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ABSTRACT 

In this paper, we introduce and study the system of generalized vector quasi-variational-like inequalities in Hausdorff 
topological vector spaces, which include the system of vector quasi-variational-like inequalities, the system of vector 
variational-like inequalities, the system of vector quasi-variational inequalities, and several other systems as special 
cases. Moreover, a number of C-diagonal quasiconvexity properties are proposed for set-valued maps, which are natural 
generalizations of the g-diagonal quasiconvexity for real functions. Together with an application of continuous selection 
and fixed-point theorems, these conditions enable us to prove unified existence results of solutions for the system of 
generalized vector quasi-variational-like inequalities. The results of this paper can be seen as extensions and generaliza- 
tions of several known results in the literature. 
 
Keywords: The System of Generalized Vector Quasi-Variational-Like Inequalities; Fixed Point Theorem; Open Lower 

Section; Upper Semicontinuous; C-Diagonal Quasiconvexity 

1. Introduction and Formulation A  and 

In recent years, the system of generalized vector quasi- 
variational-like inequality, which is a unified model for 
the system of vector quasi-variational-like inequalities, 
the system of vector variational-like inequalities, the sys- 
tem of vector variational inequalities, the system of vec- 
tor equilibrium problems and the system of variational 
inequalities etc., has been studied (see [1-18] and refer- 
ences therein). 

In this paper, we consider the systems of four kinds of 
generalized vector quasi-variational-like inequalities with 
set-valued mappings and discuss the existence of its 
solutions in locally convex topological vector space (l.c.s. 
in short), motivated and inspired by the recent works of 
Peng [1] and Ansari et al. [2]. 

Throughout this paper, unless otherwise specified, as-
sume that I  be an index set. For each , let ii I Z  be 
a locally convex topological vector space (l.c.s., in short) 
and iK  be a nonempty convex subset of Hausdorff 
topological vector space (t.v.s., in short) . Let i  be 
a subset of continuous function space i i  from 

 into 

iE Y
 ,L E Z

iE iZ , where  is equipped with a  ,i iZ   - 

topology. Let int coA  denote the interior and 
convex hull of a set 

L E

A  respectively. Let : 2 iZ
iC K 

 int C x
 

be a set-valued mapping such that i    for 
each x K K . Denote that i I iK 
E E

 and  

i I i 
I

. 
For each i , let :i i i iK K E  

   ,: , 2 i i

 be a vector-  
Lvalued mapping, E Z

iG L E Z 

: 2 i

,  
Z

i , i  and S K K  : 2 iYT K  : 2 iK
iD K   be 

four set-valued mappings. Then, 
1) Strong type I system of generalized vector quasi- 

variational-like inequalities which is to find  
 ,x t K Y   such that  i ix D x ,  i it T x  and  

       , , , ,  ,i i i i i i i i i i iG t y x S x y C x y D x     (1.1) 

2) Strong type II system of generalized vector quasi- 
variational-like inequalities which is to find  
 ,x t K Y   such that  i ix D x ,  i it T x  and  

   
   

, , ,

,  ,

i i i i i i i i

i i i

G t y x S x y

C x y D x

 

   
       (1.2) 

3) Weak type I system of generalized vector quasi- 
variational-like inequalities which is to find  
 ,x t K Y   such that  i ix D x ,  i it T x*Corresponding author.  and  
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 1I   and       

 

, , ,

,

i i i i i i i i

i i

G t y x S x y

y D x

  

 

 int , iC x  
 (1.3) 

4) Weak type II system of generalized vector quasi- 
variational-like inequalities which is to find  
 ,x t K Y  such that i i x D x ,  i it T x  and  

       , ,i iy D x , , , int   i i i i i i i i iG t y x S x y C x    

(1.4) 

where ,l x  denotes the evaluation of  ,E Zl L  at 
x E . By the corollary of the Schaefer [3],  ,L E Z  
becomes a l.c.s.. By Ding and Tarafdar [4], the bilinear 
map  , Z K   

,i I
S

, : L K Z  is continuous. 
The following problems are the special cases of above 

four kinds of systems of generalized vector quasi-varia- 
tional-like inequalities. 

