
An Experimental Comparison of
Knowledge Representation Schemes

Kiyoshi Niwa

Koji Sasaki
Hirokazu Ihara

Systems Development Laboratory
Hztachi, Ltd.
1099 Ohzeqi

Asao-ku
Kawasaka, 215, Japan

Abstract

Many techniques for representing knowledge have been proposed, but
there have been few reports that compare their application This article
presents an experimental comparison of four knowledge representation
schemes: a simple production system, a structured production system,
a frame system, and a logic system. We built four pilot expert systems
to solve the same problem: risk management of a large construction
project Observations are made about how the structure of the domain
knowledge affects the implementation of expert systems and their run
time efficiency

WIT: THINK THAT IT IS NECESSARY to clarify the
advantages and disadvantages of knowledge representation
techniques from the expert system designer’s point of view.
Barr and Feigenbaum (1981) point out that “many research-
ers feel that the representation of knowledge is the key issue
at this point in the development of AI.”

Stefik et al (1982) point out some domain characteris-
tics that affect expert system design: large search spaces, a
need for tentative reasoning, time varying and noisy data.
These four characteristics are elaborated into eleven case
studies, and some guidelines for expert systems construc-

The authors would like to express their appreciation to Dr Edward A.
Feigenbaum and H Penny Nii of Stanford University for discussing the
early results of this research during their visit to the authors’ laboratory
The authors also would like to acknowledge the support of Dr Jun
Kawasaki, the general manager of Systems Development Laboratory,
Hitachi, Ltd

tion are provided. This information helps an expert sys-
tem designer clarify the domain’s characteristics and develop
a conceptual system design. However, little information is
provided for selecting adequate techniques after the system’s
function (input/output) is determined.

Ennis (1982) reports her experiences with building an
expert system using several tools such as EXPERT, UNITS,

EMYCIN, and OPS-5. The system was designed to interpret
the X-ray powder diffraction spectra of rocks to determine
their constituent minerals. This article focuses on expert
system building tools; however, there may be many cases
where no such tools are available.

This article’s purpose is to present an experimental
comparison of four pilot expert systems whose knowledge
representations are a simple production system, a struc-
tured production system, a frame system, and a logic sys-
tem. The domain of the four systems is the risk manage-
ment of large construction projects. Each system’s func-
tion (inputs/outputs) is exactly the same: to assist a project
manager effectively in controlling risks as they arise during
project execution. We will compare the difficulties of im-
plementing the knowledge base and the inference engine, as
well as run time efficiency. The systems were implemented
on a VAX II/780 using Franz-LISP.

THE AI MAGAZINE Summer 1984 29

AI Magazine Volume 5 Number 2 (1984) (© AAAI)

‘\
.N 2-e A’

/

/
)---

,’ ‘\

management or
operational errors

risk factors

contractual defects

2 @iii&g&

\ --m- .’

environmental
factors

Domain Knowledge Structure Model.

Figure 1.

knowledge

maintenance 6

knowledge
base C 3

inference engine

forward backward
reasoning reasoning

1

1 -6 users

System Overview.

Figure 2.

30 THE AI MAGAZINE Summer 1984

Application Description

The Domain

The problem used for this study is risk management
of large construction projects. Risks are defined here as
undesirable events causing project delays, cost overruns or
deficiencies in technical performance. This problem was
chosen because Niwa had previously developed a system for
this particular domain (Niwa and Okuma, 1982; Niwa and
Sasaki, 1983).

The model of domain knowledge relationships is shown
in Figure 1. Risk causes have been classified into three
groups: management or operational errors, environmental
factors, and contractual defects. These factors, errors and
defects interrelate with one another to cause risks in cer-
tain activities. The model presents a risk-to-risk consequent
relationship, z.e., if no countermeasure is taken for a risk,
further undesirable events may occur. The relationships in
the model flow in one direction (from left to right) along a
time dimension.

Characteristics Common to All Four Systems

All four systems were developed on the VAX 11/780 us-
ing Franz-Lisp. Each system consists of a knowledge base,
an inference engine, and a knowledge maintenance subsys-
tem. The inference engine is capable of both forward and
backward reasoning, with the latter including an explanation
function. The knowledge maintenance function helps a user
add, replace or delete knowledge in the knowledge base. The
system model is shown in Figure 2.

Our objective is to help project managers effectively
control their projects by providing them with appropriate
knowledge gathered from many expert project managers and
fused into the knowledge base. In forward reasoning mode,
the systems are designed to warn the user (project manager)
of risks that could follow from causes entered by the user.
In backward reasoning mode, the user enters a hypothetical
risk, which the system confirms or denies as possible based
on its model of risk causes.

