AN EXPEAIMENTAL ANALYSIS OF ULTIMATUM BARGAINING

Werner GUTTH, Rolf SCHMITTBERGER and Bernd SCHWARZE*
Universitát Koln, 5000 Köln 41, West Germany

Received Juiy 1982, final version received January 1983
There are many experimental studies of bargaining behavior, but surprisingly enough nearly no attempt has been made to investigate the so-called ultimatum bargaining behavior experimentaliy. The special property of ultimatum bargaining games is that on every stage of the bargaining process only one player has to decide and that beiore the last stage the set of outcomes is already restricted to only two resultis. To make the ultimatum aspect obvious we concentrated on situations with two players and two stages. In the 'easy games' a given amount c has to be distributed among the tuo players, whereas in the 'complicated games' the players have to allocate a bundle of black and white chips with different values for both players. We performed two main experiments for easy games as well as for complicated games. By a specie: experiment it was investigated how the demands of subjects as player 1 are related to their acceptance decisions as player 2.

1. Introduction

A game in strategic or extensive form, which is played to solve a distribution problem, is called a bargaining game. Such a game has perfect inforination if all its information sets are singletons, i.e., there are no simultaneous decisions and every player is always completely informed about all the previous decisions. Consider a batgaining game with perfect information whose plays are all finite. Such a game is called an ultimatum bargaining game it the last decision of every play is to choose between two prederermined results. Often a game itself does not satisfy this definition, but contains subgames for which this is true.

In 2 -person bargaining one usually speaks of an ultimatum if one party can restrict the set of possible agreements to one single proposal whish the other party can either accept or reject. Since in an ultimatum bargaining game the set of possible outcomes is narrowed down to only two results before the last decision is made, this explains our terminole,gy.

[^0]The speciality of hitimatum barganing games san be illustrated as follows: Sirce the length of the phay is bounded fom above, there is always a player is who has to make the final decision. Now for all other playery the game is over in the sense that they cannot infuence its outcome any longer. So all that player i has to do is to make a choice which is good for himseif. We can say that player ifnds himself in a l-person gane. Now consider a player f who makes his choice just before player i cerminates the game. If j knows what player i considers as good or bad, payer j can easidy predict how player i will react. Thas in a certain sense we nan say that player j, , po, is engaged in a l-person game. Im the same way one can set that every player in an utimatum bargaining game finds himself in a l-person game. This shows that in ultimatum bargaining games strategic interaction occurs only in the form of anticipating future decisions. Tinte is no mutuat interdependence resulting from simultancous moves or ininite plays.

The obvious solution concept for uhimatam bargaining games is the subgame perfect equilibrium point [Selten (1975)]. The subgane perfect equilibrium behavior can be easily computed by first determining the last decisions, ther the second last ones, eve. Most ultimatum bargaining games have only one perfect equitibrium point. The delicate problem to select one of many equilibrium points as the solution of the game is of ming minor importance.

In the economic literature bargaining processes are often modelled as wtimatum bargaining games [see, for instance. Ståhl (1972), and Krelle (1976)]. Here we do not discuss whether ultimatum bargaining games can acoquately represent real bargaining situations [see Harsanyi (1980), and Cuth (1979)]. We are mainly interested in ultimatum bargaining behavior because it allows one to analyse in detail certain aspects of bargaining behavior.

In any multistage bargaining process the parties have to anticipate future decisions. The specialty of ultimatum bargaining games is that these are the only strategic considerations and that especially the last decision is the most simple choice problem. The individually rational decision behavior will therefore be rather obvious even if subjects do not have a strategic training. Dur experiments allow us to explore the following questions: Will subjects behave optimally? And if not why and in which direction will they deviate from their optimal decisions? Our approach is to investigate first the most simple bargaining models. Only when knowing what drives the individual decisions in simple games, one can be sure how to interpret the results of more complex situations. (Mur distinction of 'easy' and 'complicated' games is a sunall step in this direction. There are so many experimental studies of bargaining behavior that we do not even try to give special references; for insta rice, many of the 'Contributions to Experimental Economics', edited 'by HA. situermann, deal with bargairing problems. But surprisingly enough, as fir as we know, nearly no experiments have been performed to analyse
ultimam barganify behavior. Because of their special structure ultimatum bargaining games are usef d to investigate experimentally how targainers anticipate the decision behavior of their opponents. This is espectally tue for games with only few players and rather short plays.

Consider a game which does not satisfy the defmition of an uitimatum bergaising game only because the players can choose brtwen more than just two bargaining resuits at the lasi decision stage. Such a game will be called a bargaining game with ulimatum aspect [Guth (1976)]. Fourazer and Siegel (196.) have investigated the bargaining behavior in such games. In their interesting study they confronted their subjuets with a bilateral monopoly where first the seller states the price and ther the buier determines $\}$ is demand at this predetermined pice.

Fouraker and Siegel distinguish between completr and incomplete information as well as single and repeated transaction experiments. We restrict our attention to single transaction experiments. It is obvious from the repeated prisoners' dilemma-experiments that a player will not completely exploit the ultimatum aspect if he can be punished luter on. Furthermore, we can neglect the incomplete information experiments. Sirce the players do not know the types of their opponents, games with incomplete information do not satisfy the requirement of perfec: information [Harsanyi (1968), and Seiten (1)82)]. According to their data Fouraker and Siegel consider the subgame perfect equilibrium point to be reasorably consistent with the observed bargaining behavior. In il of 20 experiments price and quantity were chosen exactly as prodicted by the equilibrium solution. Our data will indicate that this result will change if the payeff distribution according to the equilibrium point is more extre:ne. Fourakev and Siegel also vary this payoff distribution. Whereas in Experiment 2 the equilibrium payofi of the seller is much higher than the one of the buyer, these payoffs are equal in Experiment 1. For us it is a surprise that neve theless the number of equilibrium results in Experiment 2 is only slightly smaller than in Experiment 1. According to orr data subjects punish an opponent, who exploits the ultimatum aspect, if this is not too costly for them.

