
An Experiment with Distance Measures for Clustering∗

Ankita Vimal, Satyanarayana R Valluri, Kamalakar Karlapalem

International Institute Of Information Technology
Gachibowli, Hyderabad, India

{ankita@students., satya@, kamal@}iiit.ac.in

Abstract

Distance measure plays an important role in clustering
data points. Choosing the right distance measure for
a given dataset is a non-trivial problem. In this paper,
we study various distance measures and their effect
on different clustering techniques. In addition to the
standard Euclidean distance, we use Bit-Vector based,
Comparative Clustering based, Huffman code based
and Dominance based distance measures. We cluster
both synthetic datasets and one real life dataset using
the above distance measures by employing k-means,
matrix partitioning and dominance based clustering
algorithms. We analyse the results of our study using
a real life dataset of cricket and compare the accuracy
of various techniques using synthetic datasets.

1 Introduction
Clustering is an important data mining technique that
has a wide range of applications in many areas like bi-
ology, medicine, market research and image analysis
among others. Clustering is the process of partition-
ing a set of objects into different subsets such that the
data in each subset are similar to each other.
The similarity between various objects is defined by
a distance measure. The distance measure plays an
important role in obtaining correct clusters. For
simple datasets where the data is multidimensional,
Euclidean or Minkowski distance measures1 are em-
ployed. But as the dimensions of the dataset increase,
where each dimension denotes a specific aspect of the
dataset, these simple distance measures may not be
the right functions to compute the distance between
the data objects.
In this paper, we experiment with different dis-
tance measures. We validate our results on synthetic
datasets and one real life dataset of cricket. Results of
our experiments show that different distance measures

∗A full version of this paper is available [3]

International Conference on Management of Data
COMAD 2008, Mumbai, India, December 17–19, 2008
c©Computer Society of India, 2008

1http://en.wikipedia.org/wiki/Data clustering

behave differently, and our Dominance measure, as de-
scribed in section 4.6, captures the notion of distance
more accurately, as the results are semantically better
then those by the distance measures mentioned above
and also by k-means2 and DBSCAN [2].
In section 2, we mention related work; section 3 de-
scribes the datasets; in section 4, various distance
measures are defined; section 5 describes various al-
gorithms used; section 6 shows the results; in section
7, we interpret the results; and section 8 concludes the
paper.

2 Related Work
Many distance measures have been proposed in liter-
ature for data clustering. Most often, these measures
are metric functions; Manhattan distance, Minkowski
distance, Hamming3 are such common functions. Jac-
card index, Cosine Similarity4 and Dice Coefficient5

are also popular distance measures. For non-numeric
datasets, special distance functions are proposed. For
example, edit distance6 is a well known distance mea-
sure for text attributes.

3 Datasets
In this paper, we study Euclidean distance and four
new distance measures which we define. We used a
cricket dataset along with synthetic datasets gener-
ated using Syndeca[4] to verify the results.
Syndeca - Various datasets are generated using the
Syndeca software7. The toolkit takes as input the
number of points (integer), the number of dimensions
(integer), the number of clusters (integer), maximum
range for all the dimensions (real) and (0,1), 1 if sub-
space clusters are to be computed, 0 otherwise. Syn-
deca by default generates noise, but we have removed
noise and considered only the cluster points.
Cricket - From the web8, we downloaded a dataset of

2http://en.wikipedia.org/wiki/K-means
3http://en.wikipedia.org/wiki/Data clustering
4http://en.wikipedia.org/wiki/Jaccard index
5http://en.wikipedia.org/wiki/Dice coefficient
6http://en.wikipedia.org/wiki/Edit distance
7http://cde.iiit.ac.in/syndeca
8http://www.cricinfo.com

350 players . The number of dimensions considered are
six. The attributes of the players and sample tuples
in the input file are as in the technical report [3]. A
6-tuple is formed for every player by adding the corre-
sponding values of all the attributes in the file for that
player.

4 Distance Measures
The number of points in a dataset is denoted by N .
Each point is denoted by Pi, Pj and so on. k denotes
the number of clusters and d denotes the number of
dimensions of a point. D denotes the set of dimensions
and Dix

, Djy
represent the subsets of dimensions of the

points Pi and Pj respectively. l,m and x are simply
used as indices.

4.1 Euclidean Distance

An N x N matrix Me is calculated. For points with
d dimensions, the Euclidean distance Me(Pi, Pj) be-
tween two points Pi and Pj is defined as follows:

Me(Pi, Pj) =
√

∑d

x=1 (Pix
− Pjx

)
2

where Pix
and Pjx

represent the xth dimension values
of Pi and Pj respectively. Also, Me is a symmetric
matrix.

4.2 Bit-Vector Distance

An N x N matrix Mb is calculated. Each point has
d dimensions and Mb(Pi, Pj) is determined as a d-bit
vector. This vector is obtained as follows:
If the numerical value of the xth dimension of point Pi

is greater than the numerical value of the xth dimen-
sion of point Pj , then bit x of Mb(Pi, Pj) is set to 1
and bit x of Mb(Pj , Pi) is set to 0. All the bit vectors
in Mb are then converted to integers.

4.3 Comparative Clustering Distance

An N x N matrix Mc is calculated. The set of data
points are sorted in increasing order along every di-
mension. Thus, we generate d sorted lists of the data
points, one along each dimension. For each point, the
set of ranks it is assigned in the d sorted lists is ob-
tained. The score of a data point is defined as the sum-
mation of its rank in the d sorted lists multiplied by a
constant normalization factor. In our experiments, we
used the normalization factor of 10. Based on these
scores, the matrix Mc is generated as:
Mc(Pi, Pj) = Mc(Pj , Pi) = |score(Pi)-score(Pj)|
It can be seen that the matrix Mc is symmetric.

4.4 Huffman Codes

Huffman Encoding9 is a method to encode data in the
form of bits based on the frequency of various values.
The Huffman encoding used here is ordered, that is,
less the number of bits in the code, greater is the fre-
quency of that particular value and more the number

9http://en.wikipedia.org/wiki/Huffman encoding

of bits, less is the frequency.
By determining the maximum value of each dimen-
sion, we divide the [0 − maximum] range into a suit-
able number of bins. Each of the bins is assigned a
unique string value. Based on the values of the dimen-
sions of the points, the strings are assigned a frequency
value. The frequencies of the strings are used to get
the Huffman codes for each bin for every dimension.
Hence, for each dimension of every point, a Huffman
code is assigned based on the frequency of the string
representing the bin to which it belongs to. Then,
these Huffman codes are converted to integers. When
two bins of a dimension have the same frequency, the
integer representation of the Huffman codes reflects
the relative values of the dimension for two different
points. So, for every point, the original data values
are mapped to a new set of integers.
The distance between two points is computed using
Euclidean distance where Huffman encoded integers
are considered instead of the actual dimension values.

4.5 Substring Matching

The Huffman codes for each point are obtained with
respect to every dimension. In this manner we have a
string of 0s and 1s for each point, with the Huffman
codes of each dimension joined by a hyphen(-). For
example, the following shows the values of attributes
of a data point and the corresponding Huffman codes:
Attributes 297 11025 3 134
Huffman 11101110 1111101 00 11101100
codes

The string 11101110-1111101-00-11101100- is formed
by concatenating the Huffman codes of the attribute
values above.
Using this string as a representation of each point, we
determine the similarity using the substring matching
method[1].
The function to compute similarity is described

as follows:

• Given two strings, find the maximum lengths of
the two strings which match.

• Count the number of characters which match.
Now match the right and left unmatched parts
of the strings and add the number of characters
which match in each part to the previous count.

• This process goes on recursively till no substrings
are found to match.

We get the total number of characters matching in
both strings and obtain the percentage similarity (ap-
prox.) Ssub as follows :

Ssub = (2×no. of chars matched)

(total no. of chars in both strings)
×100

In this method, we do not find clusters, but for every
point we get a ranking of the other points based on
this similarity percentage Ssub. Results of the same
can be seen in the technical report [3].