Forward Reasoning. These systems use forward reason-
ing to inform the user of consequent risks that could follow
the specific risk causes.

The user chooses one of two ways for inputting risk
causes: the menu method or the key word in context [KWIC]
method The menu shows all causes to the user who
selects the appropriate ones. In KWIC, the user inputs key
words or phrases; then risk causes containing these words or
phrases are shown. The latter case, represented in Figure 3,
shows a case in which the user has input three key phrases:
‘customer’, ‘law’, and ‘project manager’. Among risk causes
involving at least one of the three strings, he selects 3KOl
(complicated or foreign laws), 3QO3 (different business prac-
tices of customers) and 2G31 (lack of examination by project

please key-in strings for risk causes or?

)customer. law, project manager

*please select risk cause codes

lgO5 contractual defect in time for approval
3001 lack in customer english ability
3QOl lack in customer or consultant ability
3Q03 different business practices of customers
3kOl complicated laws or those different from Japan’s
3k02 law or regulation change
2e31 project manager misguidance
2g31 lack in examination of project managers

)3kOl. 3Q03. 2g31
*please select activity codes or all
)all
rule 1016 deduced(ld02 contractual defect in technical

guarantee)
deduced If01 contractual defect in material

\ standard

rule 3018 deduced(6105011 spare parts air cargo due to
incomplete delivery)

risk alarm
2103002 approval delay due to misguiding spare parts

amount
2103011 civil approval delay due to loading data

between civil and equipment differences
2202013 Additional equipment because no one

examines all specifications thoroughly
2202012 spare parts re-order due to number misorder
5103013 pipe foundation change for big equipment

carry-in
2304003 material re-test due to inspection company

poor interpretation
6105011 spare parts air cargo due to incomplete

delivery

Figure 3. Forward Reasoning Example.

managers). Next, he inputs codes for the activities that he
wants the system to analyze for possible risks.

The system first shows the inference process by print-
ing out rules (or frames or clauses) in order, then gives risk
alarms. No conflict resolution is performed. In the manage-
ment domain, it is desirable that all alternatives be shown to
the user for evaluation and selection, because the domain is
too complex to rely entirely on a fully autonomous decision
system.

Backward Reasoning. Backward reasoning was devel-
oped for a project manager’s “dynamic checklist”. When a
user inputs a risk as a hypothesis, the system asks him about
various conditions one after another until the hypothesis
(risk) is determined to be likely. If asked, the system can
explain its reasoning process.

These hypotheses also can be entered by the KWIC
method. The authors observed that in this domain the users
were comfortable with hypotheses expressed as character
strings including words, phrases, and sentences

An example in which a user worries about risks relating
to a consultant is shown in Figure 4. After the user inputs

THE AI MAGAZINE Summer 1984 31

*please key-in strings for risk

)consultant

*please select risk codes
2103003 consultant’s approval delay
41 030 civil work delay due to bad negotiation with

consultant
51 051 sudden material change due to consultant error

)2103003

*hypothesis 2103003

is this true (2h31 lack in project manager coordination)

No
is this true 3kOl complicated laws or those different from
Japan’s

)no
is this true (3QOl lack in customer and consultant ability)

)w
is this true,(2e31 project manager misguidance)

)w
is this true (2103 approval activity)

)yes

*hypothesis 2103003(consultant’s approval delay)may oc-
cur. Do you want to know how it is deduced?

)w
following rules were used*
rule 3002
*2103007

(if part 2103007 2103)deduced 2103003
material upgrade request for customer’s
future plan

*2103 approval activity(yes input)
rule 2002
*la01

(if part la01 2103)deduced 2103007
contractual defect in scope of equipment
SUPPlY

*2103 approval activity(yes input)
rule 1003 (if part 3001 2e3l)deduced la01
*3QOl

*2e31

ia& in customer ahd consultant ability
(yes input)
project manager misguidance
(yes input)

Figure 4. Backward Reasoning Example.

‘consultant’, he is informed of the risks in the knowledge
base that include that string. He selects risk 2103003
(consultant’s approval delay) as a hypothesis for backward
reasoning. The system, after requiring the user’s replies (yes
or no) for the hypothesis’ condition parts, concludes that the
hypothesized risk may occur. As an explanation, the system
gives rules (or frames or clauses) in their order of inference

Development of the Pilot Systems

Four kinds of pilot expert systems were developed using
the same requirements and the same knowledge as described
before. These were a simple production system, a structured
production system, a frame system, and a logic system.

