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Abstract

Background: A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of

function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively

low throughput and restricted purview have led to an increasing role for computational function prediction. However,

assessing methods for protein function prediction and tracking progress in the field remain challenging.

Results: We conducted the second critical assessment of functional annotation (CAFA), a timed challenge to assess

computational methods that automatically assign protein function. We evaluated 126 methods from 56 research

groups for their ability to predict biological functions using Gene Ontology and gene-disease associations using

Human Phenotype Ontology on a set of 3681 proteins from 18 species. CAFA2 featured expanded analysis compared

with CAFA1, with regards to data set size, variety, and assessment metrics. To review progress in the field, the analysis

compared the best methods from CAFA1 to those of CAFA2.

Conclusions: The top-performing methods in CAFA2 outperformed those from CAFA1. This increased accuracy

can be attributed to a combination of the growing number of experimental annotations and improved methods

for function prediction. The assessment also revealed that the definition of top-performing algorithms is ontology

specific, that different performance metrics can be used to probe the nature of accurate predictions, and the relative

diversity of predictions in the biological process and human phenotype ontologies. While there was methodological

improvement between CAFA1 and CAFA2, the interpretation of results and usefulness of individual methods remain

context-dependent.

Keywords: Protein function prediction, Disease gene prioritization

Background
Accurate computer-generated functional annotations of

biological macromolecules allow biologists to rapidly gen-

erate testable hypotheses about the roles that newly

identified proteins play in processes or pathways. They

also allow them to reason about new species based

on the observed functional repertoire associated with

their genes. However, protein function prediction is an

open research problem and it is not yet clear which

tools are best for predicting function. At the same time,

critically evaluating these tools and understanding the

landscape of the function prediction field is a chal-

lenging task that extends beyond the capabilities of a

single lab.

Assessments and challenges have a successful history

of driving the development of new methods in the life

sciences by independently assessing performance and

providing discussion forums for the researchers [1]. In

2010–2011, we organized the first critical assessment

of functional annotation (CAFA) challenge to evaluate

methods for the automated annotation of protein func-

tion and to assess the progress in method develop-

ment in the first decade of the 2000s [2]. The challenge

used a time-delayed evaluation of predictions for a large

set of target proteins without any experimental func-

tional annotation. A subset of these target proteins accu-

mulated experimental annotations after the predictions

were submitted and was used to estimate the perfor-

mance accuracy. The estimated performance was subse-

quently used to draw conclusions about the status of the

field.

The first CAFA (CAFA1) showed that advanced meth-

ods for the prediction of Gene Ontology (GO) terms

[3] significantly outperformed a straightforward applica-

tion of function transfer by local sequence similarity. In

addition to validating investment in the development of

new methods, CAFA1 also showed that using machine

learning to integrate multiple sequence hits and multi-

ple data types tends to perform well. However, CAFA1

also identified challenges for experimentalists, biocu-

rators, and computational biologists. These challenges

include the choice of experimental techniques and pro-

teins in functional studies and curation, the structure

and status of biomedical ontologies, the lack of com-

prehensive systems data that are necessary for accurate

prediction of complex biological concepts, as well as

limitations of evaluation metrics [2, 4–7]. Overall, by

establishing the state-of-the-art in the field and identi-

fying challenges, CAFA1 set the stage for quantifying

progress in the field of protein function prediction over

time.

In this study, we report on the major outcomes of
the second CAFA experiment, CAFA2, that was orga-

nized and conducted in 2013–2014, exactly 3 years after

the original experiment. We were motivated to evalu-

ate the progress in method development for function

prediction as well as to expand the experiment to new

ontologies. The CAFA2 experiment also greatly expanded

the performance analysis to new types of evaluation and

included new performance metrics. By surveying the state

of the field, we aim to help all direct and indirect users

of computational function prediction software develop
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intuition for the quality, robustness, and reliability of these

predictions.

Methods

Experiment overview

The time line for the second CAFA experiment followed

that of the first experiment and is illustrated in Fig. 1.

Briefly, CAFA2 was announced in July 2013 and officially

started in September 2013, when 100,816 target sequences

from 27 species were made available to the community.

Teams were required to submit prediction scores within

the (0, 1] range for each protein–term pair they chose

to predict on. The submission deadline for depositing

these predictions was set for January 2014 (time point t0).

We then waited until September 2014 (time point t1) for

new experimental annotations to accumulate on the target

proteins and assessed the performance of the prediction

methods. We will refer to the set of all experimentally

annotated proteins available at t0 as the training set and

to a subset of target proteins that accumulated experi-

mental annotations during (t0, t1] and used for evaluation

as the benchmark set. It is important to note that the

benchmark proteins and the resulting analysis vary based

on the selection of time point t1. For example, a pre-

liminary analysis of the CAFA2 experiment was provided

during the Automated Function Prediction Special Inter-

est Group (AFP-SIG) meeting at the Intelligent Systems

for Molecular Biology (ISMB) conference in July 2014.

