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The goal of this experimental study is to investigate the wall pressure wavenumber-

frequency spectra induced by a turbulent boundary layer in the presence of a mean pressure

gradient. The mean pressure gradient is achieved by changing the ceiling angle of a rect-

angular channel flow. Wall pressure spectra are measured for zero-, adverse- and favorable-

pressure-gradient boundary layers by using a pinhole microphone in conjunction with a

high-frequency-calibration procedure. A linear antenna based on a non-uniform distribu-

tion of remote microphones mounted on a rotating disk is also developed to obtain a di-

rect measurement of both aerodynamic and acoustic components of wavenumber-frequency

spectra. First results, comparisons and analyses are then discussed.

Nomenclature

Cp pressure coefficient
h height of the channel
H = δ1/δθ shape factor
k wavevector (k ∈ IR3)
pw wall pressure
q0 = ρU2

0 /2 dynamic pressure
Reδ1 = U∞δ1/ν Reynolds number based on δ1

Re+ = uτδ/ν Kármán or friction Reynolds number
r separation vector (polar coordinates)
Rpp(r, ω) pressure cross spectral density
Spp(ω) = Rpp(r = 0, ω) one-sided wall pressure spectrum
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U0 inlet velocity (at x1 = 0)
U∞ local free-stream velocity at x1ref

Uc convection velocity
uτ friction velocity
x = (x1, x2, x3) Cartesian coordinates, see Fig. 1
β = (δ1/τw)dPe/dx1 Clauser parameter
δ boundary layer thickness
δ1 boundary layer displacement thickness
δθ boundary layer momentum thickness
γ(ξ, ω) coherence function, see Eq. (9)
ν kinetic viscosity
ω = 2π f angular frequency (ω ≥ 0)
ωδ1 = ωδ1/U∞ dimensionless angular frequency
Φpp(k, ω) wavevector-frequency wall pressure spectrum
ρ density
τw = ρu2

τ wall shear stress
ξ separation vector

The superscript + denotes a dimensionless quantity using viscous scaling, e.g. x+3 = x3uτ/ν.

I. Introduction

The understanding of vibrations and noise induced by wall pressure fluctuations is of impor-
tance in hydroacoustics [4, 48], but also in aeronautical [28, 52] and more recently in auto-
motive applications [5, 6, 34]. The motivations behind the present experimental investigation
are twofold. First, a direct measurement of the wall pressure wavevector-frequency spectrum
induced by a turbulent boundary layer, including both aerodynamic and acoustic components
of loading is desirable. The aerodynamic part is associated with the indirect contribution to
cabin noise through panel vibration while the acoustic part represents a direct contribution to
this noise. Despite the fact that this is in principle a non-intrusive measurement, the small sep-
aration distance between sensors and the large dynamic range between the two components
make this experimental characterisation quite tricky [2, 19, 22]. Mainly the incompressible
part of spectra has been reported over the past fifty years [8, 33]. It must be also mentioned
that these difficulties are also encountered in numerical simulations [24, 30, 32]. Second, zero-
pressure-gradient turbulent boundary layers are often considered. Only a fragmented view
is currently offered regarding pressure gradient effects, even for modelling the aerodynamic
loading [10, 36, 46].

In a previous study by Arguillat et al. [2], a rotating microphone array was used to estimate
both the aerodynamic and the acoustic part of the wall pressure wavevector-frequency spec-
trum through an original post-processing. Results have been reported for a turbulent boundary
layer at a Reynolds number Reδθ

= uτδθ/ν = 1716 and at a moderate velocity U∞ = 44 m.s−1

and the feasibility of obtaining pressure spectra by this original approach was demonstrated.
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In these expressions, uτ denotes the friction velocity, δθ the momentum thickness and U∞ the
free stream velocity of the boundary layer, and ν is the kinematic viscosity of the fluid. It
was also noticed that some improvements could be carried out in the future regarding the test
channel as well as the antenna.

In the present work, wall pressure fluctuations induced by a turbulent flow are investigated
and the experimental approach is revisited and significantly improved in order to better access
wavevector-frequency spectra beneath a boundary layer. A new channel is used for flow-
acoustic measurements. The ceiling of the test section can be inclined, which allows turbulent
boundary layers in the presence of pressure gradients to be considered. A new disk antenna,
mounted on a rigid flat plate, is also developed and carefully manufactured, to allow the
determination of wall pressure wavevector-frequency spectra.

The present paper is organized as follows. The experimental setup is described in Section II
as well as some results regarding the characterisation of the turbulent boundary layer. The
new microphone disk antenna is presented in Section III. Pressure spectra measured through
a pinhole microphone are reported and discussed in Section IV A, and wavevector-frequency
spectra are studied in Section IV C. Concluding remarks are given in Section V. The calibration
procedure is explained in Appendix A and additional details are also provided in Appendix B.

II. Experimental setup

The experiments were conducted in the main subsonic wind tunnel of the Centre Acoustique
at Ecole Centrale de Lyon in France [2, 40]. The flow is generated by a 350 kW Neu centrifugal
blower delivering a nominal mass flow rate of 15 kg.s-1, and the fan is powered by an elec-
tronically controlled Tridge-Electric LAK 4280A motor. Air passes through a settling chamber
including a honeycomb and several wire meshes designed to reduce free stream turbulence.
Acoustic treatment on the wind tunnel walls and baffled silencers allows to reduce the noise
level and to prevent contamination of acoustic measurements performed in the anechoic cham-
ber. This results in an air flow at ambient temperature with a low background noise and low
residual turbulence intensity, less than 1%.