Simple Production System. As one dimension of causal
knowledge is used, it is easily described by the types of
production rules shown in Figure 5. Rule 1001 is an example
of a rule that deduces risk cause types from risk causes. Rule
2062 is an example of a rule that deduces risk types from
risk causes. Rule 3018 is an example of a rule that deduces
consequent risk types from risks

Every clause of the production rules is actually rep-
resented by four- or seven-character codes for improving
matching efficiency. The ASSOC function in LISP combines
the code with a translation when the latter is requested.
Rule 1001, for example, is stored in the production memory
as shown below.

(RULE 1001

(IF (3K01)(2F16))

(THEN(lAOl)(lKOl)))

A core of forward and backward reasoning algorithms in
the inference engine was implemented by applying methods
described by Winston and Horn (1981).

Structured Production System. The production rules in
the simple production system are divided into five knowledge
sources, according to the temporal order in the model of
domain knowledge relationships. (The numbers in Figure
1 correspond to the knowledge sources) Knowledge source
control functions are added to the simple production sys-
tem’s inference engine.

Frame System. The frame system is implemented by
using the method of Winston and Horn (1981), based on the
frame representation language [FRL]. Three kinds of frames
were made: risk cause, risk, and activity.

Risk frame 2103003 (consultant’s approval delay) is
shown in Figure 6. It is described as a kind of (AKO) risk

Rule 1001
If

I
complicated laws or those different from Japan’s) and
sales department poor countermeasure)

Then (contractual defect in scope of equipment supply)
and (contractual defect in arbitration or force major)

Rule 2062
If contractual defect in scope of equipment supply) and

delivery)
Then (spare parts amount misunderstand to be delivered)

and (special tools excessive request due to incomplete
confirmation) and (excessive delivery due to no revision
of delivery scope after design change)

Rule 3018
If (spare parts amount misunderstand to be delivered) and

(delivery)
Then (spare parts air cargo due to incomplete delivery) and

(customer’s reject of project acceptance)

Figure 5. Production Rule Example.

32 THE AI MAGAZINE Summer 1984

2103003
AK0 risks at hard design approval stage
Name 1 consultant’s anoroval delav . .

Risk causes lack in project manager coordination or
investigation (2H31). and
lack in customer or consultant ability (3QOl)

Consequent
risks

Consequent material upgrade request for customer’s future
risk causes 1 plan (2103007)

Figure 6. Frame Example.

occurring at the hard design approval stage. The risk causes
are 2H31 (lack of project manager coordination or investiga-
tion) and 3QOl (lack of customer or consultant ability). Its
consequent risk is not recorded thus far. However, the frame
shows that risk 2103003 is a consequent risk of risk 2103007
(material upgrade request for customer’s future plan), mean-
ing that if no countermeasure is taken for risk 2103007, then
risk 2103003 may occur.

The property frame for risk 2103003 is stored as:

(2103003

(AKO(VALUE(HARD-APPROVAL-RISK)))

(NAME(VALUE(C~NSULTANT’S APPROVAL DELAY)))

(FACTOR(VALUE(2H31 3401)))

(CONSEQUENT-RISK-FACTOR(VALUE(2103007))))

Slots in the frame are used to represent risk causality as
described above.

AK0 inheritance is used in the pilot system; however,
procedural attachment is not, The most important func-
tion of the frame system’s inference engine is to organize
basic frame-handling functions so that forward and backward
reasoning are performed.

Logic System. Although the propositional logic is
sufficient to meet the pilot system requirements, the resolu-
tion principle of first order was applied in consideration of fu-
ture system extension. Chang and Lee’s (1973) algorithm is
used for the resolution principle program’s core. Knowledge
is represented in Horn clause form as shown below, because
we planned to use PROLOG in the next phase. Production
rule 1001, for example, is changed into two Horn clauses:

(1521 NIL ((NOT 3KOl)(NOT 2F16)(1AOl))), AND

(1522 NIL ((NOT 3KOl)(NOT 2F16)(1KOl)))

Control algorithms for forward and backward reasoning
were developed by analogy with the production system’s
algorithms.

Experimental Comparison

Implementation Difficulties

Knowledge base. The volumes of the knowledge bases
for the four pilot systems are:

. simple production system 263 rules 15k characters

. structured production system 263 rules 15k characters
0 frame system 213 frames 29k characters
0 logic system 348 clauses 17k characters

We observed the following:

. The number of rules and characters for the simple
and structured production systems is the same, be-
cause the simple production system’s rules were
divided into the five knowledge sources of the struc-
tured production system The 213 frames are fewer
than the 263 production rules, because some related
rules were merged into a single frame.