It seems that the strategic asymmetry of both players was more acceptable in the experimen: of Fouraker and Siegel. This can be dae to their special scenario. In highly industrialized countries most consumer morkets are considered as seller markets. 'Buyers' therefore might be used to have less strategic power. Iny an abstract bargaining situation, whete the bergaining parties have to divide a given amount of money, an asymmetris power relationship is prowably less acceptable.

Another explanstion is that subjects in the experiments of Fouraker and Siege! could not see each other. They might not even have been sure whether they actually face an opponent or a preprogrammed strategy. In our
experimens all subjects cot ld see each other. Dut since bargaining pairs were determined sto hastically, none of them knew his opponent.

In the foilowing we describe the scenario which was used to observe ultimatum bergaining behavior experimentally. Afterwards the data collected in the experiments will be discussed in detail and compared. In the coachuding section we stanmarize our main results and indicate some perspectives for the future study of utimatum bargaining behaviof.

2. Description of experiments

it is well-known in the economic literature [Selten (1978)] that subjects do not anticipate future decisions in the way which characterizes the individually rational decision behavior in ultimatum bargaining games. Players tend to neglect that there is a last stage which is so important for the normative solution. Thus it is mere than doubtful whether the special structure of ultimatum bargaining games will be fully recognized if the bargaining process is more complicated in the sense that the number of stages is very large.
Now we are interested in ultimatum bargaining behavior since in these games strategic interaction occurs on'y in the form of anticipation. To male sure that all subjecte are aware of the special game situation, the easiest nontrivial ultimatum bargaining ganes with only two players and two decision stages have been used to test ultimatum bargaining behavior.
The experiments can be partitioned into two subgroups: In one groty he two subjects have to determine only how to distribute a given amoant of money. These experiments will be callid 'easy games'. In the experiments of the second group they have to distribute certain amounts of black and white chips which do not have the same value for both of them. These experiments will be called complicated games'. Whereas the optimal decision behavior in easy games is obvious, complicated games require a slightly more thorough arialysis of the game situation. Comparing the resuits for easy and complicated games will show how the complexity of the game model influences bargaining results.

Before every experiment subjects were introduced to the bargaining situation in an informal way. The oral instructions were given according to the rules listed in the appendix. Each experiment consisted of several games which were played simultaneously. The group of $2 k$ subjects was first subdivided by chance into two subgroups of equal size k. All subjects in one of the two subgroups were determined to be player 1 in the corresponding ultimaturn game. They wene informed in advance that their opponeat will be chosen by chance out of the other subgroup. So no olayer 1 knew his opponent for sure. The \& easy games differed only with respect to the
amcunt e which was to be distributed among the two subjects. All experiments were games with complete information.

The number k of games ranged from 9 to 12 . So the chances to meet a specific subject als player 2 were rather low for all players 1 . All subjects were seated in the same room at desks which were far enough from each other to exclude verbal communication. Furthermore, players 1 and players 2 were at opposite sides of the room. Each participant could see all the others and had a complete control that the experinent was performed according to the instruction rules in the appendix. We did not observe attempts to exchange messages during the experiments. Between experiments communication was not restricted.

2.1. Easy games

In an easy ganie the two subjects were first determined to be player 1 and player 2. The subject chosen to be player 1 then declares which amount a_{1} he claims for himself The difference between the amount $c(>0)$, which can be distributed, and a_{1} is what player 1 wants to leave for player 2 . Given the decision of player 1 player 2 has to decide whether he accepts player 1 's proposal or not. If 2 ascepts, player 1 gets a_{1} and player 2 gets $c-a_{1}$. Dtherwise both players get zero.

Every subject in the subgroup of players 1 got a form (table 1) which informed him about the total amount c to be distributed. Player 1 had to write down the amount of money a_{1} which he demands for himself. Then the forms were collected and distributed by chance to the subjects in the other subgroup. Player 2 had to indicate whether he accepts the pro posal of player 1 or not. Two tickets were attached to each form, one for player 1 and one for player 2. On each ticket there was a capital letter, indicating the game, and the player nuinber. So, for instance. X_{1} is on the ticket of the subject who is player 1 in game X. We called $X 1$ the sign of this subject. The subjects had to show their tickets to get their payoris.

Table 1
The form given to subjects engaged in easy games.

```
The amount cto be distributed is c=DM...
Player 1 can demand every amownt up to c=DM...
Sign of player 1:...1
Decision of player 1: I tematad DM...
Sign of player 2:...2
I accept player 1's dem and:...
I refuse piayer l's demand: .. 
(indicate the decisi Jn you prefer by an ' }X\mathrm{ '')
```

Let us shortly discuss the rational decision behavior in easy games. Indivisibility of money implies that there is a minimal positive amount ε of money. Consider now an easy game: A rational player 2 will aiways prefer the alternative which yields more for him and will choose conlict only if this does not cost him anything. Thus the optimal decision for player 1 is to demand $c-\varepsilon$ for himsel and to leave the minimal positive amonnt ε to player 2 . This clearly illustrates the ultimatum aspect of easy games: 1 he decision of player 1 implies that player 2 can only ascept his minimum or choose conilict.

2.2. Complicated sames

The experiments of complicated games were performed in a similar way. In a complicated game player 1 first has to divide a bundle of 5 black and 9 white chips. In order to do this player 1 determines a vector (m_{1}, m_{2}) indicating the decision for one bundle (1) with $m_{1}(\leqq 5)$ black: and $m_{2}(\leqq 9)$ white chips and the complementary bundle (II) with ($5-m_{1}$) black and $\left(9-m_{2}\right)$ white chips. After the decision of player 1 player 2 has to decide whether he wants to have bundle (I) or bundle (II). The other bundle is given to player 1. Player 1 got DM 2 for each chip. Player 2 was paid DM 2 for a black chip aad DM 1 for a white chip. Both players were informed about these values.
The form given to the subjects engaged in a compicated game is shown in table 2. Agaia several examples were calculated to make sure that every subject completely understood the rules of the game. Some subjects had difficulties to learn how the distribution of chips determines the money payoffs.

