
Journal of Information Processing Systems, Vol.4, No.1, March 2008 33

An Experiment of Traceability-Driven System Testing

Eun Man Choi* and Kwang-Ik Seo*

Abstract: Traceability has been held as an important factor in testing activities as well as model-

driven development. Vertical traceability affords us opportunities to improve manageability from

models and test cases to a code in testing and debugging phase. This paper represents a vertical test

method which connects a system test level and an integration test level in testing stage by using UML.

An experiment how traceability works to effectively focus on error spots has been included by using

concrete examples of tracing from models to the code.

Keywords: Software Engineering, Software Testing, Traceability, UML-based Testing

1. Introduction

We often observe the cases in which paying heavy cost

to testing and maintenance due to the small errors induced

by mistakes. If traceability between different views and

levels of abstraction are not provided then their testing or

maintenance requires a great effort. Those cases suggest

that great expenses should be produced after completion of

a software system as well as under construction. In the

context of testing and maintenance activities, we often look

over model to the code back and forth to figure out error

spots.

At present the requirement or design specification is

used broadly for a software system test[1]. In requirements

and design stage, we analyze these artifacts to check errors

because the artifacts have faults. In testing stage, we test a

system by validation and verification.

However, the need of short time-to-market requires that

staged testing activities are more tightly connected by

traceability. If testers found faults in system level testing,

sometimes they need to look down the code level behalf of

just noticing faults to unit authors. Developers have to

modify source code bearing errors to make correctness

after finding out faults in testing stage. It is difficult to

inspect a logical structure and algorithm of source code

because most of test methods based on UML are black box

testing style. Therefore, it is hard to grasp the error spot

and trace a code line. Moreover, both test team and

development team need to spend lots of cost and time to

communicate about errors in case that test team or quality

assurance team and development team work separately.

When test team executes testing based on UML

specification and finds any faults they should explain not

only those faults but also various data and process used to

find faults to developers. That means that it needs lots of

effort to communicate each other. In cases of this, if it is

possible to associate the relation between test cases and

source code they can decrease costs and effort of

communicating to correct errors although they work

separately.

Testing and verification of a system based on UML

specification are classified in two types, before and after

implementation. The first one is UML verification methods

to judge the correctness of UML specification itself in

analysis and design phase before implementation. The

second one is a method of testing a system based on UML

specification after implementation. UML design test is

contributed to save money due to the early detection of

errors. But only testing design specification is not

sufficient to verify and confirm the software’s detail

functions and implementations.

Model based system testing also has the limitation that

can not cover the detail in syntactic level and microscope

functions of a system under test. It is useful to show the

correctness of a system in user requirements level. But it

has difficulties to locate error spots in code level and trace

from design to implementation. Error types of mismatching

with models and code would be the most critical weakness

of model-based system testing.

System testing needs to be more rigorous by vertical

trace from system to unit level. Detection of faults in

system testing should be flowed fast by tracing location of

errors in more detail level down. This paper proposes a

rigorous approach that designs test cases about system

functions by applying the proposed test method and studies

test methods to trace the relation between source code and

test cases. The proposed test method in this paper supports

to find error spots by tracing between test cases, UML

artifacts, and source code.

2. System Testing and Traceability

System testing is concerned with testing an entire system

based on its specification. The work presented in this

DOI : 10.3745/JIPS.2008.4.1.033

Copyright ⓒ 2008 KIPS (ISSN 1976-913X)

Manuscript received October 23, 2007; revised January 10, 2008;

accepted February 28, 2008.

Corresponding Author: Eun Man Choi

* Dept. of Computer Engineering, Dongguk University, Seoul, Korea

(emchoi@dgu.ac.kr, bradseo@dgu.ac.kr)

34 An Experiment of Traceability-Driven System Testing

section addresses system testing based on test cases

derived from UML models and traceability research up to

the present.

2.1 Specification Based System Testing

Braind and Labiche described the TOTEM methodology

that derives test requirements from UML use case

diagrams, interaction diagrams for each use case, class

diagram with OCL constraints, and data dictionary

describing classes, attributes, and methods[2][3].

Abdurazic and Offutt described a set of test requirements

based on collaboration diagrams in which all the messages

must be sent at least more than one times[4]. Also they

proposed a technique for generating test cases from a

restricted constraints of UML state diagrams[5]. Briand et

al. enhanced this approach to support call and signal events,

and various types of actions. A restricted form of UML

class diagrams is used by Sheetz et al. to generate system

test inputs. This approach converts a set of test objectives

derived from class diagrams into test input sets. This

approach ignores the details, such as generalization-

specialization relationship between classes, that are present

in class diagrams[6]. Hartmann et al. described an

approach for testing distributed components[7].

Most UML based testing methods mentioned above have

focus on functions or system tests. In other words, those

test only system functions or interactions of modules and

they have insufficient information about the relation

between testing targets and source code. It makes difficulty

to trace source code including errors although we find out

defects. Therefore the information and technique between

test cases and source code need to offer effective

communication between testers and developers.

2.2 Traceability

Traceability means the ability to trace the life of an

artefact from its inception to its use. Artefacts could be

requirements, code, models, reports and test cases, etc.

Generated traces can be used for several purposes:

documenting links from implementation to models in order

to show domain; managing changes to models; managing

changes to code; performing impacts analysis. Although, to

date, much of the research work in the literature has

focused on requirements traceability or change effect

analysis[8][9]. Also a lot of the research has carried out to

improve connection between artifacts. In general,

traceability is mentioned to trace from requirements to

source code to maintain and understand

artefacts[10][11][12][13]. Also there are the research of

automation and algorithm to improve performance[14][15].

Some research to testing is proposed but they study

convenience and efficiency to trace test documentations

not to trace error spots[16][17]. So this paper supports to

find errors and trace error spots in source code. Rigorous

system testing really needs a full traceability. If “trace” is

in place from requirements and test cases through models

to code, tester can see what parts of the model and code are

possibly defect after system testing.

Rigorous system testing also needs maximum domain

based on the specification. K. Seo and E. M. Choi

presented empirical comparison of major black-box testing

methods based on UML and demonstrated the different

domain results obtained from an experiment of testing

example software system[18]. They compared five test

methods: simple use case driven testing[19], collaboration

diagram driven testing[4], Object-Z driven testing[20],

OCL driven testing[21] and extended use case driven

testing[22]. The experiments found that the extended use

case driven testing method and the OCL driven method

have relatively broad testing domain. An extended use case

test method is a kind of black-box test based on system

functions by using a scenario which contains logical flow

test of the internal of program unit. Otherwise, the OCL

test method doesn’t verify the logical flow but it tests the

relationship with member variables or methods or objects.

Therefore, if we find errors during testing the scenario

instance which represents the logical flow by extended use

case test method and then inspect those errors by OCL test

method, testing work would be more efficient.

3. System Testing by Vertical Tracing

We define the meaning of vertical software testing in

two viewpoints. The first viewpoint includes an abstraction

level from unit testing level to system testing level through

integration test level. It is not restricted within only one

specific abstract test level. The second viewpoint is to

separate system function domains as test targets and

restrict testing scope on separated functions during testing

vertically.

3.1 Abstraction Level Viewpoint

Fig. 1 shows testing process by vertical tracing. The

process is based on V-model as the standard for carrying

out IT-projects with the German government[23][23]. Left

tail of the V development cycle represents the specification

stream where system specifications are defined. Right tail

of the V development cycle represents the testing stream

where systems are being tested against the specifications

defined on the left-tail. Usually unit test is executed by

developers. Both integration and system testing are

executed by testing or QA teams. If it is possible to

identify requirements, design, and implementation artifact

related to detected errors by system testing, more easily we

can execute integration and system testing and modify

source code. To realize this way when a tester finds errors

during system testing, he goes down integration test level

in detail to test the domain relying on error spot of system

testing. Also by the error information detected in

integration level they analyze unit test target and source

code. This approach can help finding the error spot through

entire test levels.

Eun Man Choi and Kwang-Ik Seo 35

Fig. 1. Vertical tracing based on V-model[23][24]

3.2 Testing Domain Viewpoint

After coding phase, testers check system functions

according to the user requirements. It is difficult for testers

to check out all parts of source code like white-box style.

Therefore functional test methods such as black-box test

style are frequently used to check customer's needs.

Use case models system’s behavior in the user point of

view and describes how the system interacts with end-users.

Use case slice means collection of all classes, messages,

conditions that describe single function of the system.

Generally speaking, a system provides many functions and

many classes inside of the system are interacting for one of

system’s functions. No all classes work to implement one

function and also no all methods and variables work in

classes to implement a specific function. Therefore it is

reasonable that testing only classes, methods, and variables

which really work together is more efficient than testing all

classes, methods, and variables to validate system

functions.

Fig. 2. Use Case slices

4. Traceability-Driven Testing

The big difference of rigorous system testing is that it

has more detail process to figure out the cause of faults.

Traceability level takes care in case of failures of system

testing. In Fig. 3, the test process shows the possibility of

vertical testing in abstract level and domain. To generate

test cases with function tests, use cases and class diagrams

defined in requirements analysis and design stage are

referred. OCL and MM(Method Message)-Path[25] are

extracted from class diagrams and sequence diagrams.

Pre-condition and post-condition expressed in OCL are

used in designing test cases for system testing. We generate

test data which is inputted into the first called class among

classes realizing use cases by using pre-condition. And the

results such as states of the last called class among classes

realizing the same use case are compared with post-

condition. In requirement analysis and design stage, OCL

defines multiplicity, constraints, input/output conditions of

a use case. Therefore post-condition of OCL can be used

as expected results. In Figure 2, to buy ticket customer

should input 0, 1, or 2 as a limited available date. It means

the range of input data is equal or larger than 0 and equal

or less than 2. MyBuy.buy() method receives one number

from CustomerScreen by customer. So the input data

range can be defined by OCL for MyBuy.buy() and the

input data can be test data for the BuyingTicket function. In

case the BuyingTicket function of ATSS is finished

successfully, PopupBox.setPopup() should return ‘true’

boolean value to TicketIssuerer. So return data type can be

defined by OCL for PopupBox.setPopup() and also the data

can be expected results as test oracles.

MM-Path is a sequence of methods by messaging to

realize a use case. We can make a function level test case

based on the first and last called classes within MM-Path

and test the result from finishing the MM-Path execution

by OCL. Also we can catch error information occurred

within MM-Path during function testing.

We can concern the correctness of integration testing

when errors break out in function testing. So we need the

way to check entire integration testing with error possible

functions. Also although the function testing is also success,

Fig. 3. Rigorous testing process

36 An Experiment of Traceability-Driven System Testing

tester can want to inspect interaction of classes. For this

case, repeatedly we split the MM-Path into a smaller

partition and execute integration testing. This approach

makes vertical testing that executes test from at first

function testing to integration testing of classes in a

function.

4.1 Traceability Support

In order to support traceability among models, source

code, and test cases the structure of link relations among

various artefacts are necessary. Each artefact has its own

structure and purpose respectively but semantic

associations are rarely exposed to representation. Most

engineers just guess tracing from software design to code

or vice versa and locate source code bearing errors by

experience.

This paper searches useful trace links to test and offers

connection by marking useful relation on artefacts. Above

all, we analyze association between analysis requirements

in various abstract levels and offers links to obtain

reference.

The rigorous system test method proposed in this paper

affords us to trace requirement model, object model, and

source code used in generating test cases as well as in

developing requirements models. The links to support

traceability can be composed as follows.

 Source code link – mark a tag processed by javadoc. For

instance, a tag such as {@link

ReservationUML.CustomerStaff} supports to trace

object model.

 UML model link – mark an extended tag to link each

element such as use case, class, state, interface, etc. in

UML model. For instance, if a class has

{implementedBy = java.appl.hotel.ReservationAppl.

java}, this supports traceability to source code.

 Test case link – generally test cases are represented in

table style as document like in Fig. 4. Hypertext link

offers traceability between documents.

Buying

tickets

Managing

information

Displaying

purchase

history

Reservation
Management

Menu

Management

Customer

Application

Manager

Application

Requirement Model Object Model

/*
/@ Customer Application
/*
package CustomerApp;

class CustomerScreen()
{

/*
/@ Manager Application
/*
package CounterStaffApp;

class StaffScreen()
{

Source Code

<<implementedBy>>

<<implementedBy>>

<<linkedBy>>

Test Cases

<<tracedBy>> <<tracedBy>> <<tracedBy>>

Fig. 4. Links for traceability support

Fig. 5. Classes realizing Use Case

Fig. 6. Traceability support from test cases to source code

Developing a complex software system has many factors

in analysis and design phase. Volume of source code and

test cases are also very huge. Accordingly since the number

of links to offer traceability can be extracted, introduction

of CASE tool is required. This tool will provide facility of

link change according to software modification. There are

two approaches of implementing traceability. The first one

is to create links for traceability and store link information

in repository. The other is to implement trace links within

tools or documents. The case of former needs to link

various CASE tools to repository built by XML.

To construct a vertical testing environment, we need

information for tracing between test cases and source code.

Fig. 5 shows use case slices of a hotel management system.

This has Reserve Room, Check-In Customer, and Check-

Out Customer functions. Each function is realized by

methods in three classes.

A unit of test case can be considered to be it of one use

case. So in Fig. 6 a test case is designed as a use case unit.

Fig. 6 shows the transformation from three test cases into

classes under test, scenario and source code.

Test cases have test domain composed of classes

realizing use cases. We can recognize that Room and

Reservation classes are belonging to Reserve Room test

domain. MM-Paths are used for generating test scenarios.

For instance, the test scenario to test Reserve Room

function is "Room.checkAvailability() →

Reservation.create()” and we can find errors during

executing this scenario. Also we can trace error spots in

source code from the information about classes, methods,

and attributes within the MM-Path. To construct this

testing environment, we need several links data about test

cases, classes, scenarios, methods and so on.

Fig. 7 shows the information of traceability links. In Fig.

7 we can see the tree structure which composed test cases,

test domain, scenarios, and source code. One test case has

relationship with several classes and also each class has

several methods and attributes. We can also

Eun Man Choi and Kwang-Ik Seo 37

Fig. 7. Traceability links data

compose scenarios from set of classes and methods.

Attributes are the testing target which is included in both

scenario and source code. Therefore we can have

traceability from functions to source code.

If source code is changed according to modify

requirements, also the link information should be changed.

In Fig. 5, suppose that ‘Check Out Customer’ add a

function to show the room service list before the payment

customer. It means that ‘printList()’ method should be

added in ‘Payment.’ It is not change { implementedBy =

java.appl.hotel.Payment.java} as UML link information but

add {@link ReservationUML.CustomerStaff.printList()} as

javadoc expression.

4.2 Experiment and result

An experiment is designed for 1) investigating what

kinds of information play important role in rigorous testing

via tracing and 2) comparing effectiveness of proposed

approach to recognize error spot. That includes rigorous

system testing ATSS(Automatic Ticket Sales System) as a

sample system by following procedure explained in Fig. 3.

ATSS supports to buy a meal ticket for customers after

checking date and browsing meal menu.

Table 1 shows that each combination of traceable

information covers. Use case, sequence, component, and

deployment diagram are used in system testing level

because they are mainly applied to function testing. We

Table 1. Accessible domain of combinatorial information

UC SQ UC/SQ SQ/ST SQ/CL
UC/SQ/

ST

UC/SQ/

CL

System ○ ○ ○ ○ ○ ○

Integration ○ ○ ○ ○ ○ ○
Test

Level
Unit ○ ○ ○

S-I ○ ○

I-U ○ ○

Meta

informa

tion U-S/C ○

Linkage process or

mechanism
 ○ ○ ○ ○

(UC: use case, SQ: sequence, UC/SQ: UC and SQ, SQ/CL: SQ and class,

SQ/ST: SQ and state chart, UC/SQ/ST: UC, SQ, and ST, UC/SQ/CL: UC,

SQ, and CL, S-I: System and Integration, I-U: Integration and Unit, U-

S/C: Unit and Source Code)

compared several meaningful combinations of UML

diagram information and source code to find out what are

the optimal combinations to provide traceability. There are

6 combination of traceable information shown at Table 1.

UC/SQ/CL combination has the largest domain, meta-

information to represent traceable linkage, and linkage

mechanism.

To figure out reasonable combination of traceable

information and show effectiveness of the proposed

rigorous method by supporting traceability we compared 6

combinations mentioned above. We implanted various

types of errors in developed sample system. Test object

domain is composed of three use cases of ATSS;

BuyingTicket, InformationManagement, and

SearchingBuyingHistory. Each use cases has 5 ~ 7 events

which can be elements of MM-path. Table 2 shows

BuyingTicket use case description in brief.

Table 2. BuyingTicket Use case

Use Case : BuyingTicket

Event

1. Customer inputs ID and Password to login.

2. Customer selects a date.

3. Customer searches a menu list.

4. Customer selects the menu.

5. Customer pays the money.

6. Customer receives a receipt.

7. Customer logouts.

Constraints Available date is only within 3 days from the present.

Table 3. Implanted error examples
Abstrac

tion

Level

Error Type Original Intended error

Message Passing

Error
db.insertBuy() Db.insertPurchase()

Method Parameter

Type Error
db.insert(String code) Db.insert(int code)

Integra

tion

Level
Method Return

Type Error
return true; return true;

Method Algorithm

Error

if(ob == btnBuy){

if(Check()){

 Buy();

}

}

else if (ob == btnFood){

 if(Check()){

 detailFoodInfor();

}

}

else if(ob == btnSearch){

 getBuy();

db.initBuyList(ccDate);

}

}

if(ob == btnBuy){

if(Check()){

 Buy();

}

}

else if (ob == btnFood){

 if(Check()){

 detailFoodInfor();

}

else if(ob ==

btnSearch){

 getBuy();

db.initBuyList(ccDate);

}

}

Member Data Type

Error

String id;

id = ftID.getText();

ind id;

id = ftID.getText();

Member Data

Missing

Int openCount = 0;

openCount++;

No declaration

openCount

Unit

Level

Member Data

Range Error
0 <= intDate <= 2

if(intDate == 1)

{ccDate = “08-Mar-11”}

else if(intDate == 2)

{ccDate = “08-Mar-12”}

else if(intDate == 3)

{ccDate = “08-Mar-13”}

38 An Experiment of Traceability-Driven System Testing

Table 4. Error detection rate of combinatorial traceable

information

Pure System Testing Rigorous TestingAbstrac

tion

Level

Error Type

(Implanted Error

Number) UC SQ
UC/S

Q

SQ/S

T
SQ/CL

UC/SQ/

ST

UC/SQ/

CL

Message Passing

Error (4)
0/4 4/4 4/4 0/4 0/4 0/4 4/4

Method Parameter

Type Error (5)
0/5 5/5 5/5 0/5 0/5 0/5 5/5

Integra

tion

Level
Method Return

Type Error (5)
0/5 5/5 5/5 0/5 0/5 0/5 5/5

Method Algorithm

Error (3)
0/3 0/3 0/3 3/3 0/3 3/3 3/3

Member Data Type

Error (5)
0/5 0/5 0/5 0/5 0/5 0/5 5/5

Member Data

Missing (5)
0/5 0/5 0/5 0/5 0/5 0/5 5/5

Unit

Level

Member Data

Range Error (1)
0/1 0/1 0/1 1/1 0/1 1/1 1/1

(error location information against source code/detected errors)

To compare efficiency of various text methods, some

errors are implanted intentionally in source code as test

target. Table 3 shows the examples with error types. The

errors are two kinds according to integration and unit

abstract level. Integration level is focused on interface

between methods and unit level is focused on elements like

variables or sequences in methods.

Table 4 shows the error detection rate of test execution

in experiment. From this result we conclude that

UC/SQ/CL combination has higher error detection and rate

location than the other combinations. The reason is that the

meaning represented in UML diagram and implemented in

source code can be traversed in detail during system level

testing. In addition we can find and zoom in events or

functions that cause failure by tracing links provided in

rigorous testing.

Looking the shadows zone in integration abstraction

level, they don’t have error location information even

though those test methods find failures. Usually black box

testing style is used for integration level so the information

to trace errors is scarce against source code. Testing

method of use case succeeds in finding the system bears

fault but this doesn’t give developers any clue to fix errors.

Developers just have to guess or suppose error spots by

their own experience.

