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Abstract: The generation of unprecedented amounts of data brings new challenges in data man-
agement, but also an opportunity to accelerate the identification of processes of multiple science
disciplines. One of these challenges is the harmonization of high-dimensional unbalanced and
heterogeneous data. In this manuscript, we propose a statistical approach to combine incomplete
and partially-overlapping pieces of covariance matrices that come from independent experiments.
We assume that the data are a random sample of partial covariance matrices sampled from Wishart
distributions and we derive an expectation-maximization algorithm for parameter estimation. We
demonstrate the properties of our method by (i) using simulation studies and (ii) using empirical
datasets. In general, being able to make inferences about the covariance of variables not observed in
the same experiment is a valuable tool for data analysis since covariance estimation is an important
step in many statistical applications, such as multivariate analysis, principal component analysis,
factor analysis, and structural equation modeling.

Keywords: imputation; covariance estimation; expectation-maximization; multi-view data; heterogeneous
databases

MSC: 62H12; 62h20; 62P10

1. Introduction

High-throughput measurement technologies have revolutionized many scientific
disciplines by decreasing the time and cost of analyzing multiple samples and generating
huge amounts of data, which has created great opportunities single degreesbut also brought
new challenges, especially in data cleaning, normalization, dimension reduction, data
harmonization, and data storage. The challenge we want to address in this manuscript is
the integration of data from different sources by making inferences about the covariance
of variables not observed in the same experiment. Covariance estimation is an important
step in many statistical applications, such as multivariate analysis, principal component
analysis, factor analysis, structural equation modeling, and statistical genomics.

Harmonization of the increasing amounts of datasets that accumulate in databases has
great potential to accelerate our understanding of scientific processes. One of the challenges
that still needs to be addressed is the incompleteness inherent in scientific data, in other
words, each dataset that is the result of an experimental or observational study can address
a limited number of variables with a limited number of samples. The lack of a large sample
size reduces the reproducibility of the study [1], and the lack of a large number of measured
variables narrows the scope of the study. The integration of information from different
datasets is required to accelerate the identification of significant scientific outcomes.

Modern data integration approaches include feature imputation, conventional meta-
analysis [2–5] and many other new methods based on machine learning and statistical meth-
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ods [6–11]. Detailed reviews and classifications of some promising statistical approaches
for data integration can be found in [12–14]. The results in these studies demonstrate the
advantage of integrating multiple diverse datasets.

This work describes a method for learning the covariances among a set of variables
by combining multiple covariance matrices from independent experiments. Our method
is closely related to meta-analytic structural equation modeling (MASEM). MASEM is a
two-stage approach to estimating the parameters of a structural equation model (SEM)
using covariance matrices from different studies [15,16]. The first stage of MASEM is to
pool the covariance matrices from the different studies, and the second stage is to estimate
the parameters of the SEM using the pooled covariance matrix. Our method can be used in
the first stage of MASEM to pool the covariance matrices from the different studies.

The main advantage of our method over the existing techniques for pooling covari-
ances is that we use the expectation-maximization algorithm to maximize the likelihood
function, leading to an analytical solution for each iteration of the algorithm. This makes
our algorithm computationally efficient and suitable for combining covariance matrices in-
volving many variables. In contrast, the existing MASEM methods for pooling covariances
are based on iterative algorithms, which directly maximize the likelihood function over the
parameters of the covariance matrix. Since the number of parameters in the covariance ma-
trix is quadratic in the number of variables, these methods become more computationally
demanding for large numbers of variables. We compared the performance of our method
to the performance of the first stage of two-stage MASEM approaches in the Illustrations
section with a simulated data set. The results of this comparison demonstrate that our
method is computationally more efficient and more accurate than the existing MASEM
approaches for pooling covariances. Our algorithm can be used to combine covariance
matrices involving thousands of variables, unlike current implementations of the two-stage
MASEM approaches, which are unable to handle such large data sets [17]. Another benefit
of our method is that, when used with partially overlapping covariance matrices (i.e.,
when there are pairs of variables that were not observed within any one of the sample
covariance matrices), the two-stage MASEM models resulted in a pooled covariance matrix
where all these missing values were imputed with the same estimated mean population
correlation value. This is not the case for our method, since our method does not make any
assumptions about the covariance structure, as these methods do.

The covariance-based approach of combining data can be contrasted with feature
imputation-based approaches, which are the preferred method for dealing with incomplete
data sets. Popular approaches for imputation include random forest [18], expectation-
maximization [19,20], and low-rank matrix factorization [21], among others. The main
advantage of the covariance-based method is that it can infer the relationship of variables
that are not observed in the same experiment without using feature imputation. This is
useful in many applications. For example, the covariance-based approach can be used
to infer the relationship between individuals by combining pedigree relationships with
genomic relationship matrices calculated from other omics data [17]. A pedigree-based
relationship matrix is calculated based on the known ancestorial relationships between
individuals; however, there is no straightforward way to impute this ancestorial information
for individuals not in the pedigree. Additionally, in many studies involving meta-analytical
covariance estimation based on multiple datasets, the only data available are the covariance
matrices, so the imputation of features is not an option.