A sketch of the channel is shown in Fig. 1. As mentioned in the introduction, the two parts
of the ceiling can be sloped to control the mean pressure gradient inside the channel [38], and
to impose a particular value at x1ref = 3h, where h is the channel height. Three configurations
have been retained in the present study, corresponding to a turbulent boundary layer sub-
mitted to a zero-pressure-gradient (zpg), a favorable or negative pressure gradient (fpg) and
an adverse or positive pressure gradient (apg). The geometrical parameters are provided in
Table 2. The side walls of the second part of the channel have been acoustically treated using a
wire mesh and a porous liner, in order to reduce noise generated by the jet at the channel out-
let. Other choices are possible, as in Monty et al. [37] for instance, but it should be noted here
that achieving channel airtightness is quite challenging for high flow speeds U0 ≃ 100 m.s−1.
A picture of the test channel is reproduced in Fig. 6.
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x1

x2
x3

x1ref

h

2h

α2
α1

x1 = 0 x1 = L/2 x1 = L

h1
h2

U∞

wire mesh &
porous liner

Fig. 1 Sketch of the test channel and notations. The height of the initial section is h = 250 mm, the

length of the whole channel is L = 16h and the location of the disk antenna is xref = 3h. It should be

noted that U0 is the velocity at the channel inlet (x1 = 0), and that U∞ is the local free stream velocity

of the boundary layer at the streamwise location of the measurement, x1ref for the rotating antenna.

configuration α1 α2 h1 (cm) h2 (cm) U0|max

zpg-BL 0.3◦ 3.9◦ 26.5 40 100 m.s−1

fpg-BL −3.5◦ 1.5◦ 12.75 18 50 m.s−1

apg-BL 4◦ 4◦ 39 51 100 m.s−1

Table 2 Geometrical parameters of the three configurations considered in this study, refer to Fig. 1 for

the notations.

The boundary layer thickness is always very small with respect to the channel height h. There-
fore, independent boundary layers develop on the walls. Homogeneity of the mean flow in the
spanwise direction was checked. The floor contains three plug rows at x2 = 0 and x2 = ±0.6h
to measure the mean pressure distribution p̄ along x1, and the mean flow was found to be ho-
mogeneous in the middle part of the channel. The mean static pressure p̄ has been measured
using a Validyne dp15 transducer. The evolution of the pressure coefficient gradient along the
channel centerline x2 = 0 is shown in Fig. 2 for the two configurations apg and fpg, and for
different velocities. The pressure coefficient is defined as Cp = ( p̄ − pamb)/q0 where q0 is the
dynamic pressure at the channel inlet. Each point considered in the present study is denoted
by a configuration, namely zpg or apg or fpg, which is associated to the three positions of the
channel ceiling given in Table 2, and by a number associated to the free stream velocity U∞ at
x1ref. Experimental parameters are provided in Table 3. The evolution of the pressure gradient
can be well represented [17] by the following expression

dCp

dx1
= −

2L2
0

(L0 − x1)3 (1)

where L0 is not exactly equal to the physical length of the channel due to installation effects.
It is found that L0 = −14h for the apg configuration, and L0 = 14.8h for the fpg configu-
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Fig. 2 Longitudinal profile of the normalized mean pressure gradient Cp/dx1 × h as a function of the

dimensionless distance x1/h. On the left, for △ apg19, ◦ apg38, ♦ apg57, + apg76 and on the right for

△ fpg32, ◦ fpg63. The semi-empirical law (1) is also shown in dashed gray line.

U∞ δ1 × 103 H uτ Reδ1 Re+ β

zpg

11 3.1 1.34 0.48 2.2 × 103 633 –

25 2.8 1.30 1.02 4.7 × 103 1006 –

36 3.2 1.30 1.35 7.4 × 103 1778 –

45 3.7 1.31 1.65 1.1 × 104 2718 –

59 3.6 1.31 2.05 1.4 × 104 3374 –

76 2.9 1.28 2.71 1.5 × 104 3559 –

100 3.5 1.30 3.54 2.3 × 104 5050 –

apg

8 8.4 1.38 0.31 4.6 × 103 1036 0.95

12 8.2 1.42 0.42 6.7 × 103 1122 1.06

19 6.2 1.41 0.66 7.9 × 103 1321 0.83

27 5.0 1.36 0.96 9.1 × 103 1596 0.64

38 5.5 1.31 1.34 1.4 × 104 3555 0.71

45 5.8 1.31 1.55 1.8 × 104 5135 0.81

57 5.2 1.31 1.95 2.0 × 104 5139 0.72

76 6.0 1.31 2.45 3.0 × 104 8027 0.94

fpg

10 2.1 1.27 0.50 1.5 × 103 501 −0.48

32 2.1 1.24 1.35 4.6 × 103 1353 −0.63

45 1.7 1.23 1.90 5.0 × 103 1881 −0.50

63 1.8 1.22 2.53 7.5 × 103 2490 −0.59

Table 3 Boundary layer parameters for the present experiments at ECL.

ration. The streamwise evolution of the derivative of the pressure coefficient is found to be
independent of the velocity as expected.

Velocity profiles have been measured with a Dantec 55P01 hot-wire operating in constant
voltage mode using a Streamline anemometer. The homogeneity of the mean flow in the
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spanwise direction was checked, and the longitudinal evolution of the boundary layer was
also investigated. Velocity profiles are usually normalised with the friction velocity uτ to get
dimensionless results and exhibit scaling laws. Although the skin friction coefficient C f =

2(uτ/U∞)2 can independently be measured in particular cases, this velocity is most often
indirectly estimated. The Clauser method [11] is mainly used in this work since velocity
profiles include a logarithmic region [51] and the possible mean pressure gradients remain
moderate [37]. In a preliminary stage of the present work, the friction velocity was however
estimated from the Gruschwitz’s momentum integral equation (see Schlichting [45], chap. VIII,
Eq. 8.32)

u2
τ =

d
dx1

(U2
∞δθ)−

1
ρ

dp̄
dx1

δ1

which reduces to C f = 2dδθ/dx1 for a zero-pressure-gradient boundary layer. The streamwise
evolution of the momentum thickness must be accurately known for this approach to be used.
Moreover, a hot-film flush-mounted probe (Dantec 55R47) has also been implemented on the
channel floor. The three estimations of the friction velocity have been found in good agreement.
Finally, note that all the velocity profiles are located at x1ref in what follows.