The participating methods were evaluated according

to their ability to predict terms in GO [3] and Human

Phenotype Ontology (HPO) [8]. In contrast with CAFA1,

where the evaluation was carried out only for the Molec-

ular Function Ontology (MFO) and Biological Process

Ontology (BPO), in CAFA2 we also assessed the perfor-

mance for the prediction of Cellular ComponentOntology

(CCO) terms in GO. The set of human proteins was fur-

ther used to evaluate methods according to their ability

to associate these proteins with disease terms from HPO,

which included all sub-classes of the term HP:0000118,

“Phenotypic abnormality”.

In total, 56 groups submitting 126 methods participated

in CAFA2. From those, 125 methods made valid predic-

tions on a sufficient number of sequences. Further, 121

methods submitted predictions for at least one of the GO

benchmarks, while 30 methods participated in the disease

gene prediction tasks using HPO.

Evaluation

The CAFA2 experiment expanded the assessment of com-

putational function prediction compared with CAFA1.

This includes the increased number of targets, bench-

marks, ontologies, and method comparison metrics.

We distinguish between two major types of method

evaluation. The first, protein-centric evaluation, assesses

performance accuracy of methods that predict all onto-

logical terms associated with a given protein sequence.

The second type, term-centric evaluation, assesses per-

formance accuracy of methods that predict if a single

ontology term of interest is associated with a given pro-

tein sequence [2]. The protein-centric evaluation can be

viewed as a multi-label or structured-output learning

problem of predicting a set of terms or a directed acyclic

graph (a subgraph of the ontology) for a given protein.

Because the ontologies contain many terms, the output

space in this setting is extremely large and the evaluation

metrics must incorporate similarity functions between

groups of mutually interdependent terms (directed acyclic

graphs). In contrast, the term-centric evaluation is an

example of binary classification, where a given ontology

term is assigned (or not) to an input protein sequence.

These methods are particularly common in disease gene

prioritization [9]. Put otherwise, a protein-centric evalu-

ation considers a ranking of ontology terms for a given

protein, whereas the term-centric evaluation considers

a ranking of protein sequences for a given ontology

term.

Both types of evaluation have merits in assessing per-

formance. This is partly due to the statistical depen-

dency between ontology terms, the statistical dependency

among protein sequences, and also the incomplete and

Fig. 1 Time line for the CAFA2 experiment
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biased nature of the experimental annotation of protein

function [6]. In CAFA2, we provide both types of evalu-

ation, but we emphasize the protein-centric scenario for

easier comparisons with CAFA1. We also draw important

conclusions regarding method assessment in these two

scenarios.

No-knowledge and limited-knowledge benchmark sets

In CAFA1, a protein was eligible to be in the bench-

mark set if it had not had any experimentally veri-

fied annotations in any of the GO ontologies at time

t0 but accumulated at least one functional term with

an experimental evidence code between t0 and t1;

we refer to such benchmark proteins as no-knowledge

benchmarks. In CAFA2 we introduced proteins with

limited knowledge, which are those that had been exper-

imentally annotated in one or two GO ontologies (but

not in all three) at time t0. For example, for the per-

formance evaluation in MFO, a protein without any

annotation in MFO prior to the submission deadline

was allowed to have experimental annotations in BPO

and CCO.

During the growth phase, the no-knowledge targets that

have acquired experimental annotations in one or more

ontologies became benchmarks in those ontologies. The

limited-knowledge targets that have acquired additional

annotations became benchmarks only for those ontologies

for which there were no prior experimental annotations.

The reason for using limited-knowledge targets was to

identify whether the correlations between experimental

annotations across ontologies can be exploited to improve

function prediction.

The selection of benchmark proteins for evaluating

HPO-term predictors was separated from the GO analy-

ses.We created only a no-knowledge benchmark set in the

HPO category.

Partial and full evaluationmodes

Many function prediction methods apply only to certain

types of proteins, such as proteins for which 3D structure

data are available, proteins from certain taxa, or specific

subcellular localizations. To accommodate thesemethods,

CAFA2 provided predictors with an option of choosing a

subset of the targets to predict on as long as they com-

putationally annotated at least 5,000 targets, of which

at least ten accumulated experimental terms. We refer

to the assessment mode in which the predictions were

evaluated only on those benchmarks for which a model

made at least one prediction at any threshold as partial

evaluation mode. In contrast, the full evaluation mode

corresponds to the same type of assessment performed in

CAFA1 where all benchmark proteins were used for the

evaluation and methods were penalized for not making

predictions.

In most cases, for each benchmark category, we have

two types of benchmarks, no-knowledge and limited-

knowledge, and two modes of evaluation, full mode

and partial mode. Exceptions are all HPO categories

that only have no-knowledge benchmarks. The full

mode is appropriate for comparisons of general-purpose

methods designed to make predictions on any pro-

tein, while the partial mode gives an idea of how

well each method performs on a self-selected subset of

targets.

