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Abstract: Currently, wireless communication systems that use radio frequency are commonly de-
ployed, for example, mobile communication systems, satellite systems, and the Internet of Things
(IoT) systems. Based on their easy installation, wireless communication systems have benefits over
other wired communication systems. However, using high frequencies to transfer data via wireless
communication can hold significant risks for human health. Several researchers have studied this
topic using visible light instead of Radio Frequency (RF) waveforms in communication systems.
Many potential approaches are relevant in this regard, i.e., visible light communication, light fidelity,
free-space optical, and optical camera communication. Artificial intelligence is also influencing the
future of industry and people and is used to solve complex problems, create intelligent solutions, and
replace human intelligence as the driving force behind emerging technologies such as big data, smart
factories, and the IoT. In this paper, we proposed the architecture of the MIMO C-OOK (Multiple-
Input Multiple-Output Camera On–Off Keying) scheme, which uses a convolutional neural network
for light-emitting diode detection and a deep learning neural network for threshold predictions
considering long-distance communication and mobility support. Our suggested method aimed to
improve the performance of the traditional camera on–off keying scheme by increasing data rate,
communication distance, and low bit error rate. Our suggested technique may achieve a commu-
nication distance of up to 22 m with a low error rate when considering the mobility impact (2 m/s,
i.e., walking velocity) by controlling the exposure time, focal length, and employing Forward Error
Correction code.

Keywords: MIMO C-OOK; on-off keying; optical camera communication

1. Introduction

Wireless communication systems have many advantages compared with their wired
counterparts, including easy setup, flexibility, and delivering broadcasting information
without cables. Wireless systems using radio frequencies (RFs) are broadly used in com-
munication networks. However, RF waves can become exhausted during the formation
process of wireless communication technology. To increase the data rate, the commu-
nication frequencies must be increased. Many research groups and organizations have
investigated ways by which to improve sixth-generation (6G) cellular networks in the
sub-THz waveband, which promises a data rate of up to 1–10 Tbps [1]. However, to com-
municate information, an RF system employs electromagnetic waves that are potentially
harmful to human health [2]. This issue must be carefully considered in settings that
include the elderly, teenagers, and patients, e.g., nursing homes, schools, and hospitals.

Researchers worldwide are looking for new technologies that can substitute RF tech-
niques in specific applications owing to the potentially detrimental effects of these systems.
The use of visible light to transfer data has emerged as a viable alternative to RF methods.
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Optical Wireless Communication has many candidate solutions, some of which are as
follows: Visible Light Communication (VLC), Light Fidelity (LiFi), Free-Space Optical
(FSO), Optical Camera Communication (OCC), etc. The advantages of OWC systems over
the RF approach are as follows:

• The human body is unaffected by visible light waves [3]. In addition to the negative
impact of RF waves on human health, they can also degrade system performance
owing to electromagnetic interference (EMI).

• Visible light waveforms have a much larger bandwidth compared with RF waves
(more than 1000 times that of RF waveforms).

• Visible light waveforms are safer and more efficient when the line-of-sight transmission
is acquired by the optical channel.

• Based on the following benefits, several organizations have suggested research funding
to develop and investigate OWC systems. The OWC approach was introduced with
its complexity protocol in the Institute of Electrical and Electronics Engineers (IEEE,
2011) 802.15.7-2011 standard [4]. The IEEE 802.15.7-2018 [5] standard was published
in 2018, and it added the following four modes to the previous standard.

• The IEEE 802.15.7-2011 standard [4] included VLC modes information.
• Optical Camera Communication: By using image sensors, modulation systems can

decode OCC information from a variety of LED sources.
• High-speed LiFi: Using high-rate photodiode modulation techniques, the data rate

can be increased to higher than 1 Mbps.
• Photodiode identification: Photodiodes are used in communication techniques to

transmit data at a low rate (less than 1 Mbps).

Based on innovative manufacturing technologies, light-emitting diodes (LEDs) have
several benefits as next-generation light sources with specific potential. These advantages
include long life, efficient power consumption, low cost, and a variety of sizes. Additionally,
LEDs are compatible and useful with high-rate OWC technologies, which enables ON/OFF
status-switching at a high frequency [6–8]. For LiFi and VLC, photodiodes have been used
as detectors [4], which can receive the intensity values of transmitters in real-time. In the
case of OCC, a camera was used as a detector, which captured images and decoded data
derived from LEDs. Global and rolling-shutter cameras are two general types that are
deployed in OCC technologies. Accordingly, suitably designed OCC modulation schemes
can be developed.