4.6 Dominance measure

Let Pi and Pj be two points and Pix
, Pjx

denote their
xth dimensions; if Pix

> Pjx
, point Pi dominates point

Pj with respect to dimension x. For every point, a vec-
tor of vectors called as domination vector is obtained,
which gives information about the points it dominates
and over which dimensions.
Pi :<< Pi1 ,Di1 >,< Pi2 ,Di2 > ... < Pil

,Dil
>>

Pj :<< Pj1 ,Dj1 >,< Pj2 ,Dj2 > ... < Pjm
,Djm

>>

Pi denotes a point, Dix
denotes the dimensions over

which Pi dominates point Pix
and Djy

denotes the di-
mensions over which Pj dominates point Pjy

.
Similarity measure Sd between two points is defined
as :

Sd(Pi,Pj) =

∑

∀Pix
=Pjy

|Dix

⋂

Djy
|

|Dix
|+|Djy

|

2
(l+m)

2

Let Q be a common point that occurs in the domina-
tion vectors of both Pi and Pj . Let Dix

and Djy
be

the subsets of the dimensions of Q in both the vectors
respectively. We then count the number of common
dimensions of Dix

and Djy
in D. Divide this by the

average number of dimensions of Dix
and Djy

. The
numerator denotes the summation of such values com-
puted for all possible such Q points. The denominator
denotes the average number of points in both the dom-
ination vectors Pi and Pj .

5 Algorithms
5.1 Matrix Partitioning and Splitting

An algorithm is developed on the lines of the Verti-
cal Partitioning Algorithm[5]. The rows and columns
of the value based matrices Me, Mb and Mc are first
reordered based on an affinity based algorithm. The
reordered matrix is then split into k parts by using a
greedy binary partition algorithm. Refer to the tech-
nical report [3] for more details.

5.2 Dominance based method

This method is applied to points when the Dominance
distance measure, as discussed in section 4.6, is used.
A threshold of similarity is provided as T .
Algorithm

• The algorithm takes as input parameters the
dataset file and the percentage similarity measure
T . The number of clusters are not specified. In-
creasing the value of T increases the number of
clusters and vice-versa.

• A point is grouped with another point when Sd ≥
T . A random point is chosen at first. The other
points are compared with the points already clus-
tered.

• In this manner, clusters are formed with each clus-
ter having points which are at least T percent sim-
ilar to each other. When a point can go to two or
more groups, it is put in the cluster where it has
the maximum value of Sd.

However, the algorithm can be modified to generate a
particular number of clusters. Based on the current
number of clusters formed, the appropriate value of T

is found using binary search till the required number
of clusters are generated. But this also increases the
complexity of the algorithm which originally is inde-
pendent of the number of clusters needed.

6 Results
The results (% accuracy) as seen in table 1 are anal-
ysed on the datasets generated by Syndeca. We gen-
erated ten datasets using the Syndeca data generator
with the number of points (N) varying between 15-
40, the number of dimensions (d) varying between 2-6,
the number of clusters (k) varying between 2-7. We
ran the matrix partitioning algorithm using Euclidean,
Bit-Vector and Comparative distance measures. k-
means algorithm was run with the Euclidean and Com-
parative distance measures on the original dataset and
Euclidean on the Huffman encoded dataset. We com-
pared the accuracy of the above algorithms with that
of the dominance based method which uses the Dom-
inance measure. k-means algorithm using the Eu-
clidean measure and the dominance based method ex-
hibit high accuracy in almost all the datasets.

We compared the results obtained by Dominance
based method along with those of k-means and DB-
SCAN. We manually classified the 140 players in the
cricket dataset into four categories - batsmen, bowlers,
wicket keepers and all rounders. The values of all at-
tributes are normalised to fall into the range of 0 − 1.
Given a grouping of players, we compute the goodness
of the solution by quantifying the difference of the fea-
tures of all the pairs of players who belong to the same
category (batsmen or bowlers etc.) but are put into
two different groups. We use different sets of attributes
for different categories - for batsmen, we consider total
matches played and total runs made; for bowlers, to-
tal matches played ,total wickets taken and total runs
given; for wicket keepers, total matches played and to-
tal stumpings made and for all rounders, the union
of the attribute sets of batsmen and bowlers is con-
sidered. The summation of the absolute difference of
their respective attributes is computed across all the
pairs of players as defined before, and the sum value is
then divided by the total number of such pairs. Thus,
the smaller the value, the better the solution that is
obtained. Table 2 shows that the solutions obtained
by the Dominance based method are better compared
to those by k-means and DBSCAN. Refer to technical
report [3] for details.