Evaluationmetrics

Precision–recall curves and remaining uncertainty–

misinformation curves were used as the two chief metrics

in the protein-centric mode [10]. We also provide a sin-

gle measure for evaluation of both types of curves as a

real-valued scalar to compare methods; however, we note

that any choice of a single point on those curves may

not match the intended application objectives for a given

algorithm. Thus, a careful understanding of the evaluation

metrics used in CAFA is necessary to properly interpret

the results.

Precision (pr), recall (rc), and the resulting Fmax are

defined as

pr(τ ) =
1

m(τ )

m(τ )
∑

i=1

∑

f 1
(

f ∈ Pi(τ ) ∧ f ∈ Ti

)

∑

f 1
(

f ∈ Pi(τ )
) ,

rc(τ ) =
1

ne

ne
∑

i=1

∑

f 1
(

f ∈ Pi(τ ) ∧ f ∈ Ti

)

∑

f 1
(

f ∈ Ti

) ,

Fmax = max
τ

{

2 · pr(τ ) · rc(τ )

pr(τ ) + rc(τ )

}

,

where Pi(τ ) denotes the set of terms that have predicted

scores greater than or equal to τ for a protein sequence

i, Ti denotes the corresponding ground-truth set of terms

for that sequence, m(τ ) is the number of sequences with

at least one predicted score greater than or equal to τ , 1 (·)

is an indicator function, and ne is the number of targets

used in a particular mode of evaluation. In the full evalu-

ation mode ne = n, the number of benchmark proteins,

whereas in the partial evaluation mode ne = m(0), i.e.,

the number of proteins that were chosen to be predicted

using the particular method. For each method, we refer

to m(0)/n as the coverage because it provides the fraction

of benchmark proteins on which the method made any

predictions.

The remaining uncertainty (ru), misinformation (mi),

and the resulting minimum semantic distance (Smin) are

defined as



Jiang et al. Genome Biology  (2016) 17:184 Page 5 of 19

ru(τ ) =
1

ne

ne
∑

i=1

∑

f

ic(f ) · 1
(

f /∈ Pi(τ ) ∧ f ∈ Ti

)

,

mi(τ ) =
1

ne

ne
∑

i=1

∑

f

ic(f ) · 1
(

f ∈ Pi(τ ) ∧ f /∈ Ti

)

,

Smin = min
τ

{

√

ru(τ )2 + mi(τ )2
}

,

where ic(f ) is the information content of the ontology

term f [10]. It is estimated in a maximum likelihood

manner as the negative binary logarithm of the condi-

tional probability that the term f is present in a protein’s

annotation given that all its parent terms are also present.

Note that here, ne = n in the full evaluation mode and

ne = m(0) in the partial evaluation mode applies to both

ru and mi.

In addition to the main metrics, we used two sec-

ondary metrics. Those were the weighted version of the

precision–recall curves and the version of the remain-

ing uncertainty–misinformation curves normalized to the

[0, 1] interval. These metrics and the corresponding eval-

uation results are shown in Additional file 1.

For the term-centric evaluation we used the area under

the receiver operating characteristic (ROC) curve (AUC).

The AUCs were calculated for all terms that have acquired

at least ten positively annotated sequences, whereas the

remaining benchmarks were used as negatives. The term-

centric evaluation was used both for ranking models and

to differentiate well and poorly predictable terms. The

performance of each model on each term is provided in

Additional file 1.

As we required all methods to keep two significant

figures for prediction scores, the threshold τ in all metrics

used in this study was varied from 0.01 to 1.00 with a step

size of 0.01.

Data sets

Protein function annotations for the GO assessment were

extracted, as a union, from three major protein databases

that are available in the public domain: Swiss-Prot [11],

UniProt-GOA [12] and the data from the GO consor-

tium web site [3]. We used evidence codes EXP, IDA,

IPI, IMP, IGI, IEP, TAS, and IC to build benchmark and

ground-truth sets. Annotations for the HPO assessment

were downloaded from the HPO database [8].

Figure 2 summarizes the benchmarks we used in this

study. Figure 2a shows the benchmark sizes for each of

the ontologies and compares these numbers to CAFA1.

All species that have at least 15 proteins in any of the

benchmark categories are listed in Fig. 2b.

Comparison between CAFA1 and CAFA2methods

We compared the results from CAFA1 and CAFA2 using

a benchmark set that we created from CAFA1 targets and

CAFA2 targets. More precisely, we used the stored pre-

dictions of the target proteins from CAFA1 and compared

them with the new predictions from CAFA2 on the over-

lapping set of CAFA2 benchmarks and CAFA1 targets

Fig. 2 CAFA2 benchmark breakdown. a The benchmark size for each of the four ontologies. b Breakdown of benchmarks for both types over 11

species (with no less than 15 proteins) sorted according to the total number of benchmark proteins. For both panels, dark colors (blue, red, and

yellow) correspond to no-knowledge (NK) types, while their light color counterparts correspond to limited-knowledge (LK) types. The distributions of

information contents corresponding to the benchmark sets are shown in Additional file 1. The size of CAFA 1 benchmarks are shown in gray. BPO

