;:‘ Machine Learning, 42, 929, 2001
’ (© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

An Experimental Comparison of Model-Based
Clustering Methods

MARINA MEIL A*
DAVID HECKERMAN heckerma@microsoft.com
Microsoft Research, Redmond, WA 98052, USA

Editor: Douglas Fisher

Abstract. We compare the three basic algorithms for model-based clustering on high-dimensional discrete-
variable datasets. All three algorithms use the same underlying model: a naive-Bayes model with a hidden root node,
also known as a multinomial-mixture model. In the first part of the paper, we perform an experimental comparison
between three batch algorithms that learn the parameters of this model: the Expectation—Maximization (EM)
algorithm, a “winner take all” version of the EM algorithm reminiscent of the K-means algorithm, and model-
based agglomerative clustering. We find that the EM algorithm significantly outperforms the other methods,
and proceed to investigate the effect of various initialization methods on the final solution produced by the EM
algorithm. The initializations that we consider are (1) parameters sampled from an uninformative prior, (2) random
perturbations of the marginal distribution of the data, and (3) the output of agglomerative clustering. Although the
methods are substantially different, they lead to learned models that are similar in quality.

Keywords: clustering, model-based clustering, naive-Bayes model, multinomial-mixture model, EM algorithm,
agglomerative clustering, initialization

1. Introduction

A host of algorithms for clustering data have been published (Duda & Hart, 1973; Jain &
Dubes, 1988). Of these algorithms, most find clusters by optimizing some criterion that
depends on a distance between case pairs or between pairs of centroids of case collections.
In this paper, we focus amodel-basedlustering—that is, those algorithms that postulate a
generative statistical mod#r the data—and then use a likelihood (or posterior probability)
derived from this model as the criterion to be optimized. Model-based clustering has recently
gained widespread use both for continuous and discrete domains (Banfield & Raftery, 1993;
Clogg, 1995) mainly due to the fact that it allows one to identify clusters based on their
shape and structure rather than on proximity between data points. We also stress that we
examine onlyflat—as opposed tbierarchical—clustering. Although one of the methods
presented below is able to output a cluster hierarchy, the hierarchical structure is present
only implicitly in the learning algorithm, being ignored in the final model.

Inthis paper, we test model-based clustering algorithms on a basic but widely used model:
the naive-Bayes modéNBM) with a hidden root node. In statistical terms, this model is

*Present address: University of Washington, Department of Statistics, Box 354322, Seattle, WA 98195, USA,;
e-mail: mmp@stat.washington.edu.



10 M. MEILA AND D. HECKERMAN

a mixture of multinomial distributions under the assumption that the hidden class variable
renders all observations mutually independent (e.g., Clogg, 1995; Cheeseman & Stutz,
1995). The conceptual simplicity of the naive-Bayes model and its ease of implementation
make it an ideal prototype and benchmark model. Moreover, in higher dimensions, where
both the search for model structure and escaping local optima in the parameter space can
substantially slow computation, the relatively small number of parameters of the naive-
Bayes model make it more appealing than other complex models.

Nonetheless, even for this relatively simple model, high dimensional domains (tens to
hundreds of variables) can present a challenge for both structure and parameter search
algorithms. The aim of our work is to study the behavior of the commonly used algorithms for
learning the parameters of mixture models on high-dimensional data. Additional attention
will be given to the initialization issue: How important is the choice of the initial parameters
of an iterative algorithm and how do we find a good set of initial parameters?

In Section 2, we introduce the clustering model and the learning algorithms that we
shall compare. All algorithms are batch algorithms as opposed to on-line ones. They are
Expectation-Maximization (EM), Classification EM (CEM)—a “winner take all” version
of the EM algorithm reminiscent of the K-means algorithm—and agglomerative clustering
(AC). In Sections 3and 4, we describe our datasets and experimental procedure, respectively.
In Section 5, we compare the three learning algorithms. The experiments suggest that the
EM algorithm is the best method under a variety of performance measures. Consequently,
in Section 6, we study the initialization problem for EM by comparing three different
initialization schemes. Finally, in Section 7, we draw conclusions and point to various
directions for further research. Details about AC and its implementation are presented in
the Appendix.

2. Model, algorithms, and performance criteria
2.1. The clustering model

We shall consider models for domains consisting of a set of variablesXs, ..., X,. In
general, each variabl€; may be continuous or discrete. Throughout this paper, however,
we assume that all the variables are discrete and finitely valued.

Before we describe the model, we need some notation. We denote a variable (which could
be a set of variables or vector variable) by a capitalized token ¢¢,¢;, Class), and the
state or value of a corresponding variable by another token in lower case(e;gk). We
useP(X =x|Y =vy) (or P(x | y) as a shorthand) to denote the probability tHat x
givenY = y. We also useP(x | y) to denote the probability distribution fot given'Y.
WhetherP(x | y) refers to a probability or a probability distribution will be clear from
context.

In this paper, we concentrate on the following simple clustering model:

K n
P(x) =) P(Class=k) [ [ P(x | Class=k) (1)
k=1 i=1



COMPARISON OF MODEL-BASED CLUSTERING METHODS 11

In this model, there is a single class variable Class hakingutually exclusive and col-

lectively exhaustive states or values. Each state corresponds to a cluster. Furthermore,

conditioned on the value of Class, the variabigs. . ., X, are mutually independent. As

we describe shortly, this model is closely related to the naive-Bayes model for classification.
Eachvariable in Eq. (1) is adiscrete variable and hence can be modeled with a multinomial

distribution:

li
P(x =]|Class=k) =6{: Y =1 fork=1....K (2)
=1
K
P(Class= k) = Ag; > =1, >0 (3)
k=1
wherer; is the number of states of variab¥g. The quantitiegi; k=1, ..., K} and{@i(jk);
j=1...ri,i=1,...,n k=1,..., K} are theparameterof the multinomial distribu-

tions and are sometime collectively referred to as the parameters of the model and denoted
6. In the statistics literature, this model is often referred to msiinomial-mixture model

