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ABSTRACT The proliferation of cloud computing has resulted in the establishment of large-scale data

centers containing thousands of computing nodes and consuming enormous amounts of electrical energy.

However, the low-cost and high-efficiency slogans are getting louder and louder, and the IT industry

is also striving for this pursuit. Therefore, it is vital to minimizing the energy consumption for cloud

providers while ensuring the quality of service for cloud users. In this paper, we propose several heuristic

strategies to optimize these two metrics based on a two-level management model under a heterogeneous

cloud environment. First, to detect whether a physical node is continuously overloaded, we propose an

empirical forecast algorithm,which predicts the future state of the host by statistically analyzing the historical

utilization data of the host. Second, we propose aweighted priority virtualmachine (VM) selection algorithm.

For each VMon the overloaded host, we weight several utilization factors and calculate its migration priority.

Then, we simulate the proposed approach and compare it with the existing overloaded hosts detection

algorithms with different VM selection policies under different workloads.

INDEX TERMS Cloud computing, CloudSim, empirical forecast, energy consumption, quality of service,

weighted priority.

I. INTRODUCTION

A. MOTIVATION

Cloud computing is a large-scale computing paradigm

that provides services to customers on a ‘‘pay-as-you-go’’

basis [1]. The cloud data center provides users with various

resources on demand. To support the growing demand of

cloud users, cloud data centers are equipped with more and

more servers to provide convenience. Since the power supply

is the lifeblood of data centers, this has led to an increasing

electricity consumption in data centers year by year. In addi-

tion, most of the energy is converted into heat, the demand for

electrical energy for cooling in the operating environment is

also increasing [2]–[4]. A survey conducted in 2016 predicts

that global energy consumption will increase by nearly 50%

in the next 20 years [5], and information and communication

technology (ICT) accounts for a large proportion, of which

data center consumes about 1.5% – 2.0% [3], [4].

The associate editor coordinating the review of this manuscript and
approving it for publication was Bora Onat.

What’s more, servers in data center have a narrow range of

dynamic power consumption, even if completely idle servers

still consume 70% of their peak power [6], [7], which causes

energy waste. From a cloud service provider’s perspective,

it is unwise to keep a server in a low utilization state for

a long time. On the one hand, a large amount of electricity

consumption is not friendly to the environment. At present,

the review of carbon footprint is becoming more and more

strict, and it is not a good thing for enterprises to become ‘‘big

households’’ in energy consumption. On the other hand, from

a practical point of view, the cost of electricity is high, and

the cost of maintaining a data center is huge: electricity costs

account for a large percentage of current data center operating

costs [8]. Therefore, it is critical to maintain energy efficiency

in cloud data centers.

The quality of service (QoS) is another important metric

for cloud providers [9], [10]. Generally, the QoS means that

a network can utilize various basic technologies to provide

better service capabilities for specified network communi-

cations. It is a security mechanism for the network and a

technology for solving network delays and congestion. In this
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paper we use QoS to assess the ability of a service provider

to meet customer service needs.

Cloud users submit various computing tasks or resource

reservations to cloud providers. Cloud providers provide ser-

vices, e.g., infrastructure as a service (IaaS), platform as a ser-

vice (PaaS), software as a service (SaaS) to generate revenue.

A service level agreement (SLA) is a mutually agreed agree-

ment between service providers and users to guarantee the

performance and availability of services under certain over-

head. Usually this overhead is a major factor to drive cloud

providers to provide theQoS [8], [11], [12]. The optimal oper-

ating state of a service with a clear SLA is: adding additional

resources to improve the system brings less revenue than the

benefits of investing the resource in other services. When the

cloud provider is failed to guarantee the SLA, he needs to

compensate the cloud user for the loss. For example, in an

Amazon S3 service level agreement, Amazon provides ser-

vice commitment to users, which guarantees ‘‘99.9% uptime

per month’’. The S3 SLA guarantees an average of 99.9%

of all time slots in 5 minutes in a month. The most likely

situation allowed by the SLA is equal to 40minutes permonth

being unavailable. At the same time, service compensation is

provided, that is, Amazon will provide service compensation

if the SLA commitment is not met. If it does not meet the

99.9% service level, Amazon will reduce the 10% fee for

the next month. If the availability drops below 99.0% and the

conversion is equivalent to at least 7 hours of inability to serve

within a month, Amazon will reduce the user‘s 25% fee.1

In order to guarantee high QoS, huge amounts of resources

need to be provisioned in cloud data centers. However,

managing and maintaining over-configured resources in turn

leads to a large amount of energy costs, including the config-

uration and maintenance costs of cooling systems, physical

components and other facilities [7], [13]–[15]. Therefore, one

challenge that cloud service providers face is to ensure high

service quality while controlling the energy consumption of

data centers.

There are a lot of research works that have proposed many

methods to optimize these two metrics based on various

technologies, such as task scheduling [16], [17], VM migra-

tion [3], [18], server consolidation [19], [20], etc. In most of

the above-mentioned literature, the authors use a population-

based intelligent optimization algorithm, which often which

often prematurely converges on high-dimensional complex

problems and in large-scale data centers, the computational

complexity of those algorithms can become extremely high.