RF systems are used in a variety of current applications including communication,
monitoring, and mobile communication systems. These systems generate EMI, which can
impact human health and especially brain function [9,10]. As noted, OWC technologies
have attracted significant research interest worldwide because it is EMI-free and, accord-
ingly, is a good candidate for replacing RF technology [11]. In VLC and LiFi technologies,
photodiodes receive information at an intensity that is based on the ON/OFF status of the
light sources in the transmitter [12]. In [13,14], a photodiode-based ultra-high-speed pulse-
density modulation with exceptionally effective spectrum characteristics was proposed.
Multiple-input multiple-output (MIMO) is a technology proposed in [15,16] to enable large
data rate transfers using ultra-high-speed multi-channels.

As noted, VLC/LiFi/FSO systems employ photodiodes as detectors. These present
some disadvantages. For example, they can only be employed for short-distance appli-
cations and are extremely sensitive to the mobility effect. Outdoor environments can
also cause problems for an LED signal aimed at receiving signals from photodiodes.
Using the OCC technique, however, a longer communication distance (up to 200 m)
could be achieved [17] because an image sensor is used rather than photodiodes. In [18],
Nguyen et al. considered how image sensor types affected an OCC system. When using
a global shutter camera, the frame rate of the camera will affect the data rate of an OCC
system according to Nyquist’s law. Therefore, when using a rolling-shutter camera, the
frame rate and the rolling-shutter speed of the camera should be considered. In [18], the
authors noted the effects of the camera’s focal length and the exposure time on commu-
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nication distance. Currently, LiFi technology can be deployed at a 10 m communication
distance in an outdoor environment using a photodiode lens (2 inches) [19].

Region of interest (RoI) signaling was proposed and standardized [5] in PHY IV (IEEE
802.15.7-2018), which was deployed to detect multiple LEDs in an OCC system. The doc-
ument [20] introduced the camera on–off keying (C-OOK) scheme, which can sustain a
high data rate. This scheme was also standardized in IEEE 802.15.7-2018. However, the
C-OOK scheme has some drawbacks, e.g., a high bit error rate (BER) and a short commu-
nication distance [21]. A proposed MIMO C-OOK technique that achieve a long distance
with a lower BER value was achieved by using a matched filter. In [22], we proposed a
rolling-shutter orthogonal frequency-division multiplexing (OFDM) scheme for a high
data-rate OCC system. Depending on the rolling-shutter effect of the camera, the OFDM
waveform could be received according to the LED intensity values in each image. The
2D OFDM scheme for a screen-to-camera technique was developed by Nguyen et al. [23]
with a data rate of more than 50 kbps. This scheme has the following disadvantages: large
transmitter size, short communication distance, and an expensive transmitter achieving a
high data rate.

“Deep learning” is known as a subset of machine learning techniques based on arti-
ficial neural networks that support some notions for resolving OCC problems including
accurate object detection, robustness, high data rate, and real-time processing for mobile
environments. In [24], version 5 of the You Only Look Once (YOLOv5) algorithm was
proposed to optimize the hyperparameters in a real-time process for Underwater Detec-
tion. The optical fringe codes (OFC) proposed for OCC, based on a convolution neural
network (CNN) with 95% precision, are presented in [25]. However, the mobility effect was
not considered.

In the present work, we propose an LED detection method based on deep learning
using the YOLOv5 algorithm to achieve high accuracy (detection accuracy of more than
97%) in a real-time process for a C-OOK scheme. Additionally, a deep learning decoder
was also proposed to increase the OCC performance compared with the conventional
decoder [21] method.

The remainder of this study comprises four sections. In Section 2, we explain the
contributions of the study, i.e., using deep learning to improve the OCC performance.
Section 3 illustrates the system architecture of the MIMO C-OOK scheme using deep
learning. The study’s implementation results are described in Section 4, and the conclusion
of this study is discussed on Section 5.

2. The Contribution of the Present Study

In this paper, we proposed a deep learning approach based on LED detection and data
decoding for a MIMO C-OOK scheme to improve the data rate and decrease the BER in a
harsh environment that considers long-range and mobility effects. Our scheme presents
several advantages as outlined below.

• Support for frame rate variations: Frame rate variation significantly impacts the OCC
system, causing packet losses on the receiver side. Most people tend to ensure that a
camera frame rate remains constant regardless of its specifications (e.g., 30 or 1000 fps).
Depending on the technological parameters of different cameras, synchronizing trans-
mitters and receivers can be difficult. Then, the sequence number (SN) is used to
improve the system’s performance by identifying whether the camera frame rate is
higher than the transmitter’s package rate.

