
An Experience on Ada Programming Using
On-line Judging

Francisco J. Montoya-Dato, José Luis Fernández-Alemán, and
Ginés Garćia-Mateos

Department of Informatics and Systems,
University of Murcia, 30100 Espinardo, Murcia, Spain

{fmontoya,aleman,ginesgm}@um.es

Abstract. Ada has proved to be one of the best languages to learn com-
puter programming. Nevertheless, learning to program is difficult and
when it is combined with lack of motivation by the students, dropout
rates can reach up to 70%. In order to face up to this problem, we
have developed a first-year course for computing majors on program-
ming based on two key ideas: supplementing the final exam with a series
of activities in a continuous evaluation context; and making those activ-
ities more appealing to the students. In particular, some of the activities
are designed as on-line Ada programming competitions; they are carried
out by using a web-based automatic evaluation system, the on-line judge.
Human instructors remain essential to assess the quality of the code. To
ensure the authorship of the programs, a source-code plagiarism detec-
tion environment is used. Experimental results show the effectiveness of
the proposed approach. The dropout rate decreased from 61% in the
autumn semester 2007 to 48% in the autumn semester 2008.

Key words: Programming, e-learning, assessment.

1 Introduction

Currently, educational tendencies are centered in the student’s learning rather
than the instructor’s teaching. A clear example of this trend is the European
Space of Higher Education. One of the aims of the European Union countries is
to develop new teaching methodologies based on the student’s learning process.
The purpose is to create independent, reflective and life-long learners. The new
methods should stimulate students interest and offer appealing material, fair
assessment and appropriate feedback.

This paper describes an innovative experience with a first-year course on pro-
gramming which is supplemented with some activities of e-learning. A web-based
automatic judging system called Mooshak [1] has been adapted to receive and
evaluate programs in Ada. Previous experience on programming competitions
for secondary and higher education shows the viability of the proposal and a high
capacity to generate motivation and enthusiasm among students. The approach
described is highly complementary with other learning techniques and methods.



2 F.J. Montoya-Dato, J.L. Fernández-Alemán, G. Garćia-Mateos

The rest of the paper is organized as follows. Section 2 presents a review
of related work. Section 3 briefly describes the fundamentals of on-line judging.
Then, we introduce in Section 4 the methodological approach of the proposal.
Section 5 offers the main results of the e-learning experience applied to 107
students in a first-year course for computer programming majors. In Section 6,
we discuss the results achieved by employing this new methodology. The last
section presents some concluding remarks.

2 Related Work

In the literature, most authors reach the same conclusion: learning to program
is difficult [2]. For example, some studies point out that it takes approximately
ten years to transform a novice into an expert programmer [3]. A large number
of techniques and methods have been proposed to improve students’ compre-
hension in computer programming courses [2]. E-learning activities constitute a
viable and promising supplement in programming pedagogy. Particularly, on-line
judging systems have already been applied in this discipline.

Guerreiro and Georgouli [4, 5] propose an e-learning educational strategy in
first-year programming courses. They adopt Mooshak automatic judging system
for grading lab assignments and for self-assessment purposes. Automatic evalua-
tion accounts for about 30% of the final mark. This approach provides important
benefits in a CS1 course. A well thought out set of test cases prevents wrong
programs sent by students from passing test runs. As a consequence, students
must be much more rigorous in developing their programs. Likewise, students
obtain immediate feedback from Mooshak. Another advantage of their proposal
is the objectivity of the evaluation. Moreover, the authors consider that teachers
can save time and work if an automatic judging system is used. Nevertheless,
important concepts such as robustness and legibility are manually graded by the
instructors.

In order to address this issue, Bowring [6] proposes a new paradigm for
programming competitions where the quality rather than the fast completion
of the programs is evaluated. Both technical and artistic merit are taken into
account as judging criteria. According to the author, technical quality refers
to how well submissions meet the stated requirements, whereas artistic quality
is related to the organization of the code, the readability of the code and its
documentation, and the readability of other artifacts such as output files.

Our novel contribution resides in the use of the on-line judging system in
Ada programs. Our approach complements the traditional “final exam evalua-
tion” with a series of activities, many of them using Mooshak. Four important
benefits are obtained: (i) students are very motivated to take part in the pro-
posed activities; (ii) the work of the students is evaluated along the course, rather
than just in a single final exam; (iii) the workload of instructors is reduced since
many compilation and runtime errors are detected by the on-line judge; and (iv)
students receive feedback on their submissions during the process of acceptance



An Experience on Ada Programming Using On-line Judging 3

by the on-line judge, and can ask questions to the human judges, which promotes
both independent learning and reflective thinking.

