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Abstract 

Many techniques for representing knowledge have been proposed, but 
there have been few reports that compare their application This article 
presents an experimental comparison of four knowledge representation 
schemes: a simple production system, a structured production system, 
a frame system, and a logic system. We built four pilot expert systems 
to solve the same problem: risk management of a large construction 
project Observations are made about how the structure of the domain 
knowledge affects the implementation of expert systems and their run 
time efficiency 

WIT: THINK THAT IT IS NECESSARY to clarify the 
advantages and disadvantages of knowledge representation 
techniques from the expert system designer’s point of view. 
Barr and Feigenbaum (1981) point out that “many research- 
ers feel that the representation of knowledge is the key issue 
at this point in the development of AI.” 

Stefik et al (1982) point out some domain characteris- 
tics that affect expert system design: large search spaces, a 
need for tentative reasoning, time varying and noisy data. 
These four characteristics are elaborated into eleven case 
studies, and some guidelines for expert systems construc- 
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tion are provided. This information helps an expert sys- 
tem designer clarify the domain’s characteristics and develop 
a conceptual system design. However, little information is 
provided for selecting adequate techniques after the system’s 
function (input/output) is determined. 

Ennis (1982) reports her experiences with building an 
expert system using several tools such as EXPERT, UNITS, 

EMYCIN, and OPS-5. The system was designed to interpret 
the X-ray powder diffraction spectra of rocks to determine 
their constituent minerals. This article focuses on expert 
system building tools; however, there may be many cases 
where no such tools are available. 

This article’s purpose is to present an experimental 
comparison of four pilot expert systems whose knowledge 
representations are a simple production system, a struc- 
tured production system, a frame system, and a logic sys- 
tem. The domain of the four systems is the risk manage- 
ment of large construction projects. Each system’s func- 
tion (inputs/outputs) is exactly the same: to assist a project 
manager effectively in controlling risks as they arise during 
project execution. We will compare the difficulties of im- 
plementing the knowledge base and the inference engine, as 
well as run time efficiency. The systems were implemented 
on a VAX II/780 using Franz-LISP. 
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Application Description 

The Domain 

The problem used for this study is risk management 
of large construction projects. Risks are defined here as 
undesirable events causing project delays, cost overruns or 
deficiencies in technical performance. This problem was 
chosen because Niwa had previously developed a system for 
this particular domain (Niwa and Okuma, 1982; Niwa and 
Sasaki, 1983). 

The model of domain knowledge relationships is shown 
in Figure 1. Risk causes have been classified into three 
groups: management or operational errors, environmental 
factors, and contractual defects. These factors, errors and 
defects interrelate with one another to cause risks in cer- 
tain activities. The model presents a risk-to-risk consequent 
relationship, z.e., if no countermeasure is taken for a risk, 
further undesirable events may occur. The relationships in 
the model flow in one direction (from left to right) along a 
time dimension. 

Characteristics Common to All Four Systems 

All four systems were developed on the VAX 11/780 us- 
ing Franz-Lisp. Each system consists of a knowledge base, 
an inference engine, and a knowledge maintenance subsys- 
tem. The inference engine is capable of both forward and 
backward reasoning, with the latter including an explanation 
function. The knowledge maintenance function helps a user 
add, replace or delete knowledge in the knowledge base. The 
system model is shown in Figure 2. 

Our objective is to help project managers effectively 
control their projects by providing them with appropriate 
knowledge gathered from many expert project managers and 
fused into the knowledge base. In forward reasoning mode, 
the systems are designed to warn the user (project manager) 
of risks that could follow from causes entered by the user. 
In backward reasoning mode, the user enters a hypothetical 
risk, which the system confirms or denies as possible based 
on its model of risk causes. 

Forward Reasoning. These systems use forward reason- 
ing to inform the user of consequent risks that could follow 
the specific risk causes. 

The user chooses one of two ways for inputting risk 
causes: the menu method or the key word in context [KWIC] 
method The menu shows all causes to the user who 
selects the appropriate ones. In KWIC, the user inputs key 
words or phrases; then risk causes containing these words or 
phrases are shown. The latter case, represented in Figure 3, 
shows a case in which the user has input three key phrases: 
‘customer’, ‘law’, and ‘project manager’. Among risk causes 
involving at least one of the three strings, he selects 3KOl 
(complicated or foreign laws), 3QO3 (different business prac- 
tices of customers) and 2G31 (lack of examination by project 

please key-in strings for risk causes or? 

