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Abstract

Recently bias–variance decomposition of error has been used as a tool to study the behavior of learning algorithms

and to develop new ensemble methods well-suited to the bias–variance characteristics of base learners. We propose

methods and procedures, based on Domingos unified bias–variance theory, to evaluate and quantitatively measure the

bias–variance decomposition of error in ensembles of learning machines. We apply these methods to study and compare

the bias–variance characteristics of single SVMs and ensembles of SVMs based on resampling techniques, and their

relationships with the cardinality of the training samples. In particular we present an experimental bias–variance

analysis of bagged and random aggregated ensembles of Support Vector Machines, in order to verify their theoretical

variance reduction properties. The experimental bias–variance analysis quantitatively characterizes the relationships

between bagging and random aggregating, and explains the reasons why ensembles built on small subsamples of

the data work with large databases. Our analysis also suggests new directions for research to improve on classical

bagging.

Index Terms

Ensemble of learning machines, bias–variance analysis, Support Vector Machines, bagging.

I. I NTRODUCTION

Ensemble methods represent one of the main current research lines in machine learning [1]–[3]. Several theories

have been proposed to explain their behavior and characteristics. For instance, Allwein et al. interpreted the improved

generalization capabilities of ensembles of learning machines in the framework of large margin classifiers [4],

Kleinberg in the context of Stochastic Discrimination Theory [5], and Breiman and Friedman in the light of the

bias–variance analysis adopted from classical statistics [6], [7].

Historically, the bias–variance insight was borrowed from the field of regression, using squared–loss as the loss

function [8]. For classification problems, where the0/1 loss is the main criterion, several authors proposed bias–

variance decompositions related to0/1 loss [9]–[12]. A few authors explicitly analyzed ensemble methods in the
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framework of bias–variance tradeoff, considering the correlation between the base learners as one of the main

factors affecting their effectiveness [13], [14]. In particular Bauer and Kohavi and Zhou, Wu and Tang analyzed

bias–variance decomposition of error in bagging and other ensemble methods, using decision trees, Naive-Bayes,

and neural networks as base learners [15], [16].

We recently applied bias–variance decomposition of error as a tool to study the behavior of learning algorithms

and to develop new ensemble methods well-suited to the bias–variance characteristics of base learners [17], [18].

In particular we characterized bias and variance in Support Vector Machines (SVMs) [19] with respect to the

kernel and its parameters in order to gain insight into the way SVMs learn from data and to study if and in which

conditions we may develop SVM-based ensemble methods [20].

Indeed it is an open question if SVMs may be suitable base learners for ensemble methods: some authors claim

that, because the SVMs directly implement the structural risk minimization principle [21], there is nothing to be

gained by combining them; on the other hand, several results show the effectiveness of the ensembles of SVMs [22]–

[24]. To help unravel this question, in this paper we extend the bias–variance analysis previously performed on

single SVMs [20] to ensembles of SVMs based on resampling techniques.

In particular our aim consists of characterizing the bias–variance decomposition of error in terms of the kernel

parameters of the base learners in bagged and random aggregated (RA) ensembles of SVMs. In this way we can

quantitativelyverify the theoretical results obtained by Breiman [25] about the variance reduction properties of

random aggregating, and we may also understand the extent to which the results Breiman obtained for random

aggregating can be extended to bagging, when SVMs are used as base learners. Indeed Breiman showed that

random aggregating and bagging may be effective only if unstable predictors are used. Moreover he also showed

that in regression problems, the aggregation of predictors cannot worsen the performance of single predictors, while

in classification problems, if most of the predictions performed by the base classifier are non-optimal (in Bayes’

sense), aggregation may also degrade the performance of the resulting ensemble [25].

To this end we present general methods and procedures, based on Domingos’ unified bias–variance theory [11],

to estimate the bias–variance decomposition of error in ensembles of SVMs. The proposed procedures are quite

general and can be employed to analyze the bias–variance characteristics of other ensembles with different base

learners.

Ensemble methods based on resampling techniques have been successfully applied to large data-mining prob-

lems [26]. Our bias–variance analysis of random aggregated ensembles may also yield insight into the reasons why

voting by many classifiers built on small subsets of data, such as Breiman’s “Pasting Small Votes” ensembles [27]

and their distributed counterpart [26], [28] work with large databases.

Another issue raised by our experiments consists of understanding the reasons why Lobag [24], an ensemble

method based on resampling and bias–variance analysis techniques, works at least when small samples are used.

The paper is structured as follows. In the following section the theoretical properties of random aggregating are

summarized and bagging is introduced as an approximation of random aggregating. Sect. III provides an outline

of the bias–variance decomposition of error for the0/1 loss function, according to Domingos’theory, and methods
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to measure bias and variance in ensembles of learning machines are presented. Sect. IV presents the results of an

extended experimental analysis of bias–variance decomposition of error in bagged and random aggregated ensembles,

using SVMs as base learners. Relationships between bias, variance and cardinality of the training samples are also

studied, and some insights into the role of noise in bias–variance decomposition of error are provided. We then

discuss the results, comparing the bias–variance decomposition in single, bagged and random-aggregated ensembles

of SVMs and we consider some possible reasons why, on the one hand, ensemble methods built on small samples

work with large databases, and why,on the other hand, Lobag ensembles work when small sample are available.

II. RANDOM AGGREGATING AND BAGGING

In this section we summarize Breiman’s main theoretical results for bagging and random aggregating [25],

emphasising their variance reduction properties.

Let D be a set ofm points drawn identically and independently fromU according toP , whereU is a population

of labeled training data points(xj , tj), andP (x, t) is the joint distribution of the data points inU , with x ∈ Rd.

Let L be a learning algorithm, and definefD = L(D) as the predictor produced byL applied to a training set

D. The model produces a predictionfD(x) = y. Suppose that a sequence of learning sets{Dk} is given, each

i.i.d. from the same underlying distributionP . Breiman proposed aggregating thefD trained with different samples

drawn fromU to get a better predictorfA(x, P ) [25]. For regression problems,tj ∈ R andfA(x, P ) = ED[fD(x)]

whereED[·] indicates the expected value with respect to the distribution ofD, while, in classification problems,

tj ∈ S ⊂ N andfA(x, P ) = arg maxj |{k|fDk
(x) = j}|.

Because the training setsD are randomly drawn fromU , we name the procedure to buildfA random aggregating.

In order to simplify the notation, we denotefA(x, P ) asfA(x).

A. Random aggregating

If X andT are random variables having joint distributionP and representing values of the labeled data points

(x, t), the expected squared lossEL for a single predictorfD(X) trained on a data setD is:

EL = ED[ET,X[(T − fD(X))2]] (1)

whereET,X[·] indicates the expected value with respect to the distribution ofT andX.

The expected squared lossELA for the aggregated predictor is:

ELA = ET,X[(T − fA(X))2] (2)

Developing the square in eq. 1 we have:

EL = ED[ET,X[T 2 + f2
D(X)− 2TfD(X)]]

= ET [T 2] + ED[EX[f2
D(X)]]− 2ET [T ]ED[EX[fD(X)]]

= ET [T 2] + EX[ED[f2
D(X)]]− 2ET [T ]EX[fA(X)] (3)
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In a similar way, developing the square in eq. 2 we have:

ELA = ET,X[T 2 + f2
A(X)− 2TfA(X)]

= ET [T 2] + EX[f2
A(X)]− 2ET [T ]EX[fA(X)]

= ET [T 2] + EX[ED[fD(X)]2]− 2ET [T ]EX[fA(X)] (4)

Let beZ = ED[fD(X)]. UsingE[Z2] ≥ E[Z]2, considering eq. 3 and 4 we have thatED[f2
D(X)] ≥ ED[fD(X)]2

and henceEL ≥ ELA.

The reduction of error in randomly aggregated ensembles depends on how much different the two termsEX[ED[f2
D(X)]]

andEX[ED[fD(X)]2] of eq. 3 and 4. As outlined by Breiman, the effect of instability is clear: iffD(X) does not

change too much with replicated data setsD, the two terms will be nearly equal and aggregation will not help.

The morefD(X) varies, the greater the improvement that aggregation may produce.

In other words, the reduction of error depends on the instability of the prediction, i.e. on how unequal the two

sides of eq. 5 are:

ED[fD(X)]2 ≤ ED[f2
D(X)] (5)

There is a strict relationship between the instability and the variance of the base predictor. Indeed the variance

V (X) of the base predictor is:

V (X) = ED[(fD(X)− ED[fD(X)])2]

= ED[f2
D(X) + ED[fD(X)]2 − 2fD(X)ED[fD(X)]]

= ED[f2
D(X)]− ED[fD(X)]2 (6)

Comparing eq.5 and 6 we see that higher the instability of the base classifiers, the higher their variance is. The

reduction of error in random aggregation is due to the reduction of the variance component (eq. 6) of error, because

V (X) will be strictly positive if and only ifED[f2
D(X)] > ED[fD(X)]2, i.e. if and only if the base predictor is

unstable (eq. 5).

In classification problems we may also obtain error reduction, but only if we use classifiers that provide the

optimal prediction (in the Bayes sense) for the majority of the input patterns. On the other hand, ensembling

Bayesian optimal predictors for all the input patterns is meaningless, because it is not possible to enhance the

optimal Bayes classifier, and of course in this case we would have no diversity in the ensemble.

Breiman showed that, unlike regression, aggregating classifiers can lower performance, whereas in regression,

aggregating predictors can lead to better performances, as long as the base predictor is unstable [25], [29].

More precisely letfD(X) be a base classifier that predicts a class labelt ∈ C, C = {1, . . . , C}, and letX be a

random variable as in previous regression case andT a random variable with values inC.

Thus the probabilityp(D) of correct classification for a fixed data setD, considering a non deterministic
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assignment for the labels of the class, is:

p(D) = P (fD(X) = T ) =
C∑

j=1

P (fD(X) = j|T = j)P (T = j) (7)

In order to make the probability of correct classificationp independent from the choice of a specific learning set,

we average forD:

p =
C∑

j=1

ED[P (fD(X) = j|T = j)]P (T = j)

=
C∑

j=1

∫
P (fD(X) = j|X = x, T = j)P (T = j|X = x)PX(dx) (8)

Bearing in mind thatfA(X) = arg maxi PD(fD(x) = i), the probability of correct classificationpA for random

aggregation is:

pA =
C∑

j=1

∫
P (fA(X) = j|T = j)P (T = j|X = x)PX(dx)

=
C∑

j=1

∫
I(arg max

i
[PD(fD(X) = i] = j)P (T = j|X = x)PX(dx) (9)

whereI is the indicator function.

We now split the patterns into a setO, corresponding to the optimal (Bayesian) predictions performed by the

aggregated classifier, and into a setO′, corresponding to non-optimal predictions. The set of optimally classified

patternsO is:

O = {x| arg max
j

P (T = j|X = x) = arg max
j

PD(fD(x) = j)}

According to the proposed partition of the data we can split the probabilitypA of correct classification for random

aggregation into two terms:

pA =
∫

x∈O

max
j

P (T = j|X = x)PX(dx) +
∫

x∈O′

C∑

j=1

I(fA(x) = j)P (T = j|X = x)PX(dx) (10)

If x ∈ O we have:

arg max
j

P (T = j|X = x) = arg max
j

PD(fD(x) = j) (11)

In this case, considering eq. 8 and 9:

C∑

j=1

P (fD(X) = j|X = x, T = j)P (T = j|X = x) ≤ max
j

PD(fD(x) = j)

and hencepA ≥ p. On the contrary, ifx ∈ O′, eq. 11 does not hold, and it may occur that:

C∑

j=1

I(fA(x) = j)P (T = j|X = x) <

C∑

j=1

P (fD(X) = j|T = j)P (T = j|X = x)

As a consequence, if the set of optimally predicted patternsO is large, aggregation improves performances; on the

contrary, if setO′ is large, aggregation can worsen performances.
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B. Bagging as an approximation of random aggregating

In most cases we deal only with data sets of limited size, and moreover we do not know the probability distribution

underlying the data. In such cases, we could try to simulate random aggregation by bootstrap replicates of the

data [30] and by aggregating the predictors trained on the bootstrapped data.

Bagging [25] shows the same limits as random aggregating: only if the base learners are unstable can we achieve

error reduction for single base learners. Of course, if the base learner is near to the Bayes error we cannot expect

improvements by bagging.

Bagging is an approximation of random aggregating, for at least two reasons.

First, bootstrap samples are not real data samples: they are drawn from a data setD, which in turn is sample of

the populationU . On the contraryfA uses samples drawn directly fromU .

Second, bootstrap samples are drawn fromD through a uniform probability distribution that is only an approxi-

mation of the unknown true distributionP .

For these reasons we can only hope that this is a good enough approximation offA to result in substantial

variance reduction (eq. 2) [31].

With bagging, each base learner, on the average, uses only63.2% of the available data for training and so we

can expect a larger bias for each base learner, since the effective size of the learning set is reduced. This may also

affect the bias of the bagged ensemble, which critically depends on the bias of the component base learners: we

may expect an increment of the bias of the bagged ensemble compared to the unaggregated predictor trained on

the entire available training set.

Bagging is a variance-reduction method, but we cannot expect such large decreases of variance as in random

aggregating. The intuitive reason consists of the fact that, in random aggregating, the base learners use more variable

training sets drawn fromU according to the distributionP . Random aggregating thus exploits more information

from the populationU , while bagging can exploit only the information from a single data setD drawn fromU ,

through bootstrap replicates of the data fromD.

Breiman showed that, in regression problems, random aggregating always reduces variance. But what about

bagging in classification? Some authors experimentally showed that bagging reduces variance in classification

problems, using decision trees or neural networks as base classifiers [15], [16]. Here we investigate whether this

property also holds when SVMs are used as base learners. Moreover we study the relationships between bias–

variance decomposition of error in bagged and random aggregated ensembles of SVM, in order to get a bias–variance

interpretation of the reasons why voting many classifiers built on small subsets of data [26], [27] works successfully.

To this purpose we need methods and procedures to quantitatively estimate the bias–variance decomposition of error

in ensembles of learning machines.

III. B IAS–VARIANCE DECOMPOSITION OF ERROR IN ENSEMBLES OF LEARNING MACHINES

In this section we show how to measure bias and variance in ensemble methods, outlining also the main ideas

behind Domingos’ bias–variance decomposition of error with the 0/1 loss. For a more detailed introduction to
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Domingos’ bias-variance theory, see [11], [32].

A. Bias–Variance Decomposition in classification problems

For classification problems, where the0/1 loss is the main criterion, several authors proposed bias–variance

decompositions related to0/1 loss [6], [9], [10], [33]–[35]. These decompositions have significant shortcomings:

in particular they lose the relationship to the original squared loss decomposition [8], in most cases forcing bias

and variance to be purely additive.

We consider classification problems and the0/1 loss function in the Domingos’ unified framework of bias–

variance decomposition of the error [11], [36]. According to this approach, bias and variance are defined for an

arbitrary loss function, showing that the resulting decomposition specializes to the standard for squared loss, but it

also holds for the0/1 loss.

Let L(t, y) be the0/1 loss function, that isL(t, y) = 0 if y = t, andL(t, y) = 1 otherwise.

The expected lossEL of a learning algorithmL at pointx can be written by considering both randomness due

to the choice of the training setD and randomness int due to the choice of a particular test point(x, t):

EL(L,x) = ED[Et[L(t, fD(x))]] (12)

whereED[·] andEt[·] indicate the expected value with respect to the distribution ofD, and to the distribution oft.

The purpose of bias-variance analysis consists of decomposing this expected loss into terms that separate the bias

and the variance. To derive this decomposition, we need to define theoptimal predictionand themain prediction:

bias and variance can be defined in terms of these quantities.

The optimal predictiony∗ for point x minimizesEt[L(t, y)] :

y∗(x) = arg min
y

Et[L(t, y)] (13)

The noiseN(x), is defined in terms of the optimal prediction, and represents the remaining loss that cannot be

eliminated, even by the optimal prediction:

N(x) = Et[L(t, y∗)]

The main predictionym at pointx is defined as

ym = arg min
y′

ED[L(fD(x), y′)] (14)

i.e., it is the label forx that the learning algorithm “wishes” were correct, or, in other words, it represents its

systematic prediction. For 0/1 loss, the main prediction is the most predicted class.

The bias B(x) is the loss of the main prediction compared to the optimal prediction:

B(x) = L(y∗, ym)

It represents the systematic error of the learning algorithm. For the 0/1 loss, the bias is always 0 or 1. We will say

thatL is biased at pointx, if B(x) = 1.
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The varianceV (x) is the average loss of the predictions relative to the main prediction:

V (x) = ED[L(ym, fD(x))] (15)

It captures the extent to which the various predictionsfD(x) vary depending onD.

Domingos distinguishes between two opposite effects of variance on error: in the unbiased case variance increases

the error, while in the biased case variance decreases error.

As a result we can define anunbiased variance, Vu(x), which is the variance whenB(x) = 0 and abiased

variance, Vb(x), which is the variance whenB(x) = 1. Finally we can also define thenet varianceVn(x) to take

into account the combined effect of unbiased and biased variance:

Vn(x) = Vu(x)− Vb(x)

If we can disregard noise, unbiased variance captures the extent to which the learner deviates from the correct

predictionym (in the unbiased caseym = y∗), while the biased variance captures the extents to which the learner

deviates from the incorrect predictionym (in the biased caseym 6= y∗).

From this standpoint, variance can be interpreted as a measure of diversity between classifiers trained with

different data setsD. Moreover the effects of this kind of diversity on error depend on the type of the variance, as

we need to distinguish whenL is biased or unbiased at a specific pointx.

This decomposition for a single pointx can be generalized to the entire population by definingEx[·] to be the

expectation with respect toP (x). Then we can define theaverage biasEx[B(x)], the average unbiased variance

Ex[Vu(x)], and theaverage biased varianceEx[Vb(x)]. In the noise-free case, the expected loss over the entire

population is

Ex[EL(L,x)] = Ex[B(x)] + Ex[Vu(x)]− Ex[Vb(x)].

B. Measuring bias–variance decomposition of error in ensembles of learning machines

In this subsection we summarize how to estimate the decomposition of error in bias, net-variance, unbiased and

biased variance with ensembles of learning machines.

To represent the samples used in our bias–variance decomposition procedures, we make use of the following

notation:

• D : the overall data set we used to train the ensembles

• Di : a subsample drawn from the training setD, 1 ≤ i ≤ n.

• Si : a set of samples,1 ≤ i ≤ n

• Dij : samples belonging to the setSi, 1 ≤ j ≤ m

• T : the test set to estimate the bias–variance decomposition of error

With bagging a single set of bootstrapped data is used to train the base learners. Here our aim is to estimate the

bias–variance decomposition of error in bagged ensemble and this estimate has to be independent of the particular

choice of the training set (see: eq. 12): hence we need multiple setsSi of samples to train multiple ensembles with
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the same learning parameters. Each set is obtained by bootstrapping a training setDi (as it is usual in bagging),

but here we need multiple training sets to bootstrap multiple sets.

In our experimental set-up,n training setsDi are obtained by subsampling with replacement according to the

uniform probability distribution from a much larger available training setD. In particular we subsampledn relatively

small training setsDi of sizes to guarantee that there will not be too much overlap between differentDi. Finally

from eachDi we bootstrapped a setSi = {Dij}m
j=1 of m samples that we used to train the base learners of the

bagged ensemble.

For random aggregation the procedure is similar, but with the substantial difference that the setSi = {Dij}m
j=1

is directly drawn fromD, by subsampling with replacement according to the uniform probability distribution.

The estimate of the bias–variance decomposition of error is performed on a separate test setT not used to train

the ensembles.

In the rest of this section we present the experimental procedures adopted in greater detail. We may distinguish

between two main steps:

1) Generation of the data for ensemble training.

2) Bias-variance estimate on a separate test set.

The design and the implementation of the first step depends on the specific ensemble method to be evaluated. In the

following section, we present procedures to generate training data for bagged and random aggregated ensembles.

The second step uses the data sets previously generated to train the ensemble and to evaluate the bias-variance

decomposition of error on a separate test set. This second step is not ensemble specific and can be applied unmodified

to any ensemble of learning machines. Here we describe an approach (bias–variance estimate using a single and

separate test set) feasible when a large test set is available. We can easily extend the bias–variance estimate to small

test sets, using, for instance, bootstrap or cross-validation techniques.

1) Generating training data to estimate bias–variance decomposition in bagged and random aggregated en-

sembles:As a first step we need to generate the data to train the base learners. This step is different in random

aggregating and bagging.

For baggingwe draw with replacement from a learning setD n samplesDi of sizes, according to the uniform

probability distribution. Note that|Di| << |D|, asD represents the universe population from which training data

Di are drawn.

From eachDi, 1 ≤ i ≤ n, we generate by bootstrapm replicatesDij , collecting them inn different sets

Si = {Dij}m
j=1. Suchn sets will be used to trainn ensembles composed bym base learners.

The experimental procedure to generate the training data for bagging from an available data setD is summarized

in Fig. 1. The procedureGenerate bootstrap samples (Fig. 1) generates setsSi of bootstrapped samples,

drawing, at first, a subsampleDi (of size s) from the training setD according to the uniform probability dis-

tribution (procedureDraw with replacement ) and then drawing fromDi m bootstrap replicates (procedure

Bootstrap replicate ).

For random aggregatingwe draw with replacement fromD n sets of samplesSi, according to the uniform
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Procedure Generatebootstrap samples

Input arguments:

- D: Overall training set

- n: number of sets of samplesS

- m: number of bootstrap replicates for each setS

- s: size of each bootstrap replicate

Output :

- SetsSi = {Dij}m
j=1, 1 ≤ i ≤ n of bootstrapped samples

begin procedure

for i = 1 to n

begin

Di = Draw with replacement (D, s)

Si = ∅
for j = 1 to m

begin

Dij = Bootstrap replicate (Di)

Si = Si ∪Dij

end

end

end procedure .

Fig. 1. Procedure to generate samples for bias–variance analysis in bagging

probability distribution. Each set of samplesSi is composed bym samplesDij drawn with replacement fromD,

using the uniform probability distribution. Each sampleDij is composed bys examples, and theDij samples are

collected inn setsSi = {Dij}m
j=1. Note that in this case each sampleDij is directly drawn fromD and not from

the samplesDi ⊂ D. Fig. 2 summarizes the experimental procedure we adopted to generate the data for random

aggregating. SetsSi of samples are drawn fromD by the procedureDraw with replacement . This process is

repeatedn times, giving rise ton sets of samples that will be used to trainn random aggregated ensembles, each

composed bym base learners (procedureGenerate samples , Fig. 2).

Note that this is only an approximation of random aggregating. Indeed with random aggregating we should draw

the samples from the universe of the data according to their unknown distributionP . Of course this is in general

not possible (except for synthetic data), but in our experiments we used synthetic data or comfortably large data

setsD, setting the size of the samplesDij to relatively small values, and using a uniform probability distribution

instead of the unknown distributionP . From this standpoint, we approximated random aggregation by randomly

drawing data from the universe populationU represented by a comfortably large training setD.

2) Estimate of bias–variance decomposition of error:In this step we use then sets of samplesSi to train n

ensembles, each composed bym learners, each one trained with different resampled data, and we repeat this process

for all the considered ensemble models. In order to properly compare the effect of different choices of the learning

parameters on bias–variance decomposition of error, each ensemble model is represented by a different choice of

the learning parameters and is trained with the same sets of samplesSi, 1 ≤ i ≤ n.

For each model, bias–variance decomposition of error is evaluated on a separate test setT , significantly larger
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Procedure Generatesamples

Input arguments:

- D: Overall training set

- n: number of sets of samplesS

- m: number of samples collected in each setS

- s: size of each sample

Output:

- Si = {Dij}m
j=1, 1 ≤ i ≤ n: sets of samples

begin procedure

for i = 1 to n

begin

Si = ∅
for j = 1 to m

begin

Dij = Draw with replacement (D, s)

Si = Si ∪Dij

end

end

end procedure.

Fig. 2. Procedure to generate samples for bias–variance analysis in random aggregation

Procedure Bias–Varianceanalysis

Input arguments:

- n: number of ensembles

- {Si}n
i=1: sets of samples

- T : test set

- A: set of learning parameters

Output :

- BV = {bv(α)}α∈A: error, bias, net-variance, unbiased and biased variance

of the bagged ensembles having base learners with learning parametersα ∈ A.

begin procedure

for eachα ∈ A
begin

EnsembleSet(α) = ∅
for i = 1 to n

begin

ensemble(α, Si) = Ensemble train (α, Si)

EnsembleSet(α) = EnsembleSet(α) ∪ ensemble(α, Si)

end

bv(α) = Perform BV analysis (EnsembleSet (α), T )

BV = BV ∪ bv(α)

end

end procedure .

Fig. 3. Procedure to perform bias–variance analysis in ensembles of learning machines

than the training sets, using then ensembles trained with then setsSi.

The experimental procedure to estimate the bias–variance decomposition of error is summarized in Fig. 3. In the

procedureBias-Variance analysis (Fig. 3) different ensembles are trained (procedureEnsemble train )
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Procedure Perform BV analysis

Input :

- F (α) = {ei}n
i=1: set ofn ensemblesei trained with parametersα

- T : test set

Output :

- bv(α): estimate of the bias–variance decomposition with learning parametersα:

- bv(α).loss estimate of the loss

- bv(α).bias estimate of the bias

- bv(α).netvar estimate of the net variance

- bv(α).varu estimate of the unbiased variance

- bv(α).varb estimate of the biased variance

begin procedure

for eachx ∈ T
begin

p1(x) = 1
n

Pn
i=1 ||ei(x) = 1||

p−1(x) = 1
n

Pn
i=1 ||ei(x) = −1||

ym = arg max(p1, p−1)

B(x) =
ŕŕŕ ym−t

2

ŕŕŕ
Vu(x) = 1

n

Pn
i=1 ||(B(x) = 0) and (ym 6= ei(x))||

Vb(x) = 1
n

Pn
i=1 ||(B(x) = 1) and (ym 6= ei(x))||

Vn(x) = Vu(x)− Vb(x)

Err(x) = B(x) + Vn(x)

end

p = card(T )

bv(α).loss = 1
p

P
x∈T Err(x)

bv(α).bias = 1
p

P
x∈T B(x)

bv(α).netvar = 1
p

P
x∈T Vn(x)

bv(α).varu = 1
p

P
x∈T Vu(x)

bv(α).varb = 1
p

P
x∈T Vb(x)

end procedure .

Fig. 4. Procedure to perform bias variance decomposition of error for ensembles of learning machines.B(x), Vu(x), Vb(x), Vn(x), Err(x)

are respectively the bias, the unbiased, biased and net variance, and the overall error. Note thatF (α) is a set of ensemblesei, 1 ≤ i ≤ n,

trained with the same learning parameterα.

using the same sets of samples generated through the procedureGenerate samples (random aggregating) or

Generate bootstrap samples (bagging). Note that EnsembleSet(α) represents a set of ensembles charac-

terized by the same learning parameterα; ensemble(α, Si) is an ensemble trained with a specific setSi of training

samples. The learning parameterα depends on the choice of the base learners: for instance, with gaussian kernels

it represents theC regularization parameter and the widthσ of the gaussian function.

Bias–variance decomposition of error is performed on the separate test setT using the previously trained

ensembles (procedurePerform BV analysis , Fig. 4).

The procedurePerform BV analysis provides an estimate of bias–variance decomposition of error for a

given model. Note that in Fig. 4 the function||z|| is equal to1 if z is true, and0 otherwise.