As we mentioned, this model is closely related to the naive-Bayes model for classifi-
cation. In both models, the domain variabbésare rendered mutually independent by the
variable Class. Nonetheless, the model described by Eq. (1) plays different roles in classifi-
cation and clustering. Having a databas@abbservations ocases D= {x%, ..., xN} the
clustering problem consists of finding theodel structurdi.e., the number of classés)
and parameter for that structure that best fits the dddaaccording to some criterioh.
On the other hand, in classification, the number of clagsesd the value of the Class
variable for each of the caseshare given. The task is to learn the model parameters that
optimally classify new cases drawn from the same distributiob as

In what follows, we sometimes refer to the distributiBiix | Class= k) as theclass
or cluster k Also, we sometimes refer to a case for which the variable Class is ketgdo
beingassignedo classk, and sometimes refer to the set of all cases having this property
as theclassor cluster k

2.2. Choosing the number of clusters

The clustering algorithms that we consider learn a model in two stages. First, a Bayesian
criterion is used to choose the best model structure. Then, the parameters for the best model
structure are chosen to be either those parameters whose posterior probability given data is
a local maximum (maximum a-posteriori or MAP parameters) or those parameters whose
corresponding likelihood is a local maximum (maximum likelihood or ML parameters).

The Bayesian criterion for selecting model structure that we use is the (log) posterior
probability of model structure given the training data G | Dyain), Where ‘K” is a
shorthand for the model structure withclusters. By Bayes’ formula

P K P Drain K
P(K | Dtrain) = ( )P(E:)tt' )| ) (4)




12 M. MEILA AND D. HECKERMAN

log P(DIK)

0 2 4 6 8 10 12
number of clusters K

Figure 1  An example of log marginal likelihood as a function of the number of clusters

In this paper, we assume equal prior probability for each model structure in a sufficiently
large rangeK = 1, ..., Knax. Consequently, the criterion reduces to the (logrginal
likelihood of the model structure 108 (Dyain | K). In our experiments, we approximate
this quantity using the method of Cheeseman and Stutz (1995) (see also Chickering &
Heckerman, 1997).

Figure 1 shows an example of how the log marginal likelihood varies as a functkn of
Notice that, as we incread€, the marginal likelihood first increases and then decreases.
The “best” number of clusters corresponds to the one at the peak.

An important property of the marginal likelihood, illustrated by this figure, is that it
has a built-in penalty for complex models. That is, use of this criterion guards against the
overfitting of models to data. To understand this, first notice that the marginal likelihood is
the ordinary likelihood of the model averaged over its parameters:

P(Dtrain| K) = / P(Dtrain | 0, K) p(0 | K)d9 (5)

This formula highlights the Bayesian methodology wherein all uncertainty is encoded using
probability. Namely, the parametefsare viewed as uncertain with probability density
functionp(@ | K). Now, consider what happens to the value of the integral in Eq. (5) as we
increase the number of clusters in the model, startiri§ at 1. The peak of the likelihood

P (Dvain | 6, K) willincrease, because each successive model structure can better represent



COMPARISON OF MODEL-BASED CLUSTERING METHODS 13

the training data. On the other hand, the number of parametgssilhalso increase, so that
the likelihood P (Dyain | 8, K)—regarded as a function of theta—will drop off from this
peak in more dimensions. This behavior will tend to decrease the value of the intel§ral as
increases. For large enougfh the second tendency will outweigh the first, and the value
of the integral will begin to fall.

2.3. Clustering algorithms

We examine several algorithms for learning the parameters of a given model structure: the
Expectation-Maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977), the Clas-
sification EM (CEM) algorithm (Celeux & Govaert, 1992), and model-based agglomera-
tive clustering (AC) (e.g., Banfield & Raftery, 1993). Sometimes, we shall refer to these
parameter-learning algorithms simply as clustering algorithms.

The EM algorithm is iterative, consisting of two alternating steps: the Expectation (E)
step and the Maximization (M) step. In the E step, for evéryve use the current parameter
values of the model to evaluate the posterior distribution of the hidden class node given
We then assign the case fractionally to each cluster according to this distribution. In the
M step, we reestimate the parameters to be the MAP (or ML) values given this fractional
assignment. The EM algorithm finds a local maximum for the parameters (MAP or ML).
The maximum is local in the sense that any perturbation of the parameters would decrease
the parameter posterior probability or data likelihood. The algorithm finds the maximum to
any desired (non-perfect) precision in a finite number of steps.

The CEM algorithm is similar to the EM algorithm in that CEM also has E and M steps.
The algorithm differs from EM in that, within the E step, a cadeis assigned fully to
the class that has the highest posterior probability givenand the current parameter
values. That is, no fractional assignments are permitted. The M step in the CEM algorithm
is identical to that in the EM algorithm. For continuous variable domains in which the
mixture components are spherical Gaussian distributions and the parametersll fixed
to 1/K, the CEM algorithm for ML parameters is equivalent to the K-means algorithm. The
CEM algorithm converges to local MAP (or ML) parameters under the constraint that each
case is assigned to only one cluster. Unlike EM, the CEM algorithm converges completely
in a finite number of steps.

The EM and CEM algorithms require initial parameter values. We consider various
initialization methods in the following section.

Agglomerative clustering is substantially different from EM or CEM. When using ag-
glomerative clustering, we constru€tclusters from a larger number of smaller clusters by
recursively merging the two clusters that are closest together. We staltlwitrsters, each
containing one case'. Each merge reduces the number of clusters by one. The algorithm
stops when the user-specified number of cluskens reached. One essential ingredient
of the algorithm is, of course, the intercluster “distarfcé(k, |). The particular form of
AC that we examine is model based in the sense that the distance used for agglomeration
is derived from a probabilistic model. Banfield and Raftery (1993) introduced a distance
d(k, ) derived from a Gaussian mixture model. This distance is equal to the decrease in
likelihood resulting by the merge of clustérsandl. Fraley (1997) derives this distance



14 M. MEILA AND D. HECKERMAN

measure for special cases of Gaussian models, and describes algorithms for accomplishing
the clustering in time and memory proportionalNd. Here we derive this distance metric
for mixtures of independent multinomially distributed variables (i.e., discrete naive-Bayes
models). (The distance metric can be extended in a straightforward manner to consider dif-
ferences in parameter posterior probability.) The algorithm we use requires memory only
linear inN, and its running time is typically quadratic k. With minor modifications, the
same algorithm can handle certain classes of Gaussian mixtures.