Our method and results are unique to our knowledge, although it has been inspired
by similar methods such as conditional iterative proportional fitting for the Gaussian distri-
bution [22,23] and a method for updating a pedigree relationship matrix and a genotypic
matrix relationship matrix that includes a subset of genotypes from the pedigree-based
matrix [24] (the H-matrix).
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In the following, we will first formally define and describe the statistical problem.
We will provide a detailed description of the derivation of the algorithm for the case
where all samples are assumed to have the same known degrees of freedom and the
asymptotic standard errors for this case. Then, we generalize the algorithm to the case
where the degrees of freedom are different for the different samples. We include a discussion
on sparse covariance estimation and parametrized covariance models. Consequently,
we present three simulation studies to study the properties of the algorithm such as
convergence, dependence on initial estimates, and compare the performance against two
MASEM methods. We also demonstrate the use of our method with an empirical case
study where we combine data from 50 agricultural phenotypic trials to obtain the combined
covariance matrix for 37 traits. This is followed by our conclusions and final comments.

2. Methods

In this section, we describe the use of the EM algorithm for the maximum likelihood
estimation of parameters in a Wishart distribution for combining a sample of partially
overlapping covariance matrices. The data are assumed to be a random sample of partial
covariance matrices, and the EM algorithm is used to estimate the parameters of this
distribution. EM is a popular iterative algorithm that alternates between two steps: the
expectation step, which computes the expectation of the log-likelihood function with respect
to the current estimates of the parameters, and the maximization step, which maximizes
the expectation of the log-likelihood function with respect to the current estimates of the
parameters. The EM algorithm is guaranteed to converge to a local maximum of the
log-likelihood function, and this circumvents many of the difficulties related to the direct
maximization of the observed data likelihood function. This is especially advantageous
when the number of variables in the covariance matrix is large, as the number of parameters
to estimate increases quadratically with the number of variables. In such cases, numerical
methods such as the Gradient-Descent and Newton–Raphson methods are not effective.

2.1. Preliminary Results about Normal and Wishart Distributions

We use the following standard matrix notation: tr(A) denotes the trace of matrix A
and |A| denotes the determinant of matrix A. For two matrices, A and B, A� B denotes
the Hadamard product (element-wise matrix product) of A and B and A⊗ B denotes the
Kronecker product of A and B.

We will write x ∼ Np(µ, Ψ) to say that a random vector x has a multivariate normal
distribution with mean µ and covariance matrix Ψ. We will write Y ∼Wn(ν, Ψ) to denote a
Wishart distribution with degrees of freedom ν and scale matrix Ψ. The Wishart and the
multivariate normal random variables are related by the following formula:

Y = X′X ∼Wn(ν, Ψ) (1)

where X is a p× n matrix of independent and identically distributed random variables with
mean µ = 0 and covariance matrix Ψ. The Wishart distribution is the natural distribution
for covariance matrices since the sample covariance matrix obtained from a multivariate
normal sample has a Wishart distribution.

We use X ∼ Np,n(M, Σ, Ψ) to say that a random matrix X has a matrix variate normal
distribution with mean M, row covariance matrix Σ, and column covariance matrix Ψ. If
X ∼ Np,n(M, Σ, Ψ), then vec(X) ∼ Npn(vec(M), Ψ⊗ Σ) where vec(X) is the vectorization
of X by stacking the columns of X on top of each other.

The following results about the normal and Wishart distributions and their derivations
are given in classic multivariate statistics textbooks such as [25–27] and are used in the
derivation of the EM-Algorithm, so we will not provide the proofs here.

Theorem 1. [27] (Theorem 2.2.9) Let X ∼ Np,n(M, Σ, Ψ). Then, E[XAX′] = tr(ΨA)Σ + MAM′.
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Theorem 2. [27] (Theorem 2.4.12) Let Y ∼Wn(ν, Ψ) with Ψ and ν > n. Then, the following holds:

1. The probability density function for Y is given by

p(Y) =Wν(Y|Ψ) =
|Y|(ν−n−1)/2 exp(− 1

2 tr(Ψ−1Y))

2νn/2πn(n−1)/4 ∏n
i=1 Γ( ν+1−i

2 )|Ψ|nu/2

2. E(Y) = νΨ, Cov(Y) = 2νΨ⊗Ψ.
3. If we assume Y is partitioned as [

Ya Yab
Yba Yb

]
,

where Ya is pxp and Yb is qxq, q + p = n; and Ψ is partitioned as[
Ψa Ψab
Ψba Ψb

]
with the corresponding components to Y, then

• Ya|b is independent of (Yab, Yb);
• Yb ∼Wq(ν, Ψb);
• The conditional distribution of Yab given Yb is multivariate Gaussian

N(n−q)×q(ΨabΨ−1
b Yb, Λ)

where Λij,kl = Cov(Yij, Ykl |Ybb) = Ψ1|2
ik Yjl .

