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A systematic diagram representation in a composite 4-dimensional space is developed 
for Kubo's response function which describes the electric response currents of metals for 
longitudinal electric fields. Proper diagrams are defined as the Feynman type linked diagrams. 
which cannot be decomposed into simpler diagrams connected only by one Coulomb line. The 
greatest care is exercised with reference to the fact that Kubo's formula for the conduction 
phenomena gives the transport coefficient 'X (q, w) defined as the ratio of the electric current 
vector to the electric displacement vector D(q, w), while the electric conductivity a'(q, w) 

of a metal is defined as the electric current vector divided by the electric field vector 
E(q, w) in the metal. Thus a'(q, w) is written as the product of x(q, w) and the dielectric 
constant of the metal. It is shown that, the product is reduced to a simple form. In the 
reduced form, a'(q, w) is expressed as the sum of the proper diagrams. In this expression the 
lowest order term in respect to the Coulomb interaction includes the usual sum on ring dia
grams and, moreover, constitutes a much better approximation than the ring approximation_ 

§I. Introduction 

An exact formal expression for electric conductivity in, say, a metal has 
been given by Kubo and Nakano.1

> In their theory the electric current is in
terpreted as the response current for an external force which is adiabatically 
applied to the system and in the Taylor expansion of the response current in 
terms of the external force, the coefficient of the linear term which has been 
interpreted as the electric conductivity can be written down in an exact formal 
expression. The observed conductivity, however, is the quotient of the response 
current divided by the macroscopic electric field in the system. 

This fact has been overlooked in actual calculations hitherto made theo
retically on the basis of Kubo's formalism; Kubo's formula which was intended 
to give the coefficient of the external field has been regarded as a formula for 
the coefficient of the electric field. Nevertheless reasonable results have been 
derived through such calculations. It should be noted here that in these cal-. 
culations one has completely neglected the Coulomb interaction between elec
trons as well as one has replaced the external field by the electric field. 

The electric field in a metal is much different from the external field. A 
finite external field induces a large polarization of the electron cloud in a metal 
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An Expansion Theorem for the Electric Conductivity of Metals. I 965 

and is screened almost completely by the polarization charge. Thus, the strength 
of the electric field in the metal is almost zero in spite of the presence of the 
finite external field.t 

' Several works2
> have recently appeared which are intended to develop a 

general scheme to calculate exactly the electric conductivity of a many-electron 
system on the basis of Kubo's formalism. In such treatments, however, one 
must be very careful about the difference between the two fields : One should 
not regard the transport coefficient given by Kubo's formula as a real conduc
tivity of the many-electron system. Otherwise, one would obtain an absurd 
result, because the Coulomb interaction between electrons together with the 
interaction between the electron system and the external field leads to a strong 
screening for the field and, consequently, one would obtain a vanishing conduc
tivity especially in the limit of infinitely long wave length of the external field. 

In this paper we will develop a general scheme to calculate directly the 
,electric conductivity of a metal without going into a calculation of the coeffi
cient of the external field. The conventional treatment in which the external 
field is replaced by the electric field and the Coulomb interaction is neglected 
is shown to be a fairly good approximation. 

In this paper the external field is taken to be a longitudinal field which may 
be oscillating. The electro-magnetic responses for a general electro-magnetic 
field will be considered in a forthcoming paper. A system composed of an 
electron gas and a phonon assembly is investigated here. A system which 
contains impurities will be treated elsewhere. 

§ 2. Kuho's formalism 

The electron-phonon system, whose electric properties will be investigated, 
1s taken to be in thermal equilibrium before the application of the external 
field. In the equilibrium state, the system is described by the grand canonical 
ensemble with the following Hamiltonian: 

H=Ho+H', 

(n=I) 

(2·1) 

(2·2) 

(2. 3) 

t This fact was pointed out by Prof. Y. Toyozawa (private communications). A careful 
.discussion on this problem is found in the note of S. Nakajima: Busseiron Kenkyu II 8 (196:)), 
340 (a mimeographed circular in Japanese). 
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966 T. Izuyama 

where a~.; is the destr_uction operator for au electron of momentum k, c"' denotes. 
the energy of this electron, b~., ::s the destruction operator for a phonon of 
momentum k, wh denotes the frequency of the normal mode described by this. 
phonon, and v(k: l) represents the strength of the electron-phonon interaction. 
In the above, we have used the assumption that the negative charge of our 
electron system is cancelled completely by a uniform positive charge which is. 
not a constant but is equal to the total number of electrons multiplied by e. 