The above system of generalized vector quasi-varia- 
tional-like inequalities encompass many models of sys-
tem of variational inequalities. The following problems 
are the special cases of problem (1.4). 

1) If for each  let iG  be an identity mapping, 

i , problem (1.4) reduces to the system of general-
ized quasi-variational-like inequalities of finding 

0
x K  

such that for each , i I i i x D x  and 

       int ,iC x

,i I

,    : , ,i i i i i i i iy D x t T x t y x     

(1.5) 

which was introduced and studied by Peng [1]. 
2) If for each  let iG  be an identity mapping, 

i  and 0S  i i , problem (1.5) reduces to the 
system of generalized variational-like inequalities of find-
ing 

D x K

x K  such that for each i I ,  i ix K  and 

     int .iC x

  iZ 
 | r 

,    : , ,i i i i i i i iy K t T x t y x     (1.6) 

In addition, let  and let  

i  for all  C x  0r     x K

,i I G

, then prob-
lem (1.5) reduces to the system of generalized vector 
quasi-variational inequalities studied by Ansari and Yao 
[5]. 

3) If for each i  be an identity mapping, 

i , 0S   ,i i i i iy x y x    ,D x K  and i i  then pro- 
blem (1.5) reduces to the system of generalized vector 
variational inequalities of finding x K  such that for 
each , i I i ix K  and 

   int .i,    : ,i i i i i i iy K t T x t y x     C x

 1I 

 (1.7) 

4) If , problem (1.4) reduces to generalized 
vector quasi-variational-like inequalities of finding x K  
such that  x D x  and 

     , , , int ,  ,iGt y x S x y C x y K      (1.8) 

such type of problem studied in [6-10]. 

5) If y, ,x y x   T
G 0S

  is single valued 
mapping,  be an identity mapping,  , and 
 C x   , for all x K  then problem (1.4) reduces 

to classical variational inequality problem of finding 
x K  such that  x D x  and 

         ,    : , int ,y D x t T x T x y x C x     

E

 

(1.9) 

which was introduced and studied by Hartman and Stam- 
pacchia [11]. 

2. Preliminaries 

Definition 2.1. [12] Let  and Z  be two t.v.s. and 
K  be a convex subset of t.v.s. . Let E : 2ZC K 

: 2
 and  

ZK K  
 1 2, , , n

 be two set-valued mappings. Assume 
given any finite subset x x x    in K , any  

1

n

i i
i

x x


  0i  1, , 
1

1
n

i
i




 for i n , and , with   .  

Then, 1)   is said to be strong Type I C-diagonally 
quasiconvex (SIC-DQC, in short) in the second argument 
if for some ix  , 

   , ;ix x C x   

2)   is said to be strong Type II C-diagonally quasi-
convex (SIIC-DQC, in short) in the second argument if 
for some ix  ,  

   , ;ix x C x    

3)   is said to be weak Type I C-diagonally quasi-
convex (WIC-DQC, in short) in the second argument if 
for some ix  ,  

     , int ;ix x C x C x    

4)   is said to be weak Type II C-diagonally quasi- 
convex (WIIC-DQC, in short) in the second argument if 
for some ix  ,  

   , int .ix x C x 

E Z

 

It is easy to verify that the following proposition, 1) 
SIC-DQC implies SIIC-DQC; 2) SIIC-DQC implies 
WIC-DQC; 3) WIC-DQC implies WIIC-DQC. The con-
verse is not true. Following example shows that the con0 
verse is not true. 

   and  Example 2.1. Let 
   1 2, co , 1 2x x x x  . 

  , C x x   . Then 1) If    is SIIC-DQC, but 
it is not SIC-DQC. 

   int ,C x x    . Then 2) If    is WIIC- 
DQC, but it is not WIC-DQC. 