Biological Process Ontology, CCO Cellular Component Ontology, HPO Human Phenotype Ontology, LK limited-knowledge,MFOMolecular Function

Ontology, NK no-knowledge
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(a sequence had to be a no-knowledge target in both

experiments to be eligible for this evaluation). For this

analysis only, we used an artificial GO version by taking

the intersection of the two GO snapshots (versions from

January 2011 and June 2013) so as to mitigate the influ-

ence of ontology changes. We, thus, collected 357 bench-

mark proteins for MFO comparisons and 699 for BPO

comparisons. The two baseline methods were trained on

respective Swiss-Prot annotations for both ontologies so

that they serve as controls for database change. In par-

ticular, SwissProt2011 (for CAFA1) contained 29,330 and

31,282 proteins for MFO and BPO, while SwissProt2014

(for CAFA2) contained 26,907 and 41,959 proteins for the

two ontologies.

To conduct a head-to-head analysis between any two

methods, we generated B = 10, 000 bootstrap samples

and let methods compete on each such benchmark set.

The performance improvement δ from CAFA1 to CAFA2

was calculated as

δ(m2,m1) =
1

B

B
∑

b=1

F(b)
max(m2) −

1

B

B
∑

b=1

F(b)
max(m1),

where m1 and m2 stand for methods from CAFA1 and

CAFA2, respectively, and F
(b)
max(·) represents the Fmax of

a method evaluated on the b-th bootstrapped benchmark

set.

Baseline models

We built two baseline methods, Naïve and BLAST, and

compared them with all participating methods. The Naïve

method simply predicts the frequency of a term being

annotated in a database [13]. BLAST was based on search

results using the Basic Local Alignment Search Tool

(BLAST) software against the training database [14]. A

term will be predicted as the highest local alignment

sequence identity among all BLAST hits annotated with

the term. Both of these methods were trained on the

experimentally annotated proteins available in Swiss-Prot

at time t0, except for HPO where the two baseline models

were trained using the annotations from the t0 release of

the HPO.

Results and discussion

Topmethods have improved since CAFA1

We conducted the second CAFA experiment 3 years after

the first one. As our knowledge of protein function has

increased since then, it was worthwhile to assess whether

computational methods have also been improved and if

so, to what extent. Therefore, to monitor the progress over

time, we revisit some of the top methods in CAFA1 and

compare them with their successors.

For each benchmark set we carried out a bootstrap-

based comparison between a pair of top-ranked methods

(one fromCAFA1 and another fromCAFA2), as described

in “Methods”. The average performance metric as well as

the number of wins were recorded (in the case of iden-

tical performance, neither method was awarded a win).

Figure 3 summarizes the results of this analysis. We use

a color code from orange to blue to indicate the perfor-

mance improvement δ from CAFA1 to CAFA2.

The selection of top methods for this study was based

on their performance in each ontology on the entire

benchmark sets. Panels B and C in Fig. 3 compare base-

line methods trained on different data sets. We see no

improvements of these baselines except for BLAST on

BPO where it is slightly better to use the newer version

of Swiss-Prot as the reference database for the search.

On the other hand, all top methods in CAFA2 out-

performed their counterparts in CAFA1. For predicting

molecular functions, even though transferring functions

from BLAST hits does not give better results, the top

models still managed to perform better. It is possible that

the newly acquired annotations since CAFA1 enhanced

BLAST, which involves direct function transfer, and per-

haps lead to better performances of those downstream

methods that rely on sequence alignments. However, this

effect does not completely explain the extent of the per-

formance improvement achieved by those methods. This

is promising evidence that top methods from the commu-

nity have improved since CAFA1 and that improvements

were not simply due to updates of curated databases.

Protein-centric evaluation

Protein-centric evaluation measures how accurately

methods can assign functional terms to a protein. The

protein-centric performance evaluation of the top-ten

methods is shown in Figs. 4, 5, and 6. The 95 % con-

fidence intervals were estimated using bootstrapping on

the benchmark set with B = 10, 000 iterations [15]. The

results provide a broad insight into the state of the art.

Predictors performed very differently across the four

ontologies. Various reasons contribute to this effect

including: (1) the topological properties of the ontology

such as the size, depth, and branching factor; (2) term pre-

dictability; for example, the BPO terms are considered to

be more abstract in nature than theMFO and CCO terms;

(3) the annotation status, such as the size of the training

set at t0, the annotation depth of benchmark proteins, as

well as various annotation biases [6].

In general, CAFA2 methods perform better at pre-

dicting MFO terms than any other ontology. Top meth-

ods achieved Fmax scores around 0.6 and considerably

surpassed the two baseline models. Maintaining the

pattern from CAFA1, the performance accuracies in

the BPO category were not as good as in the MFO

category. The best-performing method scored slightly

below 0.4.