What’s more, some of them are aimed at either saving energy

or optimizing QoS [3], [16] and rarely take into account the

hidden value of historical utilization data.

B. OUR CONTRIBUTIONS

Due to the proliferation of cloud users, cloud data centers

need to deploy more servers to meet computing needs, which

results in a large amount of carbon dioxide output and high

1https://blog.csdn.net/chdhust/article/details/74086776

operating costs. However, the users care about the quality of

service provided, which drivers the service provider to pro-

vide reliable service while maintaining the data center operat-

ing cost within the controllable range. Therefore, the problem

we need to solve is to find a scheme that can achieve a trade-

off between energy consumption and QoS. The best compro-

mise between cloud service quality and energy consumption

can be achieved by blue virtualization technology [13], [21]

and VM consolidation [19], [20], [22]–[24]. However, most

consolidation methods are based on the current resource uti-

lization of the host for immediate VM migration, without

considering the future load state of the host.

In this paper, we propose an empirical forecast algo-

rithm (EFA) to predict the load states of physical nodes in

a dynamically changing heterogeneous cloud environment.

The algorithm obtains the future state of a physical node

by statistically analyzing the historical data and current uti-

lization of the physical node. After the overloaded host is

determined, the weight priority algorithm (WPA) assigns

weights to several history factors of each migratable VM on

the overloaded host, and the migration priority of each VM is

calculated according to all weighting factors. The algorithm

selects the VM with the highest priority for migration based

on this priority list.

In summary, the main contributions of this article are as

follows.

1) A two-level management model is proposed under the

IaaS cloud environment.

2) An empirical forecast algorithm (EFA) based on his-

torical utilization data of the host is proposed to predict

the next possible state of the host, which determines

whether the host is continuously overloaded by making

full use of the potential value of historical information.

3) A weight priority algorithm (WPA) is proposed to

determine the priority of migratable VMs on an over-

loaded host. This algorithm assigns weights to the sev-

eral recent utilization factors of a VM.

4) The proposed approach is compared with the existing

overloaded hosts detection algorithms with different

VM selection policies under different workloads.

We enhance the energy efficiency of cloud data cen-

ters (minimizing energy consumption while maximizing

the QoS). The high energy consumption results in much

carbon dioxide (CO2) emissions, which contributes to air

pollution and global warming. Therefore, the research in this

paper is of great significance to modern information technol-

ogy and environmental protection. In addition to reducing the

operational cost, the optimization of energy efficiency can

also improve user satisfaction and promote the development

of the cloud industry.

The rest of the paper is organized as follows. In Section II,

the related work is introduced. In Section III, we describe the

two-level management model and several metrics related to

energy consumption and QoS. In Section IV, we describe

the basic principles of the EFA algorithm and the WPA

algorithm. In Section V, we introduce the specific parameter
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TABLE 1. Comparison of several research.

configuration used in the simulation experiment and analyze

the experimental results. In Section VI, we summarize the

paper and discuss the future research plan.

II. RELATED RESEARCH

A. IN TERMS OF ENERGY CONSUMPTION

During the past years, numerous researches have focused on

saving energy in cloud center [3], [4], [16]–[19], [25]–[28].

Some of them reduced energy consumption by optimizing

the task scheduling process [25], [27] and resource allocation

issues [4], [16], [17], [26], [28]. In [16], a task scheduling

method using a combination of cultural and ACO algorithm

was presented in order to optimize energy consumption.

However, the complexity of the combination algorithm is

too high and they only consider the task makespan with-

out evaluating the algorithm calculation overhead. In [26],

a GreenSched model was proposed to schedule tasks on iden-

tified less energy consuming or energy aware nodes. Instead

of turning off low-energy nodes, they use them as mission

gathering places. Some of them improved the VM migra-

tion process to minimize energy consumption [3], [18], [19].

Tao et al. [18] reduced communication energy consump-

tion by migrating VM in groups. In [3], Kliazovich et al.

underlined the role of communication fabric in data center

energy consumption. However, these papers simply discuss

the energy consumption of the data center, they ignore the

most important part of the data center, namely the QoS.

B. IN TERMS OF THE QoS

As a common performance requirement between cloud

providers and cloud users, the QoS has always been the

focus of industry and academia [29]–[31]. In [29], Liu et al.

built a cost prediction model to predict virtual machine

migration costs at the bottom level of migration. In [30],

Deshpande et al. proposed GMGD to eliminate the retrans-

mission of duplicate memory pages. However, gang migra-

tion can generate a lot of network traffic. The key issue

studied by Zhang et al. [31] was how to arrange tasks on

a hybrid cloud so as to maximize the profit of the cloud

provider while satisfying the QoS requirements. They used

a variant of the PSO algorithm and three hybrid algorithms to

solve this problem. Service guarantees on hybrid clouds are

much more complicated than single cloud. More research on

data center performance optimization problems can be found

in [12] and [32]–[34].