Definition 2.2. [13] Let  and E Z  be two t.v.s. and 
K  be a convex subset of t.v.s. . A mapping  E

 : 2ZK K Z    is called (generalized) vector 0- 
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diagonally convex if for any finite subset  

1

n

i i
i

 , , , n1 2x x x    of K  and any x x


   with 

0i   for , and , 1, ,i n 
1

1
n

i
i






  
1

n

i i
i

 , int .x x C x 

   

Definition 2.3. [14] Let X  and  be two topological 
spaces and  be a set-valued mapping. Then, 

Y
: 2

  :X y T x

YT X
1)  is said to have open lower sections if the set 

 is open in 
T

 1   T y x   X  for every 
y Y ; 

2)  is said to be upper semicontinuous (u.s.c., in 
short) if for each o

T
x X U

U V
 and each open set  in Y  

with , there exists an open neighborhood  
of 

 oT x

ox  in X  such that T x  for each   U x V ; 
3)  is said to be lower semicontinuous (l.s.c., in 

short) if for each 
T

ox X U
U  

 and each open set  in Y  
with , there exists an open neighborhood 

 of 
 oT x

oV x  in X  such that  for each  T x U  
x V ; 

4)  is said to be continuous if it is both upper and 
lower semicontinuous; 

T

T  o5)  is said to be closed if for any net x  in X  
such that ox x  and any net  o By  in  such that 

oy y

 x 


y T
 and  for any o , we have  

. 
oy T x o

Lemma 2.1. [15] Let X  and Y  be two topological 
spaces. If  is u.s.c. set-valued mapping with 
closed values, then  is closed. 

: 2 Y

T
T X

Lemma 2.2. [16] Let X  and Y  be two topological 
spaces and  is u.s.c. mapping with compact 
values. Suppose 

: 2T X 


Y

ox  is a net in X  such that  
ox x . If  for each o , then there are a 

 and a subnet 

 o oy T


x

 y T x   n oyy  of   such that  
ny y  . 
Lemma 2.3. [17] Let X  and Y  be two topological 

spaces. Suppose that  and  are 
set-valued mappings having open lower sections, then 

: 2YT X  : 2YK X 

: 2YF X 1) A set-valued mapping  defined by, for 
each x X ,   co  F x  T x

: 2YJ X 
 has open lower sections; 

2) A set-valued mapping  defined by, for 
each x X ,      J x T x K x

i I E  

 has open lower sec- 
tions. 

For each , i  a Hausdorff t.v.s. Let iK  be a 
family of nonempty compact convex subsets with each 

iK  in i . Let E  i I iK K   and i I i . The fol- 
lowing system of fixed-point theorem is needed in this 
paper. 

 E E 

: 2 iLemma 2.4. [18] For each , let i I K
iT K 

i I

 be 

a set-valued mapping. Assume that the following condi- 
tions hold. 

 ,  is convex set-valued mapping; iT1) For each 

   1 int : .i i i iT x x K   K2) 

Then there exist x K  such that  
    i I ix T x T x   , that is,  i ix T x

i I

 for each  

 , where ix  is the projection of x  onto .iK  

3. Main Results 

Theorem 3.1. For each i I , let iZ  be a l.c.s., iK  a 
nonempty compact convex subset of Hausdorff t.v.s. , 

i  a nonempty compact convex subset of 
iE

Y  ,i iL E Z , 
which is equipped with a i I -topology. For each  , 
assume that the following conditions are satisfied. 

1) : 2 iK
i  and iT K  are two nonempty 

convex set-valued mappings and have open lower sec-
tions; 

D K  : 2 iY

i iY2) For each t   and , the mapping  coi ix  
   , ., ,. : 2 iZ

i i i i i iG t x S x K  

i iy K

 is WIIC-DQC; 

3) For each  , the set  

       , : , , , int i i i i i i i i ix t K Y G t y x S x y C x      

is open. 
Then there exist  i ix D x  and  i it T x  such 

that 

     
 

, , , int , 

.

i i i i i i i i i

i i

G t y x S x y C x

y D x

  

 



: 2 i

 

KProof. Define a set-valued mapping iP K Y 

   

 
by  


   

 

, : , ,

, int , 

, .

i i i i i i i i

i i i i

P x t y K G t y x

S x y C x

x t K Y

 

  

  

  co ,

 

We first prove that i ix P x t  for all  
 ,x t K Y 

I
. To see this, suppose, by way of contradic-

tion, that there exist some i  and some point 
 ,x t K Y   such that   co ,i ix P x t