In the complicated game the rational dewsion behavior is not so obvious. A rational player 2 will alwiys choose the bundle which yields a higher payoff for him. For player 1 it is evident thai he has to design bundles I and II such tha: the bundle, which player 2 will prefer, contains as few white

Table 2
The form given to subjects engaged in complicated games.
Sigu of player 1:...
Decision of player ti Mayer 2 has to choose between
(1) ...black chyps and .. white chips (not more than 5 black and 9 white chips), or
(II) the remaining chips.

```
Sign of player 2....2
```

Decision of player 2:
11 thocse vector (I) of black and white chips...
II chorse the remaining vector of alipe (II)... tindicate the decition you prefer by an ${ }^{\prime}$?
chips as possible. Knowing this some easy calculations show that the optimal decision of player 1 is given by $\left(m_{1}, m_{2}\right)=(5,0)$ or (0,9). This will induce player 2 to choose I in the first case and II in the second case. The equilibrium payoff for player 1 is DM 18 , whereas plaver 2 receives DM 10 . If player 2 would deviate, he weald get DM 9 whereas player is payoff would be DM 10, i.e., a deviation of player 2 would cost player 1 much more than player 2 himself.

The complicated game is a well-known distribution procedure [see, for instance, Kuhn (1978), Steinhaus (1948), Güth (1979)], often called 'the method of divide and choose'. In the economic literature it is roostiy applied to the problem of cutting cakes fairly. In our example there are two different 'cakes' and two individuals with different preferences.

The method of divide and choose yields an envyfree allocation [Pazner and Schmeidler (1974)] which is even Pareto-optinial in our special case. In eeneral, this method determincs an allocation which is not Pareto-efficient [Güth (1976)]. Observe that a complicated game has other envyfree and Pareto-optimal allocations beside the ruilibrium allocation. If player 2 receives the bundle $(5,1)$ of 5 black and 1 white chips and player 1 gets the residual bundle (0,8), this allocation is also envyfree and Pareto-eficient. The same is true if player 2 recetves the bundle $(5,2)$ and player : the residual bundle (0,7). All other Pareto-eff cient allocations are roi envyfree. Furthermore, the equilibrum payoff of player 1 is his maximal payoff in the set of envyfree allocations. This demonstrates that the method of divise and choose allows player 1 to exploit the preferences of player 2 . Player 2 would prefer to be the one who determines two bundles I and II between which player 1 has to choose.

3. Experimental results

The subjects were graduate students of economics (University of Cologne) attending a seminar to get credit for the final exams. I is almost sure that none of the students .vas familiar with garne theory. Aftor pilot studies in the summer semester of 1978 the main experiments wei? ourformed at the beginning of the next winter semester.

5.1. Eas; games

For the sake of completeness we aiso show the results of the pilot experiment with easy games in table 3 . The results of one game, specified by a capital letter in column (1), appear in one line. The stcond columan of table 3 gives the amount c to be distributed. The third one the demand of player 1. A ' 1 ' in the fourth column indicates that player 2 accepted, whereas a ' 0 ' says that 2 refused player 1's proposal. Conflict resulted in three (games C, G and H) of the nine games in table 3.

Table 3
Pilot study of camy games.

Garae	to be distributed (DM)	Demend of player 1 (DM)	Decision of playez 2
A	1	0.60	1
B	1	0.60	1
C	1	090	0
D	B	0.50	1
E	1	0.50	1
F	1	0.51	1
6	1	1.00	0
11	1	1.00	0
1	1	0.50	1

In the same way the results of the main experiments with easy ganes are given in tables 4 and 5. The experiments of easy games listed in table 4 were performed first. We refer to these results as unexperienced decision behavior in easy games.

These experizsents have been repeated after one weeli. Of course, a subject usually had to face a different amouat c to be distributed and to expect a different opponant. The results of the second experiment of easy games are given in tabie t, we refer to theri as experienced decision behavior in easy games.
Tables 4 and 5 contain the results of 21 games each. In both tables there are three games with an amount $c=4,5 ; 6 ; \ldots ; 10 \mathrm{DM}$. According to the unexperienced slecision behavior contlict seems to be rather exceptional (it results in only two of the 21 gaines). Since in table 5 there are 6 cases of conflict, the total amount paid te the subjects is lower in table 5 (DM 115) than in table 4 (DM 137).

One could try to explaia tue givater frequency of conflict according to the experienoed behwiof by an increase of the average demand of players 1 . The average demand of players 1 is DM 4.38 in table 4 and 4.75 in table 5 . But the average demiand of players 1 is a rather tough measure for the demand behavior of players 1 since it negle:ts the variation in the total amount c to be distributed A certain absolute increase of player 1's demand is more significuat I onif DM 14 can be clistributed than in the case of DM 10. Erapirially it is not true thit phyer 2 ahways chovses the alternative which yielda a higher peyof. The decitiou behavior of players 3 slso depends on the dfference in the payofis which player 1 has proposed.
Athongh the thia of all payatt in table 4 is higher ta an in tables, the average pegpif el playes hot involved in eonfliet is grepter socovding to thble 5 , ie, the higher frequency of conflict in table S it connected to grimes withe.

Table 4
Naive decision behavior in eesy games.

Game	c account to be distributed (DM)	Demand of player 1 (DM)	Decision of player 2
A	10	6.00	1
B	9	8.00	1
C	8	4.00	1
D	4	2.00	1
E	5	3.50	1
F	6	3.00	1
G	7	3.50	i
H	10	5.00	1
1	10	5.00	1
J	9	5.00	1
K	9	5.55	1
L	8	4.35	1
M	8	5.00	1
N	7	5.00	1
O	7	5.85	1
P	6	4.00	1
Q	6	4.80	0
R	5	2.50	1
S	5	3.00	1
T	4	4.00	0
U	4	4.00	1

Table !
Experianced decision behavior in asy games.

Game	$c=$ amount to be distributed (DM)	Dernand of plase:" (DM)	Decision of player 2
A	10	7.00	1
B	10	7.50	1
C	9	4.50	1
D	9	6.00	1
E	8	5.00	1
F	8	7.00	1
G	7	4.00	1
H	7	5.00	1
1	4	3.00	0
J	4	3.00	0
K	5	4.99	0
L	5	3.00	1
M	6	5.00	0
N	6	3.80	1
0	10	6.00	1
1	9	4.50	1
Q	8	6.50	1
R	7	4.00	0
S	6	3.00	1
T	5	4.00	0
U	4	3.00	1

relatively tow amount c to be distributed. The average payof of players 1 not engegy in conflict is DM 432 (DM 5.05) in table 4 (5), wherens for players 2 it is DM 2.83 (DM 268).