Consider the likelihood of the dafa given an assignment of the cases to clusters:

K
L(D|C1.....Ck) =) _ > logP(x! | Class= k) (6)

k=1 xi eCy
K

= > L)
k=1

whereL (6x) denotes the contribution of clust€y to the log-likelihood, andy represents
the set of ML parameters of the distributi®(x | Class= k). Note that the ternty (6x)
depends only on the cases in clus@gr By merging clusterk andl and assigning all their
cases to the newly formed clusty, the log-likelihoodL decreases by

L6 + Li(6) — Ly (Oery) = d(k, 1) = 0 (7)

Becauseal(k, ) depends only on the cases belonging to the clusters involved in the merge,
all the distanced(k’, I") between other cluster pairs remain unchanged. Moreover, the ML
parameter se and the value ofl(k, |) depend only on a set of sufficient statistics that are
stored for each cluster; and these items can be recursively updated when two clusters are
merged without direct access to the cases. Using this fact, we have developed a memory
efficient distance updating algorithm, described in the Appendix.

Our AC implementation requirg®(N) memory and time betweafl(N?) andO(N3).
Experiments (Section 6.2) show that typically the running time is close to the lower bound
O(N?). The algorithm can be generalized to any distance measure theaigi.e.,d(k, |)
depends only o andC). It can also be extended with only minor modifications to certain
classes of Gaussian mixtures. Finally, note that, whereas the EM and CEM require an initial
point in the parameter space, AC does not.

2.4. Initialization methods

In this section, we describe the initialization methods for EM and CEM that we compare.
First, however, we caution that “the best initialization method” is an ill-defined notion, be-
cause there is no formal delimitation between initial search and search. For example, when
considering the EM algorithm, the ideal initial point would lie somewhere in the domain of
attraction of the global optimum. Finding such a point, however, means finding the global
optimum to a certain accuracy. This task represents a search per se, and perhaps a more
challenging one than that performed by the main EM algorithm. Furthermore, the notion of



COMPARISON OF MODEL-BASED CLUSTERING METHODS 15

“best” will generally involve a tradeoff between accuracy and computation cost. For these

reasons, we should not expect to find an initialization method that outperforms all the others
on all tasks. Rather, the performance (and relative performance) of an initialization proce-
dure will depend on the data, the accuracy/cost tradeoff, and the “main” search algorithm.
As is the case for search algorithms, one can only hope to find initialization methods that
perform well on limited classes of tasks that arise in practice. This is the aim of our study

on initialization methods.

The first method, the Random approach, consists of initializing the parameters of the
model structure independently of the data. Using this approach, we sample the parameter
values from an uninformative distribution. In our experiments, we sample the parameters
of P(x; | Class= k) from a uniform Dirichlet distribution with an equivalent sample size
equal to the number of states of variablg*

The noisy-marginal method of Thiesson etal. (1999) (herein denoted “Marginal”) is adata
dependent initialization method. Using this approach, we first determine the ML (or MAP)
parameter configuration under the assumption that there is only one class. This step can be
done in closed form. Next, for each cldsand each variabl&;, we create a conjugate
(Dirichlet) distribution for the parameters correspondingR¢x; | Class = k) whose
parameter configuration of maximum value agrees with the ML or MAP configuration just
computed and whose equivalent sample size is specified by the user. We then sample the
parameters corresponding RYx; | k) from this distribution. In our experiments, we use
an equivalent sample size of two and match to the MAP configuration (given a uniform
parameter prior).

The distribution of the hidden class variable is initialized to be the uniform distribution
when using either of the above methods.

The last initialization method is agglomerative clustering itself. In this data-dependent
method, we perform AC on a random sample of the data. From the resulting clusters, we
extract a set of sufficient statistics (counts). We then set the model parameters to be the MAP
given the counts obtained from agglomeration and a uniform (Dirichlet) prior distribution.

We apply agglomeration to a random sample of the data, because using all the data is
often intractable. Furthermore, inaccuracies due to subsampling may be corrected by the
EM and CEM clustering algorithms.

2.5. Performance criteria

In this section, we describe the criteria that we use to compare learned models. Some of our
criteria measure the quality of the entire model (structure and parameters), whereas other
criteria measure the quality of only the model structure—that is, the quality of the assertion
that the data is generated from a mixture model Witcomponents.
As we have discussed, the log-marginal-likelihood criterion is used to select the best
model structure (best number of clusters). We use this score as one of our criteria.
Another criterion for model structure is the number of clusters in the model and the
deviation of this quantity from the true number of clusti&f&®. Such a measure reflects (in
part) how well the learned models help the user to understand the domain under study. This
criterion can only be determined for synthetic datasets where the true number of clusters



16 M. MEILA AND D. HECKERMAN

is available. Furthermore, even when the true model is available, this criterion may be
misleading for small datasets, when there is insufficient data to support the true number of
clusters. We note that, under certain experimental conditions, some of the learned clusters
can be quite small. In the results that we present, we discard (i.e., do notinclude in the count
of number of clusters) any cluster that has less than one case as its member. This situation
can arise in models learned by the EM algorithm, due to the fractional assignment of cases
to clusters.

A criterion for the entire model is its ability to predict new data. A common practice,
both in Machine Learning and in Statistics, is to evaluate the model on “test da¢a) (
thought to be a sample from the same true distribution as the training data. We employ the
most frequently used such criterion

log P(Diest | mode) = Z log P(x | mode). (8)

X€ Drest

This criterion is sometimes called “holdout (log) likelihood”. Fisher (1996) describes an-
other model-evaluation criterion that uses a test dataset.

