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Abstract— We compare the performance of five indices of
retinal vessel tortuosity against sampling rates of vessel center-
lines. We consider distance measure, tortuosity density, two
curvature-based measures, and a recently introduced slope-
chain coding for general curves, never before assessed com-
paratively with retinal vessels. To enable replication of our
results, we use the public dataset for retinal tortuosity, RET-
TORT. We find that (1) the tortuosity density index offers good
performance overall, but is not always the best performer; (2)
curvature-based methods are the best if high-frequency resam-
pling is possible, but (3) are the most sensitive to variations of
the number of samples; (4) slope-chain coding performs best
at low sampling rates, but the length of the linear elements
must be chosen carefully. In general, performance may vary
considerably with resampling, suggesting that the choice of
a tortuosity index for clinical inference requires attention to
numerical details, and ideally standardization thereof.

I. INTRODUCTION

The retinal microvasculature is one of the few portions of

the human vascular system which can be non-invasively vi-

sualized in vivo. Among various retinal imaging techniques,

fundus photography allows clinicians to observe, measure

and monitor properties of the retinal vasculature related to

eye diseases [1], screening programmes [2], and biomarker

discovery [3]. Retinal vessel tortuosity is one of the clinical

parameters used by ophthalmologist to assess the potential

risk, severity and progression of various diseases [4]: e.g.,

increased tortuosity has been found to correlate with plus

disease in retinopathy of prematurity [5], type-1 diabetes [6]

and chronic anemia [7].

Clinicians grade tortuosity subjectively, usually on a 3- to

5-point scale. Grading results have been shown to vary with

ophthalmologist, e.g., [8]. An objective, repeatable and quan-

titative assessment of vessel tortuosity has been long deemed

desirable, as it sometimes informs important treatment de-

cisions (e.g., ROP-plus disease [18]), and for biomarker

research [19]. Several quantitative tortuosity indices and

associated automatic algorithms have been proposed [9],

[10], [11], [12], [17] but, due to the lack of public, large

annotated datasets, ideally disease-specific, it remains very

difficult to compare algorithms comprehensively and fairly

[13]. The aim of this study is to compare and assess five

quantitative tortuosity indices using the publicly available

RET-TORT dataset [14], including a recent one [15] not yet
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Fig. 1. Key quantities for the DM.

evaluated comparatively. The indices, described in Section II,

are (a) the distance measure, probably the earliest index, (b)

the tortuosity density [14], a top performer in recent papers,

(c) the two best-performing curvature-based measures from

the well-known paper by Hart et al. [12], and (d) the index re-

cently introduced by Bribiesca, assessed here comparatively

for the first time with retinal vessels [15].

The indices were selected considering together their per-

formance (as reported in the original papers), recency and

impact on the field (citations, take-up). Following the es-

tablished methodology [10], [14], [18], we estimate the

tortuosity values using all indices for all vessels in both sets

(artery and vein), rank them from least to most tortuous,

and applied to retinal images [12], compute the Spearman

correlation, ρ , with the ranking obtained from clinicians.

In the following, we summarize the tortuosity indices (Sec-

tion II) and the data set used (Section III), describe the

experimental protocol (Section IV), report and discuss results

(Section V) and offer conclusions (Section VI).

II. TORTUOSITY ALGORITHMS

A. Distance Measure (DM)

The DM is one of the earliest tortuosity indexes [12]. Its

popularity may depend on its simple and intuitive definition:

DM =
Lc

Lx

(1)

where Lc is the vessel centreline length (dashed white line in

Figure 1) and Lx the chord length (line joining the vessel’s

endpoints, Figure 1. DM is 1 when a vessel is perfectly

straight and increases with tortuosity. The limits of the DM

have been pointed out previously [5], [12], crucially its

inability to distinguish vessels with multiple bends (very

tortuous) from vessels with a single arc (less tortuous)

that have the same average deviation from the chord. This

problem arises because DM is a global index which fails to

capture local changes.
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Fig. 2. The vessel partitioning used by the TD algorithm.