4. Similarly, by changing the order of the indices, we can show that

• Yb|a is independent of (Yab, Ya);
• Ya ∼Wp(ν, Ψa);
• The conditional distribution of Yab given Ya is multivariate Gaussian

N(n−p)×p(ΨabΨ−1
a Ya, Λ)

where Λij,kl = Cov(Yij, Ykl |Yaa) = Ψ1|2
ik Yjl

2.2. Combining Covariance Matrices with EM-Algorithm for the Wishart Distribution
2.2.1. Problem Definition

Let A = {a1, a2, . . . , am} be the set of partially overlapping subsets of variables cov-
ering a set of K (i.e., K = ∪m

i=1ai) with total n variables. Let Ga1 , Ga2 , . . . , Gam be the
covariance matrices for variables in sets a1, a2, . . . , am, the sizes of the sets are given by
n1, n2, . . . , nm. We want to estimate the overall n × n covariance parameter Ψ using the
sample Ga1 , Ga2 , . . . , Gam .

We will discuss two different algorithms for the estimation of Ψ using the sample
covariance matrices Ga1 , Ga2 , . . . , Gam . One of the algorithms is based on the Wishart dis-
tribution with a single degree of freedom parameter and the other algorithm is based on
the Wishart distribution with sample-specific degrees of freedom parameters. The choice
between the two algorithms depends on the knowledge about the degrees of freedom of
the sample covariance matrices. If all of the covariance matrices were obtained from similar
experiments with similar precision, then the EM-Algorithm for the Wishart distribution
with a single degree of freedom parameter should be preferred. If there are multiple de-
grees of freedom parameters, i.e., the precision of the sample covariance matrices varies
significantly, then the EM-Algorithm for the Wishart distribution with sample-specific
degrees of freedom values should be used.
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2.2.2. EM Algorithm for Wishart Distribution with a Single Degree of Freedom

Given ν, let Ya1 = νGa1 , Ya2 = νGa2 , . . . , Yam = νGam be independent but partial
realizations from a Wishart distribution with a known degree of freedom ν > n and a
shape parameter Ψ. We want to estimate the overall covariance matrix Ψ after observing
Ga1 , Ga2 , . . . , Gam . In the remainder, if we focus on a sample covariance matrix Gai , we drop
the subscript and write Ga for notational economy (we perform the same with Yai ).

Theorem 3. EM-Algorithm for the Wishart distribution with a single degree of freedom. Let ν, let
Ya1 = νGa1 , Ya2 = νGa2 , . . . , Yam = νGam be independent but partial realizations from a Wishart
distribution with a known degree of freedom ν > n and a shape parameter Ψ. Starting from an
initial estimate of the covariance parameter matrix Ψ(0), the EM algorithm for Wishart distribution
repeatedly updates the estimate of this matrix until convergence. The algorithm is given by:

Ψ(t+1) =
1
m ∑

a∈A
Pa

 Ga Ga(B(t)
b|a)
′

B(t)
b|aGa Ψ(t)

b|a + B(t)
b|aGa(B(t)

b|a)
′

P′a, (2)

where B(t)
b|a = Ψ(t)

ab

′
(Ψ(t)

a )
−1

, Ψ(t)
b|a = Ψ(t)

b − Ψ(t)
ab

′
(Ψ(t)

a )−1Ψ(t)
ba , a is the set of variables in

the given partial covariance matrix, and b is the set difference of K and a. The matrices Pa are
permutation matrices that put each completed covariance in the summation in the same order. The
superscripts in parenthesis “(t)” denote the iteration number.

Proof. We write Ȳa for the completed version of Ya obtained by complementing each of
the observed data Ya with the missing data components YB = (Yab, Yb) and assume Ȳa is
partitioned as [

Ya Yab
Yba Yb

]
,

we partition Ψ(t) as [
Ψ(t)

a Ψ(t)
ab

Ψ(t)
ba Ψ(t)

b

]
,

where Ψ(t)
a is the part of the matrix that corresponds to the observed variables a, Ψ(t)

b is

the part of the matrix that corresponds to the variables b, and Ψ(t)
ab = Ψ′(t)ba is the part that

corresponds to the covariance of the variables in a and b.
The likelihood function for the observed data can be written as

L(Ψ|ν, Ya1 , Ya2 , . . . , Yam) =
m

∏
i=1

W(Yai |ν, Ψai )

=
m

∏
i=1

|Yai |(ν−ki−1)/2 exp(− 1
2 tr(Ψ−1Yai ))(

2νki/2πki(ki−1)/4 ∏ki
j=1 Γ( ν+1−j

2 )
)
|Ψai |ν/2

The log-likelihood function with the constant terms combined in c is given by

l(Ψ|ν, Ya1 , Ya2 , . . . , Yam) = c− 1
2

m

∑
i=1

[
tr(Ψ−1

ai
Yai ) + νlog|Ψai |

]
.