3 On-line Judging

An on-line judging system is an automatic tool which is able to evaluate the cor-
rectness of computer programs, based on a predefined set of pairs input/output.
We are using Mooshak 1.4 [1], which is free and publicly available.

Mooshak has a web-based interface, which is different for the students, teach-
ers, guest users and the system administrator (see Figure 1). For example, a user
(student) can access the description of the problems, the list of submissions sent
by all users, the ranking of the best students, and the questions asked and an-
swered. In contrast, a judge (teacher) can see and analyze the submissions sent,
rejudge submissions, answer questions, and view statistics of system’s usage.

Fig. 1. Sample view for a judge (teacher) of Mooshak.

The on-line judge works as follows:

– A set of problem descriptions is available in the students’ web interface.
These descriptions present problems related to the theoretical concepts stud-
ied in class. Each description contains a statement of the problem, a precise
specification of the input of the program and the expected output, along
with some sample input/output pairs.

– The students tackle each problem in their own computers, by writing a pro-
gram which efficiently produces the expected outputs. When they have tested



4 F.J. Montoya-Dato, J.L. Fernández-Alemán, G. Garćia-Mateos

their implementation enough, they submit the solution to the judge using
their interface.

– The on-line judge receives the source code, compiles the program, and ex-
ecutes it using the predefined sets of secret input cases. Then, Mooshak
analyzes the output of the program (comparing it to the expected output)
and sends a response to the student which indicates whether the program is
correct or not.

– Statistical information is accessible both for teachers and for students. In
particular, a ranking of the students sorted by the number of problems solved
is given. The system also includes tools to send comments about any problem
and ask questions to the teachers.

4 A Programming Methodology

We will introduce here the methodology that we follow in our CS1 program-
ming course. First, the educational context in which this activity takes place
is described. Then, we will justify the choice of Ada as the first programming
language for our students. Finally, we will see the kind of problems that we find
suitable to be judged by Mooshak, and how it is a convenient tool to help in the
evaluation of the solutions provided by students.

4.1 Our programming course in CS1

Our programming course in CS1 is called Methodology and Technology of Pro-
gramming (MTP), and it extends along the whole academic year. It is organized
as three hours of classroom lessons and two hours of laboratory practices per
week. For this course we have chosen the imperative paradigm, as the concepts
of encapsulation and data hiding in implementations of abstract data types pro-
vide an adequate way for the study of data abstraction whose path naturally
leads to the concept of class. For a more detailed discussion on this topic, the
reader may see [7] and [8]. Object Oriented Programming (OOP) is studied later
with the introduction of classes in the programming courses in CS2, and more
in depth in a programming course utterly dedicated to OOP in CS3.

The MTP course consists of two differentiated parts, which take about half
of the course each:

– A first part in which students concentrate their attention on the design of
elemental iterative algorithms. In this part, a great emphasis is made in
methodological aspects, like the loop invariant based design and the math-
ematical definition of inductive relations that allow programmers to obtain
the most significant sentences of the iterative construction, like initialization
and loop body. Some other basic concepts like subprogram decomposition,
algorithmic schemes, scope and visibility rules, and scalar and structured
data types (arrays and records) are also studied simultaneously.
Contents of this part are based on Anna Gram Group’s works, most of them
gathered in [9] (in French). These works have been collected and extended



An Experience on Ada Programming Using On-line Judging 5

by the authors and can be found in their book [10] (in Spanish). Most of the
problems studied in this part are related to the data type sequence, which
is a container data type that only allows sequential access to its elements.
Particularities of this data type make it specially suitable to be taken as a
base for most iterative algorithms design problems.

– A second and last part in which some other topics are studied: recursive
design, dynamic memory management, elemental data structures (linear
structures, and binary trees), abstract data types (ADT), generics, and an
introduction to efficiency. ADT’s and generics are introduced by means of
algebraic specifications, in order to clearly distinguish an ADT, which is an
abstract and purely mathematical concept by itself, from its implementation,
which is a computational and more concrete entity.

