cdot \alpha(W)$. Hence

$$\alpha \left(\mathsf{U} \big\{ \mathit{G}(t\,,\,s) f \big[\mathit{I}_{i} \,\times\, \mathit{X}_{0} \big] \,:\, s \,\in\, \mathit{I}_{i} \big\} \right) \,\leq\, \| \mathit{G} \big(t\,,\,p_{i} \big) \,\| \mathit{g} \big(r_{i} \big) \,\cdot\, h \big(\alpha \big(\mathit{X}_{0} \big) \big)$$

for i = 1, 2, ..., 2n.

Applying the integral mean value theorem, we get

$$\begin{split} \alpha \Big[\Big\{ \!\! \int_{Z} G(t,s)(\mathit{Fy})(s) ds \, : \, y \, \in \, Y \Big\} \Big] \\ & \leq \alpha \Big[\sum_{i=1}^{2n} \, \operatorname{mes} \big(I_i \big) \, \overline{\operatorname{conv}} \big(\mathbb{U} \big\{ G(t,s) f \big[I_i \, \times \, X_0 \big] \, : \, s \, \in \, I_i \big\} \big\} \big] \Big] \\ & \leq h \big(\alpha \big(X_0 \big) \big) \, \cdot \, \, \sum_{i=1}^{2n} \, \| G \big(t, \, p_i \big) \| g \big(r_i \big) \operatorname{mes} \big(I_i \big) \\ & \leq h \big(\alpha \big(X_0 \big) \big) \, \cdot \, \, \sum_{i=1}^{2n} \, \int_{I_i} \big(\| G \big(t, \, p_i \big) - G(t, \, s) \| g \big(r_i \big) \\ & + \, \| G(t, \, s) \| \| g \big(r_i \big) - g(s) \| + \| G(t, \, s) \| g(s) \big) ds \\ & \leq h \big(\alpha \big(X_0 \big) \big) \, \cdot \, \, \left[\alpha \big(c_1 + c_2 \big) \varepsilon' \, + \, \int_{T} \| G(t, \, s) \| g(s) ds \right] \, . \end{split}$$

Since Y is almost equicontinuous and bounded, we can apply Lemma 2.2 of [1] to get

$$\alpha(X_0) = \sup\{\alpha(Y(s)) : 0 \le s \le a\} \le \Phi(Y)$$
.

Consequently

$$\begin{split} &\alpha \big(T[Y](t)\big) \\ &\leq 2 \, \int_A \|G(t,\,s)\| m(s) ds \, + \, h \big(\alpha \big(S_0\big)\big) \, \int_Z \|G(t,\,s)\| g(s) ds \, + \, 2 \, \int_a^\infty \|G(t,\,s)\| m(s) ds \\ &< 2\varepsilon \, + \, h \big(\Phi(Y)\big) \, \int_Z \|G(t,\,s)\| g(s) ds \, + \, 2C \|\chi_{[a,\infty)}^m\|_{B(\mathbb{R})} \\ &< 4\varepsilon \, + \, h \big(\Phi(Y)\big) \, \int_Z \|G(t,\,s)\| g(s) ds \, \, . \end{split}$$

This proves

$$\alpha \big(T[Y](t) \big) \, \leq \, h \, \big(\Phi(Y) \big) \, \, \bullet \, \, \sup \biggl\{ \int_J \, \| G(t, s) \, \| g(s) \, ds \, \, : \, \, t \, \in J \biggr\}$$

for each $t \in J$, and our claim is proved.

The set K is closed and convex subset of $\mathcal{C}(J,\,E)$. Thus all assumptions of our fixed point theorem are satisfied; T has a fixed point in K which ends the proof.

References

- [1] A. Ambrosetti, "Un teorema di esistenze per le equazioni differenziali negli spazi di Banach", Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360.
- [2] K. Deimling, Ordinary differential equations in Banach spaces (Springer-Verlag, Berlin, Heidelberg, New York, 1977).
- [3] R. Martin, Nonlinear operators and differential equations in Banach spaces (John Wiley & Sons, New York and London, 1976).
- [4] José Luis Massera and Juan Jorge Schäffer, "Linear differential equations and functional analysis", Ann. of Math. (2) 67 (1958), 517-573.
- [5] José Luis Massera, Juan Jorge Schäffer, Linear differential equations and function spaces (Pure and Applied Mathematics, 21. Academic Press, New York and London, 1966.
- [6] Bogdan Rzepecki, "Remarks on Schauder's fixed point principle and its applications", Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 473-480.

[7] S. Szufla, "On the boundedness of solutions of non-linear differential equations in Banach spaces", Comment. Math. 21 (1979), 381-387.

Institute of Mathematics, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland.