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Abstract
Burn-in is a common test approach to screen out unre-

liable parts. The cost of burn-in can be significant due to
long burn-in periods and expensive equipment. This work
studies the potential of using parametric test data to reduce
the time of burn-in. The experiment focuses on developing
parametric test models based on test data collected after
10 hours of burn-in to predict parts likely-to-fail after 24
and 48 hours of burn-in. Our study shows that 24-hour and
48-hour burn-in failures behave abnormally in multivariate
parametric test spaces after 10 hours of burn-in. Hence,
it is possible to develop multivariate test models to identify
these likely-to-fail parts early in a burn-in cycle. This study
is carried out on 8 lots of test data from a burn-in exper-
iment based on a 3-axis accelerometer design. The study
shows that after 10 hours of burn-in, it is possible to iden-
tify a large portion of all parts that do not require longer
burn-in time, potentially providing significant cost saving.

1 Introduction
Burn-in stresses parts in order to identify those likely-to-

fail early in their life cycle. Burn-in can be an expensive
step in a test flow. For example, the burn-in period can be
tens of hours, which limits the throughput of testing. The
test equipment is expensive and has a short lifetime due to
the effects of thermal stress. Failing equipment can further
reduce the throughput as fewer chips are tested in parallel.

The possibility of burn-in degrading quality has been a
known issue. It has been shown that a part that is sub-
jected to a static burn-in for 10 hours can experience up
to 60% of the total NBTI degradation that it would see over
its expected 10 year lifetime [13]. The irrecoverable effects
caused by burn-in may compromise a product and actually
increases the number of field failures.

Due to the cost and quality concerns, it is desirable to
minimize the use of burn-in in a test flow. This is chal-
lenging for products demanding high quality, such as those
sold to the automotive market, as some failing mechanisms
may only be revealable through high temperature stress, for
a long period of time.
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In this paper, we report findings based on a burn-in ex-
periment performed on 8 lots of parts for a 3 axis accelerom-
eter designed for the automotive market. Specifically, the
experiment consisted of three stages of burn-in: 10 hours,
an additional 14 hours (24 hours total), and an additional
24 hours (48 hours total). Parametric (and non-parametric)
testing was performed after each burn-in stage to identify
failing parts. The ∼60 parametric tests from the production
test set were repeated at hot, cold and room temperatures.

The focus of the study is to develop a methodology that,
at the end of 10 hours of burn-in, predicts parts that are
likely-to-fail parametric testing after 24 hours and 48 hours
of burn-in (suspect parts). Such a methodology can be used
to identify parts that do not require additional burn-in after
10 hours, resulting in savings in terms of burn-in time for
those parts.

To predict parts that may fail parametric testing after
24 hours and 48 hours of burn-in, we develop a learning
methodology that builds multivariate test models based on
parametric test data collected at the end of 10 hours of burn-
in. At the core of this methodology, we employ Support
Vector Machine (SVM) algorithms [1] for building both lin-
ear and non-linear models, depending on the kernel in use.

The focus of our study is not on the learning algorithms,
but on developing a methodology that applies the learning
algorithms to predict parts likely-to-fail parts after 24 and
48 hours of burn-in. In developing this methodology, we
discovered several interesting aspects as to how multivariate
test analysis can be effectively applied in the context of this
work. These findings are summarized below:

• Parametric fails tend to require longer burn-in time.
Hence, the focus of the study is on predicting para-
metric fails early in a burn-in process. Non-parametric
fails tend to get exposed earlier in burn-in.

• Site-to-site variability can mislead learning. It is cru-
cial to remove this variability before the learning.

• Before building a multivariate model, it is important to
perform test selection. The effectiveness of a model
depends on the tests used to build the model.

• Prior to test selection, it is important to partition tests
into groups of tests of the same type. Automatic test
selection can then be applied to each group separately.
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• When learning, each multivariate model is built with
respect to a particular test temperature, since the failure
signatures exposed in different temperatures (hot, cold,
room) are usually not compatible to each other.

• To achieve zero test escapes, a few failing examples
from 24 and 48 hours of burn-in are required. These
examples are needed when the number of 10-hour fails
in a failing category (bin) is too small to enable effec-
tive learning of the failing space (for that bin).

In this work, we will show that among the 42 parts
that fail parametric testing after 24 hours and 48 hours of
burn-in, 38 could be predicted using multivariate test mod-
els built using the data from 10 hours of burn-in. The re-
maining four fails fall into two categories: (1) Two (escap-
ing) parts could be predicted using multivariate test mod-
els based on test measurements from 10-hour of burn-in,
provided the earliest lot went through 48 hours of burn-in
and we were able to leverage three parts failing after 24/48
hours of burn-in. These three failing parts were then used
to refine the learning of a multivariate test model and the re-
fined model was able to catch the two (escaping) parts. (2)
The other two escaping parts could not be predicted because
they were unique in the sense that they were the only fail-
ing part in their respective categories (sorted by test bins).
Because there were no other 10-hour (nor 24/48-hour) fail-
ing parts in the same category, we could not learn a mul-
tivariate test model to predict them. However, we could
apply a rule-based learning approach to explain them. The
rule-based models (in contrast to multivariate SVM models)
could be validated with domain knowledge and then applied
to screen out similar future fails.

The rest of the paper is organized as the following. Sec-
tion 2 briefly reviews prior efforts for reducing burn-in
costs. Section 3 describes the data produced by the burn-
in reduction experiment. The learning methodology and its
important aspects are discussed in Section 4. Section 5 dis-
cusses the experimental results. Section 6 concludes.

2 Related work
For burn-in reduction, one early approach was to better

utilize IDDQ tests. IDDQ tests were shown to be able to
identify defective parts including those susceptible to fail
during burn-in [17]. However, larger leakage currents ren-
der IDDQ tests less effective [14]. There were many other
works studying IDDQ tests, e.g. [15, 16, 18]. In practice,
burn-in is still used because it can be difficult to quantify
some burn-in fails with IDDQ measurements.

The alternative is to adopt advanced statistical methods
by employing multivariate analysis [3]. In multivariate test
analysis, a part is screened based on a model built from
several tests collectively. The behavior, or signature, is ex-
posed through the collective analysis of tests to determine
the pass or fail status of a part. For example, the work in

[4] is among those that pioneered this type of analysis for
burn-in reduction. This work analyzed the parametric test
measurements for a 90nm SoC and showed that Principal
Component Analysis (PCA) could transform the tests data
and reveal the abnormal behavior of defective parts. All
parts were analyzed in a PCA space to identify outlying
parts, which were be shown to be more susceptible to failing
during burn-in. A more recent work in [6] analyzed wafer
probe measurements and it was shown that known burn-in
failures behaved as outliers in the wafer probe test space.
A screening methodology was suggested that identified a
population of good parts that could skip burn-in.

In the analog/RF space, the author in [5] analyzed a
dataset consisting of function and parametric results. Var-
ious statistical methods were shown to effectively identify
defective devices in the parametric test space.

In general, many other works utilized multivariate test
analysis to predict devices susceptible to failing in the fu-
ture. For example, the authors in [7, 8] analyzed the para-
metric test data for two products and applied enhanced bi-
nary decision forests to identify redundancies in the test
set. The parametric test measurements analyzed for one of
the devices belong to three final test insertions. The au-
thors identified redundant tests belonging to one insertion
and suggested that more expensive tests could be replaced
with models built from those in less expensive insertions.
In another example, the authors in [11] analyzed parametric
wafer sort data from a high quality SoC and showed the po-
tential for building models from the test data which were
capable of predicting devices likely-to-fail at final pack-
age testing. Similarly, multivariate test analysis was used
in [10, 12] to predict parts that would fail in the field, i.e.
customer returns.

Following the promising results demonstrated in prior
works, using multivariate test analysis, this work was moti-
vated by two questions in the context of our specific burn-in
experiment: (1) Can a multivariate test approach to predict
failing parts after 24 hours and 48 hours of burn-in? (2)
What are the key considerations when creating a learning
methodology to enable prediction?

3 Burn-in Reduction Experiment
In an attempt to assess burn-in costs, a burn-in experi-

ment was performed to determine the total burn-in period
required to screen unreliable parts. In this specific experi-
ment, the parts were subjected to varying intervals of burn-
in where tests measurements were taken after an accumu-
lated burn-in time of 10, 24 and 48 hours. This experimental
flow is illustrated in Figure 1.

The parts that passed wafer tests were packaged and
burn-in was performed for 10 hours. Then, each part was
subjected to the production set of parametric tests which
consists of ∼60 parametric tests including various current,
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Figure 1. Burn-in Reduction Experiment Framework

voltage and frequency measurements. All tests were per-
formed at cold, hot and then room temperatures. Parts that
failed at one temperature were retested up to 6 times and
the parts that failed after retest were removed prior to test-
ing at the next emperature. For example, parts that fail cold
temperature were removed before hot temperature testing.
Parts that passed all 3 temperature tests were subjected to
additional burn-in and tested again, after the accumulated
burn-in time of 24 and 48 hours.

3.1 Burn­in Experiment Data
The burn-in reduction experiment was performed on 8

lots of packaged parts, where each lot contained more than
six thousands parts. The parts that failed during this experi-
ment were put into individual ”bins,” categorized by their
failure mechanisms. Figure 2 shows a Pareto plot of all
burn-in failing parts over bins (y-axis normalized). Note
that bin 1 contains all failing parts that are non-parametric.
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Figure 2. Pareto of all parts that fail burn-in

In Figure 2, most failing parts were captured after 10
hours. Only 34 parts failed after 24 hours and an additional
10 parts failed after 48 hours of burn-in.
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Figure 3. Pareto of parts that fail only after 24 hours
of burn-in and before 48 hours of burn-in

Figure 3 shows the Pareto for the 34 failing parts after
24 hours but before 48 hours of burn-in. In this figure, the
parts failing at room temperature testing are shown in green,

cold temperature testing are shown in red and hot tempera-
ture testing are shown in blue. For example, bin 5 contains
parts failing at all three temperatures. When comparing the
Pareto plot in Figure 2 with the Pareto plot in Figure 3, we
observe that the most frequently failing bins in Figure 2 (bin
1 and 2) are less frequent failing bins in Figure 3. After 24
hours, bin 1 (non-parametric fails) contains only two fails.
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Figure 4. Pareto of parts that fail only after the 48
hours of burn-in

Figure 4 shows the Pareto plot for parts failing after 48
hours. We see that the top three failing bins in Figure 4 are
the same as those in Figure 3.
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Figure 5. Non-parametric fails Vs. Parametric fails

Figure 5 compares parametric fails and non-parametric
fails across the three stages of burn-in. Note that the number
of non-parametric fails drops to two after 24 hours of burn-
in and becomes zero after 48 hours of burn-in. The num-
ber of parametric fails, although drops significantly from
10 hours to 24 hours, does not go to zero after 48 hours
of burn-in. Figure 5 shows that parametric fails require a
longer burn-in time than non-parametric fails. Hence, when
developing the multivariate test analysis methodology, our
objective was to first target parametric fails.

4 The Learning Methodology
The methodology consists of two phases: a learning

phase and an application phase, as illustrated in Figure 6.
During the learning phase, parametric test data collected
after 10 hours of burn-in is used to learn multivariate test
models. In practice, there can be two learning scenarios:
(1) We do not have examples of parts that fail after 24 or 48
hours to learn from. (2) We have examples of parts failing
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after 24 or 48 hours to learn from. In the 2nd scenario, those
examples can be utilized to guide the learning.

Parametric Test Data 
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Figure 6. Learning and Application Phases

During the application phase, each model is applied to
the parametric test data collected after 10 hours of burn-in.
Only the parts failing any model are subjected to additional
burn-in, while passing parts are not. Hence, the amount
of overkill is less of a concern as it will add to the cost of
burn-in. Test escapes are more of a concern because they
will become field failures. Hence, the objective of learning
is to build models resulting in zero test escapes.

4.1 Handling Site­to­Site Variations
Multi-site testing is often applied at wafer and package

level to parallelize parametric testing. Measurements taken
from different sites may have a different offset due to cali-
bration issues, differences in probe resistivity, debris on the
probes, etc. Figure 7 shows an example of this variation.

Test 

Site 1 

Site 2 

Keys 

Site 3 

Site 4 

D
ie

 C
o

u
n

t 

0 1 2 -1 -2 

Figure 7. Site-to-site variation seen with a single test

In Figure 7, the distributions of four sites are shown for a
single test. If each site is considered individually, each dis-
tribution resembles a Gaussian distribution. However, when
viewing all results collectively, the distribution is clearly
non-Gaussian. This can lead to misinterpreting the data as
multi-modal if we do not account for the site information.

Site-to-site variations can mask outlying behavior. For
example, the outlying parts in site 3 (blue) can reside in the
middle of the distributions of site 2 (green) and of site 4
(red). In this figure, only positive outlying behavior from
site 4 and negative outlying behavior from site 1 do not
overlap with distributions from other sites. All others may
be masked by other sites’ distributions.

This masking can also occur in multivariate analysis, as
illustrated in Figure 8. This shows the distributions of the 4
sites in a 2-dimensional test space.
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Figure 8. Site-to-site variation can generate mislead-
ing trends that impact the effectiveness of learning

When considering all samples in Figure 8 collectively,
the data shows a clear linear correlation. However, much
of this linear correlation is caused by site-to-site variation.
If we focus on only the samples of a single site, we see
that the two tests are actually uncorrelated as each individ-
ual distribution looks more like a circle. This shows how a
misleading linear trend be created by site-to-site variation.

Figure 9 shows an example of masking outlying behavior
in the 2-dimensional space. In this figure, failing parts from
bin 7 are shown with all passing parts (red). We see that
one failing part in site 2 (green) and one failing part in site
3 (yellow) are in the middle of the good distribution.
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Figure 9. In the presence of site-to-site variation, some
fails may reside in the middle of the distribution

Figure 10 shows only the parts based on site 3. In this
figure, the outlying behavior of the failing part can be ob-
served. Hence, this behavior is masked in Figure 9 above.

To remove site-to-site variations, each distribution of a
site-test pair was repositioned such that the median is zero.
After repositioning, the parts in Figure 9 are shown again
in Figure 11. As we can see, all failing parts now show
outlying behavior. This plot indicates a systematic failing
signature for the failing parts in bin 7.
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Figure 10. Focusing on site 3 reveals the outlying be-
havior of the failing part
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Figure 11. After removing site-to-site variations, all
failing parts show outlying behavior (Vs. Figure 9)

4.2 Test selection for multivariate test analysis
With many parametric tests, it is important to differenti-

ate tests that are relevant to describing the failure signature
of a bin from those that do not. Test selection algorithms
were applied in previous work to identify the tests which are
most important in describing the failing signature for cus-
tomer returns [10, 11, 12]. In this work, we apply the same
SVM test ranking algorithm, which applies the C-Support
Vector Classification (C-SVC) algorithm [1] to determine
the importance of each test.

Each part is associated with a vector of test results:
v⃗ = (v1, . . . , vn), where n is the number of tests. In test se-
lection, a linear model is learned with the C-SVC algorithm
to separate the two classes of vectors in the n-dimensional
space, where one class of results vectors contains passing
parts and the other with failing parts. Let ti be the variable
to denote the result of test i. This linear model is repre-
sented as C (⃗t) = w1t1+ · · ·+wntn+b = ⟨w⃗, t⃗⟩+b, where
⟨·, ·⟩ denotes the dot-product of two vectors. This equation
defines a linear hyperplane in the n-dimensional space.

The C-SVC with a linear kernel solves the following op-
timization problem:

min 1
2 ||w⃗||

2 + C+
∑

∀i ξ
+
i + C− ∑

∀j ξ
−
j

subject to

(⟨w⃗, g⃗i⟩+ b) ≥ 1− ξ+i ∀ good parts (1)

(⟨w⃗, f⃗j⟩+ b) ≤ −(1− ξ−j ) ∀ failing parts (2)

and ξ+i ≥ 0, ξ−j ≥ 0

where g⃗i is the test result vector for a good part i and f⃗j is
the vector for a failing part j. The slack variables ξ+i and ξ−j
are used to measure how much separation the hyperplane
can achieve to capture the passing and failing parts respec-
tively. C+ and C− are constants that control how hard the
model should try to correctly classify the parts in the pass-
ing and failing classes respectively. When learning the test
importance using C-SVC, we set C− ≫ C+ to ensure that
the resulting hyperplane correctly classifies all failing parts.

In an ideal situation, we want to have ξ+i = 0, ξ−j = 0
for all i and j where the model computes a value ≥ 1 for
all good parts (1) and a value ≤ −1 for all failing parts
(2). This explains why in the objective function, ξ+i and
ξ−j are minimized. We also want to maximize the margin
of the hyperplane, 1/||w⃗||2, which is the distance from the
hyperplane to the closest data point. This explains why the
objective function minimizes ||w⃗||2.

Solving the optimization problem leads to values for
w1, . . . , wn, b. These weights w1, . . . , wn are taken as the
importance measures for each individual test. Each weight,
wi, describes the amount the hyperplane is oriented in the
direction of the variable ti, where a large |wi| means that
ti is in an important direction described by the hyperplane.
Hence, the weight w1, . . . , wn can be used to rank tests.

4.3 Model building ­ binary classifier
In this study, a model is learned from an imbalanced

dataset consisting of a large set of passing parts and a much
smaller set of failing parts (as small as 1 or 2 parts). When
learning, it is important to address this dataset imbalance
which was why the SVM algorithms [1] and more specif-
ically, the C-SVC algorithm [2] was chosen over other su-
pervised learning algorithms.

As described in the previous section, we can deal with
the imbalanced dataset by setting C− ≫ C+ to ensure that
none of the failing parts are misclassified (no test escapes)
while allowing for some overkill. This is important in the
context of this work, as the primary objective is to prevent
failing parts from escaping the remainder of the burn-in pro-
cess. Overkilling parts when applying a model is more ac-
ceptable as it only adds to the cost of burn-in.

The C-SVC algorithm using a linear kernel k(xa, xb) =
⟨xa, xb⟩ was used in a prior work [11], to build models from
imbalanced datasets consisting of few customer returns (1-
2 fails) and many good parts (thousands). The linear kernel
was suitable because the number of customer returns was
small and multiple returns exhibiting similar failing behav-
ior were learned together.
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In this work, the C-SVC algorithm is applied in the same
way but the linear kernel is replaced with the non-linear
Gaussian kernel k(xa, xb) = exp(−γ||xa − xb||2). These
non-linear models are recommended for scenarios where
there are many (tens) failing parts whose failing signatures
point in slightly different directions in the multivariate test
space. Both the linear and non-linear models are effective
at describing a the failing space in high dimensions, but the
non-linear model can achieve this with fewer misclassified
samples i.e. overkill.

4.4 Pre­filtering tests
When determining test importance using the C-SVC test

selection algorithm, all tests are used. However, this can
lead to an over-fit model. To demonstrate this, we use bin
5 tested at hot temperature as an example. We divide 8 lots
of data into a training set and validation set, each consisting
of 4 lots. We rank all tests by applying the C-SVC using
the failing and passing parts in the training set. Using the
test ranking, we select the top i tests (with the largest |wi|)
to build a binary classifier to separate the failing parts from
the passing parts.

When training, we are only aware of parts in the training
set. Hence, we select the top i tests such that the training
error, measured in terms of the number of overkill, is min-
imized (recall that each model ensures that all failing parts
are correctly classified, i.e. no test escapes). The follow-
ing explains how this minimization objective could lead to
over-fitting the model to the training set, which results in a
model that produces test escapes when applied to the vali-
dation set.

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

200 

E
sc

a
p

e
s 

T
ra

in
in

g
 E

rr
o

r 

Training Error 

Escapes 

Figure 12. Results of selecting the top i tests when
model learning is applied with all tests
Given the test rank, Figure 12 shows the training er-

ror as we selected the top i tests to build the model, for
i = 1, . . . , 20. Then, these models were applied to the val-
idation dataset to monitor the number of test escapes for
each model. In Figure 12 the number of selected tests used
to build each model is shown on the x-axis, the training error
is shown on the left y-axis, and the number of test escapes
in the validation set is shown on the right y-axis.

In Figure 12, we see that the training error decreases
rapidly as more tests are used. When i ≤ 7 tests, the model
results in no test escapes in the validation set. For i >7 tests,
including additional tests results in test escapes while the
training error continues to decrease. This indicates model
over-fitting (over-fitting to the training set) which is less
generalizable to the validation set and result in overkill.

Figure 12 presents a challenge for test selection. When
training, we are not aware of the data from the validation
set. Hence, selecting more tests to reduce the training error
to zero would seem to be a logical strategy. The problem
of model over-fitting could be avoided by filtering out tests
unrelated to the failure mechanism prior to test selection.
For example, when dealing with clock related failures, we
can filter out tests that target the ADC block.
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Figure 13. Results of model learning when test selec-
tion is performed after filtering out tests unrelated to the
failure mechanism

Following the experiment in Figure 12, Figure 13 shows
the result when filtering out tests unrelated to the failure
mechanism prior to test selection. We see that the training
error (# of overkill) decreases rapidly for the first 9 tests but
no longer goes to zero. As more tests are used, the number
of test escapes remains at zero, except when the model is
learned with the first 5 tests where only one part escapes.
Figure 13 simplifies test selection because we could select
tests up to the point where the training error saturates, e.g.
with 10-12 tests. At this point, the model also gives no test
escapes in the validation set. This shows that pre-filtering
tests can improve the robustness of the test selection.

4.5 Tests in Hot Vs. Cold Temperatures
As mentioned before, each part was tested with each

parametric test at hot, cold and room temperatures. In this
section, we show that it is important to learn models for
different temperatures separately because different temper-
atures exposed failing parts as outliers in different direc-
tions. For the failures shown in Figure 3 and 4, there were
several bins where parts failed at different temperatures. In
those cases, multiple models were built for each bin.

In Figure 14, the parts from one lot are shown in a
2-dimensional test space consisting of the same test per-
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Figure 14. Tests at different temperatures expose fail-
ing parts as outliers in different directions

formed at hot and cold temperatures. The passing parts are
shown in red. The failing parts in bin 5 are shown where
the parts failing in hot temperature are shown in yellow and
the parts failing in cold temperature are shown in blue. We
see that the two sets of failing parts reside on opposite sides
of this parametric test space. The hot failures reside on the
bottom right and the cold failure resides on the top left. We
can also see that four of the five hot failures do not show
outlying behavior at cold temperature. The single cold fail-
ure does not show outlying behavior at hot temperature.

As mentioned before, parts in a bin were grouped to-
gether because they failed with similar reasons (manually
decided). Nevertheless, we see that the failing signatures of
these failing parts could be different depending on the test
temperature. For this reason, a multivariate test model was
learned for each bin-temperature pair separately.

5 Experiment
Recall that there were 32 parametric failing parts after 24

hours, and 10 parametric failing parts after 48 hours. Our
objective is to learn models using parametric data after 10
hours to predict these failing parts with a reasonable number
of overkill. As discussed in Section 3.1, the two 24-hour
non-parametric fails were not considered in the study.

5.1 Learning with Only 10­hour Failing Parts
While the models utilize only parametric measurements

after 10-hour of burn-in, in training there are two scenarios
to consider. In the first scenario, we assume no information
is available for parts failing 24 and 48 hours. In practice,
a burn-in process may stop at 10 hours and the objective
is to learn models to decide the set of parts that need to
continue with the burn-in. In the second scenario, we as-
sume some known failing parts are available from 24 and
48 hours of burn-in. For example, 1-2 lots could go through
the longer burn-in time to extract examples of failing parts.
These known failing parts can be used to guide the learning.
In this section, we assume the first scenario. The second
scenario is discussed in the next 2 sections.

When learning a model, we divided 8 lots of data into 4
lots for training and 4 lots for validation. Parts that failed
after 10 hours of burn-in were used. The parts failing after

24/48 hours were put into the validation set. They were
considered as passing parts in the learning.

There were 8 test bins and three test temperatures. In
total, we built 24 models. As discussed in Section 3.1, bin
1 contained non-parametric related failures that were not of
our concern. For the remaining 21 bin-temperature pairs,
8 of them did not contain any failing part. As a result, we
learned 13 models, one for each bin-temperature pair that
contained at least one failing part. Each model was learned
with the 4 lots of training data and validated with the 4 lots
of validation data to ensure that none of the 10-hour fail-
ing parts were misclassified. Together, each model divided
all parts in the 8 lots into two classes, the passing and the
(likely) failing classes.

In this experiment, we were interested in two numbers:
the total number of overkill incurred by each model and the
failing parts from 24/48 hours that were captured by the
model as failing parts. Table 1 shows the results for the 13
models. The ”Tests” column shows the number of tests se-
lected which were used to build the model. The ”10h Fails”
column shows the number of 10-hour failing parts used in
the training set. We use ”> 10” to avoid showing the ac-
tual numbers so no detailed information on yield is revealed.
The ”# of overkill” is the number of total passing parts (after
10 hours) classified by the model as ”likely-to-fail.” These
are the parts that need additional burn-in.

Bin Temp Tests
10h # of 24-48h fails
Fails overkill Capture Escapes

2 Cold 10 > 10 3 1 0
3 Hot 10 > 10 11 4 0
3 Cold 2 1 52 2 0
4 Hot 5 > 10 323 1 0
4 Cold 2 > 10 4,040 1 0
5 Hot 10 4 1 4 0
5 Cold 10 2 63 1 0
5 Room 3 > 10 3,370 7 0
6 Hot 4 2 218 13 2
7 Hot 9 5 256 4 0

3 models below do not catch any 24/48h fails
2 Hot 10 > 10 58 0 0
4 Room 2 8 380 0 0
7 Cold 10 2 56 0 0

Two 24/48h fails are unique; no 10hr fail in the same category
7 Room - 0 - 0 1 (24hr)
8 Cold - 0 - 0 1 (48hr)

Table 1. Learning from parts that fail after 10 hours of
burn-in to predict parts that fail after 24/48 hours with
a total # of overkill = 7403 < 15% of total population

Among the 42 failing parts after 24/48 hours of burn-
in, Table 1 shows that 38 of them could be predicted by
10 multivariate test models. Three models did not predict
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any 24/48-hour fail. However, they did not incur a large
number of overkill either. The total number of overkill is
7403, representing less than 15% of the total parts.

Bin 7 at room temperature contained only one fail after
24 hours. It did not have any fail at 10 hours. Hence, there
was no model built. Similarly, bin 8 at cold temperature had
only one fail, after 48 hours. Hence, no model was built for
that bin-temperature pair either.

Figure 15 shows an example 2-dimensional linear test
model, with all passing parts (red) and failing parts in bin
5 at room temperature. The model was learned from the
parts that failed after 10 hours of burn-in (yellow). We see
that no failing parts resides in the passing region and the
suspect space has a mixture of passing and failing parts,
which includes all parts that failed after 24 (green) and 48
(blue) hours.

Test 1 

Te
st 2

 

24h Failures 

48h Failures 

Passing 

Keys 

10h Failures 

Learned Model 

Passing Region 

Suspect 

Region 

Figure 15. An example model to illustrate learning
from the parts that failed after 10 hours of burn-in to
predict parts failing after 24/48 hours of burn-in

The example model in Figure 15 is shown with a 2-
dimensional test space for illustration purpose. In actual
application, it is more effective to learn a model in a higher
dimensional test space because it separates the failing from
passing parts more effectively. For this particular example,
the model used to obtain the result shown in Table 1 was
actually learned with three tests. Moreover, the non-linear
Gaussian kernel was used to build a non-linear model to re-
duce the number of overkill.

5.2 Reducing overkill by Learning From Parts
that Fail After 24 Hours of Burn­in

If we use bin 5 at room temperature in Table 1 as an ex-
ample, we see that the number of overkill is large, i.e. 3370.
There were 7 failing parts after 24 and 48 hours. We se-
lected one of these parts, from the earliest lot, which failed
after 24 hours. We assumed the lot went through 24 hours
of burn-in so that this part was a known failing part. This
part was added to the training dataset and used for learn-
ing. Table 2 shows that with this additional failing part, the
number of overkill can be reduced to 2269.

Tests
10h 24h # of 24-48h Fails
Fails Fails overkill Capture Escapes

3 > 10 0 3,370 7 0
3 > 10 1 2,269 6 0

Table 2. Reducing overkill by learning from a single
known failing part after 24 hours

5.3 Reducing test escapes by learning from Parts
that Fail after 24­48 hours of Burn­in

One major issue shown in Table 1 is the two test escapes
for the model built from bin 6 at hot temperature. Notice
that there are only two 10-hour fails. Hence, the number
of failures used in the learning was very small. For illus-
tration purpose, Figure 16 shows a 2-dimensional test space
where all passing parts (red) and failing parts after 10 (yel-
low), 24(green) and 48 (blue) hours are shown. We see that
learning from two 10-hour failures is not enough to push
the decision boundary left enough to include the two test
escapes (the two parts on the left of the dot line, i.e. the
”learned model”). As a result, there are two failing parts,
one after 24 hour and the other after 48 hour that reside in
the passing region. Hence, the test escapes were due to the
small number of 10-hour failures available for learning.

24h Failures 

48h Failures 

Passing 

Keys 

10h Failures 

Test 1 

Te
st 2

 

Learned Model 

Passing 

Region 

Suspect 

Region 

Figure 16. Learning from too few parts that fail after
10 hours of burn-in may not be effective

Among the 13 24/48-hour fails in bin 6 at hot tempera-
ture, we selected three parts from the earliest lot that were
not the two test escapes. We assumed that these three parts
were known fails available for learning. Together with the
two 10-hour failing parts, we had 5 failing parts for learn-
ing. A new set of tests were selected and a non-linear model
was learned.

Table 3 shows the effect of adding the three known
24/48-hour fails. The first row is the results from Table 1.
The second row shows zero test escapes with increased
number of overkill. The two escapes are now among the
12 fails captured by the model.
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Tests
10h 24-48h # of 24-48h Fails
Fails Fails overkill Capture Escapes

4 2 0 218 13 2
3 5 3 641 12 0

Table 3. Reducing test escapes by learning from three
known 24/48-hour fails

5.4 Summary of results
Table 4 summarizes the results discussed above. In this

table, only 40 24/48-hour fails are considered. The two
unique fails will be discussed in the next section.

Fails used Total 24/48 Fails
in learning overkill Considered Capture Escapes

10 hours only 7403 40 38 2
10/24/48 hours 7327 36 36 0

Table 4. Summary of results

In the second row of the table, we assumed the earliest
lot went through 48 hours of burn-in and four failing parts
after 24/48-hours became known failing parts. These four
failing parts were used in the learning. The result, from all
models collectively, shows slight a reduction in the number
of overkill while resulting in no test escapes. Table 4 sug-
gests that prior to applying the proposed methodology, an
initial run of 48 hours of burn-in may be required on a few
lots to collect examples of parts failing after 24/48 hours.
These examples are useful for guiding the model building to
avoid test escapes. As mentioned before, the total overkill
number shown in the table represents less than 15% of the
total population. In other words, less than 15% of the parts
require additional burn-in after 10 hours.

6 Explaining Unique Failures

Bin
Temp

24/48 hour 10h
Number Fails Fails

7 Room 1 (24h) 0
8 Cold 1 (48h) 0

Table 5. Failing parts that could not be predicted using
the previously-described learning approach

Table 5 summarizes the two 24/48-hour failing parts that
are unique in the sense that the same bin-temperature pair
has no 10-hour nor other 24/48-hour fails. Because these
two are unique, we cannot build a model to predict them.
We could learn from the failing part itself to build a model,
but we would not have another failing part to validate the
model. The alternative is to apply a rule-based approach
[19] to explain the unique fail.

6.1 Learning a Rule to Describe the Unique Fail
in Bin 8 which Fails After 48 Hour of Burn­in

With one failing part and many passing parts, rule learn-
ing can be applied to extract a ”test” rule to explain the
uniqueness of the failing part. The test vector of the fail-
ing part satisfies such a rule while the test vectors of none
of the other parts satisfies the rule. The rule found for the
failing part in bin 8 in Table 5 is shown in Table 6.

Clause Test Type Measured Range
Voltage Test 1 Cold -∞ - -3.36
Voltage Test 2 Cold -∞ - -1.80

Table 6. Rule learned for the bin 8 failing part

The rule in Table 6 states that the abnormal behavior for
the failing part in bin 8 is characterized by the outlying be-
havior on the negative side of a regulator voltage test and
of a voltage stress test. After discussing this result with the
test engineer, we considered this to be a feasible rule be-
cause bin 8 characterizes parts that fail to produce a specific
voltage value out of the voltage regulator.

This rule can be visualized in a 2-dimensional test space
shown in Figure 17. The rule describes the region in the
bottom left corner of this test space. As we can see, the
unique failing part resides in this tests space where no other
parts does.
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Figure 17. Applying the learned rule to the one lot
containing the failing part

In order to validate this rule, the rule was applied to all 8
lots of data. In addition to the unique failing part, only six
more parts satisfied the rule. In application, these six parts
would be added to the overkill set.

6.2 Learning a Rule to Describe the Unique Fail
in Bin 7 which Fails After 24 Hour of Burn­in

Similarly, for the unique fail in bin 7 at room tempera-
ture, we extracted a rule to describe its uniqueness. The rule
is shown in Table 7. This rule is described by two voltage
tests performed at different temperatures. The failure type
is related to the clock. The rule suggests that the frequency
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issue may be related to the voltage of the chip. When ap-
plying this rule to all 8 lots of data, only one additional part
satisfied the rule.

Clause Test Type Measured Range
Voltage Test 1 Ambient 0.0067 - 2.219
Voltage Test 1 Hot -4.007 - -2.262
Voltage Test 2 Cold -2.984 - -2.012

Table 7. Rule learned for the bin 7 failing part

7 Conclusion
In this work, we study the potential of using paramet-

ric test data after 10 hours of burn-in to predict the parts
that fail with additional hours of burn-in. The experiment
was based on 8 lots of parametric test data for a 3-axis ac-
celerometer design. Our findings can be summarized as the
following: (1) It is more effective to learn a multivariate
binary classification model for each bin-temperature pair.
(2) Applying these models can identify a large population
of passing parts that do not require additional burn-in after
10 hours. (3) To achieve zero test escapes, it is required to
perform an initial experiment to obtain a few known failing
examples at 24/48 hours. (4) A diagnosis approach, i.e. rule
learning, is required to handle unique fails that only occur
after 24/48 hours of burn-in. While we cannot build a model
to predict a unique fail, a rule (based on 10-hour parametric
measurements) can be learned to explain them. These rule
models can then be applied to identify similar fails (using
only 10-hour burn-in data) in the future.

The two 24-hour fails are not considered in this study
because they are non-parametric fails (in bin 1). This type
of failure seems to be exposed earlier in the burn-in process
when compared to parametric fails. This suggests that in
practice, we could run burn-in for a predetermined amount
of time to expose all non-parametric fails. The experimental
data suggests that we have to perform burn-in on all parts
for 24 hours. Then, more than 85% of the parts could be
identified as passing which do not require the additional 24
hours of burn-in. If we consider the original total burn-in
time to be 48 hours multiplied by the total number of parts,
the result suggests that there could be a saving of more than
42.5% of total burn-in time. In practice, a larger dataset
is needed as the number of non-parametric fails is not suffi-
cient to get a confident measure of the burn-in time required
to expose the non-parametric failures.

The proposed learning methodology predicts paramet-
ric fails and it is not applicable for learning from non-
parametric fail as the tests that target their failure mecha-
nism are binary i.e. either pass (1) or fail (0). For example,
parts passing all tests after 10 hours would have the same
test vector of all 1’s. Hence, there’s nothing to learn from.
To predict non-parametric failing parts, we need to create a
parametric test spaces where their abnormal signatures can

be exposed earlier in a burn-in cycle. This will be subjected
to further research.
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