C. IN TERMS OF ENERGY CONSUMPTION AND QoS

Energy consumption and service quality are two highly rel-

evant metrics in the cloud data center and many methods

are proposed to simultaneously optimize them [?], [7], [9],

[10], [23], [35]–[42]. In [9], Kusic et al. implemented and

validated a dynamic resource allocation framework for a

virtualized server environment. The authors controlled the

power consumption and performance management of the

virtualized computing environment through limited looka-

head control (LLC). However, in their work, the host state

is frequently switched, which easily damages the hardware.

In [37], a multi-objective optimization management method

with TOPSIS was introduced to achieve lower SLA viola-

tion rate, less energy consumption and better balance among

different objectives. Melhem et al. [38] proposed a Markov

perdiction model to avoid immediate VMs migration. They

proved their superiority in terms of energy consumption

and SLA violations. Nevertheless, in their work, the authors

assumed that the transition probability between states is con-

stant, which is not consistent with dynamic cloud environ-

ments. In [40] and [41], Yadav and Zhang introduced the

M-estimate regression algorithm to calculate the upper CPU

utilization threshold. However, the time complexity of their

algorithm is high and the regression-based estimation model

is not robust, so it is highly sensitive to outliers.

As shown in Table 1, the main disadvantage of exist-

ing works in literature is presented in the data center

(e.g., [9], [37], [38], [41]). Our strategies not only consider

the current host state, but also predict the future state of the

host through historical data. We comprehensively evaluate

multiple factors to determine when and how tomigrate virtual

machines.

III. SYSTEM MODEL

We consider a data center consisting of n heterogeneous

physical nodes. Each physical node hosts multiple virtual

machines. Each physical node Hi and virtual machine V i
j

(representing the jth virtual machine on physical node i)

have these characteristics: CPU performance measured in

millions of instructions per second (MIPS), certain RAM

capacity and network bandwidth. Since systems usually share

storage between communication servers through network

attached storage (NAS) [29], [43] or storage area network

(SAN) [44], [45], we do not need to know the application

load and the time of VM configuration. Multiple independent

users submit requests to configure m heterogeneous virtual
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TABLE 2. Notations.

machines via the Internet. The user establishes a service

level agreement (SLA) with the cloud provider. A SLA vio-

lation occurs when the total CPU performance requirement

C i
r allocated to the physical node Hi exceeds the total CPU

capacity C i
c of the node.

Table 2 enumerates all the symbols used in the paper.

We present the target system architecture in Figure 1. Our

model consists of two parts: the global manager and the

host manager. The host manager resides on each physi-

cal node, which downwards communicates with the VMM

and upwards interacts with the global manager. The global

manager resides on the master node. It obtains information

from the host manager and issues optimization commands

based on the collected information. The VMM performs

VM migration and changes the host’s mode. It is the master

agent that monitors host load activity.

The host manager contains the following modules.

• Logmodule:This module monitors and records the host

load, which is equivalent to the VMM subagent.

• Host detectionmodule: This module predicts the future

state of the host based on the data from the log module.

• VM selection module: This module determines the

VM to be migrated according to a specific strategy.

The global manager contains the following modules.

• Database: This module stores related information of

all hosts, including the metadata and resource usage of

hosts.

• Optimization module: This module triggers the

VM migration process and issues commands that

optimize VMs allocation.

A. POWER MODEL

The power consumption of computing nodes in cloud data

centers is mainly determined by the CPU, memory, disk

storage and network interfaces. In this paper, we mainly

study the energy consumption generated by the CPU. One of

the most common energy consumption models is the linear

model, where there is a linear correlation between power

consumption and CPU utilization [2], [3], [38], [46]. and

these studies [2], [6], [7], [47] demonstrate that a idle server

consumes 70% of the full-load power. Therefore, in our target

system, we define the energy consumption of the i-th server

at time t as

EC i(t) =

{

ρ×EC
full
i the Hi is idle,

EC idle
i +(1−ρ)×EC

full
i ×Ui(t) the Hi is busy.

FIGURE 1. Two-level management model.
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TABLE 3. The electric energy consumption at different workloads.

When the server is idle, ρ is a static coefficient repre-

senting the energy ratio of the idle processor (i.e., 70%).

The EC
full
i represents the energy consumption of the physical

node i under full load. Since the CPU utilization dynamically

changes according to the workload, the CPU utilization is a

function of the time t as an independent variable, which is

denoted as U (t). In our experiment, the EC
full
i is set to 250W

as used in [35]. The energy consumption of the servers used in

our experiment is obtained from the SPECpower.2 The elec-

tric energy consumed by the considered servers at different

workloads is shown in Table 3. The energy consumption of

server Hi throughout the process can be expressed as

EC i =

∫ t1

t0

EC i(t)dt.

Then, the total energy consumption of a cloud data center

with n nodes is

EC =

n
∑

i=1

xiEC i, (1)

where

xi =

{

0, the Hi is shutdown,

1, other.