Jiang et al. Genome Biology  (2016) 17:184 Page 7 of 19

Fig. 3 CAFA1 versus CAFA2 (topmethods). A comparison in Fmax between the top-five CAFA1 models against the top-five CAFA2 models. Colored

boxes encode the results such that (1) the colors indicate margins of a CAFA2 method over a CAFA1 method in Fmax and (2) the numbers in the box

indicate the percentage of wins. For both the Molecular Function Ontology (a) and Biological Process Ontology (b) results: A CAFA1 top-five models

(rows, from top to bottom) against CAFA2 top-five models (columns, from left to right). B Comparison of Naïve baselines trained respectively on

SwissProt2011 and SwissProt2014. C Comparison of BLAST baselines trained on SwissProt2011 and SwissProt2014

For the two newly added ontologies in CAFA2, we

observed that the top predictors performed no better

than the Naïve method under Fmax, whereas they slightly

outperformed the Naïve method under Smin in CCO.

One reason for the competitive performance of the Naïve

method in the CCO category is that a small number of
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Fig. 4 Overall evaluation using the maximum F measure, Fmax . Evaluation was carried out on no-knowledge benchmark sequences in the full mode.

The coverage of each method is shown within its performance bar. A perfect predictor would be characterized with Fmax = 1. Confidence intervals

(95 %) were determined using bootstrapping with 10,000 iterations on the set of benchmark sequences. For cases in which a principal investigator

participated in multiple teams, the results of only the best-scoring method are presented. Details for all methods are provided in Additional file 1

relatively general terms are frequently used, and those rel-

ative frequencies do not diffuse quickly enough with the

depth of the graph. For instance, the annotation frequency

of “organelle” (GO:0043226, level 2), “intracellular part”

(GO:0044424, level 3), and “cytoplasm” (GO:0005737,

level 4) are all above the best threshold for the Naïve

method (τoptimal = 0.32). Correctly predicting these

terms increases the number of true positives and thus

boosts the performance of the Naïve method under the

Fmax evaluation. However, once the less informative terms

are down-weighted (using the Smin measure), the Naïve

method becomes significantly penalized and degraded.

Another reason for the comparatively good performance

of Naïve is that the benchmark proteins were annotated

with more general terms than the (training) proteins pre-

viously deposited in the UniProt database. This effect was

most prominent in the CCO (Additional file 1: Figure S2)

and has thus artificially boosted the performance of the

Naïve method. The weighted Fmax and normalized Smin

evaluations can be found in Additional file 1.

Interestingly, generally shallower annotations of bench-

mark proteins do not seem to be the major reason for the

observed performance in the HPO category. One possi-

bility for the observed performance is that, unlike for GO

terms, the HPO annotations are difficult to transfer from

other species. Another possibility is the sparsity of exper-

imental annotations. The current number of experimen-

tally annotated proteins in HPO is 4794, i.e., 0.5 proteins

per HPO term, which is at least an order of magnitude less

than for other ontologies. Finally, the relatively high fre-

quency of general terms may have also contributed to the

good performance of Naïve. We originally hypothesized

that a possible additional explanation for this effect might

be that the average number of HPO terms associated with
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Fig. 5 Precision–recall curves for top-performing methods. Evaluation was carried out on no-knowledge benchmark sequences in the full mode.

A perfect predictor would be characterized with Fmax = 1, which corresponds to the point (1, 1) in the precision–recall plane. For cases in which a

principal investigator participated in multiple teams, the results of only the best-scoring method are presented
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Fig. 6 Overall evaluation using the minimum semantic distance, Smin . Evaluation was carried out on no-knowledge benchmark sequences in the full

mode. The coverage of each method is shown within its performance bar. A perfect predictor would be characterized with Smin = 0. Confidence

intervals (95 %) were determined using bootstrapping with 10,000 iterations on the set of benchmark sequences. For cases in which a principal

investigator participated in multiple teams, the results of only the best-scoring method are presented. Details for all methods are provided in

Additional file 1

a human protein is considerably larger than in GO; i.e.,

the mean number of annotations per protein in HPO is

84, while for MFO, BPO, and CCO, the mean number

of annotations per protein is 10, 39, and 14, respectively.

However, we do not observe this effect in other ontolo-

gies when the benchmark proteins are split into those with

a low or high number of terms. Overall, successfully pre-

dicting the HPO terms in the protein-centric mode is a

difficult problem and further effort will be required to

fully characterize the performance.

Term-centric evaluation

The protein-centric view, despite its power in showing

the strengths of a predictor, does not gauge a predic-

tor’s performance for a specific function. In a term-centric

evaluation, we assess the ability of eachmethod to identify

new proteins that have a particular function, participate

in a process, are localized to a component, or affect a

human phenotype. To assess this term-wise accuracy, we

calculated AUCs in the prediction of individual terms.

Averaging the AUC values over terms provides a metric

for ranking predictors, whereas averaging predictor per-

formance over terms provides insights into how well this

term can be predicted computationally by the community.

Figure 7 shows the performance evaluation where the

AUCs for each method were averaged over all terms

for which at least ten positive sequences were available.

Proteins without predictions were counted as predictions

with a score of 0. As shown in Figs. 4, 5, and 6, correctly

predicting CCO and HPO terms for a protein might not

be an easy task according to the protein-centric results.