. The number of characters in the frame system is
greater, because it was necessary to replicate some
related pieces of knowledge into different frames.

l The number of clauses in the logic system is greater
than the number of production rules, because the
Horn clause representation was applied.

Our evaluation of the difficulty associated with the im-
plementation of the knowledge bases is based upon our sub-
jective judgment rather than using the number of person-
hours spent on the task as an objective measure. We found
as we became more experienced, each pilot system was de-
veloped in less time and with more facility than the previous
one. Our results (in order of difficulty) are as follows:

l The simple production and logic systems’ knowledge
bases are the most easily implemented because both
of these representations are very modular and clearly
capture the causal relationships

l The structured production system knowledge base
was implemented with some difficulty, because it was
necessary to consider how many knowledge sources
were adequate and in which knowledge source each
rule should be placed

. The frame system was the most difficult to imple-
ment because it contains more structure than the
other representations. It was necessary to determine
what kinds of frames the system needs, what kinds
of slots each frame needs, and how all the frames fit
together into an AK0 hierarchy.

The coding quantity difference between the production and
logic systems is not mentioned, because we were easily able to
produce the necessary additional coding by changing produc-
tion rules with plural right-hand side elements into plural
clauses.

THE AI MAGAZINE Summer 1984 33

3001 lack in customer English ability

$
3QOl lack in customer or consultant

ability

equipments supply

A
1 JO5 contractual defect in SUpPlier

of temporary power source

-z 41 .* civil work

V
41.. 005 decrease in work effeciency

due to poor utility

< 41 . . civil work

V
41.1 010 trouble with local labor

due to different customs

Inference Chain Example.

Figure 7.

Inference engine. The volumes of the inference engines
for the four pilot systems are:

l simple production system 9.lK characters
l structured production system 9.5K characters
0 frame system 14 3K characters
l logic system 11.3K characters

Although the basic algorithms for forward and backward
reasoning in the production system and the basic unification
algorithm for the logic system were taken from published
sources, some development was necessary to adapt these to
the needs of our pilot systems. In our experience:

l The simple production system was the easiest to
implement, because little adaptation of Winston and
Horn’s algorithms was necessary

l The structured production system was more difficult,
because an algorithm which would control knowledge
sources had to be developed.

l The level of difficulty in implementing the logic sys-
tem was similar to that of the structured produc-
tion system In addition to the basic unification
algorithm, the inference eugine needed algorithms
for linear resolution and for forward aud backward
reasoning. An additional difficulty was the necessity
of implementing a logically complete system

l The frame system was the most difficult of all to
implement, because it was necessary to develop for-
ward and backward reasoning processes on top of
Wiuston and Horn’s basic frame-handling functions.

Inference run time efficiency. we measured the CPU
times for each system while running the same problem. The
test contained both forward and backward reasoning ex-
ecuted along three kinds of inference chains, one of which is
shown in Figure 7. Forward reasoning started with 3001 (lack
of customer’s English ability), 2E31 (project manager mis-
guidance) and 41.. (civil work) as conditions or risk causes.
Backward reasoning started from the chain’s bottom as a
hypothesis.

The size of the knowledge base was varied as an cx-
perimental parameter. The number of Horn clauses in the
logic system was taken as a standard of comparison. The sizes
of the other knowledge bases were adjusted to represent the
same knowledge content. The relative size of each knowledge
base is shown below:

l Number of Horn clauses 50 100 200
l Number of production rules 41 79 157
. Number of frames 96 131 175

The CPU time was measured by the Franz-LISP func-
tion PTIME (process time minus garbage-collection time).
Measured inference time did not include the user’s input

1 c?te
50 100 200

knowledge volume (clauses)

Inference Time and Knowledge Base Volume
for Forward Reasoning.

Figure 8.

34 THE AI MAGAZINE Summer 1984

structured production system

frame system a
I I I

50 100 200

knowledge volume (clauses)

Inference Time and Knowledge Base Volume
for Backward Reasoning.

Figure 9.

or the program’s output, but did include an explanation of
the backward reasoning process. Seventy-two points were
measured: 4 pilot systems x 3 problems x 2 types of reason-
ing x 3 sizes of knowledge bases.

Experimental results. Experimental results for forward
and backward reasoning are shown in Figures 8 and 9, respec-
tively. The measured points in the figures are the averages
of three kinds of problems. These figures show that for all
volumes of knowledge base, the frame system used the least
inference time while the logic system used the most. As the
amount of knowledge increased, the inference times of the
frame and structured production systems remained roughly
constant. The inference time of the simple production sys-
tem increased moderately, while that of the logic system in-
creased markedly.