Altogether one gets the inpression thit in the socond experiment players I wore more daring than in the first one. This causod on one side a higher frequency of contict and on the other side a higher payoff of those players 1 whose more ambitious demands were neverthelens sacepted by their opponents.

One can try to explain the variation of the demands, i.e, the demand belavior of players 1 in easy games, by the variation of the amounts c to be distributed. To do this we calculated how the following three hypotheses:

$$
\begin{align*}
& a_{1}^{1}=a c+\beta \tag{1}\\
& a_{1}^{1}=a c^{\prime}, \tag{2}\\
& a_{1}^{1}=\alpha e^{n} \tag{3}
\end{align*}
$$

can explain the demand behavior of players 1 in table 4 as well as in table 5 . The results are listed in table 6 whose first column gives the fenctional form (1), (2) or (3) of the hypothesis. In the second and third column appear the values of the parameters α and β for table 4 (5) denoted by $\alpha_{4}\left(\alpha_{5}\right)$ and β_{4} ($\boldsymbol{\beta}_{3}$) respectively. The correlation cocflicient r_{4}^{2} and r_{5}^{2} for tables 4 and 5 in the fourth coivme of table 6 indicate how mach of the variation of players l's demands can be explained by the variation of c. It can be seen that the nonlinear hypotheses yield better explanations in both cases and, furthermere, that all bypotheses yield better results for the experienced demand behav or of table 5. Of course these resuls should be cossicered more as an ilhustration of players I's demands and not as a valid statistical analysis since there are not enough data available.

The acceptance behavior of players 2 listed in table 4 (5) is visualized in fig. 1 (2) Since player 2 has only the choice to acoept (indicated by '1) or to refase (indicated by 0) a given demand of player 1 , his payof $c-a_{1}$ in case of acceptance, ie, for $a_{2}=1$, is of epecial interest. This amount can be

Tate 6
Statitikat ar afyli of the diond tehevior his easy pumes.

Hypotheis	0	(2)	P.	(8)	$\stackrel{3}{2}$	(1)
$a_{1}=-2+1$	Onop	(1343)	120	0817)	0.08	(0.630)
$4=-{ }^{2}$	1004	(a)\%	074	00739	2511	(0650)
$\mathrm{n}_{1}+\mathrm{m}^{\text {a }}$	1971	(1) 91	011.	p121)	0.511^{*}	0633

regarded as the costs of player 2 for choosiag conflict. The decision of player 2 may also depend on the share $\left(c-a_{1}\right) / c$ of player 2 according to player 1's proposal. One would expect that player 2 is more likely to refuse a given demand of player 1 if his payoff $\left(c-a_{1}\right)$ as well as his share $\left(c-a_{1}\right) / c$ in case of acceptance are comparatively low. Beside one exceptional case (player R2 in table 5) where the rather moderate denand $a_{1}=$ DM 4 was refused at costs of DM 3 for player 2 , it can be seen with the help of figs. 1 and 2 that the experimental results are in line with our intuitive expectatiors.

3.2. Consistency of damands in easy games

After testing twice the behavior in easy games we became interested to learn how the demand behavior of a subject, i.e., his decisions as player 1 , is related to his acceptance behavior, i.e., his decisions as player 2 [similar questions for other game situations are analysed by Stone (1958)]. Would a certain subject accept as player 2 an offer to distribute c which he would suggest as player 1 ? In order to investigate this question, we performed a third experiment of the easy game with $c=7 \mathrm{DM}$ in the following way: All of the 37 subjects pardicipated in the experiment as player 1 as well as player 2. First every subject had to decide as player it which amount a_{1} he demands

Fig 1. Naive acceptance behavior in easy games.

Fie 2 Experiensed swoceplance behavior in easy gamcs.
for hirself. Thea ceery subject got another form which asked him to stete his minimal acceptance payof a_{2} as player 2 If $c-a_{1} \geq a_{2}$, player 2 accepts player i's demand which yields the payof a_{1} for player and $c-a_{1}$ for player 2 Conflict resilts if $\boldsymbol{c}-\boldsymbol{a}_{\mathbf{1}}<\boldsymbol{a}_{2}$. The subjects were told in advance that it will be deternined by chance which of the other 36 player 2's decisions a_{2} will be opposed to the own decision a_{i} as player 1 . Since every subject had to kand in his sign as player 1 and as player 2 , we were able to identify uniquely his docisions as player 1 and as player 2 .

It should be mehtioned that the docision of player 2 in this experizent is more complicated compared to the former experiments of easy games. Here a player 2 bas to contider thi posible decisions of player 1 , while in the former experiments player 2 was only asked to renet to a spocific choice of player 1.

Although a sulject had to expect a difterent suhjece as his opponent, we were mainly interetted how a subject: docilies a_{1} as phayer 1 is riated to his decinion c_{2} m pliyer 2 In toble 7 the decisions of one sabject are listed in ane liae The second columan tives the demand a_{1} as pliser 1 and the thind colvine the teece, tanee lival a_{2} st plyer 2 wherew the sum $a_{5}+a_{2}$ of

 of sable 7 .

Table 7
Consistency of payoff demands in casy games.