4.2 Why Ada?

In our opinion, Ada perfectly matches the required conditions for a programming
language that should simultaneously be: (1) the most appropriate to be the very
first students’ programming language; and (2) an adequate framework to clearly
illustrate the course contents, as described above. Most of these advantages are
related to the early error detection that this programming language provides by
itself.

For the first condition, we find the following advantages in Ada:

– In contrast to some other more popular languages, there exist several inter-
national standards for the Ada programming language, supported by insti-
tutions like ANSI and ISO.

– Ada is a very strongly typed language. This feature allows the program-
mer to trust in the compilation process to catch some of the errors derived
from mixing different magnitudes in expressions. This type checking includes
also parameter control in subprogram calls and instances of generics. Ada
includes also the concept of subtype, which allows domain checking but re-
laxing incompatibilities that otherwise would exist among different types.

– Its syntax is very clear and well structured. Any construct beginning has its
own terminator. All sentences end with semicolon, that does not act as a
separator but as a terminator.

– A strict access to control loop variables is imposed in for iterations. Also,
this control variable is implicitly declared in the iteration and it exists only
during the loop execution. This prevents ambiguity problems in the semantic
of the for iteration related to the final value of this variable upon loop
termination.

– Ada provides mechanisms to adequately handle exceptions.
– It has suitable compilers freely available for academic institutions. In partic-

ular, we highly appreciate and acknowledge the excellent and free support
that the company AdaCore offers for their Ada GNAT based compiler to
all universities enrolled in their Academic Program. This software is cur-
rently available for a wide variety of platforms, and also includes the GPS



6 F.J. Montoya-Dato, J.L. Fernández-Alemán, G. Garćia-Mateos

integrated development environment. There exist also some other friendly
environments based on the GNAT free Ada compiler that may adequately
be used as a basis for CS1 programming practices.

– Ada provides a good basis for further courses on parallel/concurrent pro-
gramming, OOP, hardware description languages (HDL) and software engi-
neering that could also be taught using Ada as base programming language.

And for the second condition, we find the following advantages. Most of them
are closely related to the above ones:

– Taking in mind that this is a CS1 programming course, details related to
compilation, execution and debugging should be as easy as possible, so that
students may concentrate their efforts in studying and learning topics related
to the course itself. GPS provides a very friendly environment to adequately
cover with easiness all stages in any project development.

– A rich repertoire of control structures (while, repeat-until, loop-exit-end and
for loops) can be illustrated in Ada.

– Ada features in modular programming make easy to implement extensions to
deal with concepts (like the data type sequence) that are not usually included
in common programming languages. In particular, we have created packages
for students to be able to use these extensions in their Ada programs in
a transparent way and in almost the same way they do in the algorithmic
notation we use in our classroom lessons to teach these concepts.

– The structure of Ada allows an easy top-down or bottom-up program design,
where a subprogram may be decomposed into some others in a hierarchical
fashion. Ada also closely keeps track of how a subprogram makes use of its
own parameters depending on their kind (in, out, or in out) and forces all
parameters of any function to be only of in kind, respecting in this way
the theoretical concept of function as an operator whose invocation should
never modify the computational process state.

– The previously mentioned structure not only affects to an independent pro-
gram or compilation unit, but also to the relation among all compilation
units that a whole project consists of.

– Ada packages provide an excellent mechanism for opaque data types encap-
sulation and information hiding. Though this is not an exclusive feature of
opaque data types, the possibility of declaring some of these types as limited
prevents problems of misbehavior of default comparisons among expressions
and, in the case of assignments, aliasing of complex data structures which
could lead to data corruption.

– Ada perfectly supports generics since its first Ada’83 standard. This support
allows us to define generic packages for data types like sequence, which due
to its own nature of container data type is clearly a generic type.

– Mechanisms for data handling through access data types provide adequate
methods for dynamic memory management. They are also designed in such
a way that some hazardous situations like side effects due to aliasing of static
and automatic variables are prevented by default. These variables may still



An Experience on Ada Programming Using On-line Judging 7

be handled by access data types, but the programmer should be aware of
this fact and must explicitly declare these variables as aliased.

4.3 Proposed exercises

We will present here a taxonomy of the different kinds of exercises that can be
proposed to students using Mooshak. First, we identify the pedagogical principles
that have guided our efforts. Second, we will see how to overcome some of the
problems that arise at this point when using the Mooshak on-line judging system.