1 2
, , ,

ni i i

. Then, there 
exist finite points y y y i in K  and 0j 

1

1
n

j
j




  

with   such that 
1

j

n

i j i
j

y


 x  and  

 ,
ji iy P x t 1, ,j n  such that  for all 

     , , , int , 1, , ,
j ji i i i i i i i iG t y x S x y C x j n       

which contradicts the hypothesis 2). Hence,  
  co , .i ix P x t

i I i iy K
 

By hypothesis 3), for each  and each  , 
we known that  
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       , ,i i i iS x y

iP
i I

: 2 i


 

1 , : ,

int 

i i i i i i

i

Q y x t K Y G t y x

C x

   

 
 

is open and so  has open lower sections. 
For each , consider a set-valued mapping  

K
iQ K Y   defind by  

       , co , ,    i i iQ x t P x t D x  ,x t K Y  

D

iQ

.  

Since i  has open lower sections by hypothesis 1), 
we may apply Lemma 2.3 to assert that the set-valued 
mapping  has also open lower sections. Let  

     , :i iW x t K Y Q x t   , .K Y   

iW

 

There are two cases to consider. In the case  

 , .x t K Y 

 ,

, 
we have  

    co , ,  i iP x t D x     

This implies that, x t K Y   , 

   , .i iD x  P x t  

On the other hand, by condition 1), and the fact iK  is 
a compact convex subset of i , we can apply Lemma 
2.4 to assert the existence of a fixed point 

E
 i ix D x 

 iT x
. 

Since , picking    xi it T  , we have  

   , .iD x  

 , ,y P x t  

 
: 2 i

iP x t    

This implies i i . Hence, in 
this particular case, the assertion of the theorem holds. 

 i iy D x 

We now consider the case iW . Define a set- 
valued mapping K

iS K Y   by 

 
   
   

, ,    ,
,  

,   ,
i

Q x t x t
S x t

D x x t

 
  .

i i

i i i i

W

K Y W  

 ,  S x t
  1D u Y 

 

Then, i  is a convex set-valued mapping and 
for each u , i i  is 
open. For each , consider the set-valued mapping  

K    1 1  i iS u Q u  
i I

2   where   K Y
i I i:H K Y H H
     defined by  

 i i     , , , .iH x t S x t T x

 ,  S x t

 

By condition 1) and the properties of i , iH  
satisfies all the conditions of Lemma 2.4. Therefore,  

there exists  ,x t K Y   

, i

 such that  

 i i ,x t H x t   , i
  . Suppose that x t W  

     ,i

, then  

co ,i ix P x  t D x 

  co ,i i

 

so that x P x t  

 , i

 . This is a contradiction.  

Hence, x t W

 and , .iQ x t   

  . Therefore,  

      , , ,    i i i ix t D x T x     

Thus  

       , ,    co , .i i i i i ix D x t T x P x t D x           

This implies  

   , .i iP x t D x    

i I

 

Consequently, the assertion of the theorem holds in 
this case. 

Corollary 3.2. For each , let iZ  be a l.c.s., iK  
a nonempty compact convex subset of Hausdorff t.v.s. 

i , i  a nonempty compact convex subset of E Y ,i iL E Z , 
which is equipped with a i I -topology. For each  , 
assume that the following conditions are satisfied. 

1) : 2 iK
i  and iT K  are two nonempty 

convex set-valued mappings and have open lower sections; 
D K  : 2 iY

i iy K , the mapping  2) For all 

   ., ,* *, : 2 iZ
i i i i iG y S y K Y   

: 2 i

 is an u.s.c. set-  

valued mapping; 
Z

iC K   is a convex set-valued mapping with 3) 
 int C x x Ki  for all  ;  

4) i i: i iK K E  
i i

 is affine in the first argument 
and for all x K , , 0i i ix x 

: 2 i

; 
Z

iS K K 

i i

 is a generalized vector 0-di-  5) 

agonally convex set-valued mapping; 
x K , and a neighborhood  of iU6) For a given 

   int int .i iC x C u  x , for all ,u Ui  
Then there exists  i ix D x  and  i it T x  such 

that 

       , , , int ,  .i i i i i i i i i i iG t y x S x y C x y D x    
: 2 i

 