Index of ubiect	$\begin{aligned} & a_{1} \text { edentand } \\ & \text { as player } 1 \end{aligned}$	c_{2} = demanc as player 2	$\begin{aligned} & a_{1}+a_{2}=\text { sum } \\ & \text { of demands } \end{aligned}$	Consistency of demands
1	4.00	3.00	7.00	0
2	3.50	2.50	6.00	-
3	3.50 -	3.50	7.00	0
4	3.50	3.50	7.00	0
5	4.00	3.00	7.00	0
6	3.50	3.50	7.06	0
7	4.00	3.00	7.00	0
8	5.00	3.50	8.50	+
9	3.50	3.50	7.00	0
10	3.50	3.50	7.00	0
11 \%	3.50	3.50	7.00	0
12	3.50	2.00	5.50	-
13	5.00	1.00	6.00	-
14	3.50	1.00	4.50	--
15	3.50	5.00	8.50	$+$
16	4.01	2.50	6.50	--
17	4.00	3.00	7.00	0
18	4.00°	3.00	7.00	0
19	5.00	1.00	6.00	\cdots
20	6.99	0.01	7.00	0
21	3.50	2.00	5.50	-
22	4.00	2.50	6.50	--
23	4.00	3.50	7.50	$+$
24	3.50	3.00	6.50	-
25	5.00	2.00	7.00	0
26	4.00	1.00	5.00)	-
27	3.50	2.00	5.50	\cdots
28	4.00	1.00	5.00	\cdots
29	3.50	3.00	6.50	-
30	3.50	2.50	6.00	-
31	4.50	3.50	8.00	$+$
32	400	3.00	7.00	0
33	4.00	0.10	4.10	\cdots
34	3.50	3.50	7.00	0
35	4.00	1.00	5.00	-
36	7.00	3.50	10.50	$+$
37	4.00	2.50	6.50	-

5 decision vectors are in conflict (+), 15 consistent (0) and 17 in anticonflict (-) Thus 32 of the 37 subjects revealed a modest demand behavior in tise sense that the payoff $c-a_{1}$ was not smaller than their aceeptance level a_{2} os player 2 . Nearly half of the 37 vectors (a_{1}, a_{2}) were even in anticontict. These subjlects were willing to accept demands of player 1 which were higher than their inn aspiration levels a_{1}.

In case of conflict subjects leave less to player 2 than they themselves are willing to accept as player 2. They must consider themselves as exceptionally
tough or ambitious since otherwise they would have to expect conflict. The subject in the 15 th row of table 7 probably misunderstood the situation.
In case that $\left(a_{i}, a_{2}\right)$ is consistent, the subject leaves as player 1 to player 2 exactly what he is just willing to accept in player 2 Such a subject reveals that he considers the payof vector $\left(a_{1}, a_{2}\right)$ as the obvious outcome. So, for instance, in 7 of the 15 cases of consistency the equal split (3.50 DM; 3.50 DM) is proposed. In the other consistent pairs subjects asked as players 1 for more than as players 2 which indicates their attempt to exploit the ultimatum aspect.

The average share a_{1} / c demanded by players 1 is only 55% in table 7 compared to 64.9% in table 4 and 65% in table 5 , i.e., in thr consistency test players 1 were more modest than in the former experiments. This can be explained by the fact that in the consistency test subjocts had to decide as player 1 and as player 2. Knowing to be player 1 in one game and player 2 in another game, might have caused some subjects to care for a fair bargaining result. Of course, a rational decision maker would not allow his decision in one game to depend on his choice in another game. But one cannot expect in real life that players are able aud willing to distinguish so clearly betwen the decision in one game and the one in another game situation.

3.3. Comiwicated games

In the pilot study with complicated games the payoffs were one tenth of the payol is as given in tire description of the game. In the second column of table 8 is the bundle $\mathrm{I}=\left(m_{1}, m_{2}\right)$ as designed by player 1 . The third column gives the payoff vector $H(1)=\left(H_{1}\left(\mathbf{I}, H_{2}(\mathrm{I})\right.\right.$ which results if player 2 chooses bundie 1 for himself, whereas the payof vector $H(I I)=\left(H_{1}(I I), H_{2}(I)\right)$ for the choice of bundle $\mathrm{I}=\left(4-m_{1}, 9-m_{2}\right)$ by player 2 appears in the fourth

Table 8
Pilot thady of corapliceted games.

column of table 8. The actual choice I or II of player 2 is listed in the last column of table 8 : It can be seen from table 8 that players 2 alvays chose the bunde which yielded a higher payoff H_{2}. In the pilot study of complicated games only one player 1 , winely subject $I 1$, proposed the equilibriam solution.

The same subjects who participated in the main experiments of easy games were afterwards confronted with the complicated game. The results of the main experiments with the complicated game are listed in tables 9 and 10. In a first test the payoffs were the same as in the pilot study. The eesults of this first test are listed in table 9; we refer to them as decision behavior in con;plicated games with low payoffs. After one week the experiment was repeated with the rather high payoffs as determired by the description of the game. These results - we refer to them as decision behavior in complicated games with bigh payoffs - are listed in table 10.

Compared to an easy game situation the equilibrium payoff vector (1.80 DM; 1.00 DM) in table 9 or (18 DM ; 10 DM) in table 10 is less extreme in complicated games since it yields comparatively high payoffs for both players. There are two possibilities $\mathrm{I}=\left(m_{1}, m_{2}\right)$ for player 1 to suggest the rational solution, namely $\left(m_{1}, m_{2}\right)=(5,0)$ and $\left(m_{1}, m_{2}\right)=(0,9)$. In 6 of the 17 games in table 9 players 1 suggested the rational solution, whereas in table 10 this was done in 9 of 15 games. Thus compared to our results for easy games players 1 in complicated games rely more often on the rational decision behavior although it is more difficult to derive. This indicates that

Table 9
Irecision behavior in complicated games with low payoffs.