Another criterion for the entire model @assification accuragydefined to be the pro-
portion of cases for which the most likely cldsgaccording to the model) is the true one.
We determine the classification accuracy as follows. Because clusters in a learned model
are interchangeable, we first must map the learned cluster labels to the actual ones. To do
S0, we construct the confusion mat@x

Cii» = #case$ for whichkl =i, ki* =i’ 9)

wherej is the case numbek! is the class that the learned model assigns to fasedk!*

is the true class of cage Then, we map each clustkiin the learned model to the cluster

k' of the true model to which most of its cases belong (this corresponds to a permutation
of the rows ofC). Once we have mapped the cluster labels, we simply count the cases that
have correct labels, and divide by the total number of cases. This criterion can be computed
only for synthetic datasets where the true class information is available.

Practical criteria for algorithm comparison include running time and memory require-
ments. Because all the algorithms that we consider require memory proportional to the
number of casesl, the number of observable variablesand the number of clustefs,
there is no further need to make experimental comparison with respect to memory size.
Nonetheless, running times per iteration differ for the considered algorithms. Moreover, the
number of iterations to convergence for EM and CEM is a factor that cannot be predicted.
Hence, experimental comparisons with respect to running time should be informative.

A summary of the performance criteria is given in Table 1. In the results that we report,
we divide the marginal and holdout scores by the number of cases in the appropriate dataset.
In addition, we use base-two logarithms. Hence, both likelihoods are measured in bits per
case. Also, for comparison, we measure the marginal likelihood and holdout scores for a
reference model: the one-componeiit£ 1) cluster model.



COMPARISON OF MODEL-BASED CLUSTERING METHODS 17

Table 1 Performance criteria for a model.

Criterion Expression Comment

Marginal L m l0g, P (Dtrainl K*) Bayesian criterion

K* K* Number of clusters in the selected model

Class acc @#cases correctly classified Classification accuracy

Holdout L @ log, P (Dresi K*) Prediction accuracy on a test set

Runtime Time to learn parameters of the selected model
3. Datasets

3.1. The synthetic dataset

Synthetic datasets have the advantage that all of our criteria can be used to compare the
clustering and initialization algorithms. Of course, one disadvantage of using such datasets
is that the comparisons may not be realistic. To help overcome this concern, we constructed
a synthetic model so as to mimic (as much as we could determine) a real-world dataset.

The real-world dataset that served as the template for our synthetic model was obtained
from the MSNBC news service. The dataset is a record of the stories read and not read by
users of the www.msnbc.com web site during a one-week period in October of 1998. In this
dataset, each observable variable corresponds to a story and has two states: “hit” (read) and
“not hit” (not read). We shall us¥; to refer both to a particular story and its corresponding
variable.

A preliminary clustering analysis of this dataset, using both EM and CEM with random
initialization, showed the following. (1) There were approximately 10 clusters. (2) The size
of clusters followed Zipf’s law (Zipf, 1949). That is, the probabilitiB¢Class= k), k =
1,..., K, when sorted in descending order, showed a power-law decay. (3) The marginal
probabilities of story hits also followed Zipf’s law. That is, the probabilitRx; = hit) for
all stories, when sorted in descending order, showed a power-law decay. (4) The clusters
overlapped. That is, many users had substantial class membership in more than one cluster.
(5) Users in smaller clusters tended to hit more stories. (6) The clusters obtained did not
vary significantly when all but the 150 most commonly hit stories were discarded from the
analysis. This finding is likely due to item 3.

We used all of these observations in the construction of the synthetic model. In addition,
we wanted the synthetic model to be more complex than the models we would attempt
to learn (the naive-Bayes model). Consequently, we constructed the model as follows.
First, we built a naive-Bayes model where the hidden variable ClasK hadO states and
where the observable variables corresponded to the 300 most commonly hit stories. We
assigned the distributioR (Class to be(0.25, 0.18, 0.18, 0.09, 0.09, 0.09, 0.045, 0.035
0.025, 0.015-roughly approximating a power decay. Then, for each story variébéend
fork=1,..., 10, we assignedP(x; = hit| Class= k) to be the marginal distribution for
story X, and perturbed these conditional distributions with noise to separate the clusters.



18 M. MEILA AND D. HECKERMAN

In particular, for everyX; and fork = 1, ..., 10, we perturbed the log odds I&(X; =

hit | Class= k)/(1 — P(x; = hit | Class= k)) with normal noiseN(«, 1), where

a = —0.5 for Class= 1, 2, 3 (the large clustersy = 0 for Class= 4, 5, 6 (the medium-

size clusters), and = 1 for Class= 7, 8, 9, 10 (the small clusters). These values dor
produced a model with overlapping clusters such that smaller clusters contained more hits.
Next, we added directed arcs between the observable variables such that each observed
variable had an average of two parents and a maximum of three parents. To parameterize
the conditional dependencies among the observed variables, we perturbed the log odds
log P(x; = hit | pa, Class= k)/(1 — P(x = hit | pg, Class= k))—for every parent
configurationpg —with normal noiseN (0, 0.25).

Finally, we sampled 32,000 cases from the model and then discarded the 150 least
commonly hit stories. By discarding these variables (i.e., making them unobserved), we
introduced additional dependencies among the remaining observed variables. We refer to
this dataset a$§ Y;o« . The generative model and datasets are available via anonymous ftp
at ftp.research.microsoft.com/pub/dtg/msnbc-syn.

3.2. The digits datasets

Another source of data for our comparison consists of images of handwritten digits made
available by the US Postal Service Office for Advanced Technology (Frey, Hinton, & Dayan,
1995). The images were normalized and quantized to 8x8 dimensional binary patterns. For
each digit we had a training set of 700 cases and a test set of 400 cases. We present detailed
results on one digit, nametigit6. Results for other digits that we examined (“0” and “2")

are similar.

4. Experimental procedure

An experimental condition is defined to be a choice of clustering algorithm, initialization
algorithm, and parameters for each algorithm (e.g., the convergence criterion for EM and the
number of subsamples for AC). We evaluate each experimental condition as follows. First,
we learn a sequence of mod&lg,n, . . . , Kmaxusing the training séDy.in (2 < K < 14 for
synthetic data; %< K < 22 for digits data). For eadk, the corresponding model structure

is evaluated using the log-marginal-likelihood criterion (in particular, the Cheeseman-Stutz
approximation). Then, the number of clust&rs is chosen to be

K* = arg maxlog P (Dyain | K) (10)
K

Once the number of clustet§* is selected, the corresponding model is evaluated on all
criteria.