The assignments proposed in our course are designed to cover the cognitive
domain of Bloom’s Taxonomy [11]. Bloom’s cognitive domain involves knowl-
edge and development of intellectual skills. There are six categories, of different
degrees of difficulty. The correspondence between these categories and some of
our educational activities is shown in Table 1.

Mooshak is a tool flexible enough to be used with any programming language,
provided that its corresponding compiler is available and installed on the server.
The compilation and execution processes can be done by means of a simple script
that does not necessarily require interactive human intervention, like it could be
the case of languages that require the use of GUIs environments in any of these
two stages. Fortunately, Ada falls into the category of usable languages.

There is another aspect to take into account: when submitting a solution
for any problem proposed in Mooshak, the submission process consists of up-
loading a single file. This fact imposes a severe constraint to the problems we
should propose to fully cover all the topics involved in our course. How could
we manage to propose problems whose solution is not a program from which an
executable could be obtained, but just a compilation unit like a package or a
generic subprogram? In the case of packages, there exists an additional problem:
a package consists of two different files, whereas Mooshak on-line judging system
only allows to upload one.

The solution we finally decided to adopt for these cases is as follows:

1. Students should upload one single zip archive which contains all the files
required by the problem. It is part of students’ responsibility that the names
of these files and also the interface of their compilation units match the
specifications given in the problem description.

2. As a first step, the content of this zip file is extracted by the script that
performs the judging process. These files are compiled and object modules
are obtained from them if no compilation errors are found.

3. Then, a testing program that is designed to test students’ solution (and that
is not known by them, of course), is compiled and linked against the object
modules obtained in the previous step. If everything went well, an executable
program should be obtained in this step.

4. This last executable program is the one that will be run and judged.

Testing programs are designed to make a test as much exhaustive as possible
of all features that the compilation units provided by students should offer.
Mutation testing [12] was used to ensure the quality of the test cases.



8 F.J. Montoya-Dato, J.L. Fernández-Alemán, G. Garćia-Mateos

Category Educational activities

Knowledge: Recall data. Memorize concepts such as type, variable, constant, func-
tion, procedure, algorithm, algorithmic scheme.

Comprehension: Un-
derstand the meaning of
instructions and problems.
State a problem in one’s
own words.

Translate an algorithm written in pseudocode into a pro-
gramming language. Write a program from a known for-
mula or algorithm (e.g. greatest common divisor, facto-
rial, Fibonacci sequence). Choose the correct program
from a list to solve a given problem. Fill an incomplete
algorithmic scheme according to certain sequential access
model. Create a problem with the format of the judge:
problem description, source code to solve it, input cases,
and expected outputs.

Application: Use a concept
in a new situation or un-
prompted use of an abstrac-
tion.

Four sequential access models are introduced using the
sequence data type. Apply these control models to new
data structures such as arrays, lists and trees. Parame-
terize a data structure such as a stack, queue or tree to
build a generic data type. Generalize a numerical sort-
ing algorithm to any data type with an order relation
defined.

Analysis: Separate materi-
als or concepts into compo-
nent parts so that its orga-
nizational structure may be
understood. Distinguish be-
tween facts and inferences.

Divide and conquer, stepwise refinement, recursion, in-
ductive reasoning are techniques used to tackle the com-
plexity of an algorithmic problem. The use of these tech-
niques implies performing both analysis and synthesis.

Synthesis: Build a struc-
ture or pattern from diverse
elements. Put parts together
to form a whole, with em-
phasis on creating a new
meaning or structure.

Implement iterative schemes starting from four pieces of
code: initialization, termination condition, treatment of
the current element, ending treatment. Several schemes
can be built by using four sequential access models. Stu-
dents have to achieve a tuned solution.

Evaluation: Make judg-
ments about the value of
ideas.

Choose between linear search and binary search and jus-
tify the response. Calculate the algorithmic complexity
and select the most efficient sorting algorithm in a cer-
tain context.

Table 1. Educational activities in the cognitive domain of Bloom’s Taxonomy.

Bearing in mind the above strategy to automatically grade the different kind
of exercises, we can group problems into four main categories:

Single problems: We include in this category problems whose solution is just
a compilation unit from which an executable program may be obtained as a
result. This is the kind of problems that are usually proposed in program-
ming contests. Some of these problems should be solved by using some of
the extensions mentioned above (like the data type sequence), so these com-
pilation units needed should be present in the system in order to correctly
compile and link the source code uploaded by the students.