The external field which is applied to the system is produced by some 
external charges. These external charges are placed on the two plates of a 
condenser between which our system is held, or they are produced in the bat
teries. These charges are called " true charges ". The electric field produced 
only by the true charges is called the electric displacement D(x, t), which is. 
nothing but the external field. Thus, the system in the presence of the exter
nal field is described by the following Hamiltonian: 

X =H + i ¢(x, t) m(x)dx, (2·4) 

where 

m(x) = -e(sb*(x)¢(x) -N), (2·5) 

and 

D(x, t) =-V¢(x, t). (2·6) 

In the above, ¢(x) is the quantized wave function for the electron cloud, N is 
the total number of electrons, and then eN is the density of the uniform positive 
charge ; the volume of the system is taken to be unity. 

The density matrix p(t) describing our system obeys the following equa

tion of motion, 

il5(t) = [JG, p(t) J. 
Further, writing p(t) as 

p(t) =p+Jp(t), 

where p represents the equilibrium density matrix for the grand canonical 
ensemble, we must impose on Llp(t) the following boundary condition 

t~- CXJ 
Llp(t) ~o 

(¢(x, t) t~-~o), 
due to the assumption mentioned previously. Then we get m the linear ap
proximation, 

t 

ilp(t) =i~ 1 dt' J dx' ¢(x', t') eiH(tf-t>[in(x'), p]e-m<t'-t>. (2·7) 
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An Expansion Theorem for the Electric Conductivity of Metals. I 967 

Now, the current operator is denoted by 

0 (x) =-~- {cp*(x) (V¢(x))- (V¢*(x) )¢(x)}. (2 ·8) 
2zm 

Then the observed current is given by 

J (x, t) =Tr {p(t)0(x)} =Tr {Jp(t) S(x)}. 

Inserting Eq. (2 · 7) into the above expression, we get 

t 

J(x, t)= ~ J dt'Jdx'¢(x', t')([S(x, t-t'), 9'((x')J), (2·9) 
-ro 

where 

(21) == Tr {p2I}, 

and 

If we define 
(2 ·10) 

it can be easily seen that the equation of continuity is satisfied by 91(x, t) and 

0(x, t) given in Eqs. (2 ·10) and (2 · 8) respectively. The Fourier transform of 

the spatial component of this continuity equation is written as . 
9((q, t)=-iq·SCq, t). 

If the applied field is periodic, i.e., 

¢(x, t) =eiq·x+i.,t¢(q, w),t 

then 
J(x, t)=eiq·x+i.,tJ(q, w), 

and Eq. (2· 9) is expressed as 

co 

J(q, w)=~l dte-i"'t([,~(q, t), 91(-q)])¢(q, ltJ). 
l J 

0 

Noting that J(q, w) is parallel to q and 

D ( q, w) = - iq¢ ( q, w) 

and inserting Eq. (2 ·11) into Eq. (2 ·13), we obtai11 

J(q, w) =X(q, w) D(q, w), 

where3
) 

(2·11) 

(2 ·12) 

(2·13) 

(2 ·14) 

t The convergence factor is omitted here. It will be omitted sometimes in order to save 

notations. 
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968 T. Izuyama 

<X) 

X(q, w) =lim ~ f dte-i.,t-8t([~(q, t), 9(( -q)]) 
8~+0 '!. .l 

0 

<X) 

= lim ~ r dt e-irot-8t ([ffi (- q)' ffi ( q' t) ]). 
8~+0 '!. .l 

0 

In the above we have used the follo·wing fact, 

[ffi(q), 9((-q)]=O. 

(2 ·15) 

It should be noted that the usual expression (2 ·15) is a formula for the trans
port coefficient X defined by Eq. (2 ·14) and does not give the conductivity in 
itself. 

Now, the dielectric constant is defined by 

D(q, w)=E(q, w)E(q, w), (2·16) 

where E is the macroscopic electric field in the metal. Then, the conductivity 
a-, which is defined by 

J(q, w)=(J"(q, w)E(q, w), (2·17) 

is expressed as 

(J" ( q , (I)) = E ( q , W) 'X. ( q , lV) . (2·18) 

As we shall see m the next section, 

[ 
4 J-l 

E ( q, w) = 1 - i: l ( q, lV) , (2·19) 

and therefore we get the relation 

( ) - X(q,w) (}" q ' (I) ·-----'---- • 

1 - ( 4~ / i<v) X ( q, w) 
(2. 20) 

§ 3. Dielectric constant 

Eq. (2 ·19) is easily verified, if we are allowed to use the phenomenological 
relation . 