Game	Decision $I=\left(m_{1}, m_{2}\right)$ of player 1	$\begin{aligned} & \left(H_{1}(\mathrm{I}) ; H_{2}(\mathrm{I})\right. \\ & \text { (DM) } \end{aligned}$	$\begin{aligned} & \left(H_{1}(\mathrm{II}) ; H_{2}(\mathrm{II})\right) \\ & (\mathrm{DM}) \end{aligned}$	Decision of player 2
A	$(5,0)$	(1.80; 1.00)	(1.00; 0.90)	1
B	$(5,0)$	(1.80; 1.00)	(1.00;0.90)	I
C	$(5,2)$	(1.40; 1.20)	(1.40;0.70)	1
D	$(3,5)$	(1.20; 1.10)	$(1.60,0.80)$	1
E	$(5,0)$	(1.80; 1.00)	(1.00; 0.90)	II
F	$(4,5)$	(1.00; 1.30)	(1.80;0.60)	I
G	$(5,2)$	(1.40; 1.20)	(1.40,0.70)	I
$\mathrm{H}^{\text {a }}$	(5,8)	(0.20; 1.80)	($2.60 ; 0.10$)	1
8	$(4,3)$	(1.40, 1.10)	($1.40 ; 0.80$)	I
J	$(5,2)$	(1.40, 1.20)	(1.40;0.70)	I
\mathbf{K}	(4,4)	(1.20) 1.20)	(1.60;0.70)	I
L	(5,0)	(1.80, 1.00)	($100 ; 0.90$)	I
M	(4, 3) m	(1.40, 1.10)	(1.40;0.80)	1
N	(4,2)	(1.60, 1.00)	(1.20;0.90)	1
0	(3,3)	(1.60,0.90)	(1.20; 1.00)	1
${ }^{\mathbf{P}}$	(5,0)	(1.80, 1.00)	(1.00; 0.90)	1
Q	$(5,0)$	(1.80, 1,00)	(1.00;0.90)	1

Table 0
Decision behavior in complicated ganes win hegh payofs.

Game	$\begin{aligned} & \text { Secision } \\ & =\left(m_{1}, m_{2}\right) \\ & \text { iplayer } \end{aligned}$	$\begin{aligned} & \left(\mathrm{H}_{1}(\mathrm{M}) \mathrm{H}_{\mathrm{y}} \mathrm{~A}\right) \\ & (\mathrm{DM}) \end{aligned}$	$\begin{aligned} & \left(\mathrm{H}_{3} \mathrm{G}\right) ; H_{2}(\mathrm{H}) \\ & (\mathrm{DM}) \\ & \text { an } \end{aligned}$	necision of player :
A	5,9\%	(18) 10)	(10. 9)	1
\%	5, 13	(15, 11)	(12; 8)	1
C	S 11	(15: 11)	(12, 8)	1
D	(5,9)	(18:10)	$(10,9)$	11
E	(5,0)	(18: 0)	(10, 9)	I
F	5,0)	(18, 10)	(10; 9)	1
G	(5,0)	(18, 10)	(10, 9)	1
H	(3,4)	(14; 10)	(14: 9)	
1	(5, 0)	(18) 10)	(10, 9)	1
J	(5,0)	(18; 10)	(10, 9)	1
s	(4, 1)	(18; 9)	(10.10)	1
1	(4, i)	(18; 9)	(10; 10)	13
M	(11,8)	(10, 10)	(18; 9)	1
N	6,9)	$(10,9)$	$(18 ; 10)$	n
0	(5,0)	(18, 10)	(10; 9)	H1

subjects did not deviate from the optimal behavior because of their difficulties in solving the game. The main reason seems to be that the ratonal solution is not considered as socially acceptable or fair.
In one of their bilateral roonopoly experiments Fouraker and Siegel (1963) have an equilibrium payoff vector which is comparable to the one of complicated games. In the other experiments the equilibrium payoffs of both players are equal. Although we, too, observed a strong tendency to behave optimaliy in complicated games, the results of Fouraker and Siegel favor even more the normative solution. It seems fair to say that this is probably due to the greater acceptability of the equilibrium payof distribution in their experiments. As already indicated in the Introduction, the different results of Fouraker and Siegel may be related to the special scenario which they have used.

In one of the six (four of the nine) games of table 9 (10) in which player 1 suggested the rational solution, player 2 did not accept this, i.e., player 2 chose the bundle which implied lower payoffs for both players. The results for easy games showed already that players 2 are willing to suffer a monetary loss if they annsider the demand of player i as unacceptable. Now if only player 2 deviates from the rational solution, he himself suffers a loss of DM 0.10 (table 9) or DM 1 (table 10), whereas player l's loss is DM 0.80 or DM 8. Since on the oither side of the equilibrium payoff vector (DM 1.80; DM 1) or (DM 18; DM 10) yields a considerably higher payoff to player 1 , it is no surprise that sometimes players 2 chose the bundle which implies lower payofs for both players. If player 2 is not willing to accept the payoff vector
impied by the nomative solution, he can cause a payofi vector with much more balanced individual payoffs at relatively ios costs by deviating from the rational solytion.

Athough the number of games in table 10 is smaller than in table 9 , the rational solution has been suggested more often by players 1 . On one side this tendency sowards rationality can be explaned by the fact that the subjects were more familiar with complicated games in the repeated experiment. On the other side payoffs in. table 10 are much higher than those of table 9. This might have caused some players 1 to consider their decisions wore carefully.

If player 1 wants an equal split, he can propose this either by $:=(4,4)$ or the corresponding bundie II or by $I=(4,1)$ and the corresponding bundle II. If player 2 accepts the equal split, the payoff vector is (DM 12; DM 12) in the first case and (DM 10; DM 10) in the second one. In both cases it pays for player 2 to aceept the equal split; if he devtates player 2 would suffer a loss while player 1 would gain by such a deviation. It is, of course, better to design $\left(m_{1}, m_{2}\right)=(1,5)$ or the corresponding bundle 4, 4) since this implies higher payoffs for both players.

In table 9 only one player i suggests an equa' split, namely the one with high payofis, whereas in table 10 three players ; suggest the equal split with low payoffs. This indicates that in the repeated experi nent there is a stronger tendency to suggest an equal split and that not all players 1 in the repeated experiment were fully aware of the payoff structure. At least for these players 1 it is doubtfal whether they have analysed the game situation carefully enough.

In a complicated game player 1 chooses a maximin-strategy if he designs a bundle $\mathrm{I}=\left(m_{1}, m_{2}\right)$ with $m_{1}+m_{2}=7$. Due to the special structure of complicated games the choice of a maximin-strategy by player 1 determines uniquely the payoff of player 1 (DM 1.40 in table 9 and DM 14 in table 10). In table 9 five players 1 chose a maximin-strategy, in table 10 this occurs only once. Thus compared to the repeated experiment plajers 1 in the first experiment seemed to be more risk averse.