B. SLA VIOLATION METRICS

In a cloud data center, the SLA is formal representation of

the QoS that cloud providers provide to cloud users. A SLA

violation occurs when users submit an excess demand to

the data center. If the host oversubscribes, its computing

performance will be greatly reduced. Similarly, the virtual

machine migration process consumes additional resources.

The degree of SLA violation directly reflects the availabil-

ity and robustness of the system. We select several metrics

defined in [38] to measure the degree of SLA violation.

1) SLATPAH: the percentage of time each active host

violated the SLA, which is expressed as

SLATPAH =
1

n

n
∑

i=1

T
f
i

T ai
, (2)

where n is the number of servers; T ai represents the total

time that host i is active; T
f
i represents the total time

that host i experiences full load.

2) SLAPDM: the performance degradation caused by

migration, which is expressed as

SLAPDM =
1

m

m
∑

j=1

Cd
j

Cr
j

=
1

m

m
∑

j=1

0.1× Cj

Cr
j

, (3)

2http://www.spec.org/power_ssj2008/results/

where m represents the number of VMs in the data

center; Cr
j represents the total required CPU capacity

(in MIPS) during the life cycle of virtual machine j;

Cd
j represents a decrease in performance due to virtual

machine j migration. It is generally believed that the

virtual machine migration will lose 10% of the CPU

computing power [38]. The Cj represents the CPU

power (in MIPS) of virtual machine j.

Therefore, the overall SLA violation is defined as the

product of (2) and (3), i.e.,

SLAV = SLAPAH × SLAPDM . (4)

Considering the overall performance, energy consump-

tion, SLA violations and other metrics, we use the perfor-

mance metric Pertric in [41] to measure the efficiency of the

algorithm, which is expressed as

Pertric = EC × SLAV × NHS, (5)

where the NHS represents the number of shutdown hosts.

IV. EMPIRICAL OPTIMIZATION ALGORITHM

The main purpose of this study is to reduce energy con-

sumption and guarantee QoS. The goal of reducing energy

consumption can be achieved by switching the idle node to

a low energy consumption mode [35], [48]. According to the

current resource requirements of VMs, the VMmigration can

be used to dynamically consolidate the VMs onto a minimum

number of physical nodes. Dynamic consolidation can be

divided into three parts:

1) Host overload/underload detection: In the data cen-

ter, the load state of a physical node is related to the

energy consumption metric of the system. An over-

loaded host will affect the response time and the QoS,

while an underloaded host will lead to more energy

consumption. Therefore, the first thing is to detect if

the host is overloaded or underloaded.

2) VM selection: After determining which host is in an

overloaded state, one or more VMs need to be migrated

from the host, or a host is in a underloaded state, it is

necessary to migrate all VMs from the host and switch

it to sleep mode to reduce power consumption.

3) VM placement: A new candidate host set is found to

place migrated VMs. It should be sure that the newly

added VM does not cause the new placement point to

be overloaded.

As illustrated in Figure 2, the detailed process can be

described as follows: (1) The log module on the host man-

ager collects utilization data of each VM and sends all the

data to the database of the global manager. (2) In the host

23504 VOLUME 7, 2019
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FIGURE 2. System architecture.

detection module, the detection algorithm predicts the host

state by analyzing the data of the log module. The detection

module feeds back the results to the optimization module

of the global manager. (3) The optimization module issues

a migration command and an optimization placement com-

mand to the VMM of the host node according to the detection

results and the data from the database. (4) The VMM trig-

gers the migration activity and enables the selection module.

(5) In the selection module, the selection algorithm selects

the VM to migrate based on the data in the log. (6) The

VMM receives the migrated virtual machine and completes

the VM placement.

Data collection is the preparation phase of the con-

solidation process. We mainly take optimization measures

in Stage (2) and Stage (5). Next we discuss these two

sub-problems.

A. HOST DETECTION ALGORITHM

The previous works [35], [49] judge whether the host is

overloaded according to the current host utilization. The

VMbegins to migrate immediately as soon as the host is over-

loaded. It is failed to consider that the load state at this time

may be an illusion that the host is overloaded temporarily,

which leads to unnecessary migration and increases power

loss and performance degradation. The previously proposed

dual-threshold scheme THR [35] obtains the host perfor-

mance in a static manner. The static threshold [36], [38] is

not suitable for the dynamic environment.When theworkload

in the cloud data center fluctuates slightly, a high utilization

threshold can be set to use effectively resources. Once there

is a surge in workload, the threshold will be adjusted to

prevent the cloud from exploding due to the high server

workloads, which will damage the service life of the phys-

ical node hardware facilities. In our two-level management

system, the utilization threshold for each heterogeneous host

is different and dynamic.

