
An experimental comparison

of recurrent neural networks

Bill G. Horne and C. Lee Giles·
NEe Research Institute

4 Independence Way
Princeton, NJ 08540

{horne.giles}~research.nj.nec.com

Abstract

Many different discrete-time recurrent neural network architec

tures have been proposed. However, there has been virtually no

effort to compare these arch:tectures experimentally. In this paper

we review and categorize many of these architectures and compare
how they perform on various classes of simple problems including

grammatical inference and nonlinear system identification.

1 Introduction

In the past few years several recurrent neural network architectures have emerged.

In this paper we categorize various discrete-time recurrent neural network architec
tures, and perform a quantitative comparison of these architectures on two prob

lems: grammatical inference and nonlinear system identification.

2 RNN Architectures

We broadly divide these networks into two groups depending on whether or not the

states of the network are guaranteed to be observable. A network with observable
states has the property that the states of the system can always be determined from

observations of the input and output alone. The archetypical model in this class

.. Also with UMIACS, University of Maryland, College Park, MD 20742

698 Bill G. Horne, C. Lee Giles

Table 1: Terms that are weighted in various single layer network architectures. Ui

represents the ith input at the current time step, Zi represents the value of the lh
node at the previous time step.

Architecture bias Ui Zi UiUj ZiUj ZiZj
First order x x x
High order x

Bilinear x x x
Quadratic x x x x x x

was proposed by N arendra and Parthasarathy [9]. In their most general model, the
output of the network is computed by a multilayer perceptron (MLP) whose inputs
are a window of past inputs and outputs, as shown in Figure la. A special case of
this network is the Time Delay Neural Network (TDNN), which is simply a tapped
delay line (TDL) followed by an MLP [7]. This network is not recurrent since there

is no feedback; however, the TDL does provide a simple form of dynamics that
gives the network the ability model a limited class of nonlinear dynamic systems.
A variation on the TDNN, called the Gamma network, has been proposed in which
the TDL is replaced by a set of cascaded filters [2]. Specifically, if the output of
one of the filters is denoted xj(k), and the output of filter i connects to the input
of filter j, the output of filter j is given by,

xj(k + 1) = I-'xi(k) + (l-I-')xj(k).

In this paper we only consider the case where I-' is fixed, although better results can
be obtained if it is adaptive.

Networks that have hidden dynamics have states which are not directly accessible
to observation. In fact, it may be impossible to determine the states of a system
from observations of it's inputs and outputs alone. We divide networks with hid
den dynamics into three classes: single layer networks, multilayer networks, and
networks with local feedback.

Single layer networks are perhaps the most popular of the recurrent neural network
models. In a single layer network, every node depends on the previous output of
all of the other nodes. The function performed by each node distinguishes the
types of recurrent networks in this class. In each of the networks, nodes can be
characterized as a nonlinear function of a weighted sum of inputs, previous node

outputs, or products of these values. A bias term may also be included. In this
paper we consider first-order networks, high-order networks [5], bilinear networks,

and Quadratic networks[12]. The terms that are weighted in each of these networks
are summarized in Table 1.

Multilayer networks consist of a feedforward network coupled with a finite set of
delays as shown in Figure lb. One network in this class is an architecture proposed
by Robinson and Fallside [11], in which the feedforward network is an MLP. Another
popular networks that fits into this class is Elman's Simple Recurrent Network
(SRN) [3]. An Elman network can be thought of as a single layer network with an
extra layer of nodes that compute the output function, as shown in Figure lc.

In locally recurrent networks the feedback is provided locally within each individual

An Experimental Comparison of Recurrent Neural Networks 699

MLP

Figure 1: Network architectures: (a) Narendra and Parthasarathy's Recurrent Neu
ral Network, (b) Multilayer network and (c) an Elman network.

node, but the nodes are connected together in a feed forward architecture. Specifi
cally, we consider nodes that have local output feedback in which each node weights
a window of its own past outputs and windows of node outputs from previous layers.
Networks with local recurrence have been proposed in [1, 4, 10].

3 Experimental Results

3.1 Experimental methodology

In order to make the comparison as fair as possible we have adopted the following
methodology.

• Resources. We shall perform two fundamental comparisons. One in which the
number of weights is roughly the same for all networks, another in which the
number of states is equivalent. In either case, we shall make these numbers large
enough that most of the networks can achieve interesting performance levels.

Number of weights. For static networks it is well known that the generalization
performance is related to the number of weights in the network. Although this
theory has never been extended to recurrent neural networks, it seems reasonable
that a similar result might apply. Therefore, in some experiments we shall try
to keep the number of weights approximately equal across all networks.

Number of states. It can be argued that for dynamic problems the size of the
state space is a more relevant measure for comparison than the number of
weights. Therefore, in some experiments we shall keep the number of states
equal across all networks.