However, the overall poor performance could also result
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Fig. 7 Overall evaluation using the averaged AUC over terms with no less than ten positive annotations. The evaluation was carried out on

no-knowledge benchmark sequences in the full mode. Error bars indicate the standard error in averaging AUC over terms for each method. For

cases in which a principal investigator participated in multiple teams, the results of only the best-scoring method are presented. Details for all

methods are provided in Additional file 1. AUC receiver operating characteristic curve

from the dominance of poorly predictable terms. There-

fore, a term-centric view can help differentiate prediction

quality across terms. As shown in Fig. 8, most of the

terms in HPO obtain an AUC greater than the Naïve

model, with some terms on average achieving reason-

ably well AUCs around 0.7. Depending on the training

data available for participating methods, well-predicted

phenotype terms range frommildly specific such as “Lym-

phadenopathy” and “Thrombophlebitis” to general ones

such as “Abnormality of the Skin Physiology”.

Performance on various categories of benchmarks

Easy versus difficult benchmarks

As in CAFA1, the no-knowledge GO benchmarks were

divided into easy versus difficult categories based on their

maximal global sequence identity with proteins in the

training set. Since the distribution of sequence identi-

ties roughly forms a bimodal shape (Additional file 1), a

cutoff of 60 % was manually chosen to define the two

categories. The same cutoff was used in CAFA1. Unsur-

prisingly, across all three ontologies, the performance of

the BLASTmodel was substantially impacted for the diffi-

cult category because of the lack of high sequence identity

homologs and as a result, transferring annotations was rel-

atively unreliable. However, we also observed that most

top methods were insensitive to the types of benchmarks,

which provides us with encouraging evidence that state-

of-the-art protein function predictors can successfully

combine multiple potentially unreliable hits, as well as

multiple types of data, into a reliable prediction.
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a b

Fig. 8 Averaged AUC per term for Human Phenotype Ontology. a Terms are sorted based on AUC. The dashed red line indicates the performance of

the Naïve method. b The top-ten accurately predicted terms without overlapping ancestors (except for the root). AUC receiver operating

characteristic curve

Species-specific categories

The benchmark proteins were split into even smaller

categories for each species as long as the resulting cate-

gory contained at least 15 sequences. However, because

of space limitations, in Fig. 9 we show the breakdown

results on only eukarya and prokarya benchmarks; the

species-specific results are provided in Additional file 1.

It is worth noting that the performance accuracies on the

entire benchmark sets were dominated by the targets from

eukarya due to their larger proportion in the benchmark

set and annotation preferences. The eukarya benchmark

rankings therefore coincide with the overall rankings, but

the smaller categories typically showed different rank-

ings and may be informative to more specialized research

groups.

For all three GO ontologies, no-knowledge prokarya

benchmark sequences collected over the annotation

growth phase mostly (over 80 %) came from two species:

Escherichia coli and Pseudomonas aeruginosa (for CCO,

21 out of 22 proteins were from E. coli). Thus, one

should keep in mind that the prokarya benchmarks essen-

tially reflect the performance on proteins from these

two species. Methods predicting the MFO terms for

prokaryotes are slightly worse than those for eukary-

otes. In addition, direct function transfer by homology

for prokaryotes did not work well using this ontology.

However, the performance was better using the other two

ontologies, especially CCO. It is not very surprising that

the top methods achieved good performance for E. coli as

it is a well-studied model organism.

Diversity of predictions

Evaluation of the top methods revealed that perfor-

mance was often statistically indistinguishable between

the best methods. This could result from all top methods

making the same predictions, or from different predic-

tion sets resulting in the same summarized performance.

To assess this, we analyzed the extent to which meth-

ods generated similar predictions within each ontology.

Specifically, we calculated the pairwise Pearson correla-

tion between methods on a common set of gene-concept

pairs and then visualized these similarities as networks

(for BPO, see Fig. 10; for MFO, CCO, and HPO, see

Additional file 1).

In MFO, where we observed the highest overall perfor-

mance of prediction methods, eight of the ten top meth-

ods were in the largest connected component. In addition,

we observed a high connectivity between methods, sug-

gesting that the participating methods are leveraging sim-

ilar sources of data in similar ways. Predictions for BPO

showed a contrasting pattern. In this ontology, the largest

connected component contained only two of the top-ten

methods. The other top methods were contained in com-

ponents made up of other methods produced by the same

lab. This suggests that the approaches that participating

groups have taken generate more diverse predictions for

this ontology and that there are many different paths to

a top-performing biological process prediction method.

Results for HPO were more similar to those for BPO,

while results for cellular component were more similar in

structure to molecular function.

