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Abstract

Localization is the process of updating the pose of a
robot in an environment, based on sensor readings. In
this experimental study, we compare two recent methods
for localization of indoor mobile robots: Markov localiza-
tion, which uses a probability distribution across a grid of
robot poses; and scan matching, which uses Kalman filter-
ing techniques based on matching sensor scans. Both these
techniques aredense matching methods, that is, they match
dense sets of environment features to an a priori map. To
arrive at results for a range of situations, we utilize sev-
eral different types of environments, and add noise to both
the dead-reckoning and the sensors. Analysis shows that,
roughly, the scan-matching techniques are more efficient
and accurate, but Markov localization is better able to cope
with large amounts of noise. These results suggest hybrid
methods that are efficient, accurate and robust to noise.

1. Introduction

To carry out tasks, such as delivering objects, an indoor
robot must be able to figure out where it is within its envi-
ronment. A robot that goes through the wrong door or down
the wrong corridor will be inefficient, even if it eventually
recovers and determines its pose. And a robot that cannot
position itselfaccurately is at risk from obstacles or dan-
gerous areas that are in its map but which cannot be easily
sensed. For these and other reasons, the problem oflocal-
izationwith respect to an internal map is an important one.

Generally speaking, localization techniques fall into
three basic categories:

� Behavior-based approaches

� Landmarks

� Dense sensor matching

Behavioral approaches rely on the interaction of robot
actions with the environment to navigate. For example,

Connell’s robot, Herbert, followed a right-hand rule to tra-
verse an office environment, and found its way back by re-
versing the procedure [6]. More sophisticated systems learn
internal structures that can be “played back” to redo or undo
paths [1]. While behavioral approaches are useful for cer-
tain tasks, their ability to localize the robot geometrically
is limited, because their navigation capability is implicit in
their sensor/action history.

Landmark methods rely on the recognition of land-
marks to keep the robot localized geometrically. Land-
marks may be givena priori (for example, the satellites
in GPS) or learned by the robot as it maps the environ-
ment (for example, sonar landmarks [11]). While land-
mark methods can achieve impressive geometric localiza-
tion, they require either engineering the environment to pro-
vide a set of adequate landmarks, or efficient recognition
of features to use as landmarks. In contrast, dense sensor
methods [22, 12, 17, 9, 4] attempt to use whatever sensor
information is available to update the robot’s pose. They
do this by matching dense sensor scans against a surface
map of the environment, without extracting landmark fea-
tures. Thus, dense sensor matching can take advantage of
whatever surface features are present, without having to ex-
plicitly decide what constitutes a landmark.

In recent years several competing techniques for dense
sensor matching have emerged. In this paper we undertake a
systematic comparison of two such methods, concentrating
on their ability to keep the robot localized in the presence
of noise. We expect these results to be useful in determin-
ing the relative strengths and weaknesses of the methods, as
well as giving guidelines for their application in typical en-
vironments. These experiments were motivated by the lack
of experimental confirmation of the performance of local-
ization methods, which makes it difficult to determine if a
method that ran on one robot in one laboratory environment
would be successful under any other conditions, with any
other robot hardware.

In performing these experiments, we were interested in
three questions:

1. Under what circumstances did the robots suffer catas-



trophic localization failure, that is, become completely
lost?

2. How accurately did the techniques localize the robots
under various conditions?

3. How well did the techniques tolerate ambiguity in the
robot’s pose, when there was insufficient information
to accurately localize it?

2. Markov Localization and Scan-Matching
Methods

In probabilistic terms, localization is the process of de-
termining the likelihood of finding the robot at a posel,
given a historys1; : : : sn = Sn of sensor readings, and
a historya1; : : :an = An of position integration readings
from the wheel encoders.1 In practice, it is too difficult to
determine the joint effect of all sensor and position inte-
gration readings; instead, a recursive approximation is as-
sumed:

p(l j Sn; An) =

� �

Z
p(l j sn; an; l

0)p(l0 j Sn�1; An�1) dl0: (1)

wherel0 is the previous pose of the robot, and� is a normal-
izing factor ensuring thatp(l j Sn; An) sums up to one over
all l. Thus, it is assumed that all information about the past
history of the robot can be represented by the distribution
p(l0 j Sn�1; An�1).