Altogether one can say that in the second experiment of complicated games more players 1 tended towards the normative solution while more players 2 were willing to block unbalanced payoff vectors. This behavior of players 2 has its counterpart in a stronger tendency of some experienced players 1 to design bundles which allow more balanced payoff vectors.

4. Conclusions

Ultimatum bargaining games are special bargaining games since interaction of players occurs only in the form of anticipation. In order to make the ultimatum aspect obvious, we concentrated on the easiest non-
trivial ultmatum barganing games with two players and two decision stages. In casy games where a given mount c has to be distributed the nommative solution is extreme in the sense that the player who has to decide on the second stage gets only the smallest possible positive payon. Oni excmimental resuls show that in actual life the ultimatum aspect of easy games will not have such extreme consequences: Independent of the game form, subjects often rely on what they consider a fir or justifed result. Furthermore, the ultimatum aspect camot be compi ately exploited since subjects to not hesitate to punish if their opponent ask' for 'too much'.

The typical consideration of a player 2 in an easy game seens to be as follows: If player I left a fair amount to me, I will accept. If not and if I do not sacrifice too much, I will punish him by choosing conlict.' Correspondingly, a player I typically will argue like: 'I have to leave at least an amount $c-a_{1}$ for player $2 s o$ that he will consider the costs of choosing conflict as too high.' One therefore should expect that the relation of player I's to player 2 's payoff will increase if the amount c increases. To estimate the exact funtional form of this relationship, one should perform more experiments of easy games with various amounts c. Especially, one should try to include situations with very high amounts c, for instance $c=100 \mathrm{DM}$. It is, of course, very expensive to perform experiments with such high values of c. To deal with high amounts one might consider experiments where one determines by chance $k^{\prime}(<k)$ out of the k simultaneous games whose payoffs are actually paid. Subjects would face higher amounts c wrech they can distribute with positive probavility although the sum of payofis in all k grmes can be even lower than in our experiments.

Another way to perforn experiments with higher amounts c, is to auction the positions of payer 1 and player 2. Some subjects would bid for the position of playar 1 in a given easy game, others for the position of player 2. According to the procedure used by Guth and Schwarze (1983) the position is sold to the highest bidder at the price of the second highest bid. Then the winners of the two independent auctions finally play the game. The payoffs would be their payoffs in the easy game minus the price of their position. Apart from its lower costs this procedure provides new explanatory variables and avoids tendencies toward egalitarion payoff distributions. If the positions are assigned to subjects by chance or arbitrarily, the more fortunate subjects often are reluctant to exploit their 'unjustified' strategic advgatages. But if a piayer had to compete for his position and to pay for it, he might not hesitate to exploit its strategic possibilities.

The consistency test was performed for only one easy game. It would be interesting to study how the results are influenced if the subjects have to face very high amounts c to be distributed. One would expect that the number of decision vectors $\left(a_{1}, a_{2}\right)$ in conflict will decrease bevause conflict would imply a serion wioss in such games.

For complicated games it was shown that they are special examples for the method of divide and choose which is claimed to yield fair divisions. This indicates that the ultimatum aspect of complicated games is less obvious. As a matter of fact the normative solution of such games is envyfree in the sense of Pazner and Schmeider (1974). Our results ghow a clear tend ncy of players : to exploit the ultimatum aspect of such a bargaining si uation. Athough several subjects tried to cause balanced payoff vectors, the tendency toward the nomative solution with unbalanced payoffs we: muct stronger.

Ultimatum bargaining gares are standard examples to demonstrate how poorly the characteristic function reflects the strategic possibilities [Güth (1978)]. The characteristic function of an easy game is, for irstance, completely symmetric in spite of player I's strategic advantage. That is why cooperative solution concepts are not very informative. They either consider all efficient and individually rational payoff distributions of easy ganes as stable or prescribe the equal split as the unique solution. Our result., show that efficiency does not hold in general. There are cases of conflict in easy games and non-efficient agreements in complicated games. Obviously some subjects tried to cause egalitarian payoff distributions. But there was a much stronger tendency to exploit the ultimatum aspect. Cooperative game theory is therefore of only little help when explaining ultimatum bargaining behavior.

In easy games all possible strategies of player 1 are maximin-strategies. For player 2 the equilibrium strategy is also a maximin-strategy. For complicated games the equilibrium strategy of slayer 2 is also a maximinstrategy. But for player 1 the situation is difierent in complicated games. Here a maximin-strategy of player 1 requires that both bundles contain 7 chips. In 5 of 17 complicated games with low peyoffs we observed that player
did choose a maximin-strategy. In the case of high payoffs only 1 of 15 players has chosen a maximin-strategy. This shows that the tendency to cioid any risk is of only minor importance, especially for experienced subjects.

Appendix: Instruction rules

A.1. Instruction rules for easy games

You will be faced with a simple bargaining problem with only two bargainers, plyyer 1 and player 2. In each bargaining game both players have to distribute a given amount $c=\mathrm{DM} \ldots$ among themselves. The rules of the baigaining game are as follows:

First player $\left\{\right.$ can determine any anount $a_{:}=\mathrm{DM} \ldots$ between 0 and c which
he denands for himscif The dilference $0-t_{1}$ \& what player 1 offers to player 2.

Player 2 wil do informed about player I's decision a_{1}. Knowing player Is proposal player 2 can either accept this proposal or choose conflict.
If player 2 accopts player 1/s proposal, player 1 gets a_{2} and player 2 the residual amount $c-A_{1}$. In case of confict both players get zero.
(Illustration of bargaining rules by various numerical examples). The experiment will proceed as follows:
There will be $k=\ldots$ bargaining games with different amounts c to $b c$ distributed. First it will be decidet by chance who of you will be players 1 and who of you will be players 2 in the k bargaining games. All players 1 will be seated at the (ssolated) desks on one side, whereas players 2 will be seated at the (isolated) deiks on the other side of the room.
Each player 1 will receive a decision form which informs him about the amount ct to be distributed. This is also the maximal amount player 1 can ask for. Every elayer 1 has to fill in bis decision a_{2}. When determining his decision a_{1}, play 1 dous not know who of the $k=\ldots$ players 2 will be his cpponent.
After all players 1 have made their decision their decision forms are distributed by chance among the $k=$,. players 2. Knowing the amount ot to be distributed and player I's demand a_{1} each player 2 has to decide whether he accepts the payoff proposal $\left(a_{1}, c-a_{1}\right)$ of piayer 1 or not.
Each player has 10 minutes for ins decision. When all decisions have been made, the decision forms will be collected. As described above the payoffs are $a_{1}=$ DM... for player 1 and $c-a_{1}=$ DM... for player 2 if player 2 accepts the proposal $\left(a_{1}, c-a_{1}\right)$. Otherwise buth players receive DM 0 . To get your money you have to keep the ticket which is attached to your decision form.