D=E+4~P, J=P. 

However, it may be inadequate to make use of the phenomenological equation 
without any proof. Then we shall prove Eq. (2 ·19) on the basis of the funda
mental equations by means of Kubo's linear approximation. 

The electric field E(x, t) produced by the matter field as well as the ex
ternal field is expressed as an operator, and the macroscopic electric field 
E(x, t) is given by 

E(x, t) =Tr{p(t) E(x, t)}. (3 ·1) 
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This may be written as 

<p(x, t) =Tr{p(t)~(x, t)}, (3·2) 

where 

E(x, t) =-V~(x, t) 

and 

E(x, t) = -V<p(x, t). 

Let us denote the free charge, the true charge and the polarization charge 
by in 1, ffir and ffi, respectively. Then 

divE(x, t) =4rrffi 1(x, t) =4rrffir(x, t) +4rrin(x) =divD(x, t) +4rrffi(x). 

Therefore, 

if(x, t) =cp(x, t) + J Tx dx~'l ffi(x'). (3·3) 

Substituting Eq. (3 · 3) in Eq. (3 · 2), we get 

<p(x, t) =cp(x, t) + J jx~~'l Tr {pffi(x')} + Jjx~~'J Tr {Jp(t)ffi(x')}. (3 · 4) 

It is easily shown that Fourier coefficients of the second term in the right-hand 
side of Eq. (3 · 4) vanish, so far as macroscopic phenomena are concerned.t 
Therefore, inserting Eq. (2·7) into Eq. (3·4), we obtain 

t 
1 r f' f' 1 

<p(x, t) =ifJ(x, t) +-
1
-. J dt" J dx' J dx" jx-x'j 

-co 

X ([ffi(x', t-t"), 9((x") ]) ifJ(x", t"). (3· 5) 

The Fourier transform of this is 
co 

<p(q, w)=cp(q, w)+ ~~ \d•e-i"'r([ffi(q, :-), ffi(-q)])ifJ(q, w). (3·6) 
zq 'o 

Now, the dielectric constant has been defined by Eq. (2 ·16) or 

E(q, w)<p(q, w)=cp(q, w). 

Therefore, we obtain from Eq. (3 · 6) 
co 

[ 
4n r . J-1 E(q, (V) = 1+ icf jdte-t"'t([ffi(q, t), ffi(-q)]) . 

0 

Thus, Eq. (2 ·19) has been verified. 

t If microscopic phenomena are concerned, on the other hand, it is necessary to consider 
Fourier components whose wave vectors are comparable to reciprocal lattice vectors in magnitude. 
The Fourier component of the second term whose wave vector is equal to a reciprocal lattice 
vector does not vanish. 
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970 T. lzuyama 

§ 4. Diagram representation 

Here we shall develop a diagram representation of the expression for X 
given by Eq. (2 ·15), by making use of the technique developed by C. Bloch 
et C. de Dominicis4

J (hereafter referred to as BDD) in the statistical mechanics 
of equilibrium states. 

The following functions are introduced at first: 

F(l, kiO+, it)-:.=(a[qeiHta1?e-iHt)= ~ Tr{e-.S<H-pN)a[qeiHta"""e-im}, (4·1) 

F (l ki o- it) . (eillt a·" e-iHt a-q> =-1- Tr {e-,B(H-pN) eillt a q e-iHt a-q} (4. 2) 
' ' k t z "' l' 

where Z is the grand partition function and 

(4·3) 

Thus, 

([91( -q), 9f.(q, t)])=e2 ~ {F(l, kiO+, it) -F(l, kiO-, it)}. 
k, l 

(4·4) 

Next the following notations are introduced: 

"'."(u)=a qeu(8J.:+q-8~;)-a* a eu(8Jr.+q-6J;) l <-<-fr. - k - l>+q /;: ' 

b.* (u) -b.* euwk /,, J., ' 

b ( ) -b -uwk ""u = "'e , 

(4·5) 

and 

+ ~ ~ {v(k: l)a[f/.,(u)bJ.-*(u) +v*(k: l)a/'"(u)b1,,(u)}. 
l.::f:O l 

(4·6) 