Any localization method must decide the followingques-
tions:

1. How is the prior distribution to be represented?

2. How is the posterior distributionp(l j sn; an; l0) to be
calculated?

Markov localization makes the choice of an explicit, dis-
creet representation for the prior probability, using a grid
or topological graph to cover the space of robot poses, and
keeping a probability foreach element of this space. Scan
matching, on the other hand, uses a simple Gaussian for
the distribution. Given the divergence in representation, it
is interesting that these methods both use the same general
technique for calculating the posterior:

1. Predict the new robot posel and its associated uncer-
tainty from the previous posel0, given odometric in-
formation.

2. Updatethe robot pose (and uncertainty)l using sensor
information matched against the map.

1The map of the environment is a parameter to this process; we will
describe its role in more detail in each of the methods.

The first step generally increases the uncertainty in the
robot’s pose, while the second generally reduces it. The
prediction step is modeled by a conditional probability, de-
noted byp(l j an; l0) which denotes the probability that
actionan, when executed atl0, carries the robot tol. Upon
robot motion, the pose is calculated as:

p(l)  �

Z
p(lu j an; l

0)p(l0) dl0 : (2)

In the algorithms considered here, the possible errors of the
odometry (i.e.,p(l j an; l0)) are modeled as normally dis-
tributed. Note that in the experiments, we deliberately use
noise models that arenot normal and violated this assump-
tion, to test the robustness of the algorithms in a realistic
environment.

In the update step, the new robot pose is calculated ac-
cording to the Bayes formula:

p(l j sn) = �p(sn j l) p(l) : (3)

The sensor modelp(sn j l) determines the likelihood of the
sensor responding withsn, given the robot at posel.

2.1. Markov Localization

The key idea of Markov localization is to compute a
discrete approximation of a probability distribution over
all possible poses in the environment. This distribution
evolves according to Equations 2 and 3. Different variants
of Markov localization have been developed [15, 19, 10, 4]
and have been shown in experimental results to have several
features:

� They are able to localize the robot when its initial pose
is unknown. This property is essential for truly au-
tonomous robots as it no longer requires that the initial
pose of the robot is entered whenever it is switched on
or gets lost.

� They are able to deal with noisy sensors such as ultra-
sonic sensors.

� They are able to represent ambiguities and can be ex-
tended to actively resolve ambiguities [5].

� Computationally, the technique is dominated by the di-
mensionality of the grid, and the size of its cells.

The existing methods can be distinguishedaccording to the
type of discretization they rely on. While [15, 19, 10, 20]
use a topological discretization of the environment and de-
tect landmarks to localize the robot, the system used in this
paper computes a fine-grained grid-based approximation of
the distribution [4]. To cope with the huge state space this
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technique includes several optimizations. In practice, usu-
ally only a small area around the robot is updated during
localization.

Map information for Markov localization depends on the
type of the state space discretization. The topological ap-
proaches [15, 19, 10, 20] use landmarks to detect locations.
The fine-grained discretization applied in this paper in con-
trast uses metric maps of the environment. These can be
hand-crafted CAD maps consisting of line segments rep-
resenting vertical surfaces in the indoor environment, or
learned occupancy grid maps [14]. In all approaches the
map is used to compute what the sensor readings should
be from a given cell in the state space. The closeness of
the predicted readings to the actual ones give a measure of
p(sn j l).

Fig. 1. Global position estimation using the grid-based
Markov localization technique. Belief state after

integrating the two sonar scans (left image). After 30
seconds and integrating 6 sonar scans the robot uniquely

determined its position (right image).

As already mentioned, an important feature of Markov
localization techniques is the ability to globally localize the
robot within its environment. Figure 1 is a floor plan of a
27� 20m2 section of the Computer Science Department at
the University of Bonn, in which some of the experiments
reported here were carried out. It shows two density plots
(dark positions are more likely) during global localization
in the office environment. The robot started at position 1
and traveled to position 2 (refer to Figure 5 on page 5). Ini-
tially the robot was completely uncertain about its position.
The belief state after integrating two sonar scans of 24 ultra-
sound readingseach is shown in the left image of Figure 1.
After travelling 6.3 meter and incorporating 6 sonar scans
the robot is absolutely certain about its position (see right
image of Figure 1).

2.2. Scan Matching

Scan matching is the process of translating and rotating
a range scan (obtained from a range device such as a laser
range finder) in such a way that a maximum overlap be-
tween sensor readings and a priori map emerges. For match-
ing a range scan with a map an initial estimate of the robot

pose must be known and is usually derived from odometry
information.