Mean velocity profiles measured in the zpg configuration are displayed in Fig. 3 (left) using
wall variables. They are chosen thanks to the shape factor H ≃ 1.30 − 1.31 and for increas-
ing Reynolds numbers Re+ in Table 3. The logarithmic law is also plotted in dashed gray
line. Using inner variables, all the profiles collapse in a single curve near the wall and in the
logarithmic region. The disparity between inner and outer length scales is also clearly visible
near the edge of the boundary layer as the Reynolds Re+ = δ/(ν/uτ) increases. A frequency
spectrum of the longitudinal velocity fluctuation u′

1 is shown in Fig. 3 (right) at x+3 ≃ 109
for the zpg45 case, for which u′

1/U∞ = 0.09. The −1 and −5/3 power laws are also plotted
in gray dashed lines. The signal has been recorded over a large period to correctly resolve
the low frequency part of this one-dimensional spectrum. For the zpg45 case, the length of
the probe is l+hwa ≃ 136 using a viscous scaling. Therefore, smallest scales of the flow cannot
be correctly measured. Using Taylor’s assumption, the cut-off frequency is estimated to be
ωδ1/U∞|max ≃ 11, in agreement with the plotted spectrum. The −5/3 power law is indeed
well retrieved up to this frequency.

Some mean velocity profiles are also displayed in Fig. 4 in the presence of a mean pressure
gradient. Again, the logarithmic law is also superimposed in grey dashed line using the same
values for the constants. Overall all the curves collapse near the wall and in the overlaped re-
gion. Near the free edge of the boundary layer, adverse and favorable mean pressure gradients
induce opposite effects for the wake law of velocity profiles. The importance of this deficit law
can be evaluated through the wake parameter Π introduced by Coles [12], defined from the
following expression

U
+
1 (x+3 ) =

1
κ

log(x+3 ) + B +
2Π

κ
w
( x3

δ

)
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Fig. 3 On the left, mean velocity profiles measured at x1ref in the zpg configuration: ✷ zpg25, △ zpg36,

♦ zpg45 and ◦ zpg59, refer to Table 3. The logarithmic law U
+
1 = (1/κ) log(x+3 )+ B with κ = 0.41 and

B = 5.1 is displayed in grey dashed line. On the right, one-sided frequency spectrum φ
(1)
11 ( f ) of the

longitudinal velocity fluctuation u′
1 measured at x+3 ≃ 109 by hot wire anemometer with a sampling

frequency fs = 102.4 kHz over a period T = 90 s. The -1 and -5/3 power laws are indicated in grey

dashed lines.
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Fig. 4 Mean velocity profiles measured at x1ref in the presence of a mean pressure gradient. On the

left, in the apg configuration: △ apg8, ◦ apg27, ♦ apg57, ✷ apg76. On the right, in the fpg configuration:

△ fpg10, ◦ fpg45, ♦ fpg63. The logarithmic law (see caption of Fig. 3) is displayed in grey dashed line.

with w(1) = 2. Its value increases with the Reynolds number [9], and also increases with β > 0
and strongly decreases for the fpg configuration. This can be also clearly identified by exam-
ining the fluctuating velocity profiles, not shown here to save space, and turbulence intensity
increases as β increases for similar friction Reynolds numbers in the apg configuration, and
decreases in the fpg configuration.

Pressure gradient effects on the boundary layer development have been studied for a long time,
but it remains quite tricky to investigate the influence of a single parameter. As an illustration,
the zpg45 and apg8 points have a similar Reynolds number Re+ ≃ 1000, and also the zpg76
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Fig. 5 Comparison between zpg and apg mean flow profiles at similar friction Reynolds numbers.

Left, Re+ ≃ 1000, ◦ zpg25 and ♦ apg8 (β = 0.95). Right, Re+ ≃ 3560, ◦ zpg76 and ♦ apg38 (β = 0.71).

logarithmic law.

Fig. 6 From the left to the right, whole view of the channel flow, rear view of the rotating disk and

view of the pressure antenna on the front side of this disk.

and apg38 with Re+ ≃ 3560, from Table 3. Note however that the shape factor is never the
same. These velocity profiles are shown in Fig. 5 to highlight the influence of β, in particular
in the free edge of the boundary layer. The wake parameter is found to be Π ≃ 0.28 and 0.48
for the case Re+ ≃ 1000, but Π ≃ 0.40 and 0.37 for the case Re+ ≃ 3560.

III. Rotating microphone antenna

Pressure signals are recorded using 63 remote microphone probes and a pinhole microphone.
Further details about the design of the pressure antenna can be found in section III.B. Pressure
signals are simultaneously recorded over the 63 probes at a sampling frequency of 51.2 kHz.
Pictures of the pressure antenna have been reproduced in Fig. 6. The front side of the pressure
antenna on the rotating disk is visible on the left, and the rear side of the pressure antenna is
visible on the right. Signal processing is discussed in section III.A.
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A. Basic signal processing

A brief overview of the signal processing is first presented. The Fourier transform p̂(k, ω) of
the pressure field p(x, t) in space and in time is defined by

p(x, t) =
∫∫

p̂(k, ω)ei(k·x−ωt)dkdω = F−1 { p̂(k, ω)}

Assuming stationary random signals and ergodicity, the cross spectral density is defined as,

Rpp(x, r, ω) = lim
T→∞

2π

T
E
[

p̂(x, ω) p̂⋆(x + r, ω)
]

where r is the separation vector between two probes located at x and x + r. In practice,
the wall pressure field is assumed to be homogeneous over the microphone array, that is,
Rpp(x, r, ω) = Rpp(r, ω). The Welch method is applied by splitting the time signal recorded by
each probe into mt blocks pm of time length T. Using a rectangular window, one has

Rpp(r, ω) =
2π

T
1

mt

mt

∑
m=1

p̂m(x0, ω) p̂⋆m(x0 + r, ω)

The wavevector - frequency spectrum is then directly computed by discretizing the following
Fourier integral,