We can write the log-likelihood for the complete data up to a constant term as follows:
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`c(Ψ|ν, Ya1 , Ya2 , . . . , Yam , YB1 , YB2 , . . . , YBm)

=
ν− n− 1

2
(

m

∑
i=1

log|Yai |

+
m

∑
i=1
|Ybi
−Y′abi

Y−1
ai

Yabi
|)

−ν

2
(

m

∑
i=1

log|Ψai |

+
m

∑
i=1

log|Ψbi
−Ψ′abi

Ψ−1
ai

Ψabi
|)

−1
2

tr(Ψ−1
m

∑
i=1

νȲai )

The expectation step of the EM-Algorithm involves calculating the expectation of
the complete data log-likelihood conditional on the observed data and the value of Ψ at
iteration t, which we denote by Ψ(t). We can write the expectation of the complete data
log-likelihood up to a constant term as

E
[
`c(Ψ|ν, Ya1 , Ya2 , . . . , Yam , YB1 , YB2 , . . . , YBm)|Ya1 , Ya2 , . . . , Yam , Ψ(t)

]
= −log|Ψ| − tr(Ψ−1

∑m
i=1 E

[
Ȳai |Yai , Ψ(t)

]
νm

)

(3)

The maximization step of the EM algorithm updates Ψ(t) to Ψ(t+1) by finding the Ψ
that maximizes the expected complete data log-likelihood. Using [25] (Lemma 3.3.2), the
solution is given by:

Ψ(t+1) =
∑m

i=1 E
[
Ȳai |Yai , Ψ(t)

]
νm

.

We need to calculate E
[
Ȳai |Gai , Ψ(t)

]
for each i, so we drop the index i in the remaining

while deriving a formula for this term.
Firstly, E

[
Ya|Ya, Ψ(t)

]
is Ya. Secondly, Yab|Ya, Ψ(t) has a matrix-variate normal dis-

tribution with mean YaΨ(t)
a
−1

Ψ(t)
ab . To calculate the expectation of Yb, note that we can

write this term as Yb = (Yb − Y′abY−1
a Yab) + Y′abY−1

a Yab. The distribution of the first term
(Yb − Y′abY−1

a Yab) is independent of Ya and Yab, and is a Wishart distribution with de-

grees of freedom ν − na and covariance parameter Ψ(t)
b − Ψ(t) ′

abΨ(t)−1
a Ψ(t)

ab . The second

term is an inner product (Y−
1
2

a Yab)
′(Y−

1
2

a Yab). The distribution of Y−
1
2

a Yab is a matrix-

variate normal distribution with mean Y−
1
2

a Ψ(t)
a
−1

Ψ(t)
ab and covariance structure given

by (Ψ(t)
b −Ψ(t) ′

abΨ(t)−1
a Ψ(t)

ab ), Ina for the columns and rows, correspondingly. Therefore, the
expectation of this inner-product is

(Ψ(t) ′
abΨ(t)−1

a YaΨ(t)−1
a Ψ(t)

ab + na(Ψ
(t)
b −Ψ(t) ′

abΨ(t)−1
a Ψ(t)

ab )).

This means that the expected value of Yb given Ya and Ψ(t) is

Ψ(t) ′
abΨ(t)−1

a YaΨ(t)−1
a Ψ(t)

ab + na(Ψ
(t)
b −Ψ(t) ′

abΨ(t)−1
a Ψ(t)

ab )

+ (ν− na)(Ψ
(t)
b −Ψ(t) ′

abΨ(t)−1
a Ψ(t)

ab )

= ν(Ψ(t)
b −Ψ(t) ′

abΨ(t)−1
a Ψ(t)

ab ) + Ψ(t) ′
abΨ(t)−1

a YaΨ(t)−1
a Ψ(t)

ab.
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Finally, putting B(t)
b|a = Ψ(t)

ab

′
(Ψ(t)

a )
−1

, and Ψ(t)
b|a = Ψ(t)

b − Ψ(t)
ab

′
(Ψ(t)

a )−1Ψ(t)
ba leads to

the iterative EM algorithm.

2.2.3. Asymptotic Standard Errors with a Single Degree of Freedom Parameter

Once the maximizer of l(Ψ), Ψ̂, has been found, the asymptotic standard errors can be
calculated from the information matrix of Ψ evaluated at Ψ̂. The log-likelihood is given by:

l(Ψ) = c− 1
2

m

∑
i=1

[
tr(Ψ−1

ai
Yai ) + νlog|Ψai |

]
.

The first derivative with respect to the jkth element of Ψ is given by

∂l(Ψ)

∂ψjk
=

1
2

m

∑
i=1

[
tr(Ψ−1

ai

∂Ψai

∂ψjk
Ψ−1

ai
Yai )− νtr(Ψ−1

ai

∂Ψai

∂ψjk
)

]

The derivative of the above for the lhth element of Ψ is given by

∂2l(Ψ)

∂ψjk∂ψlh
=

1
2

m

∑
i=1

[
(−2tr(Ψ−1

ai

∂Ψai

∂ψjk
Ψ−1

ai

∂Ψai

∂ψlh
Ψ−1

ai
Yai ) + νtr(Ψ−1

ai

∂Ψai

∂ψjk
Ψ−1

ai

∂Ψai

∂ψlh
)

]

The expected value of the second derivative is given by

E(
∂2l(Ψ)

∂ψjk∂ψlh
|Ψ = Ψ̂)

=
1
2

m

∑
i=1

[
(−2tr(Ψ̂−1

ai

∂Ψai

∂ψjk
Ψ̂−1

ai

∂Ψai

∂ψlh
Ψ̂−1

ai
E(Yai |Ψ = Ψ̂)) + νtr(Ψ̂−1

ai

∂Ψai

∂ψjk
Ψ̂−1

ai

∂Ψai

∂ψlh
)

]

= − v
2

m

∑
i=1

[
tr(Ψ̂−1

ai

∂Ψai

∂ψjk
Ψ̂−1

ai

∂Ψai

∂ψlh
)

]

Therefore, the information matrix is given by

{I(Ψ)}jk,lh = {−E(
∂2l(Ψ)

∂ψjk∂ψlh
|Ψ = Ψ̂)}jk,lh =

v
2

m

∑
i=1

[
tr(Ψ̂−1

ai

∂Ψai

∂ψjk
Ψ̂−1

ai

∂Ψai

∂ψlh
)

]
.