For instance, in order to perform a bias–variance analysis with a bagged ensemble having a training setD, a

separate test setT , usingn sets ofm bootstrapped samples of cardinalitys, it is sufficient to call the two procedures
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Generate bootstrap samples andBias-Variance analysis :

{Si}n
i=1 = Generate bootstrap samples (D, n, m, s);

BV = Bias-Variance analysis (n, {Si}n
i=1, T ,A);

With random aggregated ensembles the overall procedure is quite similar: the only difference consists of the way

the initial resampling procedure is performed:

{Si}n
i=1 = Generate samples (D, n, m, s);

BV = Bias-Variance analysis (n, {Si}n
i=1, T ,A);

IV. EXPERIMENTAL RESULTS

This section summarizes the results of an extended bias–variance analysis of ensembles of SVMs, using a set of

two-class classification problems, while the discussion is postponed until the next section. Full experimental results

and graphics are available on the web (see the appendix for details).

We performed the following experimental tasks:

• Bias–variance analysis of bagged and random aggregated (RA) ensembles of SVMs with respect to the kernel

parameters

• Comparison between bias–variance characteristics of single, bagged and RA SVMs

• Check and quantitative evaluation of the variance reduction properties of RA and bagged ensembles of SVMs.

• Comparison of the bias–variance characteristics of single, bagged and RA SVMs, while varying the cardinality

of the training data

• Comparison of single SVMs trained on large data sets with RA SVM ensembles trained on small samples

• Evaluation of the effect of noisy data on the bias–variance decomposition of error in bagged and RA ensembles

of SVMs

We used linear, polynomial and gaussian SVMs as base learners. The bias–variance decomposition of error has

been evaluated with respect to different settings of the kernel parameters: for gaussian kernels we selected a set of

values ofσ such thatσ ∈ [0.01, 100], for polynomial kernels we considered degrees between2 and 10, and we

selected the regularization parameterC ∈ [0.1, 1000].

We also studied the relationships between the cardinality of the training samples and the bias–variance charac-

teristics of single, bagged and RA SVMs with respect to different choices of kernel and regularization parameters

of SVMs. We then considered the comparison of RA SVM ensembles trained on small samples with single SVMs

trained on large data sets, to evaluate the loss/gain of the ensemble approach with respect to the accuracy and the

computation time. Finally we analyzed the effect of noisy data into the bias–variance characteristics of bagged and

RA ensembles of SVMs.

Considering all the data sets, we trained and tested more than160000 different SVM ensembles and a total of more

than 10 millions of single SVMs. To perform the experimental analysis we used a cluster of Linux workstations,

and we developed new classes and specific C++ applications, extending theNEURObjectssoftware library [37]1.

1The extended version of theNEURObjectslibrary is available at:http://homes.dsi.unimi.it/ ∼valenti/sw/NEURObjects
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A. Data sets

In the experiments we employed7 different data sets, both synthetic and “real”.

P2 is a synthetic bidimensional two–class data set; each region is delimited by one or more of four simple

polynomial and trigonometric functions2.

The synthetic data setWaveformis generated from a combination of 2 of 3 “base” waves; we reduced the original

three classes ofWaveformto two, deleting all samples pertaining to class0. The other data sets are all from the

UCI repository [38].

Table I summarizes the main features of the data sets used in the experiments. The first column refers to the

cardinality of the overall training set (the data setD of Sect. III-B), from which training samples are subsampled.

The second column refers to the cardinality of the separate test set, used to estimate the bias–variance decomposition

of error. The last column represents the dimension of the input space.

For “real” data, we randomly drew the samples from the overall training set, while for synthetic data sets the

data were generated through suitable computer programs. For the UCI data sets we randomly split all the available

data in a training and a test set of about equal size, except for theGrey-Landsatdata set for which we maintained

the original size for both the training and test set.

To measure the bias–variance decomposition of error, for each data set we used100 sets (parametern = 100

in Sect. III-B), each set is composed by100 samples (parameterm = 100 in Sect. III-B), and each sample is

composed by100 examples (parameters = 100).

The choice of small-sized samples allows us to better evaluate the variance component of error and to obtain a

quite large data diversity between the sets of samples: in such a way we may better simulate the variability of the

data observed in real problems.

The relationships between cardinality of the training data and the bias–variance characteristics of the ensembles

have been studied by considering different samples ranging from25 to 3200 examples for each training set (see

Sect. IV-D).

B. Bias–variance analysis in bagged SVM ensembles

We compared bias–variance decomposition in single SVMs and bagged ensembles of SVMs. In the figures

of this section, the results referred to single SVMs are labeled with crosses, while bagged SVMs are labeled

with triangles. The analyzed quantities (e.g. bias, net-variance, unbiased and biased variance) are represented

with the same type of line both in single and bagged SVMs. Full experimental results are downloadable from

http://homes.dsi.unimi.it/ ∼valenti/papers/BV/bv-svm-bagging.pdf .

1) Gaussian bagged SVM ensembles:Fig. 5 represents bias–variance decomposition of error in bagged and

single RBF-SVM with respect to different values ofσ (the “spread” of the kernel) and for a fixed value of the

regularization parameterC. error follows a “sigmoid” trend, visible also in other data sets.

2The application gensimple , that we developed to generate the data, is available on line at

ftp://ftp.disi.unige.it/person/ValentiniG/BV/gensimple .
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TABLE I

DATA SETS USED IN THE EXPERIMENTS.

Data set . card. overall card. number of

train sets test sets attributes

P2 synthetic 10000 2

Waveform synthetic 10000 21

Grey-Landsat 4425 2000 36

Letter-Two 614 613 16

Letter-Two w. noise 614 613 16

Spam 2301 2300 57

Musk 3299 3299 166
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net variance
unbiased var.

biased var.

C=1

Fig. 5. Comparison of bias-variance decomposition between single gaussian SVMs (lines labeled with crosses) and bagged gaussian SVM

ensembles (lines labeled with triangles), while varyingσ and forC = 1 (Letter-Two data set).

The value of theσ parameter of the gaussian kernel determines three different regions (Fig. 5), previously just

observed in single gaussian SVMs [17], [20].

High bias region (small σ values). In this region error of single and bagged SVMs is about equal, and it is

characterized by a very high bias. Net-variance is close to 0, because biased variance is about equal to unbiased

variance. In some cases they are both close to 0. In other cases they are equal but greater than 0 with slightly larger

values in single than in bagged SVMs. In this region the error is ruled by the high bias due to the too low values

of σ.

Transition region (intermediateσ values). In this region the bagged SVMs start to learn from data. The bias

decreases very quickly both in single and bagged SVMs. Net-variance maintains the wave-shape just observed in

single SVMs, but it is slightly lower. error diminishes at about the same rate in single and bagged SVMs (Fig. 5).

Stabilized region. For relatively large values ofσ net-variance tends to stabilize. In this region net-variance of

bagged SVMs is equal or less than the that of single SVMs, while bias remains substantially unchanged in both.
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As a result, bagged SVMs show equal or lower average error with respect to single SVMs (Fig. 5).

Such behavior can be explained through the specific characteristics of gaussian kernels. Indeed for very small

values ofσ the training error is very small (about 0), while the number of support vectors is very high, and high

also are error and bias. In particular the real-valued function computed by the SVM (that is the function computed

without considering the sign function) is very spiky with small values ofσ. The response of the SVM is high only

in small areas around the support vectors, while in all the other areas “not covered” by the support vectors the

response is very low (about 0): in other words the SVM is not able to get a decision, with a consequently very high

bias [20]. These facts support the hypothesis of overfitting problems with small values ofσ. Enlargingσ we obtain

a wider response on the input domain: the real-valued function computed by the SVM becomes smoother, as the

“bumps” around the support vectors become wider, and the SVM can decide also on unknown examples, while,

at the same time, the number of support vectors decreases. As noted in [39], using very large values of sigma,

we have a very smooth discriminant function (in practice a hyperplane), and increasing it even further nothing

is changed. Moreover, enlarging too muchσ we may obtain worse results, especially if the data are not linearly

separable. See [20] for more details about this topic.

The main effect of bagging consists of a reduction of the unbiased variance component of error.

2) Polynomial and dot-product bagged SVM ensembles:In bagged polynomial SVMs, the trend of error with

respect to the degree shows an “U” shape similar to that of single polynomial SVMs (Fig. 6). Bias and biased

variance are unchanged with respect to single SVMs, while net-variance is slightly reduced (for the reduction of the

unbiased variance). As a result, we have a slight reduction of the overall error. The “U” shape w.r.t. to the degree
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Fig. 6. Comparison of bias-variance decomposition between single polynomial SVMs (lines labeled with crosses) and bagged polynomial

SVM ensembles (lines labeled with triangles), while varying the degree and forC = 1 (P2 data set).

depends both on bias and net-variance. The classical trade-off between bias and variance is sometimes noticeable,

but in other cases both bias and net-variance increase with the degree. As a general rule, for low degree polynomial

kernel bias is relatively large and net variance is low, while the opposite occurs with high degree polynomials. The
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regularization parameter C plays also an important role: large C values tend to decrease bias for low polynomial

degrees too.

Fig. 7 shows the comparison of bias-variance decomposition between single and bagged dot-product SVMs.

The reduction of error in bagged ensembles is due to the reduction of unbiased variance, while bias is unchanged

or slightly increased. Biased variance also remains substantially unchanged. The shape of error curve is quite

independent of the C values, at least forC ≥ 1. Unbiased variance and bias show opposite trends both in single

and bagged dot-product SVMs.
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Fig. 7. Comparison of bias-variance decomposition between single dot-product SVMs (lines labeled with crosses) and bagged dot-product

SVM ensembles (lines labeled with triangles), while varying the values ofC (Letter-Two data set).