The robot pose and its update from scan matching are
modeled as single Gaussian distributions. This has the ad-
vantage that robot poses can be calculated with high preci-
sion, and that an efficient method for computing the update
step can be used, namely, Kalman filtering. Scan matching
has the following properties:

� It can localize the robot precisely given good inputs,
and in the linear case it is the optimal estimate of loca-
tion.

� It cannot recover from catastrophic failures caused by
bad matches or incorrect error models.

� Because its search is confined to small perturbations of
the sensor scans, it is computationally efficient.

The extended Kalman filter method has the following
form. For each time stept the robot pose and error covari-
ance are denoted byl(t) = (x(t); y(t); �(t))T and�l(t).
On robot motiona = (�; �)T the robot pose and covariance
are updatedaccording to:

l0(t + 1) = F (l(t); a) =

0
@ x(t) + � cos(�(t))

y(t) + � sin(�(t))
�(t) + �

1
A

�0

l(t + 1) = rFl�l(t)rF
T
l +rFa�arF

T
a

From scan matching a pose updatels with an error co-
variance matrix�s is obtained and the robot pose and co-
variance are updated using the formulas:

l(t+ 1) = (�0�1
l (t + 1) + ��1

s )�1 �

(�0�1
l (t + 1)l0(t+ 1) + ��1

s ls)

�l(t+ 1) = (�0�1
l (t + 1) + ��1

s )�1

These equations demonstrate that Kalman filter based
self-localization can be implemented efficiently. As long
as the error models are accurate, Kalman filtering will give
a reasonable estimate of the robot pose (in the linear case, it
will be an optimal estimate).

The success of the Kalman filter also depends heavily on
the ability of scan matching to correct the robot pose. We
use two matching methods, described in [9]. The first ap-
proach matches sensor readings against the line segments in
a hand-crafted CAD map of the environment [7]. It assigns
scan points to line segments based on closest neighborhood
and then searches for a translation and rotation that mini-
mizes the total squared distance between scan points and
their target lines. For reasons of efficiency we modified the
approach to extract the line segments from the CAD model
that are visible from the current robot-position and discard
the non-visible ones. This greatly reduces the number of
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line segments for the matching process and also avoids non-
sensical assignments, e.g. assignments from a scan point to
a line that corresponds to the backside of a wall.

Fig. 2. Overlay of a hand-crafted CAD map of the office
environment used for the experiments and the
corresponding map learned by scan matching.

Scan matching can also be used with self-learned maps.
We use a map of reference scans which have previously
been obtained in an exploration run. As the scan positions
in this run have been determined by dead-reckoning only
and therefore contain errors, all positions have to be cor-
rected first. This is done by the approach proposed in [13, 9]
which computes a consistent map of the environment. Fig-
ure 2 shows an overlay of a learned and hand-crafted map
of the Bonn Computer Science environment. This map was
computed using two 180 degree laser-range finders. Obvi-
ously, scan matching produces extremely accurate maps.

For computing a position update, a range scan is matched
with one of the reference scans, usually the one whose po-
sition is closest to the current robot position. For matching
we use the approach proposed in [9] which is a combination
of the line-segment matching method of the first approach,
and a point-to-point match [12].

3. Localization Experiments

To compare both position estimation techniques we
performed various experiments using the mobile robot
RHINO [2, 21] (see Figure 3) in a typical structured office
environment as well as in the rather unstructured environ-
ment of the “Deutsches Museum Bonn” during a six-days
lasting deployment of the mobile robot RHINO as an inter-
active museum tour-guide [3] (see Figure 10). RHINO is
an RWI B21 robot which is equipped with two laser-range
finders covering 360� and a ring of 24 ultrasonic sensors
each with an acceptance angle of 15 degrees.

Fig. 3. Mobile robot RHINO used for the experiments.

3.1. Noise Models

There are several kinds of noise typically observed when
robots operate in real-world environments. On one hand
there is a typical Gaussian noise in the odometry and prox-
imity sensors coming from the inherent inaccuracy of the
sensors. On the other had there are non-Gaussian errors
arising from robot colliding with obstacles, or from inter-
ference with the sensors.

In this paper, odometry errors coming from wheel-
slippage, uneven floors, or different payloads are charac-
terized according to the following three parameters (see left
part of Figure 4).

+��(�)

�+ ��(�)

�

x

y
� + ��(�)

Fig. 4. Effect of adding noiseh��(�);��(�);��(�)i
(left) and bump noisehx; y; �i (right) to the odometry.

Range noise: the error��(�) in range when the robot
moves a certain distance�.

Rotation noise: the error��(�)+��(�) in rotation when
the robot turns a certain angle� or moves a certain
distance�.