The asymptotic variance–covariance matrix for Ψ̂ is given by

V(Ψ̂) = I(Ψ̂)−1.

2.2.4. EM-Algorithm for the Wishart Distribution with Sample-Specific Degrees of
Freedom Values
Theorem 4. EM-Algorithm for the Wishart distribution with sample-specific degrees of freedom values.
Assume the degrees for the sample of covariance matrices Ga1, Ga2, . . . , Gam are given by ν1, ν2, . . . , νm. Let
Yai = νiGai . Starting from an initial estimate of the genetic relationship matrix Ψ(0), the EM-Algorithm
repeatedly updates the estimate of the genetic relationship matrix until convergence:

Ψ(t+1) =
1

∑m
i=1 νi

∑
a∈A

νiPa

 Ga Ga(B(t)
b|a)
′

B(t)
b|aGa Ψ(t)

b|a + B(t)
b|aGa(B(t)

b|a)
′

P′a. (4)

Proof. The proof is similar to the proof of Theorem 3. The main difference is that the degrees of
freedoms for the Wishart distributions are now sample-specific.

We can write the log-likelihood for the complete data up to a constant term as follows:
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`c(Ψ|ν1, ν2, . . . , νm, Ya1 , Ya2 , . . . , Yam , YB1 , YB2 , . . . , YBm )

=
m

∑
i=1

νi − n− 1
2

(log|Yai |+ |Ybi
−Y′abi

Y−1
ai

Yabi
|)

−
m

∑
i=1

νi
2
(log|Ψai |+ log|Ψbi

−Ψ′abi
Ψ−1

ai
Ψabi
|)

−1
2

tr(Ψ−1
m

∑
i=1

νiȲai )

We can write the expectation of the complete data log-likelihood up to a constant term as

E
[
`c(Ψ|ν1, ν2, . . . , νm, Ya1 , Ya2 , . . . , Yam , YB1 , YB2 , . . . , YBm )|Ya1 , Ya2 , . . . , Yam , Ψ(t)

]
= −log|Ψ| − tr(Ψ−1

∑m
i=1 E

[
Ȳai |Yai , Ψ(t)

]
∑m

i=1 νi
).

(5)

Taking the derivative of the above expression with respect to Ψ and setting it to zero, we obtain
the following update equation:

Ψ(t+1) =
∑m

i=1 E
[
Ȳai |Yai , Ψ(t)

]
∑m

i=1 νi
.

The components of E
[
Ȳai |Yai , Ψ(t)

]
can be calculated as before using the same methods as in

the proof of Theorem 3. This completes the proof.

2.2.5. Asymptotic Standard Errors with Sample-Specific Degrees of Freedom Values
The information matrix for the case of sample-specific degrees of freedom values is obtained in a

similar fashion as the Wishart distribution with a common degrees of freedom value. The information
matrix is given by

{I(Ψ)}jk,lh = {−E(
∂2l(Ψ)

∂ψjk∂ψlh
|Ψ = Ψ̂)}jk,lh =

1
2

m

∑
i=1

[
νitr(Ψ̂−1

ai

∂Ψai

∂ψjk
Ψ̂−1

ai

∂Ψai

∂ψlh
)

]
.

2.3. Sparse Estimation of Pooled Covariance Matrices
It is often useful to study the sparsity pattern of covariance and precision matrices. For a

multivariate normal random variable, zeros in the covariance matrix correspond to marginal inde-
pendence between variables, while zeros in the inverse covariance matrix (precision matrix) indicate
a conditional independence between variables. An `1-penalized maximum likelihood approach
is a commonly used method for estimating these sparse matrices. This involves adding a term
p(λ) = −λ||O�Ψ||1 (for sparsity in the covariance matrix) or p(λ) = −λ||O�Ψ−1||1 (for sparsity
in the precision matrix) to the likelihood function [28–31] for a nonnegative scalar value λ. A frequent
choice for O is the matrix of all ones, although an alternative is to set Oij = 1, for i 6= j, and Oij = 0
otherwise, which shrinks the off-diagonal elements to zero.

We can incorporate the sparsity in our algorithm by adding the term p(λ) to the expectation of
the observed data log-likelihood function [32]. The `1-penalized function that must be maximized in
the EM maximization steps becomes

f (Ψ, Ψ(t)) = −log|Ψ| − tr(Ψ−1
∑m

i=1 E
[
Ȳai |Yai , Ψ(t)

]
∑m

i=1 νi
) + p(λ).