Because the quality of learned models is vulnerable to noise—randomness in the initial
set of parameters for EM and CEM, and the subsample of points used for AC—we repeat
each experimental condition several times using different random seeds, and average the
evaluation results. We call an evaluation for a given experimental condition and random
seed a “run”. The quantiti{ * can vary from run to run for the same experimental condition.



COMPARISON OF MODEL-BASED CLUSTERING METHODS 19

We compute MAP parameters (as opposed to ML parameters) for the EM and CEM
algorithms, using an uniform prior for each parameter. For AC, we use ML-based distance.
In alltrials (except those to be noted), we run EM and CEM until either the relative difference
between successive values for the log posterior parameter probability is less taor 10
150 iterations are reached.

All experiments are run on a P6 200 MHz computer.

5. Comparison of clustering algorithms

This section presents a comparison between the EM, CEM, and AC algorithms on the
synthetic and digit6 datasets. Because AC was too slow to run on a ful 3Baining

set (for synthetic data), we experimented with AC on 8,000-case subssiggf. These
subsets were too small to result in model structures with the complexity of the true one.
Hence, to provide a fair comparison, we first compared EM and CEM using th® Yal
dataset, and then compared the better of these two algorithms with AC using the smaller
datasets.

5.1. Synthetic data: EM versus CEM

As already mentioned, for the purpose of this compariBggin, = SYsox andDiest= S¥k -
Because both EM and CEM require initial parameters, we compared these algorithms using
all three initialization methods.

The results on theynthetic data are presented in Table 2. In this and subsequent tables,
boldface is used to indicate the best algorithm for each criterion. Here, and in subsequent
results, a difference between two algorithms is considered significant if it exceeds the
95% confidence level in the t-test. The table shows the clear dominance of EM over CEM
for all initialization methods and for all criteria. The most striking difference is in the
choice ofK*, the number of clusters. CEM constantly underestiméédwhereas EM,
for the two out of three initialization methods used, successfully found the true number of
clusters (10).

Several issues concerning classification accuracy are worth noting. First, all classification
accuracies were low, because the clusters overlapped significantly. In particular, the classi-
fication accuracy for the true model was only 73%. Also, classification accuracy correlated
closely with the choice oK*. WhenK* = 10, the classification accuracy of the learned
model was close to that of the true model. Whereas, vities: 7 or lower, the classification
accuracy of the learned model was approximately two-thirds of that of the true model. From
an examination of the confusion matrices for CEM, we found that the underestimation of
K* had two sources: confusion among the 3 largest clusters, and the failure to discover the
existence of the smallest clusters. The second source had a smaller impact on classification
accuracy.

The only possible advantage of CEM over EM is running time. CEM was about four
times faster than EM, because (1) EM requires the accumulation of fractional statistics
whereas CEM does not, and (2) CEM takes fewer iterations to converge. We attribute the



20 M. MEILA AND D. HECKERMAN

Table 2 Performance of the EM and CEM algorithms with three different initialization methods eyitieetic
datasetSYsok (average and standard deviation over five runs). Runtimes are reported in minutes per class and
exclude initialization. Boldface is used to indicate the best algorithm for each criterion. For comparison, the
one-component cluster model has marginal and holdout likelihoods2@f47 and—21.53, respectively. The
classification accuracy of the true model is 0.73.

Initialization
Random Marginal AC

EM CEM EM CEM EM CEM
Marginal L —20.53 —20.57 —20.51 —20.66 —20.52 —20.72
(bits/case) +0.009 +0.032 +0.0045 +0.031 +0.013 +0.031
K* 7+1 6+3 10+1 7+3 10+1 7+3
Holdout L —20.41 —20.50 —20.36 —20.52 —20.34 —20.72
(bits/case) +0.036 +0.036 +0.018 +0.036 +0.018 +0.072
Class acc 0.50+0.05 0.44+0.01 0.66+0.04 0.46+0.06 0.68+0.01 0.43+0.04
Runtime 2 0.5 2 0.5 2 0.5

second phenomenon to the fact that CEM’s explorations were more constrained, so that the
impossibility of an upward move occurred earlier. We shall further examine this issue in
Section 5.4.

5.2. Synthetic data: EM versus AC

We next compared EM—the better of EM and CEM—uwith the AC algorithm using subsets
of S¥;.« . In particular, we created four subsets, creating each subset by randomly sampling
8,000 cases from 3ok .

The results in Table 3 show the clear superiority of EM over AC. For such a small
dataset, both algorithms fare poorly in terms of the number of clusters found, but EM finds
twice as many. Indeed, an analysis of the confusion matrices showed that AC was unable
to distinguish the three largest clusters. In addition, an important difference is seen in the
running time. AC runs approximately 60 times slower than EM; and this ratio grows\vith
because the running times of EM and AC @eN) and approximately)(N?), respectively.

5.3. Digits data: Comparison of EM, CEM, and AC

For thedigit6 dataset, all three algorithms were trained (tested) on the same training (test)
set. The results, showing marginal-likelihood and holdout scoredifit6 are given in
Table 4. Only the results for Marginal initialization of the EM and CEM algorithms are
shown. The results for the other initialization methods are similar.

The EM algorithm performed best by both criteria. Also, for this dataset, all the methods
choose about the same number of clusters.



COMPARISON OF MODEL-BASED CLUSTERING METHODS 21

Table 3 Performance of the EM and AC algorithms on 8,000-case subse3¥sgf (average and standard
deviation over four datasets). Runtimes are reported in minutes per class. For comparison, one-component cluster
models have marginal and holdout likelihoods-6%1.59 + 0.12 and—21.54 + 0.01, respectively.

EM AC
Marginal L —20.93+0.108 —21.08+0.144
K* 440 2+1
Holdout L —20.63+0.018 —20.88+0.018
Class acc 0.41+0.01 0.33+0.02
Runtime 0.6, O(N) 35;O(N?)