There is another source of less frequent but much larger
odometry errors coming from situations in which the robot
bumps into obstacles. These abrupt errors can be character-
ized by the following parameters (see right part of Figure 4).

Error of the odometry: The errorx, y, and� added to the
odometry information.
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Frequency: Probability that a bump occurs if the robot
travels one meter. Throughout the experiments de-
scribed below, this probability was set to0:05.

Finally, we will consider a type of noise is which the sen-
sors do not return accurate information relative to the inter-
nal map (map noise). The source can be an inaccurate map,
poorly-performing sensors, or the presence of dynamic ob-
jects such as people around the robot. This type of noise is
very hard to characterize, and our experiments deal with a
difficult case, sensor blocking by people.
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Fig. 5. Outline of the27� 20m2 large office environment
including the trajectory of the robot and the 22 reference

positions.

3.2. Performance in the Office Environment

The office environment depicted in Figure 5 consists of
a corridor and ten different offices. In this experiment we
started the robot at the left side of the corridor, steered it
through all offices, and measured the position of the robot at
22 different positions in the remainder denoted as reference
positions.
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Fig. 6. Trajectory measured by the robot and typical
trajectory obtained by adding large Gaussian noise with

standard deviationsh400; 20; 20i to these data.

We used the data recorded during this run of the robot
and added different kinds of noise to the odometry informa-
tion. Whenever the robot passed a reference position, which
was detected given appropriate time stamps in the recorded
data, we measured the distance between the estimated po-
sition and the corresponding reference position. We per-
formed the same experiment 26 times with different seeds
for each set of noise parameters. Figure 6 shows the trajec-
tory measured by the robot’s wheel encoders and a typical
trajectory obtained by adding the maximum Gaussian noise
h400; 20; 20i2.

We evaluated the scan matching technique by matching
laser-range data with the self-learned map of the office en-
vironment and the CAD-model. The performance of the
Markov localization technique was evaluated using ultra-
sound sensors and laser-range finders. In these experiments
the grid resolution of Markov localization was adopted ac-
cording to the noise ratio. It ranged from 15cm2 and3� at
the lowest noise level to 30cm2 and10� at the highest noise
level. For each method we measured the average distance
between the estimated and the reference position. The dis-
tances were averaged over all situations in which the posi-
tion was not lost. We used the threshold of1m to determine
whether or not the position of the robot was lost.
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Fig. 7. Distances from reference positions in the office
environment for different levels of Gaussian noise.

Figure 7 shows the average distances between the refer-
ence positions for four different levels of Gaussian noise.
The value triples on the x-axis correspond to the standard
deviation of the Gaussian noiseh��(�);��(�);��(�)i. In
this and all following figures the error bars indicate the
95% confidence interval of the average mean. This fig-
ure demonstrates that the scan matching technique is sig-
nificantly more accurate than the Markov localization tech-

2The values correspond to the standard deviation of the Gaussian noise
h��(�);��(�);��(�)i with the units mm/m, deg/360�, and deg/m.
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Fig. 8. Number of times where the positioning error was
above1m when the robot reached a reference position, for
different levels of Gaussian noise in the office environment.

nique if the distance between the estimated and the refer-
ence position is smaller than1m.

However, scan matching turned out to be less robust
against larger noise in the odometry. Figure 8 shows the
number of times where the position of the robot was lost,
whenever the robot reached a reference position, for four
different noise parameters. As already mentioned, we re-
gard the position to be lost, whenever the distance to the real
position is at least1m. Under the conditions with the max-
imum Gaussian noise, Markov localization lost track of the
robots position in 0.3% of all cases, which is significantly
better than the scan matching technique. A further inter-
esting fact is that Markov localization based on ultrasound
sensors has a similar robustness to scan matching with laser-
range finders in this experiment.
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Fig. 9. Percentage of lost positions for different levels of
bump noise in the office environment.

In the same manner, we investigated how the meth-
ods compare given simulated bump noise. For accuracy,

the results were similar to the case of Gaussian noise.
Scan matching again was significantly more accurate than
Markov localization. Figure 9 shows the average number of
reference positions at which the position of the robot was
lost when bump noise was added to the odometry informa-
tion. The labels at the x-axis again correspond to the bump-
noise valueshx; y; �i used in this experiment. The scale of
these values is mm forx andy, and degrees for�. In ad-
dition to these bumps occurring with probability 0.05, we
applied a small Gaussian odometry error using the param-
etersh10; 5; 5i. As shown in Figure 9, the Markov local-
ization is significantly more robust than scan matching even
when only ultrasound sensors are used for localization. The
Gaussian distributionassumption of scan matching does not
model bump noise well, while Markov localization can re-
cover using its more robust assessment.