These results are due to the following factors:

l In the frame system, related pieces of knowledge are
connected to one another by pointers, thereby limit-
ing search. This means that inference time is low
and relatively insensitive to the size of the knowledge
base

l The number of rules to be searched in the structured
production system is limited compared to that of the
simple production system, which again means that
inference time is low and not strongly dependent on
the size of the knowledge base.

l In the simple production and logic systems, the
effects of increasing knowledge volume were significant,
because all knowledge had to be searched.

l Resolution in the logic system was relatively time-
consuming.

logical
completeness

structured
knowledge

modular
knowledge

logical
incompleteness

@ knowledge base implementation difficulty

C inference engine implementation difficulty

Implementation Difficulties.

Figure 10.

logical
completeness

slow 0

(!$3m)

structured modular
knowledge a fast

l medium knowledge
l little effect of

knowledge volume

(!$Xrn) (t$,YLZn) (tiz$ion)

logical
incompleteness

Run Time Efficiency.

Figure 11.

Conclusions

All of the foregoing points are summarized in Figures 10
and 11. The horizontal axis represents knowledge modularity
and the vertical axis represents logical completeness. The
logic system is modular and logically complete. Other sys-
tems are relatively incomplete logically; their knowledge is
structured to different degrees.

In Figure 10, the increasing difficulty of knowledge base
implementation is shown by the thick arrow; the increasing
difficulty of inference engine implementation is shown by the
thin arrows. The figure leads to the conclusion that the
more structured the knowledge base, the more difficult it is
to implement the knowledge base and the inference engine.

THE AI MAGAZINE Summer 1984 35

Also, it was more difficult to implement the logic system
inference engine than that of the simple production system

Figure 11 shows that when knowledge is structured, run
time efficiency increases, while sensitivity to the volume of
the knowledge base decreases Also, inference in the logic
system is slow.

In summary, we can rearrange our findings to make the
following statements:

l In a poorly understood domain whose knowledge
structure cannot be well described, modular knowledge
representations, e.~ , simple production and logic sys-
tems, should be used However, this causes low run
time efficiency

l The use of structured knowledge representations,
e4, structured production and frame systems, in-
creases run time efficiency as well as reducing the
effect of the knowledge volume on run time However,
system implementation is more difficult.

l Mathematical completeness makes logic systems more
difficult to implement and less efficient in run time
Our problem was too simple to adequately demon-
strate the advantages of logic representation

There are many reasons for structuring knowledge, of
which the most common is effective use. To achieve this
end, meta-knowledge for structuring is necessary during
the system design phase. This is why the implementation
of the knowledge base and inference engine for structured
knowledge is difficult. On the other hand, once a struc-
tured system is implemented, run time efficiency increases
In general, the ease of structuring knowledge in the system
design phase depends on the knowledge engineer’s ability
and the characteristics of the domain. Although the rule

compilation technique of Forgy and McDermott (1977) and
the cognitive economy proposal by Lenat et al. (1979) are
approaches to this relatively unexplored problem, further
research is necessary.

References

Barr, A and Feigenbaum, E.A. (1981) The handbook of artificial
zntelligence Volume 1 Los Altos: William Kaufmann, Inc.

Chang, C and Lee, R.C. (1973) Symbolic logic and mechanical
theorem provzng New York: Academic Press.

Ennis, S.P. (1982) Expert systems, a user’s perspective to some
current tools AAAI-82, 319 - 321.

Feigenbaum, E A and McCorduck, P (1983) The fifth genera-
tzon: artificzal intelligence and Japan’s computer challenge to the
world. Reading: Addison-Wesley Publishing Company.

Forgy, C A (1979) On the efficient implementation of production
systems. Doctoral Diss., Dept of Computer Science, Carnegie-
Mellon University

Lenat, D B , Hayes-Roth, F and Klahr, P. (1979) Cognitive
Economy. Tech Rep. HPP-79-15, Computer Science Dept ,
Stanford University.

Niwa, K. and Okuma, M. (1982) Know-How transfer method
and its application to risk management for large construction
projects IEEE fiansactzons on Engzneering Management EM-
29 (4): 146 - 153

Niwa, K. and Sasaki, K (1983) A uew project managcmcnt system
approach: the “Know-How” based project management system.
ProJect Management Quarterly 14(l), 65 - 72.

Stefik, M , Aikins, J., Balzer, R , Benoit, J , Birnbaum, L , Hayes-
Roth, F. and Sacerdoti, E (1982) The organization of expert
systems: a tutorial. Artificzal Intelligence 18, 135 - 173

Winston, P.H. and Horn, B K P. (1981) LISP Reading: Addison-
Wesley.

36 THE AI MAGAZINE Summer 1984