Table 4 Performance of the EM, CEM, and AC algorithms on tlgit6 dataset (averaged over 20 runs for
EM and 10 runs for CEM). EM and CEM were both initialized by the Marginal method. For comparison, the
one-component cluster model has marginal and holdout likelihood€l8004 and—48.11, respectively.

EM CEM AC

Marginal L —35.09+0.04 —35.30+:0.07 —35.76
HoldoutL —32.36£0.22 —-32.97+0.30 —32.42

We note that, for the digits data, the marginal and holdout likelihoods for the best models
are more than 12 bits better than those for the one-component model. In contrast, for the
synthetic dataset, improvements are on the order of only 0.5 bit. This difference is consistent
with our observation that there was much more cluster overlap in the synthetic data.

5.4. EM versus CEM: Runtime considerations

On our datasets, the EM algorithm dominates AC, because EM is both more accurate and
more efficient. So far, however, the case for EM versus CEM is not so clear. As we have
seen, the EM algorithm is more accurate, but less efficient. This brings us to the question:
If EM is forced to run for a time shorter or equal to the time taken by CEM, is it still more
accurate than CEM? In this section, we examine this question.

We adjusted the running time of EM by changing the convergence threshold. We
conducted timing experiments and found that convergence thresholdst#4 and 102
(for the synthetic and digits datasets, respectively) yielded EM speeds that were slightly
faster than CEM. We repeated the comparison of EM and CEM, using these new
thresholds.

The results for the synthetic and digits datasets are shown in Tables 5 and 6, respectively.
For both datasets and all criteria, EM is still more accurate than CEM, although the differ-
ences in accuracy are less than what we obtained for the original convergence threshold.
All experimental conditions yield a significant difference at the 95% level, excef{ the



22 M. MEILA AND D. HECKERMAN

Table 5 Performance of the EM and CEM algorithms on #yathetic dataseiSYsox when EM is allowed to
run no longer than CEM (averaged over five runs). Runtimes are reported in seconds per class.

EM CEM
Marginal L —20.57+0.026 —20.66+0.031
K* 9+2 7+3
Holdout L —20.42+0.032 —20.52+0.036
Class acc 0.57+0.03 0.46+ 0.06
Runtime 25 27

Table 6 Performance of the EM and CEM algorithms on thgit6 dataset when the convergence criterion for
EM is set so that EM runs slightly faster than CEM (averaged over ten runs). Runtimes are reported in seconds
per class.

EM CEM
Marginal L —35.264-0.09 —35.304-0.07
Holdout L —32.474+0.23 —32.9740.03
Runtime 0.082 0.089

criterion in the synthetic dataset and the marginal-likelihood criterion in the digits dataset
which are significant only at the 85% confidence level.

6. Comparison of initialization methods

We now examine the influence of initialization procedures on the performance of the EM
algorithm—the algorithm that performed best in our previous comparison.

6.1. Synthetic data

The results on the synthetic dataset were shown previously in Table 2. Wdyggd=
SYk and Dest = S¥k, and 2,000-case random samples of the training set for the AC
initialization method (a different random sample on each run).

The data independent (Random) method fared worse than did the data dependent methods
across all criteria. All differences between the data dependent methods and Random except
one—AC versus Random on Marginal Likelihood—are significant. On the other hand, there
are no significant differences between Marginal and AC.



COMPARISON OF MODEL-BASED CLUSTERING METHODS 23

The initialization runtimes for Random, Marginal, and AC were 0, 4, and 1800 seconds,
respectively. Random is fastest (taking constant time), Marginal is slightly slower (requiring
one sweep through the dataset), and AC is hundreds of times slower yet, even though only
a portion of the training data was used.

6.2. Sample size for agglomerative clustering

In the previous section, we saw that AC used on a sample of the original training set can
provide a good set of initial parameters for the EM algorithm. In this section, we ask the
question: How small can we make this sample (of 8lZeand still obtain good performance?

To answer this question, we variéd from 125 to 4000. Figure 2 shows the classification
accuracy of the resulting models. We obtained similar curves for the other performance
criteria.

The graph shows that, & decreases from 4000 to 500, the performance decays slowly,
accompanied by an increasing variability. Not surprising, an analysis of the confusion
matrices showed that performance decreases becausédasreases, the smaller clusters
are missed and the confusion between the larger ones increase. These observations suggest
that the lower limit onN’ should be influenced by prior knowledge about the size of

Accuracy
075 T 1 T T T T

0.7

0.65F

0.6

0.55f 1

0.45 Lol L L L L
125 500 1000 2000 4000

Figure 2 Classification accuracy of the final EM solution versus the AC subsampleNsifmr the synthetic
data. Statistics are computed over five runs.



24 M. MEILA AND D. HECKERMAN

Running time

350— T

300

250

200

[min]

150

100

50

0 1 1 1
2000 4000 8000
N(

Figure 3 Running time of the EM algorithm initialized with AC versus the AC subsample Nizélhe error
bars are small and have been omitted. The scaldifas quadratic.

the smallest cluster. Fa¥’ below 500, the classification performance degrades abruptly.
Detailed analysis showed that, in this range, the clustering algorithm was failing to separate
the largest clusters.

The running time of AC versus the number of samples is shown in figure 3. In this range
for N’, the time taken by AC initialization strongly dominates the running time for the EM
algorithm. Although the theoretical worst cas&lgN?), the graph shows that the running
time approximately follows a quadratic law.

6.3. The digits6 dataset

We compared the three initialization methods ondhyité data as well. We examined AC
with N = N = 700 and with lower valuesl’ = 100, 300 (different random samples in
each run).

Table 7 summarizes the results. There were no clear winners. In contrast to the results for
the synthetic dataset, Random did not perform worse. Nonetheless, we found two related
qualitative differences between the models produced by Random initialization and the other
two methods. The clusters learned using Random initialization were greater in number and
showed more variability in size. Moreover, Random initialization tended to yield more



COMPARISON OF MODEL-BASED CLUSTERING METHODS 25

Table 7 Performance of the EM algorithm when initialized by the Random, Marginal, and AC methods on the
digit6 dataset (average and standard deviation over 12 or more runs).