In this paper, we propose an empirical forecast algo-

rithm (EFA). The algorithm uses the historical data of a

host to analyze the its next possible load state. There are

only three load states for an active host: underloaded (‘‘U’’),

normal (‘‘N’’) and overloaded (‘‘O’’). If the current state of

the host is overloaded, we must first determine if its next state

remains overloaded. The loadmay be self-adjusting due to the

Algorithm 1 Empirical Forecast Algorithm (EFA)

Input: the host Hi
Output: isOverloaded

1: function isHostOverUtilized(UHi )

2: isOverLoaded ← false

3: get the utilization list UHi of the Hi
4: upThreshold ← 1− α × mad(UHi )

5: SHi ← getStateHistory(UHi , upThreshold)

6: state← null

7: calculate the XHi according SHi with the Equation ( 8)

8: if the probability elements in XHi are different then

9: get the state with the maxProbability

10: else

11: calculate the frequency of elements with same

probability

12: get the state with the maxFrequency

13: end if

14: if state.equals(O) then

15: isOverloaded ← true

16: end if

17: return isOverloaded

18: end function

dynamic nature of the system. If a host remains overloaded

for a period of time, it indicates the necessity of VMmigration

on the host.

In EFA algorithm, the CPU utilization threshold is given as

the median absolute deviation (MAD) [7]. Since the utiliza-

tion record time is changing, the resulting median absolute

deviation is also dynamically changed. MAD is a robust mea-

sure of sample difference in a univariate data set. MAD is a

robust statistic that handles outliers in the dataset is more elas-

tic than the standard deviation, greatly reducing the impact of

outliers on the dataset.

For a univariate data set D1,D2, ....,Dn, the MAD is

calculated as:

MAD = mediani(|Di − medianj(Dj)|). (6)

The MAD is defined as the median of the absolute deviation

of the data point to themedian.We define the upper utilization

threshold upThreshold as:

upThreshold = 1− α ×MAD, (7)

where αǫR+ is used to adjust the extent to which the system

consolidates the VMs. In our algorithm, we set the value of α

to 1.0.

Given a host M and its utilization history UM =

{U0,U1,U2, ......Ul−1}, where l is the length of the history

record. We translate the utilization history into host states

records in Algorithm 1. Supposing we get the corresponding

host states list as SM = {S0, S1, ......Sl−1} and the current

status of host M is S ′, the transition probability of state St at

time t can be inferred from the Equation ( 8):

P(St |S
′) =

P(St , S
′)

P(S ′)
. (8)
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Then we can get a state transition vector XM = {X0,X1,X2}

and each of these vector elements represents the transition

probability of three states.

For example, given SM = {U ,U ,N ,N ,O,N ,U ,O,N ,O,

O,O} and the current state S ′ of the host M is ‘‘O’’. The

probability that the next state of M is ‘‘O’’ is calculated as

P(O|S ′) =
P(St = O, S ′ = O)

P(S ′ = O)
=

2

5
= 0.4,

where P(S ′ = O) = P(St = O, S ′ = O) + P(St =

N , S ′ = O) + P(St = U , S ′ = O). Similarly, we have

P(N |S ′ = O) = 0.4 and P(U |S ′ = O) = 0.2. Therefore,

the state transition vector XM is {0.4, 0.4, 0.2}. According to

the probability vector, we can know that the next possible

state of the host M is ‘‘O’’ or ‘‘N’’. In this step, we may

encounter two situations:

1) There are three different probabilities in the probability

map. The state with the largest transition probability is

the target state.

2) There are two or more identical transition probabilities

in probability map. We further calculate the frequency

of states with the same probability in the recent half

of SM . That is, the number of occurrences of the same

probability state in S ′M = {Sl− l
2
, Sl− l

2+1
, ..., Sl−1} is

calculated. Therefore, we only need to calculate the fre-

quency fO of the overload state ‘‘O’’ and the frequency

fN of the normal state ‘‘N’’ in S ′M . We get fO = 4

and fN = 1, which indicates that the host M remains

continuously overloaded in the near future, at which

point the VM migration is enabled.

After determining the overloaded host, the next step is to

select the VM to be migrated on the overloaded host.

B. VM SELECTION ALGORITHM

It is critical to choose the VM on the overloaded host for

migration. Improper selection results in that the host still

unable to get rid of the overload state after migrating a VM.

Then additional virtual machines need to migrate, which not

only affects the QoS of the host, but also results in overall

performance degradation.

We propose a weighted priority selection algorithm (WPA)

to select VMs for migration in order to reduce the number of

migrations as much as possible. The corresponding pseudo

code is given in Algorithm 2. Our strategy is to set the

priority for each migratable VM of the overloaded host and

determine the order of the migration of the virtual machines

according to the priority. The priority of the VM is calculated

by Equation (9).

In the experiment of Section V, we adjust the value of λ

several times to obtain the best number of weighting items.