Considering bias–variance decomposition of error with respect to the number of base learners, we obtain most of

error and unbiased variance reduction with only 10-20 base learners. Bias and biased variance remain substantially

unchanged independently of the number of the base learners (Fig. 8).

C. Bias–variance analysis in random aggregated SVM ensembles

Similarly to the previous section, the results referred to single SVMs are labeled with crosses, while RA ensembles

are labeled with triangles. Full experimental results are available in the supplementary material listed in the appendix.

In RA ensembles of SVMs net-variance is very close to0. As a consequence, error is in practice reduced to

bias. This property holds independently of the kernel used. For instance, in Fig. 9 that represents the compared

bias–variance decomposition of error in single and random aggregated gaussian SVMs, net–variance is very close

to 0, and it is quite difficult to distinguish the bias and overall error curves (labeled with triangles).

1) Gaussian random aggregated SVM ensembles:As in single and bagged SVMs, we can distinguish three main

regions with respect toσ:

High bias region. In this region the error of single and random aggregated SVMs is about equal, and it is

characterized by a very high bias. Net-variance is close to 0, because biased variance is about equal to unbiased
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Fig. 8. Bias-variance decomposition of error in bias, net variance, unbiased and biased variance in bagged SVMs, with respect to the number

of base learners. (a) Grey-Landsat data set, gaussian kernel (σ = 2, C = 100). (b) Letter-Two data set, dot-product kernel (C = 100).

variance. In most cases they are both close to 0 (Fig. 9). In some cases they are equal but greater than 0 with

significantly larger values in single than in random aggregated SVMs (see supplementary material listed in the

appendix).

Transition region. Bias decreases in the transition region at about the same rate in single and random aggregated

SVM ensembles. Net-variance maintains the wave-shape also in random aggregated SVMs, but it is lower. In some

data sets (Fig. 9), net-variance remains low with no significant variations also for small values ofσ. For these

reasons error decreases more quickly in random aggregated SVMs, and error of the ensemble is about equal to the

bias.

Stabilized region. Net-variance stabilizes, but at lower values (very close to0) compared with net-variance of

single SVMs. Hence we have a reduction of error for random aggregated SVM ensembles in this region. Note that

the reduction of error depends largely on the level of the unbiased variance.

2) Polynomial and dot-product random aggregated SVM ensembles:The error is almost entirely due to the bias

also in random aggregated polynomial SVMs. The bias component is about equal in random aggregated and single

SVMs.

In single SVMs sometimes opposite trends between bias and unbiased variance are observed: bias decreases,

while unbiased variance increases with the degree (Fig. 10). On the contrary in random aggregated ensembles

net-variance is very close to0 and the error is almost entirely due to the bias (Fig. 10).

Hence in random aggregated SVMs, the shape of error with respect to the degree depends on the shape of

bias, and consequently the error curve shape is bias-dependent, while in single and bagged SVMs is variance or

bias-variance dependent.

The general shape of error with respect to the degree resembles an “U” curve, or can be flatted in dependence

of the bias trend, especially with relatively largeC values. Also with random aggregated dot-product SVMs the
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Fig. 9. Comparison of bias-variance decomposition between single gaussian SVMs (lines labeled with crosses) and random aggregated ensembles

of gaussian SVMs (lines labeled with triangles), while varyingσ and forC = 1 (Letter-Two data set).
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Fig. 10. Comparison between bias-variance decomposition between single polynomial SVMs (lines labeled with crosses) and random aggregated

polynomial SVM ensembles (lines labeled with triangles), while varying the degree and forC = 1 (P2 data set).

error is about equal to the bias, that remains substantially unchanged with respect to single SVMs. Hence the error

shape is equal to the bias shape. As a result we a have a significant error reduction due to decrement of unbiased

variance (Fig. 11).

Fig. 12 shows that bias remains constant with respect to the number of the base learners. Most of error decrement

is achieved with only 20 base learners, and it is almost entirely due to the decrement of unbiased variance. Error is

reduced to bias, when the number of base learners is sufficiently large. Biased variance is low and slowly decreases,

while unbiased variance continues to decrease, but most of its decrement occurs within the first 20 base learners
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Fig. 11. Comparison of bias-variance decomposition between single dot-product SVMs (lines labeled with crosses) and random aggregated

dot-product SVM ensembles (lines labeled with triangles), while varying the values ofC. (Spam data set).

(Fig. 12).
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Fig. 12. Bias-variance decomposition of error in bias, net variance, unbiased and biased variance in random aggregated SVMs, with respect

to the number of base learners. (a) Gaussian kernel,C = 1 σ = 0.2, (P2 data set) (b) Dot-product kernel,C = 100 (Spam data set).

D. Relationships between bias–variance decomposition of error and cardinality of the data in bagged and RA-SVM

ensembles.

To understand the relationships between bias–variance decomposition of error and the cardinality of the data, we

performed a bias–variance analysis considering training samples from25 to 3200 examples with the P2 data set and

from 25 to 1600 examples with the Spam data set. For full experimental results and details, see the supplementary

material listed in the appendix.
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Fig. 13. Comparison of the bias-variance decomposition of error in bagged and random aggregated SVMs, while varying the cardinality of

the data. Continuous lines: RA SVMs; dashed lines: bagged SVMs. (a) P2 data set: average error, bias and net variance (gaussian kernel with

σ = 0.5 andC = 100) (b) P2 data set: unbiased and biased variance (gaussian kernel withσ = 0.5 andC = 100) (c) Spam data set: average

error, bias and net variance (polynomial kernel of3rd degree andC = 100) (d) Spam data set: unbiased and biased variance (polynomial

kernel of3rd degree andC = 100)

While for small samples the difference of net and unbiased variance between bagged and random aggregated

ensembles is very large, error and variance tend to converge to the same values when the cardinality is increased

(Fig. 13). Bias, as expected, is in general quite similar both in bagged and random aggregated ensembles (Fig. 13 a

and c), while unbiased and biased variance is significantly smaller in RA ensembles, especially with small samples

(Fig. 13 b and d).

On the other hand, if we consider the relative reduction of error, bias and variance reduction for RA and bagged

ensembles w.r.t. single SVMs, the scenario is quite different (Fig. 14 a and c). The relative error reduction for
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TABLE II

COMPARISON OF THE RESULTS BETWEEN SINGLE ANDRA-SVMS, WHILE VARYING THE CARDINALITY OF THE SAMPLES.

N.examples Error T ime (sec.) Speed− up

S-SVM 100000 0.0023 5474.68 ——

RA-SVM 10000 0.0032 4089.82 1.3

RA-SVM 5000 0.0043 855.85 6.4

RA-SVM 2000 0.0076 124.93 43.8

RA-SVM 1000 0.0127 38.49 142.2

RA-SVM 200 0.0358 2.92 1874.9

RA-SVM 100 0.0539 1.69 3239.4

bagging is computed in the following way:

Relative error reduction =
Single SVM error− Bagged SVM error

max(|Single SVM error|, |Bagged SVM error|) (16)

Fig. 14 b and d show the relative reduction of unbiased and biased variance. The most significant fact is the

very large relative reduction of unbiased and net-variance in RA ensembles. Such reduction remains consistent and

constant independently of the size of the samples (Fig. 14). In bagged SVMs, we have not such a large net and

unbiased variance reduction: it is independent of the sample size for the P2 data set and greater with samples larger

than 100 examples for the Spam data set (Fig. 14 c and d).

In our experiments bias remains substantially unchanged in both RA and bagged ensembles w.r.t. single SVMs,

and sometimes with bagging the bias, as expected, is also increased (Fig. 14 a and c). Anyway in some situations

bias relative reduction is not negligible both in bagged and RA ensembles. For instance with the P2 data set we

observe a consistent bias relative reduction in RA ensembles, especially if large samples are used (Fig. 14 a).

Moreover, depending of the choice of theσ parameter of gaussian kernels, with bagging we may also have a

consistent reduction of bias if small samples are used, and with RA ensembles if quite large samples are used (e.g.

for σ = 0.1, see figures in the supplementary material listed in the appendix).

E. Comparing single SVMs trained on large data sets with RA-SVM ensembles trained on small samples

The bias–variance analysis of random aggregated ensembles showed that the variance component of error is

strongly reduced, while bias remains unchanged or is lowered (Sect. IV-C).

These facts suggest to apply RA-SVMs to large scale classification problems, considering also that the SVM

algorithm, as well as other learning algorithms, does not scale too well when very large samples are available [40].

If variance reduction due to random aggregation is comparable with bias increment due to the reduction of sample

size, using small samples to train the ensemble, we may obtain an accuracy similar to that of a single SVM trained

on an entire large training set.

To yield insight into this hypothesis we performed a preliminary experiment with the synthetic data setP2, using
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Fig. 14. Comparison of the relative reduction of error and bias-variance in bagged and random aggregated SVMs with respect to single

SVMs, while varying the cardinality of the data. Continuous lines refer to random aggregated SVMs, dashed lines to bagged SVMs. R/S stands

for Random aggregated vs. single SVMs and B/S bagged vs. single. Negative values indicate better results of single SVMs. (a) P2 data set:

Comparing relative reduction of error, bias and net variance (gaussian kernel withσ = 0.5 andC = 100) (b) P2 data set: Comparing relative

unbiased and biased variance (gaussian kernel withσ = 0.5 andC = 100) (c) Spam data set: Comparing relative reduction of error, bias and

net variance (polynomial kernel of3rd degree andC = 100) (d) Spam data set: Comparing relative unbiased and biased variance (polynomial

kernel of3rd degree andC = 100).

a quite large learning set of105 examples, and comparing the results of single and RA-SVMs on a separate large

testing set.