Φpp(k, ω) =
1

(2π)2

∫∫

Rpp(r, ω)e−ik·rdr

The transducer locations are denoted by rnm = (dn, θm) in polar coordinates. For a given angle
of the linear antenna, all the cross-spectra between the different microphones are available since
the pressure signals are simultaneously recorded over the np = 63 probes. The irregular radial
distribution of the microphones is presented in the next section. A regular polar distribution
θm = m∆θ has been chosen with ∆θ = π/mθ and mθ = 63. In a straightforward approach, the
wavenumber-frequency spectrum can be computed as

Φpp(k, ω) =
1

(2π)2

mθ−1

∑
m=0

nr

∑
n=0

Rpp(rnm, ω)e−i(k1dn cos θm+k2dn sin θm)dsn (2)

over a given grid k = (k1, k2). In this particular and simple case, the central microphone
corresponds to d0 = 0, the location of a half of the linear antenna is defined by the radial
distance dn with 1 ≤ n ≤ 31 and nr = (np + 1)/2. The corresponding elementary area can be
written as

dsn = π(l2
n+1 − l2

n)×
∆θ

2π
ln =

dn + dn+1

2

Pressure signals are recorded over the np probes at a sampling frequency of 51.2 kHz during
a time length T0 = 90 s. The cross-spectra are calculated with mt = 360 blocks of time length
T = 250 ms. There is therefore no overlap between the blocks. No windowing function has
been applied to the data blocks. It has been found more efficient to apply a moving average to
the cross-spectra Rpp(r, ω), with a variable filter width ∆ f ∼ f .
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B. Microphone array

As already mentioned, the principle of a linear array placed on a rotating disk has again been
retained for this study. With respect to the study in Arguillat et al. [2], the size of the disk has
been slightly increased to obtain a better resolution of low frequency components. Moreover
a non-uniform radial distribution of the probes has also been chosen. An accurate description
of the aerodynamic ridge requires a very small distance between probes, of the order of one
millimeter, which can unfortunately not be obtained by using flush-mounted 1/4 or 1/8 inch
microphones. Remote microphones have thus been selected in the present study, even if this
solution also presents some drawbacks. A description of the microphone setting is provide in
Appendix A.
A simple analytical model of the cross spectral density is considered for the characterization
of the antenna response. The wavenumber-frequency spectrum calculated from expression (2)
can then be compared to the exact solution. The cross spectral density Rpp(ξ, ω) is defined
as the sum of a diffuse sound field [13] and a convective component described by a Corcos
model [14, 15] respectively, which yields

Rpp(ξ, ω) = R(a)
pp (ξ, ω) + R(c)

pp (ξ, ω) (3)

= S(ω)
sin(k0ξ)

k0ξ
+ A(ω)e−(kc/α)|ξ1|e−(kc/β)|ξ2|eikcξ1

where ξ = (ξ1, ξ2) is the separating vector. Classical values have been chosen for the two
constants, namely α = 8, and β = 1. The numerical test is performed for a free stream velocity
U∞ = 50 m.s−1, a given frequency f = 2000 Hz, a convective wavenumber kc = 2π f /Uc with
Uc ≃ 0.7U∞, an acoustic wave number k0 = 2π f /c∞, and a relative amplitude between the
two contributions of S = 1 and A = 10−3. The corresponding spectrum Φpp = Φ

(c)
pp + Φ

(a)
pp ,

refer to Appendix B for the details, is respectively given by

Φ
(c)
pp (k, ω) =

A(ω)

π2
αkc

k2
c + α2(k1 − kc)2

βkc

k2
c + β2k2

2
(4)

and

Φ
(a)
pp (k, ω) =











S(ω)

2πk2
0

1
√

1 − (k/k0)2
if k < k0

0 if k > k0

(5)

In Fig. 7, this analytical solution is compared to the response (2) provided by the antenna for
the probe distribution used in a previous study [2], and also for the antenna retained in the
present work. The linear antenna consists of np = 63 identical remote microphone probes, in
order to reach a spacing of 1 mm near the antenna center. These probes are non-uniformly
distributed along the disk diameter to optimize the antenna response to the wall pressure
field (3). Note that the probe size dp = 0.5 mm is reasonably small to reduce the spatial filtering
as far as possible. Using the basic approach explained in section III A, a better resolution is
obtained around the acoustic disk with this new distribution by removing oscillations in the
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Fig. 7 Comparison between the anaytical expression given by expressions (5) - (4), and the

antenna response given by integration of the Fourier integral (2). On the left, for the array used

in Arguillat et al. [2]. On the right, for the array used in this study, and response obtained by

using all the possible separating vectors over the linear antenna.

subconvective region, as shown by the solid curve in Fig. 7. An accurate response can be
achieved by using all the possible separating vectors over the antenna, as shown by the dashed
curve in the same graph.

IV. Experimental results

A. Wall pressure spectra

In this section, the frequency power spectra of wall-pressure fluctuations Spp(ω) are now
considered. As detailed in the Appendix A, these spectra have been obtained using an 1/8
inch microphone, fit with a pinhole cap. The diameter of the cap hole is about dp ≃ 5 mm.
Following Corcos [14], all pressure spectra obtained using the pinhole microphone have been
corrected to account for the spatial filtering of the sensor. The resulting pressure spectra are
shown in Fig. 8 as black curves for a zero pressure gradient boundary layer. On the left, the
measured spectra have been normalized by mixed variables. This leads to a collapse of the
spectra in the low frequency domain. The spectra reach a maximum of about 5 dB for ωδ1/U∞

around 0.4. Then, an ω−0.4 decay is observed in the range 0.5 < ωδ1/U∞ < 5. Reynolds
numbers are not high enough to observe the ω−0.7 power law. On the right, the measured
spectra have been normalized by inner variables. This leads to a collapse of the spectra in the
high-frequency domain ων/uτ

2
> 0.6, where an amplitude decay according to ω−5 can be

distinguished.