KProof. Define a set-valued mapping iP K Y 

   

 
by  

  
 

 

, : , , ,

int ,

, .

i i i i i i i i i i i

i

P x t y K G t y x S x y

C x

x t K Y

  

 

  

  co ,

 

We first prove that i ix P x t  for all  
 ,x t K Y  i I. By contradiction, for each , suppose 
there exists some point  ,x t K Y   such that  

  co ,i ix P x t

1 2
, , ,

ni i i

. Then, there exist finite points  
y y y i in K , such that  

     , , , int ,  1, 2, , .i i i i i i i i iG t y x S x y C x i n       

 .,i ixSince   is affine and  int iC x

0j

 is convex,  


1

1
n

j
j




 with for    such that 
1

j

n

i j i
j

y


 x   

and ,
ji iy P x t 1, ,j n  for all  such that 

   
1 1

, , , int ,

1, , .

j j

n n

i i i j i i j i i i i
j j

G t y x S x y C x

j n

  
 

 
   

 


 


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Since  for all i ix x i i, 0i  x K   

   , int iC x 

  co , .i i

1

n

j i i i
j

S x y

  

which contradicts the hypothesis 5). Therefore  
x P x t  

We now prove that for each  

 

     , ,i i i
 

1, 

, : ,

int 

i i i i

i i i i i

i

y K P y

x t K Y G t y

C x





  

 

x S x y  

is open. Indeed, let    1
i i,x t P y , that is  

     int iC x, , ,i i i i i i i iG t y x S x y   . Since  

   , ,* *, : 2 iZ
i i i i i iG t y S y  K Y 

i

 is an u.s.c. set- 
valued mapping, there exists a neighborhood U  of 
 ,x t  such that  

     , , , int ,i i i i i i i i iG t y x S x y C x       , .ix t U   

By 6), 

     , , , int ,i i i i i i i i iG t y x S x y C x       , .ix t U 

 1 .iU P y

 

Hence, i i  This implies,  1P y

y 

i I

i i  is 
open for each i  and so i  have open lower 
sections. For the remainder of the proof, we can just 
follow that of Theorem 3.1. This completes the proof.  

,i K P

Corollary 3.3. For each  , let iZ  be a l.c.s., iK  
a nonempty compact convex subset of Hausdorff t.v.s. 

i , i  a nonempty compact convex subset of E Y  ,i iL E Z , 
which is equipped with a  -topology. For each i I , 
assume that the following conditions are satisfied. 

1) : 2 iK
i  and iT K  are two nonempty 

convex set-valued mappings and have open lower sections; 
D K : 2 iY

y K



2) For all , the mapping  i i

   ., ,* *, : 2 iZ
i i i i iG y S y  K Y 

: 2 i

 is an u.s.c. set- 
valued mapping; 

3) Z
i  is a convex set-valued mapping such 

that for each 
C K 

x K ,  i iC x C  is a convex cone with 
;    

:
int iC x

4) i i i iK K E    is affine in the first argument 
and for all i ix K ,  , 0i ix x i  ; 

5) : 2 iZ
i  is a generalized vector 0-di- 

agonally convex set-valued mapping; 
S K K 

6) For a given i ix K iU, and a neighborhood  of 
x , for all   ,iU  in C xu i iC u t int .

Then there exist  i ix D x  and  i it T x  such 
that  

       .i iy D x 

i I

, , , int ,i i i i i i i i iG t y x S x y C    

Proof. By hypothesis 3), the condition 4) in Corollary 
3.2 is satisfied. Hence, all the conditions are satisfied as 

in Corollary 3.2. 
Corollary 3.4. For each , let iZ  be a l.c.s., iK  a 

nonempty compact convex subset of Hausdorff t.v.s. , 

i  a nonempty compact convex subset of 
iE

Y  ,i iL E Z , 
which is equipped with a i I -topology. For each  , 
assume that i  and iG  are single valued mappings and 
the following conditions are satisfied. 