Table II summarizes the results of the experiments with gaussian kernels: S-SVM stands for single SVMs trained

on the entire available learning set; RA-SVM stands for Random aggregated SVMs trained on subsamples of the

available training set, whose cardinality are shown in the columnN.examples; the columnError shows error

on a separate test set (composed by100000 examples); the columnTime shows the the training time in seconds,

using an AMD Athlon 2000+ processor with 512 Mb RAM, and the last column the speed-up achieved.
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Fig. 15. Error (Log scale) as a function of the number of base learners (gaussian SVM) employed. The different curves refer to ensembles

with base learners trained with different fractions of the learning set.

The results show that with RA-SVMs we may obtain a consistent speed-up, at the expense of a certain decrement

of the accuracy: for instance, if accuracy is not the main concern, using RA-SVM ensembles trained with1/50

of the available data we can compute the same task in about 2 minutes against one hour and a half needed for a

single SVM trained on the entire data set (Table II). Note that we achieve most of error reduction with about 30

base learners (Fig. IV-E), and using a parallel implementation we may also expect a further speed-up linear in the

number of the base learners.

F. Effect of noisy data on bias–variance decomposition.

To simplify the computation and the overall analysis, in our experiments we did not explicitly consider noise,

because its estimation with “real” data is a difficult task [12]. Anyway, noise may play a significant role in bias–

variance analysis.

More precisely, Domingos [11] showed that for a quite general loss function the expected loss is:

EL(L,x) = c1N(x) + B(x) + c2V (x) (17)

whereN , B andV represent respectively the noise, bias and variance. For the0/1 loss functionc1 is 2PD(fD(x) =

y∗) − 1; c2 is +1 if B(x) = 0 and −1 if B(x) = 1. Hence, according to Domingos, the noise is linearly

added to error with a coefficient equal to2PD(fD(x) = y∗) − 1 (eq. 17). If the classifier is accurate, i.e. if

PD(fD(x) = y∗) À 0.5, then the noiseN(x), if present, influences the expected loss. In the opposite situation

also, with very bad classifiers, that is whenPD(fD(x) = y∗) ¿ 0.5, the noise influences the overall error in the

opposite sense: it reduces the expected loss. IfPD(fD(x) = y∗) ≈ 0.5, i.e. if the classifier performs a sort of

random guessing, then2PD(fD(x) = y∗)− 1 ≈ 0 and the noise has no substantial impact on error.
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In a previous work we showed that with single SVMs, if noise is present, but not explicitly considered, its main

effect consists of incrementing bias and consequently the average error [20]. The same effect can be observed
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Fig. 16. Letter-Two with noise data set: comparison of bias–variance decomposition of error between: (a) Bagged and single SVMs (b) RA

and single SVMs. Lines labeled with crosses refer to single SVMs, while lines labeled with triangles refer to bagged (a) and RA (b) ensembles.

In abscissa are reported values of theσ parameter of the gaussian kernel.

also with bagged and RA ensembles. Indeed, with gaussian kernels, adding 20 % noise to the Letter-Two data set

(Fig. 16 (a) and (b)), bias is raised to about 0.3 (that is 30 %) both in bagged (a) and RA (b) ensembles, with an

increment of about 0.25 with respect to the data set without noise (Fig. 5 a and 9 a), while the net–variance is only

sligthly incremented. A similar behavior is also observed with polynomial and dot-product kernels (for full details,

see the supplementary material listed in the appendix).
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TABLE III

COMPARISON OF THE RESULTS BETWEEN SINGLE AND BAGGEDSVMS.

ESVM Ebag % Error % Bias % NetVar % UnbVar

reduction reduction reduction reduction

Data setP2

RBF-SVM 0.1517 0.1500 1.14 -2.64 3.18 2.19

Poly-SVM 0.2088 0.1985 4.95 4.85 5.08 5.91

D-prod SVM 0.4715 0.4590 2.65 1.11 34.09 15.28

Data setWaveform

RBF-SVM 0.0707 0.0662 6.30 -1.41 26.03 17.82

Poly-SVM 0.0761 0.0699 8.11 0.36 23.78 17.94

D-prod SVM 0.0886 0.0750 15.37 -0.22 37.00 28.20

Data setGrey-Landsat

RBF-SVM 0.0384 0.0378 1.74 2.94 -7.46 3.94

Poly-SVM 0.0392 0.0388 1.05 -4.76 24.80 12.06

D-prod SVM 0.0450 0.0439 2.58 16.87 -165.72 -62.21

Data setLetter-Two

RBF-SVM 0.0745 0.0736 1.20 -25.00 21.63 12.29

Poly-SVM 0.0745 0.0733 1.55 -15.79 13.92 10.41

D-prod SVM 0.0955 0.0878 8.09 2.22 27.55 23.06

Data setLetter-Two with added noise

RBF-SVM 0.3362 0.3345 0.49 1.75 -5.78 0.40

Poly-SVM 0.3432 0.3429 0.09 -0.58 3.06 0.91

D-prod SVM 0.3486 0.3444 1.21 -0.56 10.23 6.09

Data setSpam

RBF-SVM 0.1292 0.1290 0.14 -0.48 1.57 2.22

Poly-SVM 0.1323 0.1318 0.35 2.11 -5.83 -1.19

D-prod SVM 0.1495 0.1389 7.15 -3.16 19.87 16.38

Data setMusk

RBF-SVM 0.0898 0.0920 -2.36 -6.72 22.91 13.67

Poly-SVM 0.1225 0.1128 7.92 -10.49 38.17 37.26

D-prod SVM 0.1501 0.1261 15.97 -2.41 34.56 29.38

V. D ISCUSSION

A. Bias–Variance characteristics of bagged and RA SVM ensembles

In Table III the compared results of bias–variance decomposition between single SVMs and bagged SVM

ensembles are summarized.ESV M stands for the estimated error of single SVMs,Ebag for the estimated error

of bagged ensembles of SVMs, %Error reduction stands for the percent error reduction of error between single

and bagged ensembles, and it is computed as in eq.16.

% Bias reduction, % NetV ar reduction and %UnbV ar reduction corresponds respectively to the percent

reduction of bias, net–variance and unbiased variance between single and bagged ensembles of SVMs. The negative

signs means that a larger error in the bagged ensemble is obtained. Note that sometimes the decrement of the net–

variance can be larger than100 %: indeed net–variance can be negative, when biased variance is larger than unbiased

variance.



IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS - PART B 28

TABLE IV

COMPARISON OF THE RESULTS BETWEEN SINGLE AND RANDOM AGGREGATEDSVMS.

ESVM Eagg % Error % Bias % NetVar % UnbVar

reduction reduction reduction reduction

Data setP2

RBF-SVM 0.1517 0.0495 67.37 24.52 99.04 85.26

Poly-SVM 0.2088 0.1030 50.65 19.56 92.26 83.93

D-prod SVM 0.4715 0.4611 2.21 0.89 142.65 91.08

Data setWaveform

RBF-SVM 0.0707 0.0501 29.08 1.14 100.58 89.63

Poly-SVM 0.0761 0.0497 34.59 3.68 97.12 89.44

D-prod SVM 0.0886 0.0498 43.74 3.84 99.12 90.69

Data setGrey-Landsat

RBF-SVM 0.0384 0.0300 21.87 3.22 99.95 85.42

Poly-SVM 0.0392 0.0317 19.13 3.17 83.79 80.95

D-prod SVM 0.0450 0.0345 23.33 19.27 69.88 72.57

Data setLetter-Two

RBF-SVM 0.0745 0.0345 53.69 0.00 95.32 92.48

Poly-SVM 0.0745 0.0346 53.54 -5.26 95.46 92.71

D-prod SVM 0.0955 0.0696 27.11 2.22 109.73 92.31

Data setLetter-Two with added noise

RBF-SVM 0.3362 0.2770 17.55 2.92 90.26 87.04

Poly-SVM 0.3432 0.2775 19.13 1.75 95.96 89.42

D-prod SVM 0.3486 0.2925 16.07 -1.68 106.4 89.97

Data setSpam

RBF-SVM 0.1292 0.0844 34.67 6.75 99.74 90.05

Poly-SVM 0.1323 0.0814 38.47 22.33 95.22 86.03

D-prod SVM 0.1495 0.0804 46.22 6.90 94.91 90.24

Data setMusk

RBF-SVM 0.0898 0.0754 16.02 0.39 106.70 93.85

Poly-SVM 0.1225 0.0758 38.12 1.53 97.52 94.02

D-prod SVM 0.1501 0.0761 49.28 0.80 98.30 93.03

As expected, bagging usually does not reduce bias (on the contrary, sometimes bias slightly increases). Net-

variance is only partially reduced, and its decrement ranges from0 to about35 % with respect to single SVMs. Its

reduction is due to the unbiased variance reduction, while biased variance is unchanged. As a result, error slightly

decreases, ranging from0 to about15 % with respect to single SVMs, depending on the kernel and the data set.

The overall shape of the curves of error, bias and variance are very close to that of single SVMs (Fig. 5, 6, 7).

In Table IV are summarized the compared results of bias–variance decomposition between single SVMs and

random aggregated SVM ensembles.ESV M stands for the estimated error of single SVMs,Eagg for the estimated

error of random aggregated ensembles of SVMs, %Error reduction stands for the percent error reduction of

error between single and random aggregated ensembles.