Then 
fJ 

-,BH -,BH -} duHf(u) 
e =e o • e 0 

(+) ' 

0 
"lit -i r duHf (iu) ill t et = e J t • e o 

(-) ' 
(4·7) 

t 
_"lit _ "H t -i ~ _duHJ(iu) e t =e t 0 • e -u 

(+) 

where we denote by e<+l and e<-> the ordered exponentials 

b b u1 un-1 

e ~ adu ~(u) -:.=1 + £: \ du1 (' du2 · · · \' dun "11 ( zt1) "11 ( u2) ·" "11 ( Un) 
(+) u=lJ J J 

a a a 

and 
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An Expansion Theorem for the Electric Conducti·vity of lvfetals. I 971 

eJ;:·&'u'c,l+ i; I du,:f du,··-"rdu •. ~~ (u,) 2( (u,) .. -~(u.) 
b b b 

(a <b), 

for any operator ~!(u). Substituting Eq. (4·7) into Eqs. (4·1) and (4·2), we 
obtain, respectively, 

p 0 t 

F (l kl 0+ . ) _ Z0 ( - f duHf(u) -r• -if duHf(iu) '~(. ) -if dulif(iu) ) 0 zt -~ e o ·a1 '·e t -a .. zt ·e o ' ' z (+) . (-) ,. (+) ' 

and 
. p 0 t 

F (l k I 0
- . ) . Z0 ( - f dullf(u) -if duHf(>:u) ,, ( • ) -i ~ duHf(iu) -q)O 

zt = ~ e J o • e t • ak' zt · e o • a 1 . ' ' z {+) (-) • (+) 

In the above, 

where 
(~l=Trpo~1, 

{) _ z-1 -PUI:;-pN) 
1 o= o e 

( 4 ·1') 

( 4. 2') 

is the grand canonical density matrix for the unperturbed 
system, whose grand partition function is denoted by Z0 • 

13 --y--"------

In order to describe the " time-ordered" expansion 
in Eqs. (4·1') and (4·2'), we here introduce a composite 
4-dimensional space as shown in Fig. 1. The abscissa of 
this figure represents the 3-dimensional configuration 
space. A path L(t) is . taken along the vertical axis. 
This path is composed of the following three parts. 
The first part which is denoted by [[o-, it]] is composed 
of the imaginary numbers ranging from zero to it. An 

0+--~----------

L(t) 

it ----lt-------

o-~~------

Fig. 1. 

imaginary number i-: (0 :S r < t) is represented by ir- on this part. The second 
part which is denoted by [[it, o+]J is the reflection of [[o-, it]] with respect to the 
point it. An imaginary number i-: (0 :S-.: < t) is represented by i-.:+ on [[it, o+JJ. 
The last part which is denoted by [[0+, ~]] corresponds to an interval [0, 13] 
composed of real numbers. 

Referring to the path L(t), we may write Eqs. ( 4 ·1') and ( 4 · 2') as 

(4·8) 

where P represents Dyson's chronological ordering on the path L(t), and \ du 
,;L(t) 

is the path integral along this path. 
According to BDD, the contraction between two operators a and a' is 

defined as 
a' a'·=(aa'l. 

In the evaluation of Eq. ( 4 · 8), we are met by the statistical average of a product 
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972 T. Izuyama 

of some creation and annihilation operators. The average is taken m the 
unperturbed system, where the density matrix can be written as 

Therefore, according to BDD, the statistical average of the product of the 
operators under consideration can be decomposed into a unique sum of all pos
sible sets of the complete contractions one can indicate. 

The contractions vvhich do not vanish are classified into the following four 
types: 

\Vith use of the notations of 
BDD, we represent a1,,(u)' 
a1/(u1

)' and a1/(u)' a1.,Cu')' 

u 

u 

u 

u 

L-----7 
-----

Fig. 2·1. 

----------, 
I 

I 
I 

L ~ 

I _____ J 

Fig. 3·1. 