If you have any questions, we will be happy to answer then now. During the experiment it is forbidden to ask questions or to make remarks.

A.2. Instruction rules for complicated games (with high payoffs)

You will be faced with a simple bargaining problem with only two bargairers, player 1 and player 2 . In each bargaining game both players have to distibute abntil of 5 biack and 9 white chips among themselves. Payer 1 will get DM 2 for ench cinp Pityer 2 will be paid SM 2 for a black chip and DM I for a white one. The rutes of the bargaining game are as follows:

First pla yer 1 can determine a bundle $\left(m_{1}, m_{2}\right)$ of m_{1} black and m_{2} white chips wat $0 \leq m_{1} \leq 5$ and $0 \leq m_{2} \leq 9$.

Player 2 will be caformed about player 1's decision (m_{1}, m_{2}). Knowing player Is decision (m_{1}, m_{2}) player 2 can chsose between the bundle (m_{1}, m_{2}) of m_{1} black and m_{2} white chips or the residual bundle ($5-m_{1}, 9-m_{2}$) with $5-m_{1}$ black and $9-m_{2}$ white chips. Player 1 receives the bundle which has not been chosen by player 2.
The payof of each player is determined by the vilur of all the chips which he received. If, for instance, player 2 chooses the bundle (m_{1}, m_{2}), his payoff is $m_{1} \cdot$ DM $2+m_{3}$. DM 1. Player 2's payoff is DM 2 times the number of chips which he received.
(llustration of bargaining rules by various numerical examples). The experiment will proceed as follows:

There will be $k=\ldots$ bargaining games. First it will be decided by chance who of you will be players 1 and who of you will be players 2 in the k bargaining games. All players 1 will be seated at the (isolated) desks on one side, whereas players 2 will be seated at the (isolated) desks on the other side of the room.
Each player 1 will receive a decision forn. Every player 1 has to determine a bundle $\mathrm{I}=\left(m_{1}, m_{2}\right)$ of m_{1} black and m_{2} white chips. By this he of ers player 2 to choose between the bundle $\mathrm{I}=\left(m_{1}, m_{2}\right)$ and the residual bundle $\mathrm{II}=$ ($5-m_{1}, 9-m_{2}$) of $5-m_{1}$ black and $9-m_{2}$ white chips. When de ermining his decision $I=\left(m_{1}, m_{2}\right)$, player 1 does not know who of the $k=\ldots$ layers 2 will be his opponent.
After all players 1 have made their decision, their decision forms are distributed by chance among the $k=\ldots$ players 2 . Knowing the two bundles $\mathrm{I}=\left(m_{1}, m_{2}\right)$ and $\mathrm{II}=\left(5-m_{1}, 9-m_{2}\right)$ each player 2 has to decide whether he wants the bundle $\mathrm{I}=\left(m_{1}, m_{2}\right)$ or the bundle $\mathrm{II}=\left(5-m_{1}, 9-m_{2}\right)$.
Each player has 15 minutes for his decision. When all decisions have been made, the decision forms will be collected. As described abov: your payoff will be determined by the bundle of black and white chips which you received. To get your money you have $t \checkmark$ keep the tickec which is attached to your decision form.

If you have any questions, we will be happy to answer them now. During the experiment it is forbidden to ask questions or to make remarks.

References

Fouraker, L.E. and S. Siegel, 1961, Bargaining behavior (New York).
Güth, W., 1976, Toward a morc general study of v. Stackelberg-situations, Zeitschrift für die Gesamte Staat wissenschaft 132, 592-608.
Guth, W., 1978, Zur Theorie kollektiver Lohnverhandl:ngen (Baden-Baden).

Güth, W, 197, Kriterien Fix die Zomitruttion fiver Aumpilmgyepiets in: We Albers, G. Bambery and R. Setten, de. Entecheidumpe it klinen Gryppen Mathemptical Sy uems in Economics 4, 57-59.

 makiag, Lecture Notes in Economins and Mathematical Syit ons (hertin-Heicelbery-Hew Yort).
 Manapmost Science 14, 192-182, 320-314, 190-502.
dorsanyi, IC, 1900, Noncooperative barginith mooch, Woflsig papers in Management
 Berkeley, (A).
Krelle, W., 1976, Preisthooric, Part 11, Ch 9.4 (Tubingen).
Kump. H. $1567,0 \mathrm{O}$ men of flir division, lat M. Shrbit, ed. Espays in mathematical cootromics in horior of O lar Morgensern, 29-35.
Paznet, E.A. mad D. Scharidider, 1974, A diffuulty in the concept of tairness, Review of Economic Studien XLI, 4tr-443.
Selten, R, 1975, Reckmithition of the perfectnes conecet for equilibrium points in extensive games ing hatrationd Jomal of Game Thoory Id. 4, 25-55.
Setien R, 1978, The chein tope puedox, Theory tad Docition $9,127-159$.
Setien R. 195, Eiefithrung an die Thoorie der Spiele mit cnyollstindiget Information, in: F. Stectimer, el, Scluriten Bet Yerens fir Socinipotifi, N.:. 126, 81-148.
Stith, J. 1972. Bargeinding theory (Stocthohm).
Steinbuss, H. 194s, The problem of Gir divisica, Econowvetrica 17, 161-104;
Stone, 15., 1958, An thyeriment it bergaining zames, Econometrica 26, 286-296.

[^0]: The eathors would like to thank Reinhard Selten (University of Biehefeld) and two monymots refirees for their valuable advice.