3.3. Performance in an Unstructured Populated En-
vironment

We evaluated the performance of localization in an un-
structured environment to test its sensitivity to map noise.
This is important, since the application area of mobile
robots is not restricted to structured office environments and
since environments in which the robot operates cannot be
assumed to be static, or perfectly described by the map.

Fig. 10. Typical situation in which several people
surrounded the robot and lead to measurement errors.

The data for the experiments described in this section
were recorded during the deployment of the mobile robot
RHINO for several days as a personal tour-guide in the
“Deutsches Museum Bonn,” Germany [3]. A mobile robot
moving in a real-world environment is quite challenging for
localization techniques. In this case, the robot was often
completely surrounded by visitors, and many sensor read-
ings were shorter than expected. Figure 10 shows a typi-
cal situation in which RHINO gave a tour to visitors which
block the sensors of the robot.
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Fig. 11. Typical scan with many short readings in a
situation like that shown in Figure 10. Rectangles and

circles are objects contained in the map. The dots
correspond to obstacles measured by the laser-range finder.

Fig. 12. Trajectories of the robot used in this experiment.
The solid line indicates the trajectory of the robot while it
was surrounded by people. The dotted line corresponds to

the robot’s path in the museum during closing hours.

We used two different data sets which are shown in Fig-
ure 12. While the solid trajectory was obtained during nor-
mal operation time of the robot, the dotted trajectory was
recorded during a period of time where no visitors were
present.

Figure 13 shows the relative time where the distance
between the estimated position and a reference trajectory
was above1m for different levels of Gaussian noise. As
in the previous examples in the structured office environ-
ment, scan matching was more accurate than Markov local-
ization but less robust given larger noise3. Figure 14 con-
tains similar plots for the trajectory recorded when people
were present. Localization in this environment turned out
to be much harder, which is illustrated by the fact that both
methods failed earlier and even under small dead-reckoning
noise. However, the relative performance of the methods

3We omitted the results for ultrasound sensor based Markov localiza-
tion since it already failed at lower degrees of Gaussian noise.
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Fig. 13. Percentage of lost positions for different levels of
Gaussian noise in theemptymuseum.
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Fig. 14. Percentage of lost positions for different levels of
Gaussian noise in thecrowdedmuseum.

was the same as in the empty museum, as well as the Bonn
Computer Science environment. In this experiment, the
Markov localization system used a sensor model that has
been adopted to deal with the large number of too short
readings.4

4. Discussion

This paper empirically compares two different and popu-
lar localization techniques for mobile robots: Markov local-
ization, which represents arbitrary probability distributions
across a grid of robot poses, and Kalman filtering which
uses normal distributions together with scan-matching. Pre-
vious work reported in [18, 16, 9] largely focuses on the

4Recently, an extension of Markov localization has been described [8]
which is designed to filter out those measurements that are reflected by
obstacles not contained in the map and thus shows a better performance
than the version used in the experiments described here.
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comparison of different matching strategies for Kalman fil-
ter based localization. Our work differs in that it compares
different approaches to localization. While the two tech-
niques analyzed here used similar Bayesian foundations, the
choice of representation and subsequent algorithms differed
significantly in their performance. The results of our empir-
ical evaluation can be summarized broadly as follows.

� When sufficient information is available from the sen-
sors, scan-matching and Kalman filtering are more ac-
curate, sometimes by an order of magnitude.

� Markov localization is more robust, in that it poten-
tially can keep track of the robot’s position in an arbi-
trary probabilistic configuration. Having this position
information is critical when the quality of information
received from the sensors is degraded, and theodome-
try is unreliable.

The experimental evidence suggests combining these two
techniques to produce a method that inherits the robust-
ness of Markov localization and the efficiency and accu-
racy of Kalman filtering. Markov localization, at coarse
grid spacing, could act as an overall check on the plausi-
bility of scan matching: Whenever the position of the robot
is uniquely determined, Kalman filtering is used to accu-
rately estimate the position of the robot. As soon as Markov
localization detects multiple positions where the robot is
likely to be, Kalman filtering is no longer applied. As the
Markov method converges on a single high-probability lo-
cation, scan-matching could once again be invoked to pro-
duce high-accuracy results.
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