In the cases of SQ/ST, SQ/CL, and UC/SQ/ST, they also

don’t have information to detect errors. In SQ/ST and

UC/SQ/ST, test methods don’t offer the mechanism to trace

error spots. Only sequence diagram is used as test scenario

to construct key test cases based on state diagram. In case

of SQ/CL, this method offers a test frame by using use case,

sequence diagram, and class diagram but not gives specific

method to design test case and domain. Especially after

using sequence diagram as integration test case, the way

applying class diagram is vague to support the frame from

sequence diagram. Accordingly it doesn’t show test method

based on class diagram in detail and the error location

information to trace is not enough. On the other hand,

proposed method in this paper has specific method

applying OCL to support class diagram based test. The

employment effects of OCL are explained later because it

becomes clearer in unit level test.

Table 3 shows also shadow zone in unit level. The

difference between error location information and detected

error numbers larger than integration level’s. The reason is

that system or integration test cases have description to

find errors in integration or unit level, but after finding this

they don’t offer relation between test case and error spots.

SQ and UC/SQ not only detect errors but also support

traceability in integration level. But they don’t offer error

information in unit level because those methods don’t have

the way to descript unit level information. UC/SQ/ST

method offers detection information to source code from

state diagram in the cases of finding a method algorithm

error and a member data range error. State diagram

supports to check dynamical class states on specific

condition from outside event or inside method. It can

describe history of class attributes by algorithm and checks

states of attribute at specific moment. However it doesn’t

have means to support information of type or missing of

attributes.

We can find that the gap between error location

information and detected error numbers gets higher into

low abstraction level. That shows shortcoming of black

box test style. Black box test style offer developer or test

engineer to economic test way, but after finding errors it is

not easy to trace error spots in source code. If test method

has plenty of test information in each abstraction level, it

supports traceability and offers the way to zoom in

probable error spots. Most UML based test methods have

limited information in use case or model abstraction level.

That result makes hard to support traceability. However the

proposed method in this paper ensures traceability and the

way to zoom in because it extracts test information about

each abstraction level and metadata during building test

case in process.

5. Conclusion

This paper has presented detail procedure for handling

traceability in system testing. Through the presentation of

example traceability links and experiment of error

detection/location it has been shown that the approach is

viable. As the example shows, the instances of traceability

links become quite large even for the small example used

in experiment. This will probably not be a practical

problem as the link information in them will be interpreted

by tools rather than humans.

In the context of effectiveness of error detection

supporting UC/SQ/CL combination for traceability link

were the best in our experiment. However inserted error

types should be extended to pick up the optimal

combination of link in general. The idea of system testing

based on traceability information illustrates more than one

tool may contribute to the traceability with needs to be able

to use this information in a consistent manner.

Eun Man Choi and Kwang-Ik Seo 39

Reference

[1] E. Dustine, Effective Software Testing: 50 specific

ways to improve your testing (Addison-Wesley,

2003).

[2] Lionel Briand and Yvan Labiche, A UML-based

approach to system testing, Proc. 4th International

Conf. on UML - The Unified Modeling Language,

Modeling Languages, Concepts, and Tools, Toronto,

CA, 2001, pp.194-208.

[3] Lionel Brian and Yvan Labiche, A UML-based

approach to system testing, Software and System

Modeling, 1(1), 2002, pp.10-42.

[4] Aynur Abdurazik and Jeff Offutt, Using UML

collaboration diagrams for static checking and test

generation, Proc. 3rd International Conf. on UML -

- The Unified Modelling Language, Advancing the

Standard, York, UK, Vol. 1939 of LNCS, 2000,

pp.383-395.

[5] Jeff Offutt and Anyur Abdurazik, Generating tests

from UML specifications, Proc. 2nd International

Conf. on UML, 1999, pp.416-429.

[6] M. Scheetz, A. von Mayrhauser, R. France, E.

Dahlman, and A. E. Howe, Generating test cases

from an OO model with an AI planning system, Proc.

10th International Symposium on Software

Reliability Engineering, Boca Raton, Florida, 1999,

pp.250-259.

[7] J. Hartmann, C. Imoberdorf and M. Meisinger, UML-

Based integration testing, Proc. ACM SIGSOFT

International Symposium on Software Testing and

Analysis, Portland, 2002, pp.60-70.

[8] O. Gotel and A. W. Finkelstein, An analysis of the

requirements traceability problem, Proc. of the

International Conf. on Requirements Engineering,

Colorado Springs, CO, 1994, pp.94-102.

[9] B. Ramesh, Factors influencing requirements

traceability in practice, Communications of the ACM,

41(12), 1998, pp.34-44.

[10] Marcus, A and Maletic, J. I, Recovering

documentation-to-source-code traceability links using

latent semantic indexing, Proc. 25th International

Conference Software Engineering, 2003, pp.125-135.

[11] G. Antonio and G. Canfora, G. Casazza, Recovering

traceability links between code and documentation,

IEEE Transaction, Vol 28, 2002, pp.970-983.

[12] L. Naslavsky, T. Alspaugh, D. Richardson, and H.

Ziv, Using scenarios to support traceability, Proc.

TEFSE 2005, California, pp.25-31.

[13] T. Kastren, Towards Trace Based Model Synthesis

for Program Understanding and Test Automation,

Proc. International Conference on Software

Engineering Advances, 2007, pp.46-56.

[14] J. Hayes, A. Dekhtyar, and J. Osborne, Improving

requirements tracing via information retrieval, Proc.

11th IEEE Interantioanl Requirements Engineering

Conference, 2003, pp.138-147.

[15] J. Richardson and J Green, Automating traceability

for generated software artefacts, Proc, 19th

International Conference on Automated Software

Engineering, 2004, pp.356-366.

[16] M. Lormans and A. Van Deursen, Can LSI help

reconstructing requirements traceability in design and

test?, Proc. Conference on Software Maintenance and

Reengineering, 2006, pp.47-56.

[17] M. Deng and B. Cheng, Retrieval By Construction: A

traceability technique to support verification and

validation of UML formalizations, Proc. International

Jounal of Software Engineering and Knowledge

Engineering, Vol. 15, 2005, pp.837-872.

[18] K. Seo and E. M. Choi, Comparison of five black-box

testing methods for object-oriented software,” Proc.

4th ACIS International Conference on Software

Engineering Research, Management & Applications,

Seattle, WA, 2006, pp.213-220.

[19] D. Wood, J. Reis, Use case derived test cases, Proc.

on Conf. on Software Quality Engineering

STAREAST, 1999, http://www.stickyminds.com/s.asp?F

=S2021_ ART_2.

[20] Chun-Yu Chen, Constructing usage-based testing on

Object-Z formal specification based specification,

Ph.D. Dissertation, Auburn University, 1999.

[21] E. M. Choi, Generating test cases for object-oriented

design specification described by OCL,” Journal of

Korean Information Processing Society, 8-D(6), 2001,

pp.843-852.

[22] E. M. Choi, Use-case driven test for object-oriented

system, Proc. the IASTED International Conference,

ACTA Press, 2001, pp.164-169.

[23] Droschedl. W and Wiemers. M, Das V-Modell 97,

(German, Oldenbourg, 1999)

[24] Roger S. Pressman, Software Engineering A

Practitioner’s Approach 6th, (McGraw-Hill, 2005).

[25] Paul C. Jorgensen and Carl Erickson, Object-Oriented

Integration Testing, Communications of the ACM,

37(9), 1994, pp.30-37.

Eun Man Choi
He received the BS in Computer

Science from Dongguk Univ. in 1982

and MS degree in Computer Science

from KAIST in 1985. During

1985~1989, he stayed in Korea

Research Institute of Standards and

Science and DACOM Inc. to develop

Korean Information Standards and National Administrative

Information System. He received a Ph.D. degree in

Computer Science from Illinois Institute of Technology in

1993. He has been a professor at Dongguk Univ. since

1993. His research interests include Software Design,

Software Testing, Measurement, Aspect-Oriented

Programming.

40 An Experiment of Traceability-Driven System Testing

Kwang-Ik Seo

He received the BS and MS degrees in

Computer Engineering from Dongguk

Univ. in 2002 and 2004, respectively.

And now he is undertaking a doctorate

course as a member of the software

engineering lab at Dongguk Univ. His

research interests include Software

Testing, Software Quality, and Process.