S

: 2 i1) K
i  and iT K  are two nonempty 

convex set-valued mappings and have open lower sections; 
D K  : 2 iY

i iy K , the mapping  2) For all 

   ., ,* *, :i i i i i i i iG y S y K Y Z   

: 2 i

 is continuous; 
Z

iC K   is a convex set-valued mapping with 3) 
 int C x x Ki  for all  ;  

4) i i: i iK K E  
i i

 is affine in the first argument 
and for all x K , , 0x x 

: iS K K Z
i i i

5) i

; 
   is a vector 0-diagonally convex 

mapping; 

  int i iZ C x  is an u.s.c. set-valued mapping. 6) 

Then there exist  i ix D x  and  i it T x  such 
that  

       , , , int ,  .i i i i i i i i i i iG t y x S x y C x y D x    

: 2 i

 

KProof. Define a set-valued mapping iP K Y 

   

 
by  

  
 

 

, : , , ,

int ,

, .

i i i i i i i i i i i

i

P x t y K G t y x S x y

C x

x t K Y

  



  

 

We now prove that for each  

 
     

 

1, 

, : , , ,

int 

i i i i

i i i i i i i i

i

y K P y

x t K Y G t y x S x y

C x





   



   

 

is open, that is, the set  

  x

  
, : , , ,

int 

i i i i i i i i

i i

t K Y G t y x S x y

Z C x

  

 
 

is closed. Indeed, let  ,o ox t  be a net in K Y  such  

   , ,o othat x t x t   and 

      , , , int .o o o o
i i i i i i i i i iG t y x S x y Z C x     

 Since  ., ,* *, : 2 iZ
i i  is con-

tinuous, hence  
i i iG y S y K Y   

   
   

, , ,

, , , .

o o o
i i i i i i i i

i i i i i i i i

G t y x S x y

G t y x S x y



   


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  int i iZ   int i iC x  is an u.s.c. set-valued map- Z C x  is an u.s.c. set-valued mapping. Since 

ping with closed values, by Lemma 2.1, we have 

      *int ,iC x

 ,

, , ,i i i i i i i i iG t y x S x y Z      

and hence x t   in the set  

     , ,i i i
 

, : ,

int .

i i i i i

i

x t K Y G t y x

C x

 



S x y



 

This implies 1P y y K

i I

i i  is open for each i i  and so 

i  has open lower sections. For the remainder of the 
proof, we can just follow that of Theorem 3.1 and 
Corollary 3.2. This completes the proof. 

P

Theorem 3.5. For each , let iZ  be a l.c.s., iK  a 
nonempty compact convex subset of Hausdorff t.v.s. , 

i  a nonempty compact convex subset of 
iE

Y  ,i iL E Z , 
which is equipped with a  -topology. For each i I , 
assume that the following conditions are satisfied. 

1) : 2 iK
i  and iT K  are two nonempty 

convex set-valued mappings and have open lower sections; 
D K : 2 iY

coix  



2) For each  and i , the mapping i it Y
   ,. :, ., 2 iZ

i i i i

3) for each , the set  
i iS x K

i iy K
G t  x   is WIC-DQC; 

      , ,i i i
  

, : ,

int 

i i i i i

i

x t K Y G t y x

C x

 

  

S x y
 

is open. 
Then there exist  i ix D x  and  i it T x  such 

that  

      
 

, , , i

.

i i i i i i i i

i i

G t y x S x y

y D x

  

 

 nt , iC x  

: 2 i

 

Proof. Define a set-valued mapping K
iP K Y   

by  

      , ,i i i i iS x y

i I


  

 

, : ,

int ,

, .

i i i i i i

i

P x t y K G t y x

C x

x t K Y

 

  

  

  

For the remainder proof, we just follow that of Theo-
rem 3.1. 

Corollary 3.6. For each , let iZ  be a l.c.s., iK  a 
nonempty compact convex subset of Hausdorff t.v.s. , 

i  a nonempty compact convex subset of 
iE

Y  ,i iL E Z , 
which is equipped with a  -topology. For each i I , 
assume that the following conditions are satisfied. 