I 
I 

u L---7,-
------u 

Fig. 2·2. 

u -~-~-----, 

I 
I 

I 

u r ___ j~ 
Fig. 3·2. 

by the respective arrows 
shown m Fig. 2 ·1 and Fig. 
2·2, and b1,(u)'b~;,*(u')' and 
b""*(u)'b1,,(u')' by the "dotted" 
pectively. 

arrows shown m Fig. 3 ·1 and Fig. 3 · 2, res-

The Coulomb interaction 

4~e
2 * * -~2~al+kal aJn-ka1n 

q 

IS written as m Fig. 4. The electron-phonon interactions 

m-k 

Fig. 4. Fig. 5. Fig. 6. 
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and 

are expressed as in Fig. 5 and Fig. 6, respectively. 

Thus, F(l, k\0±, it) given 

by Eq. ( 4 · 8) can be expressed 

as a unique sum of F eynman 

diagrams m the composite 4-

dimensional space. The rule 

for calculating the contribution 

of each diagram to the F-func-

tion is similar to the rule given 

fi -------

o+---~---

it ----®-----

o--------

Fig. 7. 

P-----

Q+ _____ _ 

it-----®---

Fig. 8. 

by BDD, except that the path of the u-integration 1s now L(t) instead of the 

interval [0, p]. 

§ 5. Elimination of disconnected diagrams 

A diagram which falls into two or more unconnected parts IS said to be 

a disconnected diagram, and otherwise it is called connected. A disconnected 

diagram has such a form as shown in Fig. 9. There are no diagrams like 

that in Fig. 10. 

{3 " 
o+ o+ 

it it 

o- o-
Fig. 9. Fig. 10. 

Let us consider a disconnected diagram. Its connected part, I.e., the part 

connected to the ® vertices, is indicated as rh and its disconnected part com

posed of one or more unconnected parts which do not contain the ® vertex 

is denoted by r2 • Retaining the ordert of vertices of r 1 and that of r 2, re

spectively, we shall change the order between the vertices of rl and those of 

T 2• Then we obtain a family of diagrams. We shall consider the contribution 

of all the diagrams belonging to this family. For example, 

t The order of vertices on the path L is simply called the order from now on. 
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974 T. lzuyama 

v) oO) 0 Wlo + + 

(it) 

+ 0 (j) + Oo) + 0 
0> 

The contribution of the c:bove sum is equal to the product of " the contribu· 

tion of 0 (r,) to the F-function" and "the contribution of Q) (F,) 

<p[e- f 1a'i£ll'C'u)J)o ". d" l to _ J • Accor mg y, we get 

F(l, /.:jO±, it)= ~0 (P[e-fLauH'(u) ·a,.."(it)a{'~(Q±)J)~(P[e -fLa'uH'(u)Jl, (5·1) 

where the suffix C indicates the sum of all connected diagrams. Further, 
j3 

Zo ( [ -f aullf(u)])- Z0 ( -f rluHf(u))0 - 1 T -j3(H-pN)_ ----PeL -- ec+)o -- re -1. z z z 
Inserting this in to Eq. ( 5 · 1), we obtain 

F (l, kJ O±, it)= (P [ e- f Ldullf(u) • a 1.Y (it) ·a['~ (Q±) )6. 

§ 6. Definitions snd lemmas 

(Definition) 
For two arbitrary points f and r; on L(t), we define 

(Corollary) 

(Lemma 1) 

- f dullf(n) "" 0 =(P[e L(t) a]if(r;)a1.Y(r;) ])0 • 

i) Ft(l, k/0+, i-z-+)__:___Ft(l, k/0+, h-)=F(l, k/0+, ir). 

ii) Ft(l, J.:jo-, ir+)=Ft(l, kjo-, i-:-)=F(l, kjo-, ir). 

(O<r<t) 

(5·2) 

(6·1) 
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An Expansion Theorem for the Electric Conductivity of Metals. I 975 

[Proof] 
!3 0 

·-+)- Z0 ( -! dullf(u) -q -i! dullf(iu) '~('-) Ft(l, kjO+, z.. -- e o a 1 e .,. a~.- z .. z (+) . (-) . 

T t 
-if rtuHf(iu) -if rtuHf(iu)>o 

Xe 1t ·e lo 
(-) (+) 

{3 0 T 

Zo ( -! auHf(u) _ -i ~ rtuHJ(iu) (. ) -if rtullf(iu))o =- e o ·a1 q·e .,. a~.? z-r e o z (+) (-) . (+) 

=F(l, lk:jO+, i-r). 

The remammg relations can be proved quite m the same way. 