Random aggregated ensembles of SVMs strongly reduce net-variance. Indeed in all the data sets net-variance is

near to0, with a reduction close to100 % with respect to single SVMs, confirming the ideal behavior of random
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aggregating. Unbiased variance reduction is responsible for this fact, as in all data sets its decrement amounts to

about90 % with respect to single SVMs (Table IV). As expected, bias remains substantially unchanged, but with

theP2 data set we register a not negligible decrement of the bias, at least with polynomial and gaussian kernels. As

a result, error decreases from15 to about70 % with respect to single SVMs, depending on the kernel and on the

characteristics of the data set. Note that RA ensembles obtain less scattered error estimates with respect to bagged

ensembles: this is due to the fact that for bagging the estimate of the error strongly depends on the choice of the

sample from which bootstrapped data are drawn, while for RA ensembles the samples are drawn directly from the

complete data set.

The overall shape of the curves of error resembles that of bias of single SVMs, with a characteristic sigmoid

shape for gaussian kernels (Fig. 9), an “U” shape for polynomial kernels (Fig. 10), while it is relatively independent

of the C values (at least for sufficiently large values of C) for random aggregated linear SVMs (Fig. 11).

Friedman showed that bagging an estimator leaves the linear part unchanged, but reduces the variability of the non

linear component by replacing it with an estimate of its expected values (thus reducing variance) [7]. Thus bagging

should be effective with highly non-linear methods such as decision trees or neural networks, but not so effective

with linear methods (and viceversa also with linear problems). Our results with bagged and RA ensembles confirm

the theoretical analysis of Friedman (Table III and IV). However we obtained sometimes significant reduction of the

error also with linear SVMs. These results can be interpreted in the Friedman’s theoretical framework considering

that we used in our experiments soft-margin linear SVMs: in this setting the regularization introduced in the quadratic

optimization problem associated with the SVM algorithm may reduce error in non linear problems, even if linear

classifiers are used [21], [41].

Summarizing, in our experiments, as expected, we obtained a smaller reduction of the average error with bagged

SVMs (from 0 to 15 %), due to a lower decrement of the net-variance (about 35% against a reduction of about 90

% with random aggregated ensembles), while bias remains unchanged or slightly increases (Fig. 17).

B. Related experimental work on bias–variance analysis of bagging

Bauer and Kohavi performed an experimental analysis of bias-variance decomposition of error in bagged Naive-

Bayes and decision tree ensembles [15], and Zhou, Wu and Tang studied bagged neural networks [16]. In both

cases the authors adopted the bias–variance decomposition scheme proposed by Kohavi and Wolpert [34]. More

precisely, letT be the random variable representing the labelt ∈ C of an examplex ∈ Rd and Y the random

variable representing the prediction of a classifier with respect to an examplex, whereC is a set of discrete values

corresponding to different classes. Then, according to Kohavi and Wolpert, the biasBKW (x) and varianceVKW (x)

are:

BKW (x) =
1
2

∑

t∈C
(P (T = t|x)− P (Y = t|x))2 (18)

VKW (x) =
1
2

(
1−

∑

t∈C
P (Y = t|x)2

)
(19)
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Even if this scheme captures the main concepts behind bias and variance, the resulting estimates of bias and variance

are slightly biased [11]. Indeed Kohavi and Wolpert defined bias and variance in terms of quadratic functions of

P (T = t|x) and P (Y = t|x), while the loss function used in classification is the0/1 loss. Thus the resulting

decomposition is purely additive, while we know that in some cases the variance should be subtracted to error (see

Sect. III-A, and [20] for more details). The bias, as defined in eq. 18, is not restricted to taking on the values0

or 1 (as it should be natural with the0/1 loss function). Moreover it is easy to see that with the Kohavi Wolpert

decomposition scheme the optimal Bayes classifier may have non zero bias. Anyway, if biased variance is not too

high and the estimated bias in not too far from0 or 1, Kohavi and Wolpert decomposition of error for classification

problems in not too seriously biased.

Comparing our experimental setup with that of Bauer and Kohavi and Zhou et al., we used smaller ratios between

samples and overall training set sizes, in order to take into account the variability of the data for a given size. We

employed also a larger number of samples to obtain better approximation of the bias–variance estimates. On the

other hand Bauer and Kohavi explicitly selected the size of the learning set in order to permit improvements with

ensembles (in the sense that too large training sets may generate Bayes-optimal classifiers), while we used only

relatively small sample sizes, without testing if there was room for improvements. Moreover we explicitly considered

the effects of learning parameters (Sect. IV-B) on bias–variance decomposition of error, while this is only partially

considered in Bauer and Kohavi work. On the contrary Zhou et al. used only a single architecture and MATLAB

default learning parameters for all the neural networks used in their work.

Anyway the overall results obtained by Bauer and Kohavi are quite similar to the ones we obtained in our

experiments. Indeed they achieved a comparable average relative variance reduction, without significant average

bias reduction, confirming the theoretical property that bagging is mainly a variance reduction ensemble method,

at least when unstable base learners are used. The overall reduction of error obtained with bagged decision trees

is quite larger with respect to the average error reduction we registered with bagged SVMs. Note that we used

different base learners, different data sets and also different measures to estimate the bias–variance decomposition

of error. Anyway Bauer and Kohavi and our results basically fpund the same overall bias–variance trade–off in

bagged ensembles of unstable base learners.

Zhou et al. found that variance is reduced in bagged neural networks. In particular they found an overall variance

and error reduction significantly larger compared with our results. Even if it is difficult to compare the results

obtained from different data sets and different bias–variance measures, we guess that this could be not a specific

characteristic of bagged neural networks. Indeed Zhou et al. considered only a particular architecture (one hidden

layer with 5 hidden units), and the MATLAB default learning rate for the back-propagation algorithm in all the

experiments they performed to evaluate the bias–variance decomposition of error. Anyway, it has been shown that

learning parameters strongly affect the bias–variance decomposition of error [20]. Even if to my knowledge no

extensive bias–variance decomposition of error with respect to the learning parameters and architectures of neural

networks have been performed, we guess that these factors should strongly influence the bias–variance decomposition

of the error both in single and ensemble-aggregated neural networks. To help unravel this question, we need extensive
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experiments with bagged neural networks, explicitly considering the effect of different architectures and learning

parameters on the bias–variance decomposition of error.

C. Sample size, bagging and random aggregating.

The bias–variance curves in single, bagged and random aggregated SVMs depend also on the size of the samples.

Enlarging sample size, absolute values of error, bias and variance of bagged and RA SVMs seem to converge to

similar values (Fig. 13).

On the other hand, if we increase the sample size, net and unbiased variance relative reduction of bagged SVMs

w.r.t. single SVMs do not converge to the corresponding net and unbiased variance relative reduction of RA SVMs

(Fig. 14). As a consequence of the large relative difference of the variance, the relative error reduction also does

not converge to the same value in bagged and RA ensembles (Fig. 14 a and c).

These results show that bagging is only an approximation of random aggregation, at least when unstable base

learners, such as SVMs, are used with small samples. Random aggregation fully exploits the variability of the

data drawn from the universe population, while bagging tries only to simulate the variability of the data through

bootstrapping techniques. Our results show also that when the size of the samples increases, the differences between

the two approaches tend to be smaller, at least if we consider the absolute values of error, bias and variance.

As conjectured in our previous work [20], the optimal choice ofσ with gaussian kernels strongly depends on

the size of the available training sets. For instance with100 samplesσ = 0.1 is largely sub-optimal with single and

bagged SVMs: indeed withσ = 5 error is about halved. On the contrary, with3200 samples, choosingσ = 0.1

we obtain a significantly smaller error w.r.t.σ = 5 (P2 data set, see figures in the supplementary material listed

in the appendix). These results depend on the coverage of the input space. With small samples we need largerσ

values to cover the input space, because with smallσ we may have no response of the classifier on some regions

of the input space. With larger samples smallσ may be not so critical as we may have a larger integration of the

localized response around each support vector (bear in mind that the output of a gaussian SVM is a weighted sum

of gaussian kernels centered around the support vectors with spread equal toσ).

D. Bias reduction in bagging and random aggregating

Our results show also that sometimes we may have bias reduction both in bagged and RA ensembles w.r.t. single

SVMs (Fig. 14 a and c). A bias reduction in bagged ensembles has been observed in a regression setting also by

Friedman and Hall [7], by Bauer and Kohavi [15] with decision trees as base learners, and by Zhou et al. [16]

using neural networks as base learners.

With decision trees, bias reduction may be due to a no pruning approach: for instance, in [15] using unpruned

decision trees the resulting bagged ensemble showed a lower bias, with a variance decrease due to the aggregation

by majority voting. This approach is quite similar to the the selection of low biased base learners in Lobag

ensembles [20]. Anyway in some cases in bagged and random aggregated ensembles we may observe a bias reduction



IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS - PART B 32

without a clear relationship with the complexity of the base learners (Table III and IV). Similar results have been

also obtained with very simple single-node-split decision trees (decision stumps) used as base learners [15].

In our experiments with gaussian SVMs as base learners, we can observe that the possible bias reduction may

depend on the choice of theσ parameter. Anyway, with linear SVMs we may also have sometimes consistent

relative bias reduction in bagged and RA ensembles (e.g. with the the Grey-Landsat data set, Table III and IV).

These results are not explained by the classical Breiman’s theory about bagging and ensemble methods based on

resampling techniques. We have no a clear explanation of this phenomenon.