An Experience on Ada Programming Using On-line Judging 9

We can distinguish here two kinds of problems, depending on how programs
should get their input data. First kind are problems whose data is taken
from the standard input, as it is usually done in programming contests. We
have also another kind of problems, where the input consists of a single line
containing the name of the file where the input should be taken from. We use
this kind of input for the case of problems related to the data type sequence,
where data should be loaded from the file to the sequence before proceeding.

Compilation unit development problems: These are problems whose solu-
tion is not a main program but a compilation unit (package, subprogram,
generic, etcetera). As mentioned above, for this kind of problems the main
program is already uploaded in the judging server and is compiled and linked
against the compilation unit(s) provided by the students. This testing pro-
gram should be designed in such a way that it checks that:
– All elements implemented in the compilation unit(s) (types, subpro-

grams, constants, exceptions, etcetera) match the names provided in the
problem description.

– Compilation unit(s) subprograms return correct results and show the
right behaviour as specified by the problem description. These tests
should be performed for a wide variety of different subprogram input
data. It should also be checked that the name, type and kind of any
subprogram parameters are those specified by the problem description.

– Exceptions defined in the compilation unit(s) are raised in the cases,
and only in the cases, specified by the problem description. Exceptional
situations should be provoked and the corresponding exceptions properly
handled in order to perform an adequate test of the expected unit(s)
behaviour (for example, popping out from an empty stack, etcetera).

Whole project problems: In this kind of problems, students should provide
all modules that the project consists of. The only constraint imposed for
these cases is the name of the main unit where the executable program
should be obtained from. Solutions provided for this kind of problems are
judged as usual. These problems may be thought as a continuation to the
previous ones: first, compilation units are tested and judged separately, and
then the project is judged as a whole.

Judge problems: The students have to create a problem with the format of
the judge: problem description, source code to solve it, input cases, and
expected outputs.

Table 2 shows the Mooshak’s activities organized in the course. Notice that
the level of difficulty (Bloom’s level) of the activities is gradually increasing. All of
them are to be done individually. The problems are graded from 1 to 5 according
to their degree of difficulty and are freely chosen by students. The instructor
notifies the results to the students in a personal interview. The activities are
voluntary and are not required as part of the regular assignments.

Mooshak’s activities evaluation accounts for 20% of the final mark. Since
most work is not done in the presence of the teacher, a tricky concern is to guar-
antee the originality and authorship of the programs submitted by the students.
Some strategies are applied to reduce the risk of plagiarism and to detect it:



10 F.J. Montoya-Dato, J.L. Fernández-Alemán, G. Garćia-Mateos

Activity Type Language # p. Bloom

Sequentiation SP Ada 6 K, C

Selection SP Ada 5 K, C

Iteration SP Ada 8 C, Ap

Schemes CUDP Ada 12 An, S

Generics CUDP, WPP Ada 2 Ap

Packages CUDP, WPP Ada 2 Ap

ADT SP Maude 7 An, S

Dynamic Memory WPP Ada 8 Ap, An, S

Recursion SP Ada 10 An, S

Sorting SP, CUDP, WPP Ada 11 Ap, An, S, E

Miscellany JP Ada 6 E
Table 2. Description of the activities proposed in Mooshak. “Type”: Single Prob-
lems (SP), Compilation Unit Development Problems (CUDP), Whole Project Problems
(WPP) and Judge Problems (JP);“# p.”: number of problems existing in the judge;
“Bloom”: category covered in the cognitive domain of Bloom’s Taxonomy, knowledge
(K), comprehension (C), application (Ap), analysis (An), synthesis (S) and evaluation
(E).

– There are many aspects of programming that are not so easy to automat-
ically evaluate: computational complexity, design and organization of the
code, programming style, robustness, legibility, etcetera. For this reason, all
activities include a compulsory interview with a teacher, where students
have to explain their submissions and answer some questions. Nevertheless,
some of these quality factors could be automatically assessed using software
quality assurance tools. These tools will be considered in a future work.