At each iteration of the EM algorithm, this function can be maximized with respect to Ψ iteratively by
using the methods in [29,31]. For instance, the following iterative algorithm can be used to maximize
the `1-penalized function with p(λ) = λ||O�Ψ||1 (see [31] for more details and caveats):
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1. Set S =
∑m

i=1 E[Ȳai |Yai ,Ψ
(t)]

∑m
i=1 νi

.

2. Set Ψ(0) = Ψ(t−1).
3. For each iteration j = 1, 2, . . . , until convergence

• set Ψ(j) = h(Ψ(j−1)− v(Ψ−1
(0)−Ψ−1

(j−1)SΨ−1
(j−1)), λtO), where h(x, y) is the soft thresholding

function defined as h(x, y) = sgn(x)(|x| − y)+, sgn(x) is a sign of the value x, (x)+ =
max(x, 0), and v > 0 is the learning rate parameter.

4. Set Ψ(t) = Ψ(j).

2.4. Parametrized Covariance Matrices
In many covariance prediction problems such as SEM, the covariance matrix is assumed to

have a certain parametric structure, i.e., the covariance matrix can be written as Ψ(θ) for a vector
of parameters θ. In this case, the EM algorithm can still be used to estimate the parameters θ of the
covariance matrix; however, the maximization step of the EM algorithm needs to be modified. The
modified version of the expected likelihood function for the Wishart distribution with sample-specific
degrees of freedom values is now expressed as

E
[
`c(θ|ν1, ν2, . . . , νm, Ya1 , Ya2 , . . . , Yam , YB1 , YB2 , . . . , YBm )|Ya1 , Ya2 , . . . , Yam , Ψ(θ(t))

]
= −log|Ψ(θ)| − tr(Ψ(θ)−1

∑m
i=1 E

[
Ȳai |Yai , Ψ(θ(t))

]
∑m

i=1 νi
).

The maximization step of the EM algorithm now involves the maximization of the expected
likelihood function with respect to the parameters θ, and numerical methods such as the Newton–
Raphson method can be used for this purpose.

3. Illustrations

Illustration 1—Simulation study: Inferring the combined covariance matrix from its parts

To establish that a combined covariance can be inferred from realizations of its parts, we have
conducted the following simulation study: In each round of the simulation, the true parameter value
of the covariance matrix was generated as Σ = diag(r1, r2, . . . , rNTotal ) + 0.3 ∗ 1NTotal×NTotal , where ri
were independently generated as 1+ 0.7 ∗ ui with ui being a realization from the uniform distribution
over (0, 1). Σ was then adjusted by dividing its elements by the mean value of its diagonal elements.
This parameter was taken as the covariance parameter of a Wishart distribution with 300 degrees of
freedom, and Nkernel samples from this distribution are generated. After that, each of the realized
covariance matrices was made partial by leaving a random sample of 10 to 40 (this number was also
selected from the discrete uniform distribution for integers 10 to 40) variables in it. These partial
kernel matrices were combined using the EM-Algorithm for the Wishart distribution iterated for
50 rounds (each round cycles through the partial covariance matrices in random order). The resultant
combined covariance matrix Σ̂ was compared with the corresponding parts of the parameter Σ. In
certain instances, the union of the variables in the parts did not recover all of the NTotal variables;
therefore, this calculation was based on the recovered part of the full covariance matrix by calculating
the mean squared error between the upper diagonal elements of these matrices. This experiment was
replicated 10 times for each value of NTotal ∈ {50, 75, 100, 200} and Nkernel ∈ {10, 20, 30, 100}.

The results of this simulation study are summarized in Figure 1. For each covariance size, the
MSEs decreased as the number of incomplete samples increased. On the other hand, as the size of the
covariance matrix increased, the MSEs also increased.
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Figure 1. Illustration 1—Mean square errors (MSE) for estimating correlation parameters based
on partial samples for NTotal ∈ {50, 75, 100, 200} (number of variables in the covariance matrix)
and Nkernel ∈ {10, 20, 30, 100} (number of incomplete covariance matrix samples). Each incomplete
covariance matrix had a random size between 10 to 40. The MSEs are calculated over 10 replications
of the experiment.

Illustration 2—Simulation study: Likelihood Convergence

The EM-Algorithm for the Wishart distribution maximizes the likelihood function for a random
sample of incomplete observations from a Wishart distribution. In this application, we explore the
convergence of the algorithm for several instances, starting from several different initial estimates.

The example is composed of 10 experiments, each of which starts with a slightly different
assumed Wishart covariance parameter Σ = diag(b + 1) + 0.21n×n, where bi for i = 1, 2, . . . , n are
i.i.d. uniform between 0 and 1. For each true assumed covariance matrix, we have generated 10 partial
samples including between nmin and nmax variables (random at discrete uniform from nmin to nmax)
each using the Wishart distribution. n, the total number of variables in the assumed covariance matrix
was taken to be 100 or 1000. Corresponding to these two matrix sizes, the nmin and nmax are taken as
10 and 25 or 100 and 250. These 10 matrices are combined using the EM-Algorithm for the Wishart
distribution 10 different times, each time using a slightly different initial estimate of the covariance
parameter Σ0 = diag(0.5b + 1) + 0.3 ∗ b01n×n where bi for i = 0, 2, . . . , n are i.i.d. uniform between
0 and 1. We record the path of the log-likelihood function for all these examples.