The shape of the zero pressure gradient spectrum may be estimated by the semi-empirical
model of Goody [27] given by

Spp(ω)×
U∞

τ2
wδ

=
C2ωδ

2

(ωδ
0.75 + C1)3.7 + (C3ωδ)7 ωδ =

ωδ

U∞
≥ 0 (6)

with C1 = 0.5, C2 = 5.0, C3 = 1.1R−0.57
T and where RT = (δ/U∞)/(ν/u2

τ) represents the
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Fig. 8 Measured wall pressure spectra for a zero-pressure-gradient boundary layer. zpg11 case,

zpg25 case, zpg36 case, zpg45 case, zpg59 case, refer to Table 3 for bound-

ary layer parameters. On the left, measured spectra normalized by mixed variables and comparison

with Goody’s model (6) in grey. On the right, measured spectra normalized by inner variables and

comparison with the ω−5 power law.

ratio between outer and inner time scales, as Re+ represents a similar ratio for length scales.
The resulting model spectra have been plotted in Fig. 8 as grey curves. The Goody model is
found to fit the experimental spectra within about 3 dB. The ability to predict the shape of the
pressure spectrum in a wide range of Reynolds numbers is remarkable, since it can be easily
synthesized to provide the excitation source for vibration problems [5] for instance.

The frequency power spectra of wall-pressure fluctuations are shown in Fig. 9 for the apg
configuration (at left) and the fpg configuration (at right), normalized by outer variables. As
was mentioned by other authors [16, 46], the shape of the pressure spectrum depends upon the
mean pressure gradient. For the apg and fpg cases, the maximum values are about 8 dB and
3 dB, respectively, whereas it was of 5 dB for the ZPG case. The decay in the middle-frequency
range is also modified.

The root-mean square pressure fluctuation, calculated as

p2
w,rms =

∫ ∞

0
Spp(ω)dω

and normalized by viscous scaling is plotted in Fig. 10 as a function of the Reynolds number
p+w = f (Re+), and compared to previously published data. The normalized pressure fluc-
tuations increase with the Reynolds number, as is the case for the previously published data
[3, 15, 20, 26, 29, 36, 44]. The evolution of p+w with Re+ has also been described by Farabee and
Casarella [21] using the following empirical law

p+2
w =

{

6.5 (Re+ ≤ 333)

6.5 + 1.86 log(Re+/333) (Re+ > 333)
(7)

In the present experiment, increasing the mean pressure gradient leads to an increase in p+w .
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Fig. 9 On the left, measured spectra normalized by outer variables for the apg configuration.

apg12 case, apg19 case, apg27 case, apg38 case, apg45 case, apg57 case.

On the right, measured spectra normalized by outer variables for the fpg configuration. fpg10

case, fpg32 case, fpg45 case. Refer to Table 3 for boundary layer parameters.

10
3

10
4

0

1

2

3

4
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Re+ = uτδ/ν

p
+ w
=

p w
,r
m
s/
τ w

Fig. 10 Normalized root mean square wall pressure fluctuations p+
w as a function of the Reynolds

number Re+. ZPG-BL: � present data, ◦· Corcos [15], ✷ Emmerling et al [20], ⊳· Blake [3], ⊲· Schewe [44],

△ McGrath & Simpson [36], ◦ Gravante et al. [29], + and Eq. (7) from Farabee & Casarella [21],

× Goody & Simpson [26], Viazzo et al. (2001). APG-BL: � present data. FPG-BL: • present data,

N McGrath & Simpson [36] for −0.48 ≤ β ≤ −0.16.

For the apg configuration, p+w is of the order of 5, whereas it is of the order of 3 for the zpg
configuration, and of 2 for the fpg configuration.

B. Convection velocity and length scales

In this section, the convection velocity Uc and the integral length scales L1 and L2 are extracted
from the measured cross-spectra using the linear array of remote microphones. These quan-
tities are defined from the term R(c)

pp (ξ, ω) in Eq. (3). The convection velocity Uc is deduced
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from a linear interpolation of the phase ωξ1/Uc in the cross-spectrum as illustrated by Fig. 11
(left). Due to the loss of coherence for the large separation distances ξ1, the phase of the
cross-spectrum is not linear over the whole ξ1 range. The convection velocity was therefore
estimated over a range of ξ1 separations for which the phase is linear to within about 5%.

−0.1 −0.05 0 0.05 0.1
−50

−25

0

25

50

ξ1 (m)

ϕ
{R

p
p
}

(r
ad

)

−0.1 −0.05 0 0.05 0.1
0

0.2

0.4

0.6

0.8

1

ξ1 (m)
γ 1

Fig. 11 Estimation of the Corcos parameters for the zpg45 case at a frequency f = 2 kHz. On the

left, + cross-spectrum phase angle as a function of streamwise separation ξ1, and , linear fit for

−0.06 < ξ1 < 0.06. On the right, + streamwise coherence γ1 as a function of ξ1, and exponential

fit for -0.06 < ξ1 < 0.06.

The convection velocity is plotted in Fig. 12 (left) for the zpg25 and zpg45 cases, and com-
pared to previously published data. The convection velocity increases with the frequency,
then a maximum is reached, and the convection velocity decreases with the frequency, which
is consistent with the literature. For the zpg configuration, the maximum value is 0.8U∞ at
ωδ1/U∞ = 0.25. The high-frequency limit is of about 0.6U∞. For the apg and fpg configu-
rations shown in Fig. 12 (right), the maximum convection velocity is increased. It is of about
0.85U∞ at ωδ1/U∞ = 0.25 for the fpg configuration, and 0.9U∞ at ωδ1/U∞ = 0.60 for the apg
configuration.