– The formula
∑NC

c=1

∑NPc

p=1
0.1×(TNSc−NSSPc,p)

TNSc
, is used to grade the Mooshak’s

activities performed by each student. NPc is the number of problems pro-
posed in the contest c and NC is the number of contests organized. A student
is considered as a contestant in the contest c if he has a Mooshak account in
this contest. NSSPc,p is the number of contestants that solved the problem p
of the contest c, and TNSc is the total number of contestants in the contest
c. Note that the score of each accepted submission is in inverse proportion to
the number of accepted submissions. Therefore, we think that this formula
is an effective deterrent measure against plagiarism lovers.

– Students will have to demonstrate their knowledge on the topics by an indi-
vidual written exam.

– For the activities done in Mooshak, we use a plagiarism detection system
developed by Cebrian et al. [13]. Thanks to Mooshak, all the submissions are
available in judge’s server, so the plagiarism detector can be easily applied.
In our case, this plagiarism detector reported three possible cases of copy.
Nevertheless, after manual inspection of the programs and an individual
interview with students, plagiarism was ruled out.



An Experience on Ada Programming Using On-line Judging 11

5 Evaluation of the Method

The approach proposed here has been used effectively in an introductory com-
puter programming course at the University of Murcia (Spain). In this section,
detailed information about the experiment designed and conducted during the
autumn semester of 2008 is provided. The aim was to assess the application of
the programming learning method proposed in this paper.

5.1 Participants and Background

As mentioned in Section 4, the experience described here was applied to a first-
year course for computer programming majors. MTP has a load of 12 ECTS
(European Credits Transfer System) and has been traditionally organized in a
monolithic form: weekly lectures, laboratory sessions, and a final exam for each
semester. The first exam consisted of between 3 and 4 algorithmic problems
about basic procedural programming constructs of sequence, selection and it-
eration, inductive reasoning and loop patterns. The second exam consisted of
between 5 and 7 problems about recursive design, dynamic memory manage-
ment, linear structures, binary trees, efficiency and algebraic specifications to
represent abstract data types. Grading was manually done by the instructors
according to criteria such as correctness, efficiency, robustness, extendibility and
legibility.

In autumn of 2008, the 107 students enrolled in MTP were involved in the new
learning method. Though participation was voluntary in Mooshak’s activities,
most students actively participated in the proposed activities.

In previous years, the main problem observed in this course was a low moti-
vation and participation of the students in class, that resulted in a high dropout
rate. In the last five years, around 70% of enrolled students dropped out, as
shown in Table 3. With the aim of reversing this trend, we decided to adopt
a new learning paradigm based on a continuous evaluation organization, with
activities that are appealing and motivating for all students.

5.2 Results of the On-line Judge

Statistical data related to the programming learning method described in this
paper was gathered during the autumn semester of 2008. Up to 92 of the 107
enrolled students (86%) participated in some activity related to the on-line judge;
60 of them (56%) solved and 62 (58%) tried to solve at least one problem. In total,
the on-line judge received 2512 submissions, i.e., Ada programs and packages,
with an average of 27.3 submissions per student. The on-line judge classified
around 1019 of these as “accepted” (40.6%), and 359 as “wrong answer” (14.3%).
More information on the classification of the submissions, and the percentages
per unit of knowledge is shown in Table 4. The average number of submissions per
student until getting the program accepted is 2.2. Nevertheless, many students
found the solution to the problems at the first attempt (mode is 1). The highest
number of programs that a student submitted to get an “accepted” was 21.



12 F.J. Montoya-Dato, J.L. Fernández-Alemán, G. Garćia-Mateos

Year 2003/04 2004/05 2005/06 2006/07 2007/08

Duration Ann. Aut. Ann. Aut. Ann. Aut. Ann. Aut. Ann. Aut.
Language Modula-2 Modula-2 Modula-2 ADA ADA
Pass rate 14 18 17 20 12 14 9 13 16 21

11% 14% 16% 19% 11% 12% 10% 14% 13% 17%
Failure rate 25 28 21 27 18 24 18 30 20 27

19% 21% 20% 26% 16% 22% 19% 33% 17% 22%
Dropout rate 92 85 67 58 82 74 65 49 85 73

70% 65% 64% 55% 73% 66% 71% 53% 70% 61%
Total of 131 131 105 105 112 112 92 92 121 121
students

Table 3. Pass, failure and dropout rates of MTP in previous years. Ann.: Annual;
Aut.: Autumn semester.