At each instance of the parameter and a particular sample, the likelihood functions converged
to the same point (See Figure 2). We have not observed any abnormalities in convergence according
to these graphs.
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Figure 2. Illustration 2—Convergence of the log-likelihood function: Each color represents a different
experiment. In each experiment, a sample of incomplete covariance matrices from a Wishart distribu-
tion was combined using the EM-Algorithm for the Wishart distribution starting from 10 slightly
different random initial estimates. n, the total number of variables in the assumed covariance matrix,
was taken to be 100 (A) or 1000 (B).

Illustration 3—Simulation study: Comparing the performance with MASEM

In this example, we compare our EM-based approach with the correlation pooling methods
from the multivariate MASEM approach. We use the ”tssem1” function contained within the
”metaSEM” [33] R package for pooling covariance matrices using the MASEM approach. We use two
different options for the random error structure in the MASEM approach: a diagonal error covariance
matrix or a zero covariance matrix (since the variance component of the random effects is zero,
the model becomes a fixed-effects model that is equivalent to the Generalized Least Squares (GLS)
approach proposed by Becker [34]). When applying our method, we use the correlation matrices as
covariance matrices, and before comparing it with the true parameter, we convert this matrix into a
correlation matrix. The results are obtained by repeating the following simulation scenario 10 times.
A random correlation matrix for 20 variables is generated. Using the random covariance matrix as
the covariance parameter of a Wishart distribution with 100 degrees of freedom, we have generated
three random covariance matrices. The first of these matrices contained the variables from 1 to 8, the
second covariance matrix contained the variables 6 to 15 and the third matrix contained the variables
13 to 20. We have used our method as well as three forms of the MASEM approaches to obtain
a complete covariance matrix estimate. We then compared the mean absolute error between the
predicted and the true covariance matrix. The results, which are summarized in Figure 3, show that
the EM-Algorithm for the Wishart distribution performs much better than the MASEM approaches
in terms of the mean absolute errors and especially in terms of computation time. We also note
that we could not make the MASEM algorithms produce any results for cases where the number
of variables in the covariance matrix was larger than 30 in a reasonable time. This is due to the fact
that the MASEM algorithms use a direct numerical optimization of the likelihood function, which
becomes very difficult for unstructured covariance matrices. The EM-Algorithm for the Wishart
distribution does not have this problem since each iteration of the algorithm depends solely on matrix
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algebra operations. More importantly, both of the MASEM approaches we have tried resulted in the
imputation of previously unobserved correlation values with the same estimated common covariance
parameter value.
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Figure 3. Illustration 3—Mean absolute errors and computation times for estimating the covariance
matrix based on partial samples for two stage MASEM approaches and our EM-Algorithm for the
Wishart distribution. The results are calculated over 30 replications of the experiment.

Illustration 4—Empirical study: Cassava data

The need to exploit genomic and statistical tools to harness the total effects of all the genes in the
crop genome is gaining traction in most crops. In our illustrations, we used the world’s largest and
most updated public database for cassava (CassavaBase) from the Nextgen cassava funded project
(http://www.nextgencassava.org). It is estimated that close to a billion people depend on cassava
for their dietary needs, particularly in tropical regions of the world. We have accessed the data on
16 November 2019.

The initial data come from 135 phenotypic experiments performed by the East Africa cassava
plant breeding programs. The dataset covers 81 traits and contains more than half a million phe-
notypic records. After filtering the outlier trait values, filtering the traits based on the number of
records (at least 200 records per experiment), and trait–trial combinations also based on the number
of records (at least 200 records for each trait in a given trial), a subset of 50 of these trials and a total of
37 traits were identified and used for this application (See Figure 4).

http://www.nextgencassava.org
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Figure 4. Illustration 4—This figure represents the availability of very unbalanced and heterogeneous
phenotypic data for 37 traits in 50 trials in East Africa. The number of phenotypic records in each
trial is represented with a colored box at the intersection of the trait (rows) and trial (columns). Gray
squares represent unobserved traits and trial combinations. The mean number of traits observed
in these studies was 10.38. Certain trait combinations were not observed together in these experi-
ments; for example, root weight in water and dry matter content percentage, root number, and total
carotenoid content.

Due to the relatively high cost of phenotypic experiments, they typically focus on a limited
set of key traits. As a result, when observing multiple phenotypic datasets, the data is typically
heterogeneous and incomplete, with certain trait combinations not appearing together in any of the
experiments (e.g., root weight in water and dry matter content percentage, root number and total
carotenoid content).