Initialization
AC
Random Marginal N’ =100 N’ = 300 N’ =N =700
Marginal L —35.063 —35.089 —35.091 —35.087 —35.073
(bits/case) +0.040 +0.042 +0.047 +0.042
Holdout L —32.53 —32.36 —32.04 —32.18 —-32.27
(bits/case) +0.255 +0.224 +0.513 +0.238

small clusters. On average, for the models whose performance was recorded in Table 7, 1.5
clusters were supported by less than one case.

Finally, note that AC followed by EM produced better models than did AC alone (see
Tables 4 and 7).

7. Discussion

We have compared several popular batch algorithms for model-based clustering of high-
dimensional discrete data. To do so, we have formulated a likelihood based distance measure
for agglomerative clustering over discrete variable domains and have introduced a new,
memory efficient AC algorithm. Although comparisons with additional datasets (including
ones with larger dimension and continuous variables) are needed, our results suggest that
the EM algorithm produces better models than do CEM and AC, regardless of the criterion
for model evaluation. We found that, for original convergence settings, EM was slower than
CEM, and AC was slower yet. Nonetheless, we found that the convergence setting of EM
could be adjusted so that EM ran faster than CEM and still produced better models, albeit
of lower quality than for the original settings.

These results suggest that the quality of a clustering algorithm correlates well with
assignment “softness”. Namely, AC assigns each case to only one cluster and this assignment
cannot be changed in subsequent iterations. CEM also assigns a case to only one cluster,
but each iteration recomputes the assignment. EM not only reevaluates its assignments at
each iteration (like CEM), but also allows for partial credit to several clusters.

Finding that the EM algorithm performed best, we studied various ways of choosing
initial parameters. Although the three methods used are dissimilar, their performance is
similar on all the datasets we examined. On the synthetic dataset, the Random method
performed worse than did the data-dependent initialization method, but this difference
was not seen for the real-world data. Because we found no difference between AC (as
an initialization method) and Marginal, except that Marginal is more efficient, our re-
sults suggest that that Marginal initialization is the method of choice. Finding situations



26 M. MEILA AND D. HECKERMAN

when Random and Marginal produce different results is a possible topic for further
research.

Although our results are suggestive, comparisons using additional datasets—for
example, ones having 200 or more dimensions and ones that contain non-binary and con-
tinuous variables—are needed. In addition, comparisons with more sophisticated variants
of the EM algorithm such as EM with conjugate-gradient acceleration (Thiesson, 1995)
and the EM algorithm (Bauer, Koller, & Singer, 1997) should be performed. Finally,
model-based clustering algorithms based on models that relax the mutual independence
assumption—such as those described by Thiesson et al. (1999)—should be compared.

Appendix: The AC algorithm

Here we describe ourimplementation of the AC algorithm for discrete variables. The present
implementation has the advantage of using an amount of storage whiatsisin N at the
expense of a typically small increase in the running time.

As stated in Section 2 the algorithm starts wirtlusters, each containing one cade
At each subsequent step, it chooses the two clusters that are closest together according to
the distance measudeand merges them, thus reducing the number of clusters by one. The
iteration ends when a prescribed number of clusielis reached. Figure 4 illustrates this
procedure.

Computing the intercluster distancehe distance between two clust&randl is defined
by Eq. (7) as:

dk, 1) = L) + L) — L (Oury) (11)
Inthe case of the NBM,.(6¢) can be computed based on the sufficient statisties#cases
in Cy andn}‘j =#casex in Cx such that, = jfork =1,...,K;i =1,...,n;j =
1,...,r:

—Li(6) = — Y logP(x! | 6)

jixieCy
n fi k k
n; n
— K _im i
=2 Y e log (12)
i=1 m=1 im
n
3 nkh
i=1

The first equality follows from the definitions in Egs. (1) and (6); in the second equality,
the reader can recognize the expression of the ML parantarserms of the sufficient
statisticsnikm andnk; in the third equality, the innermost sumiis representelufbme entropy

of variable X in clusterk. The termsL, (6) andL «,(6(,)) have similar expressions. In

the special case when the two clusters each contain one case, the intercluster distance can
be expressed using the Hamming distarimetween the two cases by

dk, 1) = 2log(2)H (x*, x') (13)



COMPARISON OF MODEL-BASED CLUSTERING METHODS 27

This observation provides us with a fast method of initializing the intercluster distances in
Step 2 of the AC algorithm. As the practical simulations show, implementing this simple
improvement is worth the effort. The running time of Step 2 is only a small fraction of the
running time of Step 4, although the number of distance evaluations is roughly the same
(N(N = 1)/2).

Merging the two closest clusterBhe algorithm maintains an ordered list of the currently
existing clusters. For each clusteg in the list, we store the sufficient statistics necessary
to compute the parametéiisand the value_ (6x) itself. Additionally, for each clustety,
we store a pointd to the closest cluster By that follows after it in the list and the value
3k of that distance (Figure 4, Step 2.2).

Obtaining the sufficient statistics and likelihood for a new cluStgy, is straightforward:

(k.1

nij = nh- =+ n!]’ n(ksl) — nk + r]I (14)

Loty Bpery) = Li(0) + Li(6) — bk. (15)

Note that the above update rules make no access to the actual cases. Hence the merge
can be performed in constant time no matter how large the clusters. Moreover, the rule is
not restricted to NBMs; the same constant time update, using different sets of sufficient
statistics, can be applied to the parameters of any distribution in the exponential family
(Dobson, 1990).

In contrast togx and Lk (6k), 8k andly cannot be updated locally (i.e., using only the
information available in the clustefs, C;). Their update procedure is worst ca8éN)
but typically much smaller (Medl'& Heckerman, 1998).

Thus, our implementation requirgéd(N) memory and runtime betweef2(N?) and
O(N3). Experimental results presented in Section 6.2 and figure 3 suggest that the average
case for runtime is close to the lower bound. Notice that a brute force approach should
compute®(K'?) distances after theN — K’)-th cluster merge. The algorithms presented
in Fraley (1997) have runtimes that are strictly quadratibljrbut use®(N?) memory.