(Lemma 2) 

for ~ E [[o+, P]]. 
[Proof] 

This is a straightforward consequence of the identity 

(Lemma 3) 

[Proof] 

0 t 
-if rluHf (iu) -if duHf (iu) -1 e lt e lo - • 
{-) (+) 

Ft(l, kJir-, it)=F(l, kJO-, i(t-r)), 

Ft(l, kJi-r+, it)=F(l, kJO+, i(t-r)). 

Ft(l, kJi-.-, it)=~ Tr{e-!3<H-pN)·e1Ht·a"''~·e-iH(t- ... >.a['~·e-iHr} 

The other part of this lemma can also be proved in the same way. 

(Definition) 

A connected diagram is called improper whenever it can be made to fall into 
two parts by eliminating a single Coulomb line. A connected diagram which 
is not improper is called proper : A proper diagram can never be transformed 
into a disconnected diagram by cutting a single Coulomb line. 

Fig. 11. Fig. 12. 
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976 T. Izuyama 

An improper diagram has such a form as shown in Fig. 11. There are 
no diagrams like that in Fig. 12. Examples of proper and improper diagrams 
are given in Fig. 13. 

(Definition) 

proper diagrams 

0 

' '" ' 

e 
Fig. 13. 

improper diagram& 

\ 
\ 

"' \ 

e 
We shall define the following function of ~ and 'l) on L(t) 

e: [ - f duHf(u) E J)O .Jt(l, k/,-, 'l)) ==(P e L(t) ·a{q(~) ·otk'l('l)) proper, (6·2) 

where the suffix "proper" indicates that the expression IS a sum of proper 

diagrams. In the following the suffix " t" of Llt shall be omitted in the case 

(Lemma 1') 

[Proof] 

i) ilt(l, k/0+, ir+)=ilt(l, k/0+, ir-)=il(l, k/0+, ir). 

ii) ilt(l, k/O-, ir+)=ilt(l, k/0-, ir-)=il(l, k[o-, ir). 

In the above expression, 

(6·3) 
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T" t 

P [ 
- ( duHI(u)] -if duHI(iu) -i { duHI(iU) e J [[O-, ir+J] .-.., e J t • e J 0 

(-) (+) 

is shown to be reduced to 

T" 
-if duHl(iu) 

e J o • 
(+) 

This is a consequence of the following fact: The contribution of each diagram 
which has one or more vertices (except @) lying in the interval [[ic--, ir+J] 
vanishes after the integration over u. Thus, it is proved that 

The remammg relations of this lemma are proved quite similarly. 

(Lemma 2') 

for ~ E [[0+, PJJ. 
[Proof] 

{3 r; 
A (l kiO+ e::) -< -l duHI(u) q("") -i duH!(u) -qp[ -l _ + duHI(u)])O 

i.lt ' ',- - e r; ·ak c; ·e 0 ·al e [[O ,o ]] proper• 
(+) (+) 

In the above expression, 

0 t 

P [ 
- f duHI(u)J -if duHI(iu) -if duH.I(iU) e J ceo-, c+Jl ,....,_, e J t • e J o 

(-) (+) 

IS reduced to 1. This is a special case of the fact mentioned m the proof of 
(Lemma 1'). Thus, we obtain 

It can be shown in the same manner that Llt(l, k[o-, ~) is reduced to the right

hand side of the above equation. 

§ 7. Elimination of improper diagrams 

Inserting Eq. (2 ·15) into Eq. (2 · 20) and using Eq. ( 4 · 4), we obtain 

a-(q,w) 
( e

2 w) :E \oodt·e-i"'t{F(l, k[O+, it)-F(l, k[O-, it)} 
q2 k,l J 0 

(7·1) 

It will be shown in the forthcoming discussion that this expression for O" can 
be reduced to a simple form. 

According to Eq. (5·2), F(Z, k[O±, it) can be expressed as follows: 
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~ (it) 
rp 

(proper) 
1-q 

(Q±) • 
(connected) 

m-q n 

r 

This expressiOn indicates that the F-function satisfies the following integral 
equation: 

F(l, kiO±, it) =Ll(l, kiO±, it) 

- ( 4
::-e

2

) f du ~ Llt(l, niO±, u)Ft(m, klu, it). (7·2) cl J 111,'11 
L(t) 

The minus sign in front of the last term has its origin in the minus sign 
found in the exponential function on the right-hand side of Eq. (5 · 2). 