Figure 5 includes a heatmap of the resulting covariance matrix for 37 traits was obtained from
combining the sample covariance matrices from 50 phenotypic trials. The heatmap indicates that
there are three clusters of traits that appear to be positively correlated within each group, but little to
no correlation between the groups. Two of these clusters correspond to disease-related traits, and
the other is composed primarily of agronomic traits related to yield. The cluster related to cassava
mosaic disease is found to be negatively correlated with the other disease traits, which are related to
brown streak disease.
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Abbrev Trait Abbrev Trait
CBSDS3 Brown streak disease leaf severity 3 month CMDI3 Mosaic disease incidence 3 month
CBSDS6 Brown streak disease leaf severity 6 month CMDI6 Mosaic disease incidence 6 month
CBSD99 Brown streak disease leaf severity 9 month CMDI9 Mosaic disease incidence 9 month
CBSDRI12 Brown streak disease root severity 12 month SPRC3 Sprout count at three month
CMDS3 Mosaic disease severity 3 month RTNOC Root number
CMDS6 Mosaic disease severity 6 month DMCCP Dry matter content percentage
CMDS9 Mosaic disease severity 9 month CBSDRI Brown streak disease root incidence
FSYLD Fresh shoot weight measurement in kg per plot CBSDRS Brown streak disease root severity
FSRWP Fresh storage root weight per plot WTFL Spiraling whitefly severity visual 1 5
HI Harvest index DMCSG Dry matter content by specific gravity method
IVA Initial vigor assessment 1 7 DMCSG2 Specific gravity
PSAH Plant stands harvested CGMSF Green mite severity first
SOFTR15 Softness of boiled roots in newtons minute 15 COMP 0000076 DMCRP Dry matter content of fibrous root percentage
SOFTR30 Softness of boiled roots in newtons minute 30 COMP 0000077 RTWTPP Fresh fibrous root weight per plant
SOFTR45 Softness of boiled roots in newtons minute 45 COMP 0000078 TCAR1 Total carotenoid by chart 1 8
CBSDI3 Brown streak disease leaf incidence 3 month RTWT Fresh storage root weight per plant
CBSDI6 Brown streak disease leaf incidence 6 month STPC1 Root color visual rating 1 3
CBSDI9 Brown streak disease leaf incidence 9 month TCAR3 Total carotenoid content in ug g
CBSDRI12 Brown streak disease root incidence 12 months

Figure 5. Illustration 4—Cassava data: The resulting combined covariance matrix for 37 traits
obtained by combining the sample covariance matrices from 50 phenotypic trials downloaded from
CassavaBase. Abbrev: Abbreviations.

We have used the R Package qgraph [35] to introduce sparsity to the off-diagonal elements of
the estimated covariance matrix and graphically present this in Figure 6.



Axioms 2023, 12, 161 15 of 17

CBSDS3

CBSDS6

CBSD9

CBSDRI1

CMDS3

CMDS6

CMDS9

FSY

FSR

HI

IVA

PSA

SOFTR1

SOFTR3

SOFTR4

CBSDI3

CBSDI6

CBSDI9CBSDRI1
CMDI3

CMDI6

CMDI9

SPRRTNDMCC

CBSDRI

CBSDRS

WTF

DMCSG

DMCSG2

CGM

DMCR

RTWTP

TCAR1

RTWT

STP

TCAR3

Agronomic
CBSD
CMD

Agronomic
CBSD
CMD

Figure 6. Illustration 4—Cassava data: A covariance graph for the covariance matrix resulting in
a combined covariance matrix for 37 traits obtained by combining the sample covariance matrices
from 50 phenotypic trials downloaded from CassavaBase. The green colored lines represent positive
trait correlations, red colored lines represent negative trait correlations. The thickness of the line is
an indication of the strength of the correlation. The traits that are not connected with any lines are
estimated to be marginally independent. The abbreviations for the traits are the same as those given
in Figure 5. Similar traits are grouped and have the same color nodes.

4. Conclusions
Analyzing data in large and heterogeneous databases remains a challenge due to the need

for new statistical methodologies and tools to make inferences. The EM-Algorithm for the Wishart
distribution is one such tool that can be used to solve a very specific problem: combining datasets
using covariance matrices (similarly combining relationship or similarity matrices). Our approach is
highly beneficial in terms of its statistical formalism and computational efficiency; to the best of our
knowledge, this is the first time the EM procedure for pooling covariance matrices has been described,
although it has been inspired by similar methods such as (conditional) iterative proportional fitting
for the Gaussian distribution [22,23] and a method for combining a pedigree relationship matrix
and a genotypic relationship matrix, which includes a subset of genotypes from the pedigree-based
matrix [24] (namely, the H-matrix).

Despite the benefits of the proposed framework for combining heterogeneous datasets, certain
limitations should be taken into account. Specifically, when combining data using covariance ma-
trices, the original features are not imputed. It is known that the nature of missingness in data can
significantly influence the performance of imputation and inference. Consequently, any approaches
that disregard the missing data mechanisms are only applicable to data that is missing completely
at random (MCAR) or missing at random (MAR). However, such techniques cannot be utilized for
data not missing at random (NMAR) [36,37]. Additionally, there could be heterogeneity in covari-
ance matrices to some extent. This can be addressed with a hierarchical distribution (see, e.g., [38]).
Furthermore, this structural misspecification can also be accounted for by the method in [39].

Overall, the combination of heterogeneous datasets via covariances matrices and the EM-
Algorithm for the Wishart distribution is novel, and we expect it to be beneficial in a variety of fields,
such as physics, engineering, biology, neuroscience, finance, genomics, and other -omics disciplines.
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