For each VM in themigratableVm list, we consider the recent

utilization of λ terms {u0, u1, ..., uλ−1} and the reciprocal

of the migration time 1

T
j
m

. The less the migration time is,

the smaller the performance degradation is [30], [50]. There-

fore, we set the maximum weight λ+ 1 for 1

T
j
m

and the closer

Algorithm 2 Weighting Priority Algorithm (WPA)

Input: the list migratableVms, λ

Output: vmToMigration

1: vmToMigration← null

2: for VM Vj in migratableVms do

3: pvj ← 1

4: get the migration time T
j
m of Vj

5: W
T
j
m
← λ+ 1

6: pvj ← pvj +WT
j
m
× T

j
m

7: for t = 0 to (λ− 1) do

8: W
u
j
t
← λ− t

9: pvj ← pvj +Wu
j
t
× u

j
t

10: end for

11: pvj ← pvj
/

(λ+ 1)

12: end for

13: get the the max priority pvm in migratableVms

14: vmToMigration← Vm
15: return vmToMigration

the utilization rate is to the current time, the greater the weight

value is. Given the equation to calculate the VM priority,

pvj =

∑λ−1
t=0 Wu

j
t
× u

j
t + (T

j
m)
−1
×W

T
j
m

λ+ 1
, (9)

where the migration time is calculated as T
j
m =

Rj
Ba
, theW

u
j
t
=

λ − t represents the weight of utilization factor u
j
t and u

j
t

represents the utilization rate of virtual machine j at time t .

C. VM PLACEMENT STRATEGY

Virtual machine placement issue [14], [18], [32], [38], [46],

[51]–[54] can be seen as a variable-size bin-packing problem.

The heterogeneous hosts represent different bins and the

number of hosts is the number of bins. The size of the bin

refers to the available CPU capacity of the host, and the price

corresponds to the energy consumption of the node. Since the

packing problem is a typical NP-hard problem [55], in order

to solve the VM placement problem, we adopt the PABFD

algorithm used in [32] and [35]. The algorithm idea is to sort

all VMs in descending order according to the current CPU

utilization of the VM and place the VM which results in the

least increase in energy consumption on the target host. This

algorithm is an optimized version of the Best Fit Decreased

Algorithm (BFD) [13].

V. PERFORMANCE EVALUATION

In this section we describe the experimental setup and exper-

imental results. We chose CloudSim [56] cloud comput-

ing simulation platform for algorithm performance testing,

which provides the following features: (1) a tool supporting

the modeling and simulation of large-scale cloud computing

infrastructure; (2) a self-contained platform supporting data

centers, service agents, scheduling, and allocation strategies.
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Therefore, the ClouSim is very suitable for cloud computing

simulation experiments.

A. SIMULATION SETUP

To ensure the validity and comparability of the experiment,

we use the experimental configuration as same as in [7].

We simulate the algorithms under two kinds of workloads.

The PlanetLab data is provided as a part of the CoMon

project.3 It is a monitoring infrastructure for PlanetLab.

In this project, CPU utilization data is obtained from more

than a thousand VMs of servers at five-minute intervals, and

these servers are located in more than 500 locations around

the world. The data is stored in ten different files. We selected

two days from the workload tracking. Through simulation,

each VM randomly distributes workload tracking from one

VM on the corresponding date. In the Random workload,

each VM runs an application with the variable workload,

which is modeled to generate the utilization of CPU accord-

ing to a uniformly distributed random variable. Actually,

whenever a random function generates a set of workload

automatically as a cloudlet we called Random workload.

TABLE 4. Hosts instance types.

TABLE 5. VMs instance types.

Then two types of heterogeneous physical hosts are defined

(see Table 4). Both of these hosts are dual-core CPUs with

computing power of 1860 Mips and 2660 Mips respectively.

Because the workload dataset provided by the PlanetLab is

a bit old, there are some following reasons for choosing the

dual-core CPU: if we take more core CPU, VM consolida-

tion will not work properly. For example, if we take like

128 core CPU servers, the change of server overloading is

very low. Therefore, we can’t calculate SLA violation and

VM migration in the proposed method. Four heterogeneous

VM types are defined according to the Amazon EC2 instance

types4 (see Table 5). The four VM instance types are single-

core because the PlanetLabworkload data used for simulation

comes from a single-core VM.

B. λ-VALUE ADJUSTMENT

Since we propose the λ term factors weighting operation in

the WPA algorithm, λ is the most important parameter of

3https://www.planet-lab.org/planetlablogs
4https://aws.amazon.com/cn/ec2/instance-types/

the WPA algorithm. In this section, we perform an adjust-

ment test on the weighted term λ of the WPA algorithm

to obtain the optimal value of λ. In the experiment, we set

the total history length of the VM utilization list to 30.

We test the effects of different λ-values on the WPA algo-

rithm. We have selected a range for λ-value from 1 to 20.

We have not increased the range over 20 because of time

complexity.

In order to obtain the best λ value, we rely on several

of the aforementioned metrics. In addition, we also refer to

two additional metrics: NVMM and NHS. The NVMM is

the number of VM migration that occur in the data center

during the entire simulation. The NHS is the total number

of host shut down in the data center. Since the experimental

results show that the WPA algorithm has similar trends under

random and real workloads, we only describe the results of

random workload as a representative. The impact of λ on

various metrics is illustrated in Figure 3 and Figure 4.