Activity # subm. A PE WA RE CE

Sequentiation 276 111 (40%) 51 (18%) 41 (14%) 59 (21%) 14 (5%)
Selection 280 122 (43%) 28 (10%) 74(26%) 44 (15%) 12 (4%)
Iteration 718 299 (41%) 145(20%) 87 (12%) 155(21%) 32 (4%)
Schemes 1039 409 (39%) 220 (21%) 135 (12%) 200 (19%) 75 (7%)
Generics 193 78(40%) 35 (18%) 22 (11%) 51 (26%) 7(3%)

Total 2512 1019 (40%) 479 (19%) 359 (14%) 509 (20%) 140 (5%)
Table 4. Detail of the classification of the submissions by knowledge unit. “# subm.”:
Number of submissions. A: Accepted. PE: Presentation error. WA: Wrong answer. RE:
Runtime Error. CE: Compile Time Error.

Figure 2(a) shows a histogram of the number of problems solved per student.
This value covers a range from 1 to 33. The mean number of solved problems
per student is 11, with a standard deviation of 8.2, and with three modes of 4,
5 and 8. It is also interesting to analyze when the students work. Figure 2(b)
represents the number of accepted and rejected submissions in each hour of the
day. The minima are located at 2 and 6 am (0 submissions) and the maximum
at 4 pm (467 submissions). On the other hand, the students achieved the highest
acceptance rates at 10 pm and 10 am with 82% and 66%, while they had the
lowest acceptance rate at 6 pm with 17%. Most activity takes place from 8
am to 8 pm, when computer laboratories are open to the students. However,
submissions done by the students outside these hours represent a total of 24%.

6 Discussion

The results obtained after the application of our programming learning method
during the autumn semester 2008 are very promising. We have observed a sig-
nificant increase in the pass rate, from 17% (13% in whole academic year) in
2007 to 21% in 2008. However, the most striking fact is the dramatic decline
in the dropout rate, from 61% (70% in whole academic year) in 2007 to 48%



An Experience on Ada Programming Using On-line Judging 13

(a) Number of problems solved
by the students.

(b) Submissions in each
hour of the day.

Fig. 2. Statistical information on Mooshak.

in 2008. The new methodology encourages students to make them get back on
pace again.

The advantages that we find in our approach, considering the kind of prob-
lems that we propose to students in the on-line judge, can be summarized in the
following points:

– In single problems, the importance of making a methodological and sys-
tematic program development in order to minimize errors becomes evident.
It frequently happens that students, most times due to an excess of self-
confidence, omit the necessary steps to analyze the problem and to design
the solution. In most cases, this kind of hurried development results in a pro-
gram that apparently works correctly, but there exist some cases in which it
fails. When the validation stage is made locally in the own student’s com-
puter, the causes of these errors are usually quite evident and the proper
program modifications quite easy too. This creates in the students the false
illusion that those methodological issues are not important, as the conse-
quences of disregarding them can be easily and quickly overcome.
On the contrary, in the case of Mooshak on-line judging system, input test
cases are unknown by students and the only feedback that they get is a la-
conic “wrong answer” message, which forces them to make a more in depth
and methodological review of their programs in order to discover the error.
This situation is similar to the real case, in which all program input data
cases are obviously a priori unknown and the only information that program-
mers will get is that their programs fail sometimes. As a result, the error will
be rather difficult to isolate just by analyzing the program behaviour from
the input/output point of view.

– In compilation unit development problems, the student becomes aware of
the importance of strictly following the specification of the unit interface.
The slightest variation in an identifier name, number/type/kind of parame-
ters in a subprogram, etc. may result in a testing program compilation error.
On the other hand, unit behaviour should be as expected: subprograms re-



14 F.J. Montoya-Dato, J.L. Fernández-Alemán, G. Garćia-Mateos

sults should be correct, exceptions should be raised in the right and only
in the right cases, etcetera. Otherwise, testing program execution would not
generate the expected output or even would result in a run-time error.

– In whole project problems, the student becomes responsible of correctly or-
ganizing all the submitted code. In particular, it is possible that some of the
project compilation units were independently judged in previous problems,
and more than one version were accepted by the on-line judging system. The
student should decide at this point which is the version that he/she considers
the best one to be included in the final project.

– In judge problems, students have to make judgments about the interest,
difficulty and complexity of a problem. The creativity of the students to
produce original and relevant problems is evaluated.