• Vanilla learning. Several heuristics have been proposed to help speed learning
and improve generalization of gradient descent learning algorithms. However,
such heuristics may favor certain architectures. In order to avoid these issues,
we have chosen simple gradient descent learning algorithms.

• Number of simulations. Due to random initial conditions, the recurrent
neural network solutions can vary widely. Thus, to try to achieve a statistically
significant estimation of the generalization of these networks, a large number of
experiments were run.

700 Bill G. Horne, C. Lee Giles

o

stan);::===:====,O'l+------ll
o

o

Figure 2: A randomly generated six state finite state machine.

3.2 Finite state machines

We chose two finite state machine (FSM) problems for a comparison of the ability of
the various recurrent networks to perform grammatical inference. The first problem
is to learn the minimal, randomly generated six state machine shown in Figure 2.
The second problem is to infer a sixty-four state finite memory machine [6] described
by the logic function

y(k) = u(k - 3)u(k) + u(k - 3)y(k - 3) + u(k)u(k - 3)Y(k - 3)

where u(k) and y(k) represent the input and output respectively at time k and x
represents the complement of x.

Two experiments were run. In the first experiment all of the networks were designed
such that the number of weights was less than, but as close to 60 as possible. In the
second experiment, each network was restricted to six state variables, and if possible,
the networks were designed to have approximately 75 weights. Several alternative
architectures were tried when it was possible to configure the architecture differently
and yield the same number of weights, but those used gave the best results.

A complete set of 254 strings consisting of all strings of length one through seven is
sufficient to uniquely identify both ofthese FSMs. For each simulation, we randomly
partitioned the data into a training and testing set consisting of 127 strings each.
The strings were ordered lexographically in the training set.

For each architecture 100 runs were performed on each problem. The on-line Back
Propagation Through Time (BPTT) algorithm was used to train the networks.
Vanilla learning was used with a learning rate of 0.5. Training was stopped at 1000
epochs. The weights of all networks were initialized to random values uniformly
distributed in the range [-0.1,0.1]. All states were initialize to zeros at the begin
ning of each string except for the High Order net in which one state was arbitrarily
initialized to a value of 1.

Table 2 summarizes the statistics for each experiment. From these results we draw
the following conclusions.

• The bilinear and high-order networks do best on the small randomly generated
machine, but poorly on the finite memory machine. Thus, it would appear that
there is benefit to having second order terms in the network, at least for small
finite state machine problems.

• N arendra and Parthasarathy's model and the network with local recurrence do
far better than the other networks on the problem of inferring the finite memory

An Experimental Comparison of Recurrent Neural Networks 701

Table 2: Percentage classification error on the FSM experiment for (a) networks with
approximately the same number of weights, (b) networks with the same number of
state variables. %P = The percentage of trials in which the training set was learned
perfectly, #W = the number of weights, and #S = the number of states.

training error testing error

F5M Architecture t mean (std) mea.n (std) 'YoP #W #5
N&P 2 .8 (M) 16.9 (8 .6) 22 56 8
TDNN 12.5 (2.1) 33.8 (U) 0 56 8
Gamma 19.6 (H) 24.8 (3 .2) 0 56 8
First Order 12.9 (6.9) 26.5 (9 .0) 0 48 6

RND High Order 0.8 (1.5) 6 .2 (6 .1) 60 50 5
Bilinear 1.3 (2 .7) 5 .7 (6 .1) 46 55 5
Quadratic 12.9 (13.4) 17.7 (14.1) 12 45 3
Mullilayer 19 .4 (13 .6) 23.4 (13.5) 6 54 4
Elman 3 .5

~5.~~ 12.7 ~9 . !~ 27 55 6
Local 2.8 1.5 26.7 7.6 4 60 20

N&P 0 .0 ~0 . 2 ~ 0 .1 ~ 1 . ~ ~ 99 56 8
TDNN 6.9 (2 .1) 15 .8 (3 .2) 0 56 8
Gamma 7.7 (2 .2) 15.7 (3.3) 0 56 8
First Order 4 .8 (3 .0) 16 .0 (6 .5) 1 48 6

FMM High Order 5.3 (4.0) 26 .0 (5.1) 1 50 5
Bilinear 9 .5 (10 .4) 25.8 (7 .0) 0 55 5
Quadratic 32.5 (10.8) 40.5 (7 .3) 0 45 3
Multilayer 36.7 (11.9) 43 .5 (8.5) 0 54 4
Elman 12.0 (12.5) 24 .9 (7 .9) 5 55 6
Local 0 .1 ' (0.3) 1.0 (3 .0) 97 60 20