According to these figures, we find that all metrics are at

the best level when λ is 4. From the perspective of energy

consumption and SLA violations, low energy consumption

come at the expense of SLA (see Figure 3(a) and (f)).

According to Equation (4), there is no doubt that changes in

SLATPAH and SLAPDM are directly affect the SLAVmetric

(see Figure 3(b), (c) and (f)).

We show the trends of the WPA algorithm with different

λ values on the Pertric metric in Figure 4. The result shows

that when the λ-value is 4, the algorithm works best. There-

fore, in the following experiment, we defined λ in the WPA

algorithm as 4.

C. EXISTING ALGORITHMS

Many algorithms have been proposed to improve the energy

efficiency of cloud data centers (minimizing energy con-

sumption while maximizing service quality). The existing

algorithms are described as follows.

1) MeMs [41]: This algorithm creates an upper CPU uti-

lization threshold usingM-estimate regression to detect

overloaded hosts and then combines the MuMs [40]

VM selection scheme to optimize VM consolidation.

2) LrMmt [7]: The main idea of LrMmt is fitting simple

models to localized subsets of data to build up a curve

that approximates the original data with considering the

migration time of the VM.

3) MadMu [7]: The main idea of MadMu is to adjust the

value of the upper utilization threshold depending on

the strength of the deviation of the CPU utilization.

In the VM selection phase, the algorithm selects the

VM with the lowest CPU utilization for migration.

After multiple iterations, the host utilization is below

the upper threshold.

4) IqrMc [7]: The IQR which is called the midspread

or middle fifty, is a measure of statistical dispersion,

being equal to the difference between the third and

first quartiles. The IQR is a robust statistic, having a

breakdown point of 25% and is thus often preferred
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FIGURE 3. The impact of λ parameters on WPA performance (illustrated by the case of random workload). (a) The EC metric. (b) The SLATPAH metric.
(c) The SLAPDM metric. (d) The NVMM metric. (e) The NHS metric. (f) The SLAV metric.

to the total range. The IqrMc selects those VMs to be

migrated that have the highest correlation of the CPU

utilization with other VMs.

We refer to the method in this paper as EfWp, which

combines the EFA host overload detection algorithm with

the WPA VM selection algorithm. Since the superiority of
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FIGURE 4. The impact of λ on Pertric of the WPA (illustrated by the case
of random workload).

the LrMmt algorithm compared with other traditional algo-

rithms has been proved in [7], we compare the LrMmt and

MeMs [40], [41] with the EfWp algorithm. In order to get

a more intuitive conclusion, we also select two other algo-

rithms, MadMu and IqrMc [7], as reference algorithms.

D. EXPERIMENTAL RESULTS AND ANALYSIS

In this experiment, we simulate the EfWp algorithm and

compare it with the existing algorithms described in V-C.

As illustrated in Figure 5 and Figure 6, the EfWp method

has achieved significant results in terms of energy consump-

tion, SLA violations, NHS andNVMMand energy efficiency.

These algorithms have similar trends in performance, no mat-

ter the random workload or the real workload, indicating

that the EfWp algorithm is highly robust and feasible under

variable workloads. In the following sections, we will discuss

the energy consumption, SLA violations, number of host

shutdowns, number of VMmigrations, and energy efficiency

for these algorithms.

1) ENERGY CONSUMPTION

For the five algorithms (EfWp, MeMs, LrMmt, MadMu, and

IqrMc) with different workloads, the energy consumption

is shown in Figure 5(a), which shows the energy consump-

tion for the five algorithms. The EfWp is slightly better

than the MeMs algorithm (1.62% in random workload and

2.23% in PlanetLab workload, respectively). The reason is

that the MeMs may ignore interaction effects and nonlinear

causality while our EfWp algorithm considers the impact of

recent utilization records on host future status. In addition,

the EfWp algorithm is also superior to the LrMmt algo-

rithm (11.40% in random workload and 26% in PlanetLab

workload, respectively) and far better thanMadMu algorithm

(34.36% in randomworkload and 39.23% in PlanetLabwork-

load, respectively) and IqrMc algorithm (33.82% in random

workload and 32.19% in PlanetLab workload, respectively)

in terms of energy comsumption. This can be explained by

the fact that the VM selection strategy in EfWp is based

on the minimum migration time and also considers the

recent VM requirements. The impact factor is maximized

and weighted to achieve accurate VM selection. Therefore,

EfWp can achieve more friendly energy consumption due to

its simple calculation compared to other algorithms.

2) OVERALL SLA VIOLATIONS

In terms of overall SLA violations (see Figure 5(b)), The

MeMs have the highest SLA violation rate because the algo-

rithm focuses on reducing energy consumption, with the

improvement of service quality as an auxiliary effect. The

EfWp has the lowest SLA violation rate. It is far supe-

rior to the MeMs algorithm (79.33% in random workload).