)customer. law, project manager 

*please select risk cause codes 

lgO5 contractual defect in time for approval 
3001 lack in customer english ability 
3QOl lack in customer or consultant ability 
3Q03 different business practices of customers 
3kOl complicated laws or those different from Japan’s 
3k02 law or regulation change 
2e31 project manager misguidance 
2g31 lack in examination of project managers 

)3kOl. 3Q03. 2g31 
*please select activity codes or all 
)all 
rule 1016 deduced(ld02 contractual defect in technical 

guarantee) 
deduced If01 contractual defect in material 

\ standard 

rule 3018 deduced(6105011 spare parts air cargo due to 
incomplete delivery) 

***risk alarm*** 
2103002 approval delay due to misguiding spare parts 

amount 
2103011 civil approval delay due to loading data 

between civil and equipment differences 
2202013 Additional equipment because no one 

examines all specifications thoroughly 
2202012 spare parts re-order due to number misorder 
5103013 pipe foundation change for big equipment 

carry-in 
2304003 material re-test due to inspection company 

poor interpretation 
6105011 spare parts air cargo due to incomplete 

delivery 

Figure 3. Forward Reasoning Example. 

managers). Next, he inputs codes for the activities that he 
wants the system to analyze for possible risks. 

The system first shows the inference process by print- 
ing out rules (or frames or clauses) in order, then gives risk 
alarms. No conflict resolution is performed. In the manage- 
ment domain, it is desirable that all alternatives be shown to 
the user for evaluation and selection, because the domain is 
too complex to rely entirely on a fully autonomous decision 
system. 

Backward Reasoning. Backward reasoning was devel- 
oped for a project manager’s “dynamic checklist”. When a 
user inputs a risk as a hypothesis, the system asks him about 
various conditions one after another until the hypothesis 
(risk) is determined to be likely. If asked, the system can 
explain its reasoning process. 

These hypotheses also can be entered by the KWIC 
method. The authors observed that in this domain the users 
were comfortable with hypotheses expressed as character 
strings including words, phrases, and sentences 

An example in which a user worries about risks relating 
to a consultant is shown in Figure 4. After the user inputs 
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*please key-in strings for risk 

)consultant 

*please select risk codes 
2103003 consultant’s approval delay 
41 030 civil work delay due to bad negotiation with 

consultant 
51 051 sudden material change due to consultant error 

)2103003 

*hypothesis 2103003 

is this true (2h31 lack in project manager coordination) 

No 
is this true 3kOl complicated laws or those different from 
Japan’s 

)no 
is this true (3QOl lack in customer and consultant ability) 

)w 
is this true,(2e31 project manager misguidance) 

)w 
is this true (2103 approval activity) 

)yes 

*hypothesis 2103003( consultant’s approval delay)may oc- 
cur. Do you want to know how it is deduced? 

)w 
**following rules were used*** 
rule 3002 
*2103007 

(if part 2103007 2103)deduced 2103003 
material upgrade request for customer’s 
future plan 

*2103 approval activity(yes input) 
rule 2002 
*la01 

(if part la01 2103)deduced 2103007 
contractual defect in scope of equipment 
SUPPlY 

*2103 approval activity(yes input) 
rule 1003 (if part 3001 2e3l)deduced la01 
*3QOl 

*2e31 

ia& in customer ahd consultant ability 
(yes input) 
project manager misguidance 
(yes input) 

Figure 4. Backward Reasoning Example. 

‘consultant’, he is informed of the risks in the knowledge 
base that include that string. He selects risk 2103003 
(consultant’s approval delay) as a hypothesis for backward 
reasoning. The system, after requiring the user’s replies (yes 
or no) for the hypothesis’ condition parts, concludes that the 
hypothesized risk may occur. As an explanation, the system 
gives rules (or frames or clauses) in their order of inference 

Development of the Pilot Systems 

Four kinds of pilot expert systems were developed using 
the same requirements and the same knowledge as described 
before. These were a simple production system, a structured 
production system, a frame system, and a logic system. 