(a)

tra.lnlng error testIng error

F5M Architecture tt mea.n (std) mea.n (std) 'YoP #W #5
N&P 4 .6 (8.~~ 14.1 (11 .3) 38 73 6
TDNN 11 .7 (2.0) 34.3 (3 .9) 0 73 6
Gamma 19.0 (H) 25 .2 (3.1) 0 H 6
First Order 12.9 (6.9) 26.5 (9 .0) 0 48 6

RND High Order 0 .3 (0 .5) 4 .6 (5 .1) 79 H 6
Bilinear 0 .6 (0 .9) 4 .4 (U) 55 78 6
Quadratic 0 .2 (0 .5) 3.2 (2 .6) 83 216 6
Mullilayer 15.4 (14 .1) 19.9 (lU) 16 76 6
Elman 3.5 (5.5) 12.7 (9 .1) 27 55 6
Local 13.9 (405) 20.2 (5.7) 0 26 6

N&P 0 .1 (0 .8) 0 .3 (1.4) 97 73 6
TDNN 6 .8 (1.7) 16.2 (2 .9) 0 73 6
Gamma 9 .0 (2.9) 14.9 (2 .8) 0 73 6
Firs t Order 4 .8 (3 .0) 16.0 (6 .5) 1 48 6

FMM High Order 1.2 (1.7) 25.1 (5 .1) 31 H 6
Bilinear 2 .6 (402) 20.3 (7 .2) 21 78 6
Quadratic 12.6 (17.3) 26.1 (12 .8) 13 216 6
MullUayer 38.1 (12.6) 42.8 (9.2) 0 76 6

Elman 12.8 ~H.:~ 27.6 (10 .7) 8 55 6

Local 15 .3 3 .8 22.2 (409) 0 26 6

(b)

tThe TDNN and Gamma network both had 8 input taps and 4 hidden layer nodes. For

the Gamma network, I' = 0.3 (RND) and I' = 0.7 (FMM). Narendra and Parthasarathy's
network had 4 input and output taps and 5 hidden layer nodes. The High-order network
used a "one-hot" encoding of the input values [5]. The multilayer network had 4 hidden
and output layer nodes. The locally recurrent net had 4 hidden layer nodes with 5 input
and 3 output taps, and one output node with 3 input and output taps.

ttThe TDNN, Gamma network, and N arendra and Parthasarathy's network all had 8
hidden layer nodes. For the Gamma network, I' = 0.3 (RND) and I' = 0.7 (FMM). The
High-order network again used a "one-hot" encoding of the input values. The multilayer
network had 5 hidden and 6 output layer nodes. The locally recurrent net had 3 hidden
layer nodes and one output layer node, all with only one input and output tap.

702 Bill G. Horne, C. Lee Giles

machine when the number of states is not constrained. It is not surprising that
the former network did so well since the sequential machine implementation of
a finite memory machine is similar to this architecture [6]. However, the result
for the locally recurrent network was unexpected.

• All of the recurrent networks do better than the TDNN on the small random
machine. However, on the finite memory machine the TDNN does surprisingly
well, perhaps because its structure is similiar to Narendra and Parthasarathy's
network which was well suited for this problem.

• Gradient-based learning algorithms are not adequate for many of these archi
tectures. In many cases a network is capable of representing a solution to a
problem that the algorithm was not able to find. This seems particularly true
for the Multilayer network.

• Not surprisingly, an increase in the number of weights typically leads to over
training. Although, the quadratic network, which has 216 weights, can consis
tently find solutions for the random machine that generalize well even though
there are only 127 training samples.

• Although the performance on the training set is not always a good indicator of'
generalization performance on the testing set, we find that if a network is able
to frequently find perfect solutions for the training data, then it also does well
on the testing data.

3.3 Nonlinear system identification

In this problem, we train the network to learn the dynamics of the following set of
equations proposed in [8]

zl(k) + 2z2(k) (k)
zl(k+l) l+z~(k) +u

(k) zl(k)Z2(k) (k)
Z2 + 1 = + u

1 + z~(k)
y(k) zl(k) + z2(k)

based on observations of u(k) and y(k) alone.

The same networks that were used for the finite state machine problems were used
here, except that the output node was changed to be linear instead of sigmoidal
to allow the network to have an appropriate dynamic range. We found that this
caused some stability problems in the quadratic and locally recurrent networks. For
the fixed number of weights comparison, we added an extra node to the quadratic
network, and dropped any second order terms involving the fed back output. This
gave a network with 64 weights and 4 states. For the fixed state comparison,
dropping the second order terms gave a network with 174 weights. The locally
recurrent network presented stability problems only for the fixed number of weights
comparison. Here, we used a network that had 6 hidden layer nodes and one output
node with 2 taps on the inputs and outputs each, giving a network with 57 weights
and 16 states. In the Gamma network a value of l' = 0.8 gave the best results.