1) : 2 iK
i  and iT K  are two nonempty 

convex set-valued mappings and have open lower sections; 
D K : 2 iY

coΛix



2) For each  and ii it Y  , the mapping 

 

3) 

 ,. : 2 i, ., Z
i i i i iG t x S x i K   is WIC-DQC;  

Then there exist  i ix D x  and  i it T x  such 
that  

     

 

, , , int ,

.

i i i i i i i i i

i i

G t y x S x y C x

y D x

    

 



: 2 i

 

Proof. Let K
i  be a set-valued mapping 

define in Theorem 3.5. We just prove that for each  
P K Y 

 

      
  

1, 

, : , , ,

int 

i i i i

i i i i i i i i

i

y K P y

x t K Y G t y x S x y

C x





   

  

   

 

is open, that is, the set  

   x

  

, : , , ,

int 

i i i i i i i i

i

t K Y G t y x S x y

C x

  

  
 

is closed. Indeed, let  ,o ot K Y be a net in x   such  

   , ,o othat x t x t   and 

     , , , int .o o o o
i i i i i i i i iG t y x S x y C x      

This implies 

      , , , int .o o o o
i i i i i i i i i iG t y x S x y Z C x     

We now prove that 

      , , , int .i i i i i i i i i iG t y x S x y Z C x       

If it is not true, then there exists a  

   , , ,i i i i i i i iw G t y x S x y      such that  

  int i iw Z C x   iZ  is Hausdorff t.v.s.  . Since 

  int i iZ(l.c.s. is Hausdorff space) and C x

,  i i iU V Z

 is  

closed, there exists two open sets  such that  

  , int  and i i i i i iw U Z C x V U V  .      

  Since ., ,* *, : 2 iZ
i i i i iG y S y P Y  

  int 

 is an l.s.c.  

set-valued mapping and i iZ C x  is an u.s.c. 
set-valued mapping, there exists a neighborhood  

   ,  of  , iU x y x y   

 

 such that 

  
   

., , , , 

, , 

i i i i i i i i

i

G y x S x y U

x t U x y



 

  

 


 

 iU x   such that    of xand a neighborhood 

    int ,  .i i i iC x V x U x   Z  
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Hence, for all        ,i i i, ,o ox t U x y   U x Y   

there exists     , ,o o o
i i i i i iw G t y x S ,o

i ix y  such 

that , which is contradiction.    int o o
i iw Z C x 

Therefore, the set  

      , ,i i i
  

, : ,

int 

i i i i i

i

x t K Y G t y x

C x

 

  

S x y

i I

 

is closed. Hence, all the conditions of Theorem 3.5 satis-
fied. Consequently, the assertion of the theorem holds. 

Theorem 3.7. For each , let iZ  be a l.c.s., iK  a 
nonempty compact convex subset of Hausdorff t.v.s. , 

i  a nonempty compact convex subset of 
iE

Y  ,i iL E Z , 
which is equipped with a  -topology. For each i I , 
assume that the following conditions are satisfied. 

1) : 2 iK
i  and iT K  are two nonempty 

convex set-valued mappings and have open lower sections; 
D K : 2 iY

coix  



2) For each  and i , the mapping i it Y
   ,. :, ., 2 iZ

i i i i

3) for each , the set  
i iS x K

i iy K
G t  x   is SIIC-DQC; 

     , ,i i i
  

, : ,i i i i i

i

x t K Y G t y x

C x

 

 

S x y
 

is open. 
Then there exist  i ix D x  and  i it T x  such that  

        ,i i i i i i i i i i iG t y x S x y C x y D x     

: 2 i

, , ,   . 

Proof. Define a set-valued mapping K
iP K Y   

by  

      , ,i i i iS x y

i I


  

 

, : ,

,

, .

i i i i i i i

i

P x t y K G t y x

C x

x t K Y

 

 

  

  

For the remainder proof, we just follow that of Theo-
rem 3.1. 

Corollary 3.8. For each , let iZ  be a l.c.s., iK  a 
nonempty compact convex subset of Hausdorff t.v.s. , 

i  a nonempty compact convex subset of 
iE

Y  ,i iL E Z , 
which is equipped with a  -topology. For each i I , 
assume that the following conditions are satisfied. 