B. Tortuosity Density (TD)

To address the problem above, Grisan et al. proposed the

TD index [10] (Figure 2). TD assesses vessel tortuosity by

summing the contributions to tortuosity of uniformly convex

or concave arcs, as follows:

T D =
n−1

n

1

Lc

n

∑
i=1

[

Lcsi

Lxsi

−1

]

(2)

Here, n is the number of “turns” (curvature sign changes,

i.e., zero-crossings of the second derivative of the centreline),

Lcsi is the arc length of segment i, Lxsi is the chord length of

segment i. Lc is the length of the whole vessel centreline. A

vessel centreline with only one turn has T D = 0; with more

than one turn, the tortuosity is greater than 0 (avoiding the

problem of DM). The TD index is also normalized to vessel

length (1/Lc), which allows comparison of vessels of various

lengths and scale invariance. The authors found TD to be the

most accurate index to model clinical scores of retinal vessel

tortuosity with hypertensive retinopathy images [10], [14].

C. Slope Chain Coding (SCC)

The SCC index was suggested recently as a general index

for planar curves by Bribiesca [15]. The paper includes a

qualitative demonstration on a single ROP image but no

comparative tests against other indices. To calculate SCC,

a vessel centreline is approximated by a linear piecewise

curve formed by line segments of fixed length, and the slope

change between segments is computed. The SCC index is

defined as the integral of the absolute values of the slope

changes along the centreline:

SCC =
n

∑
i=1

|ai| (3)

Here, n is the number of slope changes (the number of

segments minus one) and ai is the slope change after the i-th

segment. The influence of n on the tortuosity is addressed

in [15] by an example showing invariance of SCC with two

values of n, but no proof is offered. To our best knowledge,

we are the first to compare the SCC index with other

tortuosity indices from the literature in terms of association

with ground truth tortuosity scores.

D. Curvature-integral measures

The curvature-based measures selected are the two best

performing ones from the well-known paper by Hart et al.

[12]. These are τ3 (overall best) and τ5, defined as

τ3 = tsc (4)

τ5 =
tsc

Lc

(5)

Where tsc is the total squared curvature and Lc is the vessel

centreline length, as above. To improve digital curvature esti-

mation, we use the highly accurate, noise-resilient algorithm

developed by Annunziata and Trucco [16], based on multi-

window ellipse and line fitting to curve segments.

III. MATERIALS

Most public datasets available concentrate on retinal signs

of diabetes (e.g., microaneurysms, exudates) and a few other

eye diseases, e.g., glaucoma. We refer the reader to the list

of 11 public datasets with URLs published recently in [13],

Appendix. To enable replication of our results, we use the

publicly available dataset for retinal tortuosity, RET-TORT,

created by the University of Padova (bioimlab.dei.unipd.it)

[14]. To our best knowledge, this is the only public data

set with clinical annotations for retinal vessels. RET-TORT

consists of 30 arteries and 30 veins of similar length and

calibre, extracted from 60 1300 × 1100 fundus images of

retinal vessels from normal and hypertensive patients.

All vessel centrelines were sampled manually at regular

intervals and with the same frequency. The resulting number

of samples varies between 19 and 50 depending on vessel

length. Images were acquired with a 50o-FOV Topcon TR50

fundus camera in a clinical context. The authors chose major

arteries and veins with minimal overlap with surrounding

vessels.

Three clinical specialists, denoted C1, C2, C3, ranked the

vessels independently by tortuosity. C1 is the specialist

whose rankings are included in the RET-TORT data. C2 and

C3 are our clinical co-authors (Loh, Karl). The agreement

(Spearman correlation) between specialists is shown in Table

I. We notice that the correlation for veins is lower than for

arteries.

TABLE I

RANK CORRELATION BETWEEN ANNOTATORS.