The networks were trained with 100 uniform random noise sequences of length 50.
Each experiment used a different randomly generated training set. The noise was

An Experimental Comparison of Recurrent Neural Networks 703

Table 3: Normalized mean squared error on a sinusoidal test signal for the nonlinear
system identification experiment.

Archi teet ure Fixed # weights Fixed # states
N&P 0.101 0.067
TDNN 0.160 0.165
Gamma 0.157 0.151
First Order 0.105 0.105
High Order 1.034 1.050
Bilinear 0.118 0.111
Quadratic 0.108 0.096
Multilayer 0.096 0.084
Elman 0.115 0.115
Local 0.117 0.123

uniformly distributed in the range [-2.0,2.0], and each sequence started with an
initial value of Xl(O) = X2(0) = O. The networks were tested on the response to
a sine wave of frequency 0.04 radians/second. This is an interesting test signal
because it is fundamentally different than the training data.

Fifty runs were performed for each network. BPTT was used for 500 epochs with a
learning rate of 0.002. The weights of all networks were initialized to random values
uniformly distributed in the range [-0.1,0.1].

Table 3 shows the normalized mean squared error averaged over the 50 runs on the
testing set. From these results we draw the following conclusions.

• The high order network could not seem to match the dynamic range of its output
to the target, as a result it performed much worse than the other networks. It is
clear that there is benefit to adding first order terms since the bilinear network
performed so much better.

• Aside from the high order network, all of the other recurrent networks performed
better than the TDNN, although in most cases not significantly better.

• The multilayer network performed exceptionally well on this problem, unlike the
finite state machine experiments. We speculate that the existence of target out
put at every point along the sequence (unlike the finite state machine problems)
is important for the multilayer network to be successful.

• Narendra and Parthasarathy's architecture did exceptionally well, even though
it is not clear that its structure is well matched to the problem.

4 Conclusions

We have reviewed many discrete-time recurrent neural network architectures and
compared them on two different problem domains, although we make no claim that
any of these results will necessarily extend to other problems.

Narendra and Parthasarathy's model performed exceptionally well on the problems
we explored. In general, single layer networks did fairly well, however it is important
to include terms besides simple state/input products for nonlinear system identi
fication. All of the recurrent networks usually did better than the TDNN except

704 Bill G. Home, C. Lee Giles

on the finite memory machine problem. In these experiments, the use of averaging
filters as a substitute for taps in the TDNN did not seem to offer any distinct ad
vantages in performance, although better results might be obtained if the value of
J.I. is adapted.

We found that the relative comparison of the networks did not significantly change
whether or not the number of weights or states were held constant. In fact, holding
one of these values constant meant that in some networks the other value varied
wildly, yet there appeared to be little correlation with generalization.

Finally, it is interesting to note that though some are much better than others,
many of these networks are capable of providing adequate solutions to two seemingly
disparate problems.

Acknowledgements

We would like to thank Leon Personnaz and Isabelle Rivals for suggesting we per
form the experiments with a fixed number of states.

References

[1] A.D. Back and A.C. Tsoi. FIR and IIR synapses, a new neural network archi
tecture for time series modeling. Neural Computation, 3(3):375-385, 1991.

[2] B. de Vries and J .C. Principe. The gamma model: A new neural model for
temporal processing. Neural Networks, 5:565-576, 1992.

[3] J .L. Elman. Finding structure in time. Cognitive Science, 14:179-211, 1990.

[4] P. Frasconi, M. Gori, and G. Soda. Local feedback multilayered networks.
Neural Computation, 4:120-130, 1992.

[5] C.L. Giles, C.B. Miller, et al. Learning and extracting finite state automata
with second-order recurrent neural networks. Neural Computation, 4:393-405,
1992.

[6] Z. Kohavi. Switching and finite automata theory. McGraw-Hill, NY, 1978.

[7] K.J. Lang, A.H. Waibel, and G.E. Hinton. A time-delay neural network archi
tecture for isolated word recognition. Neural Networks, 3:23-44, 1990.

[8] K.S. Narendra. Adaptive control of dynamical systems using neural networks.
In Handbook of Intelligent Control, pages 141-183. Van Nostrand Reinhold,
NY, 1992.

[9] K.S. Narendra and K. Parthasarathy. Identification and control of dynamical
systems using neural networks. IEEE Trans. on Neural Networks, 1:4-27, 1990.

[10] P. Poddar and K.P. Unnikrishnan. Non-linear prediction of speech signals
using memory neuron networks. In Proc. 1991 IEEE Work. Neural Networks

for Sig. Proc., pages 1-10. IEEE Press, 1991.

[11] A.J. Robinson and F. Fallside. Static and dynamic error propagation networks
with application to speech coding. In NIPS, pages 632-641, NY, 1988. AlP.

[12] R.L. Watrous and G.M. Kuhn . Induction of finite-state automata using
second-order recurrent networks. In NIPS4, pages 309-316, 1992.