Taken together, these results suggest that ensemble

approaches that aim to include independent sources

of high-quality predictions may benefit from leverag-

ing the data and techniques used by different research

groups and that such approaches that effectively weigh

and integrate disparate methods may demonstrate more

substantial improvements over existing methods in the

process and phenotype ontologies where current predic-

tion approaches share less similarity.
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Fig. 9 Performance evaluation using the maximum F measure, Fmax , on eukaryotic (left) versus prokaryotic (right) benchmark sequences. The

evaluation was carried out on no-knowledge benchmark sequences in the full mode. The coverage of each method is shown within its

performance bar. Confidence intervals (95 %) were determined using bootstrapping with 10,000 iterations on the set of benchmark sequences. For

cases in which a principal investigator participated in multiple teams, the results of only the best-scoring method are presented. Details for all

methods are provided in Additional file 1
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Fig. 10 Similarity network of participating methods for BPO. Similarities are computed as Pearson’s correlation coefficient between methods, with a

0.75 cutoff for illustration purposes. A unique color is assigned to all methods submitted under the same principal investigator. Not evaluated

(organizers’) methods are shown in triangles, while benchmark methods (Naïve and BLAST) are shown in squares. The top-ten methods are

highlighted with enlarged nodes and circled in red. The edge width indicates the strength of similarity. Nodes are labeled with the name of the

methods followed by “-team(model)” if multiple teams/models were submitted

At the time that authors submitted predictions, we also

asked them to select from a list of 30 keywords that best

describe their methodology. We examined these author-

assigned keywords for methods that ranked in the top

ten to determine what approaches were used in currently

high-performing methods (Additional file 1). Sequence

alignment andmachine-learningmethods were in the top-

three terms for all ontologies. For biological process, the

other member of the top three is protein–protein interac-

tions, while for cellular component and molecular func-

tion the third member is sequence properties. The broad

sets of keywords among top-performing methods further

suggest that these methods are diverse in their inputs and

approach.

Case study: ADAM-TS12

To illustrate some of the challenges and accomplishments

of CAFA, we provide an in-depth examination of the

prediction of the functional terms of one protein, human

ADAM-TS12 [16]. ADAMs (a disintegrin and metallo-

proteinase) are a family of secreted metallopeptidases

featuring a pro-domain, a metalloproteinase, a disintegrin,
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a cysteine-rich epidermal growth-factor-like domain, and

a transmembrane domain [17]. The ADAM-TS subfamily

include eight thrombospondin type-1 (TS-1) motifs; it is

believed to play a role in fetal pulmonary development and

may have a role as a tumor suppressor, specifically the neg-

ative regulation of the hepatocyte growth factor receptor

signaling pathway [18].

We did not observe any experimental annotation by

the time submission was closed. Annotations were later

deposited to all three GO ontologies during the growth

phase of CAFA2. Therefore, ADAM-TS12 was considered

a no-knowledge benchmark protein for our assessment in

all GO ontologies. The total number of leaf terms to pre-

dict for biological process was 12; these nodes induced a

directed acyclic annotation graph consisting of 89 nodes.

In Fig. 11 we show the performance of the top-five meth-

ods in predicting the BPO terms that are experimentally

verified to be associated with ADAM-TS12.

As can be seen, most methods correctly discovered

non-leaf nodes with a moderate amount of informa-

tion content. “Glycoprotein Catabolic Process”, “Cellu-

lar Response to Stimulus”, and “Proteolysis” were the

best discovered GO terms by the top-five performers.

The Paccanaro Lab (P) discovered several additional

correct leaf terms. It is interesting to note that only

BLAST successfully predicted “Negative regulation of sig-

nal transduction” whereas the other methods did not. The

reason for this is that we set the threshold for report-

ing a discovery when the confidence score for a term

was equal to or exceeded the method’s Fmax. In this par-

ticular case, the Paccanaro Lab method did predict the

term, but the confidence score was 0.01 below their Fmax

threshold.

This example illustrates both the success and the dif-

ficulty of correctly predicting highly specific terms in

BPO, especially with a protein that is involved in four

distinct cellular processes: in this case, regulation of cel-

lular growth, proteolysis, cellular response to various

cytokines, and cell-matrix adhesion. Additionally, this

example shows that the choices that need to be made

when assessing method performance may cause some

loss of information with respect to the method’s actual

performance. That is, the way we capture a method’s

performance in CAFA may not be exactly the same as

a user may employ. In this case, a user may choose

to include lower confidence scores when running the

Paccanaro Lab method, and include the term “Negative

regulation of signal transduction” in the list of accepted

predictions.

Conclusions
Accurately annotating the function of biological macro-

molecules is difficult, and requires the concerted effort of

experimental scientists, biocurators, and computational

biologists. Though challenging, advances are valuable:

accurate predictions allow biologists to rapidly generate

testable hypotheses about how proteins fit into processes

and pathways. We conducted the second CAFA challenge

to assess the status of the computational function pre-

diction of proteins and to quantify the progress in the

field.