Arteries C2 C3 Veins C2 C3

C1 0.93 0.93 C1 0.88 0.88
C2 – 0.97 C2 – 0.94

IV. METHODS

Our aim was to compare the performance of the five

algorithms selected, using the Spearman rank correlation

of automatic and clinical rankings, as done elsewhere [14],

[18]. Values obtained by each index for arteries and veins

were obtained separately. All algorithms were implemented

by ourselves in MATLAB. We first rotated the centreline

samples to guarantee a one-to-one explicit representation,

y = y(x). Following [14], we then used spline interpolation

on the rotated centrelines.

Test set 1: high sampling rates. We first tested performance

with high sampling rates on the spline, as for centrelines

obtained by automatic vessel segmentation. “High” means
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that the number of samples is much larger than the minimum

needed to reconstruct the digital curve for the purpose of

tortuosity estimation; as this is a qualitative process, we

do not use quantitative criteria, e.g., Nyquist. The original

sampling rate in RET-TORT is approximately 1/10, yielded

by the manual sampling (between 19 and 54 samples per

artery, and between 19 and 48 samples per vein). Here we

used 100, 200 and 300 samples from the interpolated spline,

i.e., one order of magnitude larger than the original.

For the TD index, we divided the vessel into segments of

constant curvature sign, i.e., convex or concave, by locating

inflection points as zero-crossings of the second derivative

of the centrelines. If the zero-crossing occurred on a locally

straight segment, we placed the inflection point in its middle.

Following [10], we limited the impact of numerical noise on

the location of inflection points using an hysteresis algorithm

for reliable zero-thresholding (threshold t =±0.02).

Test set 2: medium sampling rates. We tested performance

with more modest sampling rates of the spline, using the

original sampling rate, and twice and thrice that rate. This

yielded a smaller number of samples than in test set 1,

respectively in the intervals [19,54], [38,108], [57,162] (over

both arteries and veins), partially overlapping the lowest end

of the range of test set 1.

Test 3: SCC. This index is based on a uniform linear

piecewise approximation of the centrelines. We tested the

influence of the number of linear segments, n, (or equiva-

lently, of their length, as it is a constant) on the Spearman

rank correlation. We used n values in [15,70], step 5; 15 and

70 yield, respectively, longer and shorter elements than the

original sampling rate.

V. RESULTS AND DISCUSSION

TABLE II

SPEARMAN CORRELATION, HIGH SAMPLING RATE (TEST

SET 1). NES = NOT ENOUGH SAMPLES; C1 , C2 , C3 = CLINICAL

ANNOTATOR; ORIGINAL NUMBER OF SAMPLES BETWEEN 19

AND 54. BOLDED = BEST ALGORITHM GIVEN OBSERVER.

Original 100 samples 200 samples 300 samples

A V A V A V A V

C1

TD 0.89 0.76 0.91 0.82 0.89 0.83 0.87 0.81
SCC 0.85 0.77 0.83 0.66 0.83 0.66 0.83 0.66
DM 0.8 0.63 0.84 0.64 0.84 0.64 0.84 0.64
τ5 NES 0.76 0.56 0.89 0.65 0.92 0.72
τ3 NES 0.76 0.57 0.89 0.67 0.92 0.74

C2

TD 0.85 0.81 0.9 0.92 0.91 0.92 0.87 0.86
SCC 0.83 0.81 0.76 0.75 0.76 0.75 0.76 0.75
DM 0.71 0.74 0.74 0.74 0.75 0.75 0.74 0.75
τ5 NES 0.71 0.7 0.88 0.88 0.91 0.85
τ3 NES 0.71 0.71 0.88 0.88 0.91 0.86

C3

TD 0.85 0.73 0.93 0.87 0.94 0.85 0.89 0.81

SCC 0.89 0.79 0.82 0.7 0.82 0.71 0.82 0.71
DM 0.79 0.69 0.82 0.69 0.82 0.69 0.82 0.69
τ5 NES 0.79 0.63 0.93 0.71 0.96 0.76
τ3 NES 0.79 0.63 0.94 0.71 0.96 0.76

Table II shows the Spearman correlation for test set 1 (high

sampling rate) and highlights the best performer for arteries

and veins at each sampling rate and for each observer. In

line with the inter-observers’ correlations (Table I), perfor-

mance is in general better for arteries. All correlations were

significant (p < 10−7, significance level α = 0.05).