From the integral equation Eq. (7 · 2) we get 

F(l, kiO+, it) -F(l, kiO-, it) =Ll(l, kiO+, it) -Ll(l, kiO-, it) 

- ( 
4
;:

2 

) 1~'- .\ d u { L1 t C l, n I o +, u) - L1 t C l, n I o-, u) } F t ( m , k I u , it) . 
L(t) 

Based upon Lemma 2' the above path integral can be rewritten as 

i du{Llc(l, niO+, u)-Llc(l, niO-, u)} ·Fc(m, klu, it) 
J.(t) 

t 
f' 

=i.\ d-::{Llc(l, niO+, ir-)-Llc(l, niO-, ir-)} ·Fc(m, klir-, it) 
0 

t 

-iJd-::{Llc(l, niO+, ir+)-Llt(l, niO-, ir+)} ·Ft(m, klir+, it). 
0 

This IS further reduced to 
t 

i_\d-::{.d(l, niO+, ir)-.d(l, n[o-, ir)} 
0 

X {F(m, kiO-, i(t-r))-F(m, k[O+, i(t-r))}, 

by means of Lemma 1' and Lemma 3. Consequently, we obtain 

F(l, kiO+, it)-F(l, k[o-, it)=Ll(l, k[O+, it)-.d(l, lr[o-, it) 
t 

+i( 
47<:

2

) ~ \dr{LJ(l, niO+, ir)-LJ(l, n[o-, ir)} 
q 1n,n •

0 
, 
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X {F(m, k[O+, i(t-.:-))-F(m, k[o-, i(t-.:-))}. 

This equation is substituted in the numerator of the expression (7 ·1) for a-, 
where the following calculation is performed: 

ro 
f' 

2.:\ dte-i.,t{F(l, k[O+, it)-F(l, k[O-, it)} 
lrlJ , 0 

00 

f' 

= t.;jdte-irot{.d(l, k[O+, it)-.d(l, k[O-, it)} 
0 

00 t 

+i( 
4;7:2

) )' f dtf d-::{.d(l, n[O+, ir)-.d(l, n[o-, i.:-)}e-i., ... 
q k,~,,1lJ J 

0 0 

X {F(m, k[O+, i(t-.:-))-F(m, l.:[o-, i(t-r))}e-iro(t-T) 

00 

=[l:ld-::e-i"'T{LI(l, k[O+, i-::)-11(1, k[O-, i.:-)}J 
k, l 0 

Therefore, we get 

a-( q' (I))= lim ( e
2 ~t) ) ~ [ dt e-irot-ot { J(l' k[ 0+, it)- il(l' k[ o-, it)}. (7. 3) 

o~+O q k,t ,
0 

This may be written symbolically as 

00 

o-(q, w)=lim ~ r dte-irot-ot([SJ1(-q), 'in(q, t)])proper• 
ll~+O 1J J 

0 

§ 8. Discussions 

The conventional calculation by means of Kubo's formalism, in which D is 
replaced by E and the Coulomb interaction is neglected, corresponds to the 
lowest order term of Eq. (7 · 3) with respect to 
the Coulomb interaction, if the chemical poten
tial f1 is replaced by p0

, the chemical potential 
of the unperturbed system. This term includes 
.all possible diagrams whose structure is shown Fig. 14 . 

in Fig. 14. Therefore, it includes all the ring diagrams in Gell-Mann and 
Brueckner's sense5

J and, moreover, constitutes the best approximation as for 
the effective field which polarizes the electrons giving a net electric current. 

The correction terms to the simple conventional calculation, other than 
the correction to the chemical potential p.0

, must be affordedby propEr diagrams 
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corresponding to the following processes. i) The polarized electron and the 
hole, whose current is measured as a component of the net current, collide 
with Each other or with the electrons constituting the medium. ii) One or 
more phonons produced by the electric polarization due to the electric field 
take part in polarizing the " auf " electron whose current is observed. 

The introduction of the unknown chemical potential would be a calcula
tional disadvantage of our proper diagram expansion. It will be removed6

J in 
our future paper. 
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Note added in proof: A diagram expansion given recently by Konstantinov and Perel (reference 
2)) seems to be essentially equivalent to that given in § 4 of the present work. The diagram re
presentation presented here is more convenient, because it is more closely related to the Feynman
Goldstone's one. 
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