1) : 2 iK
i  and iT K  are two nonempty 

convex set-valued mappings and have open lower sections; 
D K : 2 iY

coΛix 



2) For each  and i , the mapping  i it Y

   ,. : 2 i, ., Z
i i i i iG t x S x i K 

,

 is SIIC-DQC; 

3) For all x K  iC x C  is closed convex cone . i

Then there exist  i ix D x  and  i it T x  such 
that  

     , , , ,  .i i i i i i i i i i iG t y x S x y C y D x     

: 2 i

 

Proof. Let K
i  be a set-valued mapping 

defined in Theorem 3.7. We prove that for each  
P K Y 

 

      


1, 

, : , , ,

i i i i

i i i i i i i i

i

y K P y

x t K Y G t y x S x y

C





   

 

   

 

is open, that is, the set  

    , : , , ,i i i i i i i i i ix t K Y G t y x S x y Z C       

is open. If   1, i it P y i, since ix Z C  is open set 
and for all  

   , ., ,* *, : 2 iZ
i i i i i i i , an u.s.c. 

set-valued mapping, there exists a neighborhood  of 
y K G y S y K Y   

iU
 ,  , ,ix t x t U

 
 , for all 

  , , , .i i i i i i i i i iG t y x S x y Z C     

 1P y .y Ki i  is open for each i iThis implies   
Therefore, all the conditions of Theorem 3.7 are satisfied. 
Consequently the assertion of the theorem holds. 

Theorem 3.9. For each , let ii I Z  be a l.c.s., iK  a 
nonempty compact convex subset of Hausdorff t.v.s. , 

i  a nonempty compact convex subset of 
iE

Y  ,i iL E Z , 
which is equipped with a i I -topology. For each  , 
assume that the following conditions are satisfied. 

1) : 2 iK
i  and iT K  are two nonempty 

convex set-valued mappings and have open lower sections; 
D K  : 2 iY

i iY2) For each t   and i , the mapping coix  
   , ., ,. : 2 iZ

i i i i

3) for each 
i iG t x S x K  

i iy K
 is SIC-DQC; 

, the set  
       , : , , ,i i i i i i i i it K Y G t y x S x y C x   x  is 

open. 
Then there exist  i ix D x  and  i it T x  such 

that  

       , , , ,  .i i i i i i i i i i iG t y x S x y C x y D x   
: 2 i

 
KProof. Define a set-valued mapping iP K Y 

   

 
by  

    
 

, : , , , ,

, .

i i i i i i i i i i i iP x t y K G t y x S x y C x

x t K Y

  

  



i I

 

The rest of the proof is similar to that of Theorem 3.1.  
Corollary 3.10. For each , let iZ  be a l.c.s., iK  

a nonempty compact convex subset of Hausdorff t.v.s. 

i , i  a nonempty compact convex subset of E Y ,i iL E Z , 
which is equipped with a i I -topology. For each  , 
assume that the following conditions are satisfied. 

1) : 2 iK
i  and iT K  are two nonempty 

convex set-valued mappings and have open lower sections; 
D K  : 2 iY

i it Y  and icoΛix  , the mapping  2) For each 
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   ,. : 2 i, ., Z
i i i i i i

3)  is an u.s.c. mapping with closed values. 
G t x S x K  

 C x
 is SIC-DQC; 

i

Then there exist  i ix D x  and  i it T x  such 
that  

       , .i iy D x 

: 2 i

, , ,   i i i i i i i i iG t y x S x y C x    

Proof. Let K
i  a set-valued mapping 

defined in Theorem 3.9. We prove that for each 
P K Y 

i iy K , 
the set  
       , i i , : , ,i i i i i i ix t K Y G t y x S x   y C x  is 

open, that is, the set  

       , i i , : , ,i i i i i i ix t K Y G t y x S x   y C x

 ,o o

 i s  

closed. Indeed, let  x t  be a net in K Y  such 

that  ,o o  ,x t  x t   and 

     , .o o
i iy C x, ,o o

i i i i i i iG t y x S x   

We claim that  

     , .i iy C x , ,i i i i i i iG t y x S x    

To prove this assertion, we can just follow that of 
Corollary 3.6. Hence, the set  
       , , : , ,i i i i i i i i ix t K Y G t y x S x y C x     is 

open. Therefore, all the conditions of Theorem 3.9 are 
satisfied. Consequently, the assertion of the corollary 
hold. 
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