For test set 1 (high sampling rates, Table II), TD is the

most frequent winner and is never beaten for veins. As the

sampling rate increases, Hart’s curvature-based algorithms

become the best for arteries (300 samples), but not always for

veins. This is in line with the the fact that high sampling rates

improve the accuracy of curvature estimation, which in turn

may lead to tortuosity estimates better in line with clinical

judgement. Interestingly, SCC is the best for arteries at the

original sampling rate, suggesting that, contrary to curvature-

based ones, this index is appropriate for low sampling rates.

For test set 2 (medium sampling rate; Table III), SCC and

TABLE III

SPEARMAN CORRELATION, MEDIUM SAMPLING RATE (TEST

SET 2). SYMBOLS AND NOTATION AS IN TABLE II

Original 2× 3×

A V A V A V

C1

TD 0.89 0.76 0.9 0.84 0.91 0.79

SCC 0.85 0.77 0.87 0.77 0.85 0.76
DM 0.8 0.63 0.82 0.64 0.84 0.62
τ5 NES 0.51 0.36 0.87 0.79

τ3 NES 0.51 0.34 0.88 0.77

C2

TD 0.85 0.81 0.88 0.86 0.9 0.89

SCC 0.83 0.81 0.85 0.81 0.83 0.82
DM 0.71 0.74 0.74 0.73 0.75 0.73
τ5 NES 0.53 0.43 0.89 0.83
τ3 NES 0.53 0.41 0.89 0.83

C3

TD 0.85 0.73 0.9 0.77 0.92 0.8

SCC 0.89 0.79 0.91 0.79 0.91 0.79
DM 0.79 0.69 0.81 0.69 0.81 0.69
τ5 NES 0.58 0.36 0.94 0.8

τ3 NES 0.58 0.36 0.94 0.79

TD are the best for the lowest 2× sampling rate. This is

in line with the behaviour observed in test set 1, reinforcing

the practical recommendation stated above. Again curvature-

based measures become the best at higher sampling rates,

in line with what found in test set 1. TD remains a good

performer even at lower sampling rates than in test set 1, but

SCC is a good alternative at the original and two times the

original sampling rate. The abnormally low figures (0.34 to

0.58) for τ3, τ5 at the original and 2× sampling rates are

due to not enough samples on several short vessels for those

sampling rates.

As the number of samples increases, the performance change

for the curvature-based indices is generally larger than that

of the others, although we used the multi-window curvature

estimation algorithm developed by Annunziata and Trucco

[16], which proved resilient to sampling noise and sampling

rate. This suggests that a high-frequency resampling should

be used whenever curvature-based indices are adopted.

Test 3: SCC. With the protocol described, the ρ values varied

from 0.68 and 0.83, a substantial variation given the range

of values in Tables II and III, and one order of magnitude

larger than the maximum variation among annotators (Table

I: .97-.88 = .09). We conclude that n is a critical parameter

of SCC.
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VI. CONCLUSIONS

We have presented an experimental comparative study

of the performance of five retinal tortuosity indices with

varying sampling rates of vessel centrelines. To facilitate

reproducibility, we used a public dataset, RET-TORT, and

the commonly adopted Spearman correlation coefficient as

performance measure. We assessed, for the first time, the

performance of Bribiesca’s index. Our results indicate that

the number of samples does influence performance and its

choice must be considered carefully whenever tortuosity

estimates are used for clinical associational studies. We

also arrived at the following practical guidelines: (1) the

tortuosity density index offers good performance overall,

but not the best one at all sampling rates; (2) curvature-

based methods are the best if high-frequency sampling is

possible (always the case when reliable vessel centrelines

are estimated automatically), but (3) are the most sensitive to

variations of the number of samples; (4) slope-chain coding,

the new measure tested quantitatively for retinal images,

performs as well as the tortuosity density at low sampling

rates, but the length of the linear elements must be chosen

carefully.
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