Simple Production System. As one dimension of causal 
knowledge is used, it is easily described by the types of 
production rules shown in Figure 5. Rule 1001 is an example 
of a rule that deduces risk cause types from risk causes. Rule 
2062 is an example of a rule that deduces risk types from 
risk causes. Rule 3018 is an example of a rule that deduces 
consequent risk types from risks 

Every clause of the production rules is actually rep- 
resented by four- or seven-character codes for improving 
matching efficiency. The ASSOC function in LISP combines 
the code with a translation when the latter is requested. 
Rule 1001, for example, is stored in the production memory 
as shown below. 

(RULE 1001 

(IF (3K01)(2F16)) 

(THEN(lAOl)(lKOl))) 

A core of forward and backward reasoning algorithms in 
the inference engine was implemented by applying methods 
described by Winston and Horn (1981). 

Structured Production System. The production rules in 
the simple production system are divided into five knowledge 
sources, according to the temporal order in the model of 
domain knowledge relationships. (The numbers in Figure 
1 correspond to the knowledge sources ) Knowledge source 
control functions are added to the simple production sys- 
tem’s inference engine. 

Frame System. The frame system is implemented by 
using the method of Winston and Horn (1981), based on the 
frame representation language [FRL]. Three kinds of frames 
were made: risk cause, risk, and activity. 

Risk frame 2103003 (consultant’s approval delay) is 
shown in Figure 6. It is described as a kind of (AKO) risk 

Rule 1001 
If 

I 
complicated laws or those different from Japan’s) and 
sales department poor countermeasure) 

Then (contractual defect in scope of equipment supply) 
and (contractual defect in arbitration or force major) 

Rule 2062 
If contractual defect in scope of equipment supply) and 

delivery) 
Then (spare parts amount misunderstand to be delivered) 

and (special tools excessive request due to incomplete 
confirmation) and (excessive delivery due to no revision 
of delivery scope after design change) 

Rule 3018 
If (spare parts amount misunderstand to be delivered) and 

(delivery) 
Then (spare parts air cargo due to incomplete delivery) and 

(customer’s reject of project acceptance) 

Figure 5. Production Rule Example. 

32 THE AI MAGAZINE Summer 1984 



2103003 
AK0 risks at hard design approval stage 
Name 1 consultant’s anoroval delav . . 

Risk causes lack in project manager coordination or 
investigation (2H31). and 
lack in customer or consultant ability (3QOl) 

Consequent 
risks 

Consequent material upgrade request for customer’s future 
risk causes 1 plan (2103007) 

Figure 6. Frame Example. 

occurring at the hard design approval stage. The risk causes 
are 2H31 (lack of project manager coordination or investiga- 
tion) and 3QOl (lack of customer or consultant ability). Its 
consequent risk is not recorded thus far. However, the frame 
shows that risk 2103003 is a consequent risk of risk 2103007 
(material upgrade request for customer’s future plan), mean- 
ing that if no countermeasure is taken for risk 2103007, then 
risk 2103003 may occur. 

The property frame for risk 2103003 is stored as: 

(2103003 

(AKO(VALUE(HARD-APPROVAL-RISK))) 

(NAME(VALUE(C~NSULTANT’S APPROVAL DELAY))) 

(FACTOR(VALUE(2H31 3401))) 

(CONSEQUENT-RISK-FACTOR(VALUE(2103007)))) 

Slots in the frame are used to represent risk causality as 
described above. 

AK0 inheritance is used in the pilot system; however, 
procedural attachment is not, The most important func- 
tion of the frame system’s inference engine is to organize 
basic frame-handling functions so that forward and backward 
reasoning are performed. 

Logic System. Although the propositional logic is 
sufficient to meet the pilot system requirements, the resolu- 
tion principle of first order was applied in consideration of fu- 
ture system extension. Chang and Lee’s (1973) algorithm is 
used for the resolution principle program’s core. Knowledge 
is represented in Horn clause form as shown below, because 
we planned to use PROLOG in the next phase. Production 
rule 1001, for example, is changed into two Horn clauses: 

(1521 NIL ((NOT 3KOl)(NOT 2F16)(1AOl))), AND 

(1522 NIL ((NOT 3KOl)(NOT 2F16)(1KOl))) 

Control algorithms for forward and backward reasoning 
were developed by analogy with the production system’s 
algorithms. 