On the other hand, we think the proposed organization of the course suc-
cessfully meets most important pedagogical principles [14]:

Motivation. The public ranking plays a fundamental role in motivating stu-
dents to solve more problems, faster and more efficiently. If students get an
“accepted”, a rise in ranking means students get an incentive to continue
tackling other algorithmic problems.

Active learning. When students solve the proposed problems, they are in-
volved in, and conscious of, their own learning process in order to achieve a
real and long-lasting learning.

Continuous learning. The new methodology has a crucial advantage: the
students work along the course, and not just some weeks before the final
exam.

Autonomous work. Students can work in the laboratories, where they have
help from the teachers. However, students mostly work at home, and ask
questions to the teachers by using Mooshak.

Feedback of the learning process. The web system provided feedback to
help students to correct many errors of their programs, thus avoiding assis-
tants spend much effort figuring out the causes of the failure, as happens in
a traditional evaluation. The judge is accessible 24-hours a day and the feed-
back is instantaneous. From the point of view of the teachers, information
is also comprehensive and immediate; they can analyze the difficulty of the
problems, the evolution of the students, identify the best students, etcetera.

Finally, regarding our experience on these e-learning activities, we advocate
the use of on-line judging systems as a support for the teacher in the task of
evaluating students’ know-how. In any case, it will always be also necessary the
teacher’s criterion to determine the degree of correctness of the submitted code.

7 Conclusions

We have presented in this paper an innovative experience on computer science
education using Ada. In general, the results of our experiment are excellent. We



An Experience on Ada Programming Using On-line Judging 15

have shown that on-line judging systems can be used to make the activities of a
programming course more interesting.

The approach improves self-assessment skills and encourages students to
work independently. The public ranking and other statistical data provided by
Mooshak, promote competitiveness and offer appealing material to the students.
The assessment is fair and objective, and students are able to gain additional
feedback from the human judges. The approach contributes to build a strong
foundation for the student’s life-long learning. Students get themselves more
involved into their own learning process.

References

1. Leal, J.P., Silva, F.M.A.: Mooshak: a web-based multi-site programming contest
system. Softw., Pract. Exper. 33 (2003) 567–581

2. Robins, A., Rountree, J., Rountree, N.: Learning and teaching programming: A
review and discussion. Computer Science Education 13 (2003) 137–172

3. Winslow, L.E.: Programming pedagogy—a psychological overview. SIGCSE Bull.
28 (1996) 17–22

4. Guerreiro, P., Georgouli, K.: Enhancing elementary programming courses using
e-learning with a competitive attitude. Int. Journal of Internet Education (2008)

5. Guerreiro, P., Georgouli, K.: Combating anonymousness in populous CS1 and CS2
courses. In: Proc. ITICSE 2006. (2006) 8–12

6. Bowring, J.F.: A new paradigm for programming competitions. In: SIGCSE ’08:
Proceedings of the 39th SIGCSE technical symposium on Computer science edu-
cation, New York, NY, USA, ACM (2008) 87–91

7. Bruce, K.B.: Controversy on how to teach CS 1: a discussion on the SIGCSE-
members mailing list. SIGCSE Bulletin 36 (2004) 29–34

8. Reges, S.: Back to basics in CS1 and CS2. In: SIGCSE. (2006) 293–297
9. Peyrin, J., Scholl, P.: Schemas Algorithmiques Fondamentaux. Sequences et Iter-

ation (in French). Masson, Paris (1988)
10. Garćia-Molina, J., Montoya-Dato, F., Fernández-Alemán, J., Majado-Rosales, M.:

Una Introducción a la Programación. Un Enfoque Algoŕitmico (in Spanish). Thom-
son (2005)

11. Bloom, B., Furst, E., Hill, W., Krathwohl, D.: Taxonomy of Educational Objec-
tives: Handbook I, The Cognitive Domain. Addison-Wesley (1956)

12. Woodward, M.R.: Mutation testing—its origins and evolution. Information and
Software Technology 35 (1993) 163–169

13. Cebrian, M., Alfonseca, M., Ortega, A.: Towards the validation of plagiarism
detection tools by means of grammar evolution (in press). IEEE Transactions on
Evolutionary Computation (2008)

14. Vrasidas, C.: Issues of pedagogy and design in e-learning systems. In: SAC ’04:
Proceedings of the 2004 ACM symposium on Applied computing, New York, NY,
USA, ACM (2004) 911–915