E. Effectiveness ofoverproduce and selectensemble methods

Considering the bias-variance decomposition with respect to the number of base learners, we may observe that

most of the decrement of error occurs within the first iterations (from 10 to 30, depending on the data set), mainly

for the decrement of net and unbiased variance, while bias and biased variance remains substantially unchanged

(Fig. 12 and 8). These results suggest that we may employ relatively small SVM ensembles to achieve the same

results as with larger ones.

Our results also support the “many could be better than all” theory [16], considering that if with 20 or 30

base learners we achieve about the same results that we may obtain with 100 base learners, we could try to

select the best ones to enhance the overall performance of the ensemble. Indeed Zhou et al. showed that using

genetic optimization techniques we may improve the accuracy of the ensemble with respect to standard bagging

and Adaboost: the selection of the better base learners according to a fitness function related to the generalization

error may significantly improve the accuracy of the ensemble [16].

From this standpoint our results support also other “overproduce and select” ensemble methods, based on the

production of a pool of classifiers followed by a selection procedure to pick the classifiers that are most diverse and

accurate [3]. Ensemble methods of this type are for instance the “Pruning adaptive boosting” approach [42], that

uses the “kappa-error convex hull pruning” to select a subset of base learners out of the set of classifiers produced

by Adaboost, the ensembles selected by double fault and Q statistic diversity measures [43], [44], and the “thinning

the ensemble” approach by which the most incorrect classifiers on “uncertain examples” are removed from the

ensemble [45].

F. Bias–variance analysis of bagged SVMs suggests how to improve Lobag

A variant of bagging, namedLobag, has been proposed to enhance the performance of standard bagging [18].

This approach is based on the selection of low-biased base learners through bias–variance analysis techniques; the

selected base learners are successively aggregated in order to reduce the variance. Our experimental analysis shows

that this approach is effective when the unbiased variance component of error is significant, as bagging reduces

the unbiased variance, while bias remains substantially unchanged. Hence we may expect that Lobag works when

small sized data sets are used. Effectively, it has been shown that Lobag significantly outperforms bagging when

small samples are used [18].
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Fig. 17. Comparison of the relative error, bias and unbiased variance reduction between bagged and single SVMs (lines labeled with triangles),

and between random aggregated and single SVMs (lines labeled with squares). B/S stands for Bagged versus Single SVMs, and R/S for random

aggregated versus Single SVMs. Results refers to 7 different data sets. (a) Gaussian kernels (b) Polynomial kernels (c) Dot-product kernels.
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It has been observed that bagging unpruned trees reduces the bias of the bagged ensemble, while variance is

reduced averaging between the base learners [15]. These unpruned trees may be interpreted as raw low bias base

learners, and unpruned bagged trees as raw Lobag ensembles. Indeed in the Lobag algorithm the low bias learners

are explicitly selected through out-of-bag estimates of the bias–variance decomposition of error, while in unpruned

bagged trees no explicit bias measurements are performed.

Anyway Lobag selects as base learner the one with the lowest estimated bias, without taking into account the

variance. Our experimental results show that net-variance is lowered of about 20 % in bagged SVMs (with a certain

variability that depends on the kernel, kernel parameters and on the characteristics of the data sets). Hence an

improvement of Lobag may consists of selecting the base learners according to the lowest sum of the estimated

bias plus 20 % of its estimated variance. More refined approaches may try to estimate the net-variance reduction

adaptively from the data3.

G. Voting many unstable classifiers built with small subsets of data strongly reduces variance

Our experiments with RA ensembles can also explain the reasons why voting many unstable classifiers built on

small subsets of data, such as Breiman’s “Pasting Small Votes” ensembles [27] and their distributed counterpart [26],

[28] work with large databases. Indeed random aggregated ensembles (using a bootstrap approximation ofP )

randomly draw small subsets of data from the universe populationU . These approaches are effective when we

have very large or distributed data sets. In these situations ordinary learning algorithms cannot directly process

the data set as a whole. For instance several implementations of the SVM learning algorithm have aO(n2) space

complexity, wheren is the number of examples. Ifn is relatively large (e.g.n = 106) we need room for1012

elements, a too costly memory requirement for most current computers.

Comparing RA ensembles trained with small samples with single SVMs trained on the entire available large

learning set (Sect. IV-E), we may obtain a significant speed-up at the expense of a certain decrement of the

accuracy. Moreover we may further increment the speed-up with a distributed implementation as in the DR-vote

ensembles proposed by Chawla et al. [26]. Our experiments (Sect. IV-C) show that the success of this approach

is due to the unbiased variance reduction, while bias remains substantially unchanged. Anyway, with respect to

single SVMs trained on the entire available learning data, RA ensembles trained on small samples achieved a lower

accuracy (Sect. IV-E). Similar results have been obtained also by Evgeniou et al. [29], where SVM ensembles

trained on small samples uniformly drawn from a large data set achieved similar or worse results of that of single

SVMs trained on the entire data set. We suppose that this could be the effect of the bias increment due to the

reduction of the size of the samples used in RA ensembles. with respect to the low bias of the SVM trained on the

entire available learning set.

Breiman [27] and Chawla, Hall, Bowyer and Kegelmeyer [26] showed that importance sampling-based ensembles

such as I-vote and DI-vote may obtain also better results with respect to single learners trained on the entire available

3These refinements of Lobag have been originally suggested by Tom Dietterich (personal communication), before that our experimental results

confirmed the feasibility of this approach.
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learning set. In particular Chawla et al. showed that this ensemble approach may improve accuracy by enhancing

diversity between base learners, even if stable classifiers, such as Naive-Bayes, are used. We suppose that this

approach may also reduce the bias component of error: indeed at each iteration the base learner focuses on the

examples currently misclassified by the ensemble, in a way similar to arcing and boosting algorithms. In order to

quantitatively evaluate the above hypothesis, an interesting experimental work could consists of explicitly analyzing

the bias-variance decomposition of error in I-vote and DI-vote ensembles.

It is worth noting that other approaches may be more appropriate than random subsampling when very large

data sets are available: as shown by Chawla et al., simply partitioning the original data into a set of disjoint

partitions, we may obtain significantly better results with large databases [46]. We suppose that this approach may

reduce the bias component more than random aggregating, as the effective size of the samples is larger and all the

available information is used by the ensemble. Of course, to verify this hypothesis, we need to explicitly analyze

the bias–variance characteristics of the “partition and aggregate” ensemble method.

VI. CONCLUSIONS

We conducted an extensive experimental analysis of bias–variance decomposition of error in random aggregated

and bagged ensembles of SVMs, involving training an testing of more than 10 millions of SVMs.

Considering random aggregated ensembles, the most important fact we can observe consists of a very large

reduction of net-variance. It is always strongly reduced, independently of the type of kernel used. This behavior

is primarily due to the unbiased variance reduction, while bias remains unchanged with respect to single SVMs

(Fig. 9, 10, 11).

Random aggregating shows a behavior very close to that predicted by theory (Sect. II-A), at least if well-tuned

base learners are used: very low variance and bias unchanged with respect to single base learners.

On the other hand, experimental results confirm that bagging can be interpreted as an approximation of random

aggregating, because net-variance is reduced, but not canceled by bootstrap aggregating techniques, while bias

remains unchanged or slightly increases. Indeed our experiments showed that with random aggregating we can

expect an error reduction from10 to 70 % (at least for relatively small samples), due to the reduction of the

unbiased variance to more than90 %, while in bagging error reduction is limited to about15 %, as a smaller

reduction of the unbiased variance is achieved.

The characterization of bias–variance decomposition of error presented in [20] for single SVMs, also holds

for bagged and RA ensembles of SVMs: the main characteristics are maintained, with an overall reduction of the

variance component.

Enlarging the sample size, the absolute values of error, bias and variance tend to converge to the same values

in bagged and RA SVMs. On the other hand, if we consider the relative reduction of error, bias and variance of

RA ensembles with respect to single SVMs, unbiased and net-variance reduction remain constant and very large,

independently of the sample size, according to Breiman’s theory. On the contrary, with bagging the relative variance

reduction depends on the size of the samples and it is in general lower w.r.t. RA ensembles.



IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS - PART B 36

Our experiments with RA SVMs show also that ensembles built on small samples work reducing variance, and

suggest new research directions to improve Lobag.
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APPENDIX I

SUPPLEMENTARY MATERIAL AVAILABLE ON THE WEB

The full experimental results are subdivided into three downloadable papers:

1) Bias–Variance decomposition of error in Random aggregated SVM ensembles: results and graphics:

http://homes.dsi.unimi.it/ ∼valenti/papers/BV/bv-svm-RA.pdf

2) Bias–Variance decomposition of error in bagged SVM ensembles: results and graphics.

http://homes.dsi.unimi.it/ ∼valenti/papers/BV/bv-svm-bagging.pdf

3) Bias–Variance decomposition of error in bagged and random aggregated ensemble of SVMs, while varying

the cardinality of the data: results and graphics:

http://homes.dsi.unimi.it/ ∼valenti/papers/BV/bv-card.pdf
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List of footnotes

1) The extended version of theNEURObjectslibrary is available at:

http://homes.dsi.unimi.it/ ∼valenti/sw/NEURObjects

2) The applicationgensimple , that we developed to generate the data, is available on line at:

ftp://ftp.disi.unige.it/person/ValentiniG/BV/gensimple .

3) These refinements of Lobag have been originally suggested by Tom Dietterich (personal communication),

before that our experimental results confirmed the feasibility of this approach.