7 Interpreting Results
We make the following observations:

• The Bit-Vector method, used to get the distance
between two points, gives unnecessary advantage
to some attributes over others. This is because the

DataSet Matrix Partitioning K-Means Dominance
based
Method

Euclidean Bit-Vector Comparative Euclidean
Comparative

N k d Standard Huffman
15 2 6 73.33 53.33 53.33 100 73.33 60 100
17 4 6 41.1 41.1 47 76.47 76.47 64.7 81.25
22 2 6 77.2 63.63 54.5 100 90.90 50 100
25 3 6 44 44 40 100 92 48 100
26 4 6 46.1 42.3 46.1 80.76 80.76 50 96.15
30 2 6 83.33 50 73.33 100 60 70 76.66
31 3 6 45.1 41.9 77.4 100 61.2 51.6 100
32 4 6 34.3 31.25 34.3 100 59.37 34.7 93.75
36 7 5 30.55 27.77 25 100 50 41.66 100
26 6 12 30.76 38.46 26.92 84.61 50 57.69 100

Table 1: Results analysed on Syndeca datasets

No. of Clusters Dominance based Method K-Means DBSCAN
similarity threshold (%) result eps minpts noise pts. result

9 67 0.266 0.278 2000 1 0 0.431
13 75 0.257 0.268 1500 1 22 0.425
23 85 0.245 0.249 1000 1 43 0.330

Table 2: Results analysed on Cricket dataset

integer value depends on the order of dimensions
in the d-bit vector for d dimensions.

• The Comparative Clustering Distance measure
does not perform as expected. This could be be-
cause the measure does not assign any weight to
any dimension. Therefore, we modified the dis-
tance measure to consider weights for the dimen-
sions. By employing a trial and error method,
when appropriate weights are assigned to the di-
mensions, the accuracy of clustering increases.
However, such a modified measure may not be
useful because assigning the correct weights to the
dimensions is a non-trivial problem.

• The 2D modified vertical partitioning algorithm
has huge complexity and is time inefficient for
large datasets. The majority of the clusters ob-
tained by k-way splitting are singular. This could
be due to the greedy heuristic employed.

• We observe that the Euclidean distance values
computed using Huffman encoded integers are
significantly different from those computed us-
ing actual attribute values. The reason is that
the frequency is shown by the number of bits in
the Huffman code and not its integer conversion.
Two Huffman encodes, which represent two dif-
ferent frequencies, can have the same integer rep-
resentation. For example, 000010 represents low
frequency and 10 represents high frequency, but
both of them have the same integer representa-
tion. Hence using the measure of Euclidean dis-
tance for Huffman codes is not a good idea.

• As seen in table 2, Dominance based method is
less sensitive to parameters than DBSCAN. As
the average error is minimum, the results are se-

mantically better than those by k-means and DB-
SCAN.

8 Conclusion
In this work, we analysed various clustering algorithms
when different distance measures are employed. We
ran our experiments on both synthetic and a real life
dataset of cricket. We made several interpretations
about the algorithms and the distance measures based
on the results. Future work involves running the ex-
periments on larger and different kinds of datasets and
extending our study to other distance measures and
other clustering algorithms.

References

[1] John W. Ratcliff and David E. Metzener, Pattern
Matching: The Gestalt Approach, 1998, p. 46.

[2] Martin Ester Hans-Peter Kriegel Jrg Sander and
Xiaowei Xu, A Density-Based Algorithm for Dis-
covering Clusters in Large Spatial Databases with
Noise, 1996, pp. 226–231.

[3] Ankita Vimal Satyanarayana R Valluri and Ka-
malakar Karlapalem, An Experiment with Dis-
tance Measures for Clustering, 2008, Technical Re-
port:IIIT/TR/2008/132.

[4] J. R. Vennam and S. Vadapalli, Syndeca: A tool to
generate synthetic datasets for evaluation of clus-
tering algorithms, 2005, pp. 27–36.

[5] S. Navathe S. Ceri G. Wiederhold and J. Dou, Ver-
tical Partitioning Algorithms for Database Design,
1984, pp. 680–710.