Experimental Comparison 

Implementation Difficulties 

Knowledge base. The volumes of the knowledge bases 
for the four pilot systems are: 

. simple production system 263 rules 15k characters 

. structured production system 263 rules 15k characters 
0 frame system 213 frames 29k characters 
0 logic system 348 clauses 17k characters 

We observed the following: 

. The number of rules and characters for the simple 
and structured production systems is the same, be- 
cause the simple production system’s rules were 
divided into the five knowledge sources of the struc- 
tured production system The 213 frames are fewer 
than the 263 production rules, because some related 
rules were merged into a single frame. 

. The number of characters in the frame system is 
greater, because it was necessary to replicate some 
related pieces of knowledge into different frames. 

l The number of clauses in the logic system is greater 
than the number of production rules, because the 
Horn clause representation was applied. 

Our evaluation of the difficulty associated with the im- 
plementation of the knowledge bases is based upon our sub- 
jective judgment rather than using the number of person- 
hours spent on the task as an objective measure. We found 
as we became more experienced, each pilot system was de- 
veloped in less time and with more facility than the previous 
one. Our results (in order of difficulty) are as follows: 

l The simple production and logic systems’ knowledge 
bases are the most easily implemented because both 
of these representations are very modular and clearly 
capture the causal relationships 

l The structured production system knowledge base 
was implemented with some difficulty, because it was 
necessary to consider how many knowledge sources 
were adequate and in which knowledge source each 
rule should be placed 

. The frame system was the most difficult to imple- 
ment because it contains more structure than the 
other representations. It was necessary to determine 
what kinds of frames the system needs, what kinds 
of slots each frame needs, and how all the frames fit 
together into an AK0 hierarchy. 

The coding quantity difference between the production and 
logic systems is not mentioned, because we were easily able to 
produce the necessary additional coding by changing produc- 
tion rules with plural right-hand side elements into plural 
clauses. 
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3001 lack in customer English ability 

$ 
3QOl lack in customer or consultant 

ability 

equipments supply 

A 
1 JO5 contractual defect in SUpPlier 
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-z 41 .* civil work 

V 
41.. 005 decrease in work effeciency 
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V 
41.1 010 trouble with local labor 

due to different customs 

Inference Chain Example. 

Figure 7. 

Inference engine. The volumes of the inference engines 
for the four pilot systems are: 

l simple production system 9.lK characters 
l structured production system 9.5K characters 
0 frame system 14 3K characters 
l logic system 11.3K characters 

Although the basic algorithms for forward and backward 
reasoning in the production system and the basic unification 
algorithm for the logic system were taken from published 
sources, some development was necessary to adapt these to 
the needs of our pilot systems. In our experience: 

l The simple production system was the easiest to 
implement, because little adaptation of Winston and 
Horn’s algorithms was necessary 

l The structured production system was more difficult, 
because an algorithm which would control knowledge 
sources had to be developed. 

l The level of difficulty in implementing the logic sys- 
tem was similar to that of the structured produc- 
tion system In addition to the basic unification 
algorithm, the inference eugine needed algorithms 
for linear resolution and for forward aud backward 
reasoning. An additional difficulty was the necessity 
of implementing a logically complete system 

l The frame system was the most difficult of all to 
implement, because it was necessary to develop for- 
ward and backward reasoning processes on top of 
Wiuston and Horn’s basic frame-handling functions. 

Inference run time efficiency. we measured the CPU 
times for each system while running the same problem. The 
test contained both forward and backward reasoning ex- 
ecuted along three kinds of inference chains, one of which is 
shown in Figure 7. Forward reasoning started with 3001 (lack 
of customer’s English ability), 2E31 (project manager mis- 
guidance) and 41.. (civil work) as conditions or risk causes. 
Backward reasoning started from the chain’s bottom as a 
hypothesis. 

The size of the knowledge base was varied as an cx- 
perimental parameter. The number of Horn clauses in the 
logic system was taken as a standard of comparison. The sizes 
of the other knowledge bases were adjusted to represent the 
same knowledge content. The relative size of each knowledge 
base is shown below: 

l Number of Horn clauses 50 100 200 
l Number of production rules 41 79 157 
. Number of frames 96 131 175 

The CPU time was measured by the Franz-LISP func- 
tion PTIME (process time minus garbage-collection time). 
Measured inference time did not include the user’s input 

1 c?te 
50 100 200 

knowledge volume (clauses) 

Inference Time and Knowledge Base Volume 
for Forward Reasoning. 