According to Smol’yakov [47], the convection velocity can be predicted from the following
empirical law

Uc

U∞
= a

ωδ1

1 + bω2
δ1

+ c (8)

with ωδ1 = ωδ1/U∞, a = 1.6, b = 16 and c = 0.6. The corresponding curve has been plotted in
Fig. 12 (right). This empirical model is suitable for the zpg measurements, but not for the apg
and fpg convection velocities. However, an excellent agreement is found between a modified
Smol’yakov model and both the apg and fpg configurations by choosing a = 0.8, b = 3 and
c = 0.65 for the apg configuration, and a = 1.4, b = 20 and c = 0.7 for the fpg configuration,
see Fig. 12 (right). The theoretical dependence of these parameters is unknown, but they are
expected to depend on the pressure gradient parameter β. A more complete study, together
with numerical simulations, would lead to a better knowledge of this dependence in the future.
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Fig. 12 Normalized convection velocity Uc/U∞ as a function of dimensionless frequency ωδ1/U∞. On

the left, comparison between present zpg measurements and previously published data. ◦ zpg25,

+ zpg45, ⊳· Blake [3], ⊲ Arguillat et al [2], ⊠ Abraham & Keith [1], ✷ Ibars [31], ⊕ Bull [7], ♦ Farabee

& Casarella [21]. On the right, + apg38, ✷ apg57, ◦ zpg25, + zpg45, ◦ fpg32. Smolyakov model,

modified Smolyakov model with a = 0.8, b = 3 and c = 0.65, modified Smolyakov model

with a = 1.4, b = 20 and c = 0.7.

The characteristic length scales of the flow are also deduced from cross-spectra measurements.
First, the cross-spectra are normalized as a coherence function denoted γ and defined as

γ2(ξ, ω) =
|Rpp(ξ, ω)|2

Spp(x, ω)Spp(x + ξ, ω)
(9)

The coherence is a function of the frequency ω and of the separating vector ξ between the two
power spectra Spp(x, ω) and Spp(x + ξ, ω). Assuming that the pressure field is homogeneous,

the streamwise coherence function γ1 is deduced from the expression of R(c)
pp (ξ, ω) in Eq. (3)

as

γ1 = γ(ξ1, ξ2 = 0, ω) = exp
(

−|ξ1|

L1

)

(10)

The transverse coherence function γ2 is defined as a function of ξ2 and L2 in the same way.
The longitudinal and transverse length scales, respectively L1 and L2, are then estimated from
coherence measurements by fitting the measured coherence functions, respectively γ1 and γ2,
by an exponential profile. As an example, the measured coherence function γ1 is shown in
Fig. 11 (right) as a function of ξ1 for the zpg45 case, at a frequency f = 2 kHz. An excellent
agreement is found with an exponential profile in the range -0.06 < ξ1 < 0.06, and the length
scale L1 can be determined from Eq. (10).

Both longitudinal and transverse length scales are displayed in Fig. 13 as a function of dimen-
sionless frequency. In the present experiment, both length scales reach a maximum of about
20δ1 in the streamwise direction and 4δ1 in the transverse direction. They also decrease with
the frequency at an ω−1 rate, as predicted by Corcos [15]. According to Corcos, the length
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scales are expected to vary as

L1 =
αUc

ω
and L2 =

βUc

ω

with the standard values α = 8 and β = 1, which can be re-written to match the normalization
used in the present study as

L1

δ1
=

α

ω̃

Uc

U∞
and

L2

δ1
=

β

ω̃

Uc

U∞

It has already been noticed that this expression is only valid for high frequencies. Indeed,
at very low frequencies, the resulting length scales would be larger than the boundary layer
thickness. As shown in Fig. 13, an excellent agreement is found with the experimental values
under the assumption that ωδ1/U∞ > 0.4.

A empirical model has been proposed by Efimtsov [18] to correct the low-frequency scales.
The two integral length scales are provided by

L1

δ
=

[(

a1ωe

Uc/uτ

)2

+
a2

2

ωe2 + (a2/a3)2

]−1/2 L2

δ
=

[(

a4ωe

Uc/uτ

)2

+
a5

2

ωe2 + (a5/a6)2

]−1/2

respectively, with ωe = ωδ/uτ , a1 = 0.1, a2 = 72.8, a3 = 1.54, a4 = 0.77, a5 = 548 and
a6 = 13.5. These expressions can be recast to introduce δ1 rather than δ as length scale for
instance. This yields

L1

δ1
=

[(

a1ωδ1

Uc/U∞

)2

+
a2

2

ω2
δ1

(

H2
1U+

∞

)2
+ (a2/a3)2

]−1/2

L2

δ1
=

[(

a4ωδ1

Uc/U∞

)2

+
a5

2

ω2
δ1

(

H2
1U+

∞

)2
+ (a5/a6)2

]−1/2

with H1 = δ/δ1. It has been reported [39] that the nominal values a1 to a6 provided by Efimtsov
have to be modified to obtain the right length scales. It is also the case in the present study. As
illustrated in Fig. 13, a good agreement is found between the measurements and this model
with a1 = 0.18, a2 = 15 and a3 = 0.13, a4 = 0.85, a5 = 100 and a6 = 1. These values have
been obtained in the present study under two assumptions. First, as ωδ1 → ∞, the Efimtsov
model should reach the values predicted by Corcos. Second, if ωδ1 → 0, L1/δ1 → 9 in order to
ensure that the longitudinal length scale remains smaller than the boundary layer thickness.
The resulting curves of this modified Efimtsov empirical law are plotted in Fig. 13. Note that the
constants a1 to a6 are kept the same between the three configurations (apg, zpg and fpg). The
differences between these three configurations are induced by the differences in convection
velocities, see Fig. 12 (right). An excellent agreement is found between the modified Efimtsov
model and the transverse length scale L2. For the longitudinal length scale, the agreement is
worse, especially in the middle frequency domain 0.2 < ωδ1 < 0.6, where the longitudinal
length scale seems to depend on the mean pressure gradient.
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Fig. 13 Normalised longitudinal L1/δ1 and transverse L2/δ1 scales as a function of ωδ1
. Present mea-

surements: ✷ apg57, + zpg45, ◦ fpg32; Corcos model with α =5 and β =1.2; , and

modified Efimtsov model with a1 = 0.18, a2 = 15, a3 = 0.13, a4 = 0.85, a5 = 100 and a6 = 1,

for the apg57, zpg45 and fpg32 cases respectively.