The field has moved forward

Three years ago, in CAFA1, we concluded that the top

methods for function prediction outperform straight-

forward function transfer by homology. In CAFA2, we

observe that the methods for function prediction have

improved compared to those from CAFA1. As part of

the CAFA1 experiment, we stored all predictions from all

methods on 48,298 target proteins from 18 species. We

compared those stored predictions to the newly deposited

predictions from CAFA2 on the overlapping set of bench-

mark proteins and CAFA1 targets. The head-to-head

comparisons among the top-five CAFA1 methods against

the top-five CAFA2 methods reveal that the top CAFA2

methods outperformed all top CAFA1 methods.

Our parallel evaluation using an unchanged BLAST

algorithm with data from 2011 and data from 2014

showed little difference, strongly suggesting that the

improvements observed are due to methodological

advances. The lessons from CAFA1 and annual AFP-SIG

during the ISMB conference, where new developments

are rapidly disseminated, may have contributed to this

outcome [19].

Evaluation metrics

A universal performance assessment in protein function

prediction is far from straightforward. Although various

evaluation metrics have been proposed under the frame-

work of multi-label and structured-output learning, the

evaluation in this subfield also needs to be interpretable

to a broad community of researchers as well as the public.

To address this, we used several metrics in this study as

each provides useful insights and complements the others.

Understanding the strengths and weaknesses of current

metrics and developing better metrics remain important.

One important observation with respect to metrics is

that the protein-centric and term-centric views may give

different perspectives to the same problem. For example,

while in MFO and BPO we generally observe a pos-

itive correlation between the two, in CCO and HPO

these different metrics may lead to entirely different inter-

pretations of an experiment. Regardless of the under-

lying cause, as discussed in “Results and discussion”,

it is clear that some ontological terms are predictable

with high accuracy and can be reliably used in practice

even in these ontologies. In the meantime, more effort

will be needed to understand the problems associated
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Fig. 11 Case study on the human ADAM-TS12 gene. Biological process terms associated with ADAM-TS12 gene in the union of the three databases

by September 2014. The entire functional annotation of ADAM-TS12 consists of 89 terms, 28 of which are shown. Twelve terms, marked in green, are

leaf terms. This directed acyclic graph was treated as ground truth in the CAFA2 assessment. Solid black lines provide direct “is a” or “part of”

relationships between terms, while gray linesmark indirect relationships (that is, some terms were not drawn in this picture). Predicted terms of the

top-five methods and two baseline methods were picked at their optimal Fmax threshold. Over-predicted terms are not shown

with the statistical and computational aspects of method

development.

Well-performingmethods

We observe that participating methods usually special-

ize in one or few categories of protein function predic-

tion, and have been developed with their own application

objectives in mind. Therefore, the performance rankings

of methods often change from one benchmark set to

another. There are complex factors that influence the final

ranking including the selection of the ontology, types of

benchmark sets and evaluation, as well as evaluation met-

rics, as discussed earlier. Most of our assessment results

show that the performances of top-performing methods

are generally comparable to each other. It is worth noting

that performance is usually better in predicting molecular

function than other ontologies.

Beyond simply showing diversity in inputs, our eval-

uation of prediction similarity revealed that many top-

performingmethods are reaching this status by generating

distinct predictions, suggesting that there is additional

room for continued performance improvement. Although
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a small group of methods could be considered as generally

high performing, there is no single method that dominates

over all benchmarks. Taken together, these results high-

light the potential for ensemble learning approaches in

this domain.

We also observed that when provided with a chance to

select a reliable set of predictions, the methods generally

perform better (partial evaluation mode versus full evalu-

ation mode). This outcome is encouraging; it suggests that

method developers can predict where their methods are

particularly accurate and target them to that space.

Our keyword analysis showed that machine-learning

methods are widely used by successful approaches. Pro-

tein interactions were more overrepresented in the best-

performing methods for biological process prediction.

This suggests that predicting membership in pathways

and processes requires information on interacting part-

ners in addition to a protein’s sequence features.

Final notes

Automated functional annotation remains an exciting and

challenging task, central to understanding genomic data,

which are central to biomedical research. Three years

after CAFA1, the top methods from the community have

shown encouraging progress. However, in terms of raw

scores, there is still significant room for improvement in

all ontologies, and particularly in BPO, CCO, and HPO.

There is also a need to develop an experiment-driven,

as opposed to curation-driven, component of the evalu-

ation to address limitations for term-centric evaluation.

In the future CAFA experiments, we will continue to

monitor the performance over time and invite a broad

range of computational biologists, computer scientists,

statisticians, and others to address these engaging prob-

lems of concept annotation for biological macromolecules

through CAFA.

CAFA2 significantly expanded the number of protein

targets, the number of biomedical ontologies used for

annotation, the number of analysis scenarios, as well as

the metrics used for evaluation. The results of the CAFA2

experiment detail the state of the art in protein function

prediction, can guide the development of new concept

annotation methods, and help molecular biologists assess

the relative reliability of predictions. Understanding the

function of biological macromolecules brings us closer to

understanding life at the molecular level and improving

human health.

Additional file

Additional file 1: A document containing a subset of CAFA2 analyses that

are equivalent to those provided about the CAFA1 experiment in the

CAFA1 supplement. (PDF 11100 kb)
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