Although the other three algorithms (LrMmt, MadMu and

IqrMc) achieve low SLA violations, EfWp is still slightly

better than them both in random and PlanetLab workload.

The EfWp and MadMu use the same strategy to dynami-

cally obtain the upper threshold of host utilization. The for-

mer additionally considers the recent use of host computing

resources, and the latter simply compares the current com-

puting demand with the upper threshold. Under PlanetLab

workload, the SLA violation rate of EfWp and MeMs are

not the same order of magnitude. As can be seen from

Section III-B, the overall SLA violation is closely related to

the violation rate of each host and the SLA violation caused

by VM migration.

3) NUMBER OF HOST SHUTDOWNS AND VM MIGRATIONS

At the same time, EfWp’s significant improvement in

the number of host shutdowns (NHS) and migrating

VMs (NVMM) has established its superiority in SLA viola-

tions which is illustrated in Figure 5(c) and (d). The NHS and

NVMM are directly proportional to performance degrada-

tion. Frequent host state switching and virtualmachinemigra-

tion have a great impact on the stability of the entire system.

The EFA host detection algorithm predicts the host state at the

next moment based on the recent utilization rate, which can

more accurately capture the load of the host, thereby avoiding

the restart of the shutdown host. That is, the algorithm reduces

redundant host reactivation. Figure 5(c) shows that MadMu

has the highest number of host shutdowns (3132 in random

workload and 6274 in PlanetLab workload), and the number

is far greater than the total number of hosts (100 in random

workload and 800 in PlanetLab workload) indicating that

many hosts are reactivated after they are shut down, which

runs counter to our goal. The strategy adopted by IqrMc is

similar to that of MadMu, which explains the performance

of IqrMc on the NHS metric. The NHS and NVMM metrics

have a positive correlation. When all VMs on the host are

migrated, the host can be shut down, therefore the more

VMmigrations, the more frequently the host reactivates. This

is also the reason why Figure 5(d) has a curve similar to that

of Figure 5(c).
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FIGURE 5. The comparison of the simulation results of metrics (i.e. enegry consumption, SLA violation, number of shutdown host and number of
VM migration). (a) The energy consumption. (b) The SLA violation. (c) The number of shutdown hosts. (d) The number of VM migration.

4) PERTRIC

We use the overall performance metric Pertric proposed

in [41] to comprehensively evaluate our algorithm. The Per-

tric metric analyzes all energy-related aspects of the cloud

data center, such as minimizing power loss, overall SLA

violation rates and the number of hosts that have experienced

state transitions during load balancing. Figure 6 shows the

effectiveness of the EfWp over other existing algorithms.

The EfWp has the best energy efficiency metric among the

five algorithms (EfWp, MeMs, LrMmt, MadMu, and IqrMc)

which is due to the simplicity and effectiveness of its strategy

(see Figure 5). The MeMs have the highest Pertric, while our

goal is tominimize the Pertric. Because the high violation rate

(Figure 5(b)) of the MeMs neutralizes its efforts in energy

consumption, the overall performance of MeMs is not as

good as our algorithm EfWp, so do other three algorithms.

Further, we conduct a joint hypothesis test on the Pertric

metric to analyze the trade-off between energy consumption

and QoS for our proposed approach. As illustrated in Table 6,

the F ratio (6.58) is greater than the F critical value (5.19),

which indicates that the null hypothesis is rejected and the

population means are significantly different from one another

at the 0.05 level with p value of 0.031569 (p < 0.05).

Therefore, the EfWp algorithm is significantly different from

MeMs, LrMmt, MadMu and IqrMc.

5) TIME METRIC

Since computation overhead is an important metric to eval-

uate the algorithm, one sample t-test of VM migration

time duration and host running time is also carried out.

The average value of the sample mean times before a

VM migration during the host detection underload or over-

load is 19.89 seconds with a 95% CI:19.6,20.18.The aver-

age value of the sample means host running time before

transition to energy-saving-mode is 31.89 minutes with

95% CI: 31.9,36.46.
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TABLE 6. The one-way ANOVA test in term of Pertric.

FIGURE 6. The comparison of the simulation result of the Pertric metric.

VI. CONCLUSION

In the data center, the balance between energy consumption

and QoS is a win-win situation for service providers and

cloud users. The original intention of our research is to seek

the best compromise between energy consumption and ser-

vice quality. For this purpose, we propose a two-level man-

agement model under a heterogeneous cloud environment.

In this model, we propose an empirical forecast host detection

algorithm (EFA) and a weighted priority VM selection algo-

rithm (WPA) based on historical data. TheEFA algorithm has

the characteristics similar to theMarkov chain. The difference

is that the host state transition probability is updated in real

time, which is more in line with the dynamic nature of the

cloud data center. TheWPA algorithm not only considers the

migration time but also considers the recent utilization level.

As part of the future, we plan to further extend this work by

studying network traffic-aware VM migration, considering

the network communication overhead between related VMs.

The implementation of these algorithms in the open source

real cloud platform such as OpenStack would also be studied.
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