C. Wavenumber-frequency spectra

The wavenumber-frequency spectra Φpp(k, ω) have been extracted from the line array mea-
surements using Equation (2). Three examples are shown in Fig. 14 for the apg19, zpg45
and fpg32 cases. Note that these three examples are measured at the same dimensionless fre-
quency ωδ1/U∞ = 0.42. This value has been chosen to maximize wall-pressure fluctuations in
the three configurations, see Fig. 8 (left) and Fig. 9. The wavenumber spectra exhibit a convec-
tive ridge centered around the convective wavenumber kc = 2π f /Uc. For the three mentioned
configurations, an acoustic component can also be distinguished at low wavenumbers.

The streamwise one-dimensional wavenumber-frequency Φ
(1)
pp (k1, ω), defined as

Φ
(1)
pp (k1, ω) =

∫ +∞

−∞
Φpp(k, ω)dk2

is shown as a function of frequency in Fig. 15. The convective ridge, located around the convec-
tive wavenumber kc = 2π f /Uc, is shifted towards higher k1 as the frequency is increased. The
position kcδ1 of the convective ridge has been detected from the one-dimensional wavenumber
spectra. The convection velocity has therefore been estimated as

Uc

U∞
=

1
kcδ1

ωδ1

The results, plotted in Fig. 15 at right for the zpg25, zpg45, zpg76 and zpg100 cases, are
consistent with the estimation of the convection velocity made in section IV.B, see in particular
Fig. 12. The acoustic component, already identified in Fig. 14, is visible in the range 0 <

ωδ1 < 1. The amplitude of the acoustic component rapidly decreases with the frequency. The
estimation of the acoutic contribution to wall-pressure fluctuations is currently in progress.
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Fig. 14 Normalised wavevector-frequency spectra Φpp(k, ω)× U∞/(τw
2δ1

3), measured for the same

frequency ωδ1/U∞ = 0.42. On the left, apg19 case, isocontours between 0 and 16 with a step of

2. Center, zpg45 case, isocontours between 0 and 4 with a step of 0.5. On the right, fpg32 case,

isocontours between 0 and 4 with a step of 0.5.
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Fig. 15 On the left, normalised zpg45 one-dimensionnal wavevector-frequency spectra Φ
(1)
pp (k1, ω)×

U∞/(τw
2δ1

2) in decibels, as a function of frequency ωδ1/U∞. Isocontours between -9 dB and 9 dB,

with a step of 1 dB. On the right, frequency dependence of the convection velocity determined from

streamwise spectra Φ
(1)
pp (k1, ω) for the zpg configuration, ◦ zpg25, ♦ zpg45, △ zpg76, ✷ zpg100 and

comparison with Smol’yakov empirical law (8).

V. Concluding remarks

Wall pressure fluctuations beneath a turbulent boundary layer in the presence of a mean pres-
sure gradient have been investigated in this study. A new channel was designed for flow-
acoustic measurements. Some properties of the turbulent flow have been determined for zero-
pression-gradient boundary layers as well as for adverse- and favorable-pressure-gradient con-
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figurations. Wall pressure fluctuations have also been measured using a pinhole microphone
combined to an original high-frequency calibration. They have been found in good agreement
with previous experimental data. Direct measurements of wavevector-frequency spectra have
been performed with the use of a rotating linear antenna of remote microphones. The micro-
phone distribution has been optimized to improve the array response with respect to previous
works. The convection velocity or length scales associated with the aerodynamic contribution
have been extracted from the data and compared to other measurements and some classical
models. Effects induced by the presence of a mean pressure gradient have been exhibited and
it has been shown that a parametrization seems possible. Moreover, an acoustic contribution
is identified from the reconstruction of the wavevector-frequency spectrum.

The present work is still in progress to rebuild wavenumber-frequency spectra using all the
properties of the rotating antenna. Furthermore, the extraction of the acoustic part requires
additional efforts and is also currently being examined. Finally, the modelling of pressure
spectra and of the convective ridge in the presence of a mean pressure gradient appears tricky
in the sense that the isolated role of each turbulent flow parameter needs to be reasonably
identified. Numerical simulations should be cleverly combined with experimental studies to
provide such models in the future.
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APPENDIX A: MICROPHONE PROBES

Calibration of the pinhole microphone

An 1/8 inch Brüel & Kjær type 4138 microphone has been used for measuring wall pressure
spectra in order to obtain a high-frequency response. The sensing area of the microphone has
been reduced by fitting it with a pinhole mask made of a perforated cap, as shown in Figure 16.
The diameter of the pinhole is about dp ≃ 0.5 mm. The frequency cutoff of such a mounting
is fixed by the frequency cutoff of the cavity inside the cap. This cavity behaves more or less
like a Helmholtz resonator [23], but it is rather illusory to theoretically predict the resonance
frequency fr of such a geometry. The resonance frequency is observed to be fr ≃ 21 kHz.

The low frequency response of the pinhole microphone is obtained by following a two-step
procedure. A loudspeaker is used to generate a white noise in the frequency range from 10
Hz to 15 kHz, which propagates through a calibration tube, as sketched in Figure 17. A refer-
ence microphone is also mounted near the open end of the calibration tube. In the first step,
the calibration tube sketched in Figure 17 is positioned above the pinhole microphone to be
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flush-mounted
microphone Hfl

pinhole
microphone Hp

pinhole cap membrane

Fig. 16 Sketch of the pinhole microphone and of the flush-mounted microphone used for the calibra-

tion.

calibrated. The complex transfer function F1 = Hp/Href between the pinhole microphone and
the reference microphone is measured. In the second step, the calibration tube is positioned
above an 1/8 inch Brüel & Kjær microphone type 4138 flush-mounted into a plane baffle, see
Figure 16. The transfer function F2 = Hfl/Href between the flush-mounted microphone and
the reference microphone is then measured. Assuming that the frequency response of the
flush-mounted microphone is flat, that is Hfl ≃ 1, the frequency response of the remote probe
is obtained by dividing the two measured transfer functions, Hp = F1/F2. This method is valid
up to the cutoff frequency of the calibration tube, which is of about 17 kHz and the transfer
function Hp is plotted in solid gray line in Figure 18.