Figure 8. 

34 THE AI MAGAZINE Summer 1984 



structured production system 

frame system a 
I I I 

50 100 200 

knowledge volume (clauses) 

Inference Time and Knowledge Base Volume 
for Backward Reasoning. 

Figure 9. 

or the program’s output, but did include an explanation of 
the backward reasoning process. Seventy-two points were 
measured: 4 pilot systems x 3 problems x 2 types of reason- 
ing x 3 sizes of knowledge bases. 

Experimental results. Experimental results for forward 
and backward reasoning are shown in Figures 8 and 9, respec- 
tively. The measured points in the figures are the averages 
of three kinds of problems. These figures show that for all 
volumes of knowledge base, the frame system used the least 
inference time while the logic system used the most. As the 
amount of knowledge increased, the inference times of the 
frame and structured production systems remained roughly 
constant. The inference time of the simple production sys- 
tem increased moderately, while that of the logic system in- 
creased markedly. 

These results are due to the following factors: 

l In the frame system, related pieces of knowledge are 
connected to one another by pointers, thereby limit- 
ing search. This means that inference time is low 
and relatively insensitive to the size of the knowledge 
base 

l The number of rules to be searched in the structured 
production system is limited compared to that of the 
simple production system, which again means that 
inference time is low and not strongly dependent on 
the size of the knowledge base. 

l In the simple production and logic systems, the 
effects of increasing knowledge volume were significant, 
because all knowledge had to be searched. 

l Resolution in the logic system was relatively time- 
consuming. 

logical 
completeness 

structured 
knowledge 

modular 
knowledge 

logical 
incompleteness 

@ knowledge base implementation difficulty 

C inference engine implementation difficulty 

Implementation Difficulties. 

Figure 10. 
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completeness 

slow 0 

(!$3m) 
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knowledge a fast 

l medium knowledge 
l little effect of 

knowledge volume 

(!$Xrn) (t$,YLZn) (tiz$ion) 

logical 
incompleteness 

Run Time Efficiency. 

Figure 11. 

Conclusions 

All of the foregoing points are summarized in Figures 10 
and 11. The horizontal axis represents knowledge modularity 
and the vertical axis represents logical completeness. The 
logic system is modular and logically complete. Other sys- 
tems are relatively incomplete logically; their knowledge is 
structured to different degrees. 

In Figure 10, the increasing difficulty of knowledge base 
implementation is shown by the thick arrow; the increasing 
difficulty of inference engine implementation is shown by the 
thin arrows. The figure leads to the conclusion that the 
more structured the knowledge base, the more difficult it is 
to implement the knowledge base and the inference engine. 
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Also, it was more difficult to implement the logic system 
inference engine than that of the simple production system 

Figure 11 shows that when knowledge is structured, run 
time efficiency increases, while sensitivity to the volume of 
the knowledge base decreases Also, inference in the logic 
system is slow. 

In summary, we can rearrange our findings to make the 
following statements: 

l In a poorly understood domain whose knowledge 
structure cannot be well described, modular knowledge 
representations, e.~ , simple production and logic sys- 
tems, should be used However, this causes low run 
time efficiency 

l The use of structured knowledge representations, 
e4, structured production and frame systems, in- 
creases run time efficiency as well as reducing the 
effect of the knowledge volume on run time However, 
system implementation is more difficult. 

l Mathematical completeness makes logic systems more 
difficult to implement and less efficient in run time 
Our problem was too simple to adequately demon- 
strate the advantages of logic representation 

There are many reasons for structuring knowledge, of 
which the most common is effective use. To achieve this 
end, meta-knowledge for structuring is necessary during 
the system design phase. This is why the implementation 
of the knowledge base and inference engine for structured 
knowledge is difficult. On the other hand, once a struc- 
tured system is implemented, run time efficiency increases 
In general, the ease of structuring knowledge in the system 
design phase depends on the knowledge engineer’s ability 
and the characteristics of the domain. Although the rule 

compilation technique of Forgy and McDermott (1977) and 
the cognitive economy proposal by Lenat et al. (1979) are 
approaches to this relatively unexplored problem, further 
research is necessary. 
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