1. form a list ofN clusters and initializ€,« < xX, fork =1,..., N /* Start*/
2.fork=1,..., N-1

2.1. computa(k, ) forl =k+1,..., N

2.2.8x = mind(k, I)

1>k
I = arlgrl?ind(k, 1)
>
3.k* = argkminsk; 5= mkinsk
4.forK'=N,N—-1,..., K /% Iteration*/

4.1.Cxr < Ckr 1) /*merge the two closest clusters and store result oyert/C
4.2. updatéy, I fork =1, ..., K'—1
4.3. eras€,,

5.fork=1,..., K /* Finish*/
5.1. compute [* the parameters of B|Class= k) */
5.2. compute,x = P(Class= k)

Figure 4 The agglomerative clustering algorithm.



28 M. MEILA AND D. HECKERMAN

When can we use this AC algorithmfe distance updating algorithm presented above
depends on an essential property of the intercluster distireenerge between clusteks
andl does not affect the distance between two other cluktel'anot involved in the merge.
This property is satisfied by all the models whdreepresents a decrease in log-likelihood
as in Eq. (7) and the parameters of the distributfix | Class= k) are independent of
the parameters d?(x | Class=I) for all k # |. Fraley (1997) presents some examples of
Gaussian cluster models for which the above property does not hold.

Notes

1. Atechnical point worth mentioning is our use of the term variable and its relationship to the standard definition
of a random variable. Aliscrete random variablés a functionX : @ — E whereE is a discrete set such
that{w | X(w) = x} € A for everyx € E whereA is ac-field andQ is a sample space of a probability
space2, A, P). We use the term discretariable, as common to much of the literature on graphical models,
to mean a functiorX; : @ — E;, parallel to the usual definition of a random variable, but without fixing a
specific probability measure. A model for a set of discrete variablesis simply a probability measure on
the Cartesian product; E;j. Once a model foX is learned, a variable in our sense becomes a random variable
in the usual sense. A similar comment applies to ¥etisat include continuous variables.

2. Our nomenclature deviates from the standard in statistics. Namely, what we call a “model structure” is typically
called a “model”; and what we call a “model” is typically called a “parameterized model”.

3. This measure is positive and symmetric, but may not always satisfy the triangle inequality.

. DeGroot (1970) contains a good introduction to the Dirichlet distribution.

5. The Hamming distance between two vectors of discrete variables is defined as the number of components in
which the two vectors are differing—that is,(x, x') = Zi”:l 8y X whered,p is the Kronecker delta.

N

Acknowledgments

We thank Max Chickering, Chris Meek, and Bo Thiesson for their assistance with the implementation of the
algorithms and for many useful and interesting discussions. We also thank Steven White and lan Marriott for
providing the original MSNBC dataset.

References

Banfield, J. & Raftery, A. (1993). Model-based Gaussian and non-Gaussian clusBidntgtrics, 49803-821.
Bauer, E., Koller, D., & Singer, Y. (1997). Update rules for parameter estimation in Bayesian networks. In D.
Geiger and P. Shenoy (EdsProceedings of Thirteenth Conference on Uncertainty in Atrtificial Intelligence,

Providence, RI, (pp. 3—-13). San Mateo, CA: Morgan Kaufmann.

Celeux, G. & Govaert, G. (1992). A classification EM algorithm for clustering and two stochastic versions.
Computational Statistics and Data Analysis, 345-332.

Cheeseman, P. & Stutz, J. (1995). Bayesian classification (AutoClass): Theory and results. In U. Fayyad, G.
Piatesky-Shapiro, P. Smyth, and R. Uthurusamy (EAldyances in Knowledge Discovery and Data Mining
(pp. 153-180). Menlo Park, CA: AAAI Press.

Chickering, D. & Heckerman, D. (1997). Efficient approximations for the marginal likelihood of Bayesian
networks with hidden variabledlachine Learning, 29181-212.

Clogg, C. (1995). Latent class modelsHandbook of Statistical Modeling for the Social and Behavioral Sciences
(pp. 311-359). New York: Plenum Press.

DeGroot, M. (1970) Optimal Statistical DecisiondNew York, NY: McGraw-Hill.

Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society B,, 39-38.



COMPARISON OF MODEL-BASED CLUSTERING METHODS 29

Dobson, A. J. (1990)An Introduction to Generalized Linear Modelew York, NY: Chapman and Hall.

Duda, R. O. & Hart, P. E. (1973attern Classification and Scene Analydiew York, NY: John Wiley & Sons.

Fisher, D. (1996). Iterative optimization and simplification of hierarchical clustedogrnal of Atrtificial Intelli-
gence Researchd:270:281.

Fraley, C. (1997). Algorithms for model-based Gaussian hierarchical clusteBgM Journal on Scientific
Computing, 20270-281.

Frey, B., Hinton, G., & Dayan, P. (1996). Does the wake-sleep algorithm produce good density estimators? In D.
Touretsky, M. Mozer, & M. Hasselmo, (EdsNeural Information Processing Systefwsl. 8, pp. 661-667).
Cambridge, MA: MIT Press.

Jain, A. K. & Dubes, R. C. (1988Algorithms for Clustering DataEnglewood Cliffs, NJ: Prentice Hall.

Meila, M. & Heckerman, D. (February, 1998). An experimental comparison of several clustering and initialization
methods. Technical Report MSR-TR-98-06, Microsoft Research, Redmond, WA.

Thiesson, B. (1995). Accelerated quantification of Bayesian networks with incomplete dé&ectedings of
First International Conference on Knowledge Discovery and Data Minihgntreal, QU (pp. 306-311). San
Francisco, CA: Morgan Kaufmann.

Thiesson, B., Meek, C., Chickering, D., & Heckerman, D. (1999). Computationally efficient methods for selecting
among mixtures of graphical models, with discussioBdgesian Statistics 6: Proceedings of the Sixth Valencia
International Meetindpp. 631-656), Oxford: Oxford University Press.

Zipf, G. (1949).Human Behavior and the Principle of Least Effo@ambridge, MA: Addison—-Wesley.

Received February 15, 1999
Revised January 21, 2000
Accepted March 29, 2000

Final manuscript March 29, 2000