As mentioned above, the cutoff frequency of the pinhole microphone imposed by the
Helmholtz resonator is higher. A second calibration method has thus been used to recover
the high frequency part of the transfer function Hp, ranging from 15 kHz to 30 kHz. A short
duration and high pressure shock wave is generated by an electric spark source.[41, 43] The
spark source is made of two tungsten electrodes, separated by a gap of 20 mm, connected to a
high voltage supply. The pinhole microphone and the flush-mounted microphone are placed
at the same distance of the spark source, see again Figures 16 and 17. Assuming that the fre-
quency response of the flush-mounted microphone is flat, the high-frequency response of the
pinhole microphone is then measured up to 50 kHz, as shown in dashed gray line in Figure 18.
Finally, the two calibration curves are combined to derive the whole transfer function Hp of
the pinhole microphone.

The calibration is performed without flow, but the hump associated with the pinhole cap
depends appreciably on the mean velocity of the flow. To overcome this difficulty, the final
transfer function has been parametrized[25] with a second-order low-pass filter

H( f ) =
S0

1 + i
q ( f / fr)− ( f / fr)2

where q = q(U∞) is the quality factor, fr = fr(U∞) the resonance frequency and S0 a constant.
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calibrated
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N-wave

electric
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calibrated

flush-mounted
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Fig. 17 On the left, sketch of the calibration tube used up to the cutoff frequency of the tube. On the

right, high-frequency calibration using a spark source.
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Fig. 18 Transfer function Hp( f ) of the pinhole microphone in black dashed line, obtained by combin-

ing the response of the probe to a white noise source in the range 10 Hz - 15 kHz in solid gray line,

and the response to the spark source in the range 3 kHz - 50 kHz in dashed gray line.

Remote microphone probes

The pressure antenna is composed of 63 identical remote microphone probes, and each remote
probe contains an 1/4 inch Brüel & Kjær type 4957 microphone, whose cutoff frequency is of
about 15 kHz. The microphone is placed on the edge of steel tubes of variable diameter, as
illustrated in Figure 19. The diameter of the last steel tube, fit flush onto the surface of the
rotating disk, is of 0.5 mm. A two-meter long rear tube made of vinyl is used to dissipate pres-
sure fluctuations and therefore avoid acoustic reflections. An advantage of such a microphone
mounting is to reduce the sensing area of the probe, and consequently to limit the spatial
averaging caused by the sensor. It also permits to reduce the spacing between two neighbour
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Fig. 19 Sketch of a remote microphone probe used to build the disk antenna.
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Fig. 20 Transfer function H of one remote microphone probe of the disk antenna, measured four times

at different days during the present experiments.

probes.
The first calibration method presented in the previous section is applied to get the transfer
function H of each remote probe. There is no need to perform a high-frequency calibration
using a spark source since the cutoff frequency of the calibration tube is here higher than the
microphone cut-off frequency. The transfer function of one given probe is shown in figure 20
to demonstrate that small variations are identified. Note that the amplitude is plotted using a
linear scale.
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Transducer resolution correction

All the pressure spectra have been corrected by using the data provided by Corcos [14] to
take account of the spatial integration over the sensing area imposed by the pinhole [35]. The
dimensionless pinhole diameter ranges in the interval 16 ≤ d+p ≤ 68 for the zero-pressure-
gradient boundary layers investigated in the present study. According to Schewe [44] or
Gravante et al. [29] among others, the spatial averaging attenuates high-frequencies up to
ω+ ≃ 1 for d+p ≥ 19. The spectral correction is applied using the dimensionless frequency
Sp = ωdp/(2Uc) with Uc = 0.6U∞, and by stressing that Sp ≤ 2.1 here.

APPENDIX B: WAVEVECTOR-FREQUENCY PRESSURE SPECTRUM OF A DIFFUSE SOUND

FIELD

The wall pressure spectrum Φpp(k, ω) of a stationary and isotropic acoustic field is briefly
derived in what follows. For an harmonic plane wave p(x, t) = Aei(k0·x−ω0t) of pulsation ω0,
of wavenumber k0 = ω0/c∞ and of incidence angle θ, defined as the angle between the normal
to the wave fronts and the plane x3 = 0, the cross-correlation function between two points
located at x and x + r in this plane is given by

Rpp(r, τ) = E[(p(x, t)p⋆(x + r, t + τ)] =
A2

2
ei(k0·r−ω0τ)

All the directions must be taken into account for an isotropic field. By averaging the factor
ei(k0·r) over all the directions of an half-sphere [13], one gets

1
2π

∫ π

0

∫ π

0
ei(k0·r) sin θdϕdθ =

1
2

∫ 0

π
eik0r cos θd(cos θ) =

sin(k0r)
k0r

and the correlation function of a diffuse sound field is thus given by

Rpp(r, τ) =
A2

2
sin(k0r)

k0r
cos(ω0τ)

The cross-spectrum is then calculated by taking the Fourier transform, which yields

Spp(r, ω) =
A2

2
sin(k0r)

k0r
1

2π

∫ +∞

−∞
cos(ω0τ)eiωτdτ =

A2

4
sin(k0r)

k0r
[δ(ω − ω0) + δ(ω + ω0)]

The wavenumber-frequency spectrum is then obtained by taking the Fourier transform of
Spp(r, ω). The space Fourier transform of the cardinal sine function is first considered. One
has

1
(2π)2

∫∫ sin(k0r)
k0r

e−ik·rdr =
1

(2π)2

∫∫ sin(k0r)
k0r

e−ikr cos θrdθdr =
1

2πk0

∫ ∞

0
sin(k0r)J0(kr)dr

and the integral function is given by [50]

∫ ∞

0
sin(k0r)J0(kr)dr =











1
(k2

0 − k2)1/2
k < k0

0 k > k0
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Finally, the wall pressure spectrum of an harmonic diffuse field of pulsation ω0 can be written
as

Φpp(k, ω0) =















2
A2

4
1

2πk2
0

1
√

1 − (k/k0)2
k < k0

0 k > k0

where the factor 2 is introduced to obtain a single-sided frequency spectrum, the convention
used in this paper. This expression corresponds to Eq. (5).
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