• The discovery of lost packets: To detect the missing packet, we compared two SNs
in two consecutive pictures when the length of the SN exceeded a specified value to
discover each missing packet collected by the camera.

• Data-merging algorithm: We presented this process for each data sequence in our
experiment by deploying the sequence number in each packet to detect the exact
sequence of packets.
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• Improved data rate: By applying deep learning, many LEDs could be detected with
high accuracy by considering long-range and mobile environments compared with
RoI algorithms.

• Mobility support: The C-OOK scheme based on the rolling-shutter effect, which
was more sensitive to the mobility effect than RoI algorithms, highlighted issues for
detecting multiple LEDs compared with CNN. When using a rolling-shutter camera,
the LEDs were displayed in an image as black and white strips; the number of LEDs
could not be clearly detected when using RoI algorithms. Accordingly, we proposed a
neural network for improving the performance of the OCC system.

• The BER was reduced compared with that using the conventional decoder approach.
By collecting data from several cases (using different distances, mobility, and from
several cameras), the dataset for a deep learning neural network decoder could achieve
good performance compared with using the conventional decoder method. A compar-
ison between the conventional decoder method and our proposed technique based on
deep learning is shown in Section 4.

3. System Architecture

An OCC system’s fundamental principle is to control the intensity with which optical
signals transmit and receive data and improve the system’s communication performance
using promising modulation techniques. The simplest and most well-known modulation
method for amplitude-shift keying modulation is OOK, which transmits data using two
statuses, “on” and “off,” which are signified by “1” and “0” bits, respectively. In this study,
we proposed the details for a MIMO C-OOK modulation scheme based on deep learning
for data detection and decoding. Using deep learning, the performance of an OCC system
was improved compared to that of existing techniques. Figure 1 shows the architecture of
the MIMO C-OOK-based deep learning model. On the transmitter side, we used multiple
LEDs to transmit data, and only a single camera received data from multiple LEDs based
on Deep Learning detection and tracking.
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3.1. Deep Learning for Detecting and Tracking LEDs

In the OCC system, RoI algorithms are well-established. In most RoI methods with real-
time processing for object detection, both object and feature-based detection approaches
are deployed. As previously noted, with the rolling-shutter effect, LEDs are shown in
images represented by black and white strips corresponding to “0” and “1” bits. Each
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image includes many strips, which creates problems for RoI detection, particularly as it
concerns the mobility effect. Deep learning neural networks are well-established methods
for computer vision applications, e.g., object detection, image classification, localization,
and image reconstruction. CNNs have emerged as good candidates for deep learning-
based computer vision applications. The CNN-based YOLO algorithm is a state-of-the-art,
real-time object detection system. In this paper, we proposed the customization and
training of YOLO models for LED detection and tracking considering the rolling-shutter
and mobility effects.

The experimental dataset was collected using real traffic scenes to verify the perfor-
mance of our LED detection and recognition method. We recorded daytime and nighttime
video footage with the mobility effect and generated 1000 blurry and clear images at differ-
ent exposure times. Using this image dataset, we labeled images and trained the YOLOv5
model, which was modified with 5/7 convolution layers. Only one detection class was
included. The corresponding number of filters in the final number of convolution layers
was 40.

3.2. Decoding Based on Deep Learning

The relationship between signal-to-noise (SNR) and communication distance is de-
scribed in Section 4. The SNR values are smaller if the communication distance is long.
Therefore, the receiver side experiences challenges in terms of defining the threshold be-
tween ON and OFF values. In [21], we proposed the matched filter method to optimize the
SNR values and increase the communication distance. However, the matched filter did not
perform well in a mobile environment, which is discussed in Section 4.

The zero-crossing filter, developed in [21], separates ON/OFF levels at the receiver
side using zero as the threshold level. When the system’s SNR is high, this approach
performs well, as shown in Figure 2a; however, when this value is low, distinguishing
between ON/OFF statuses is difficult as illustrated in Figure 2b. The matched filter is a
filter technique that determines the template signal in the real signal by comparing it to
a template signal [21]. With additional random noise, the matched filter (a linear filter
technology) maximizes the SNR. The matched filter has advantages when the SNR is small
but does not work well for mobility channels as shown in Section 4. The blur effect occurs
when the transmitter and receiver are move relative to one another. This creates inter-
symbol interference for the OCC system, causing a reduction in the system’s performance.
A deep learning neural network was applied to detect a preamble and decode data by
considering the mobility effect. In this paper, Root mean square error (RMSE) was applied
to evaluate the error evaluation metrics for the proposed scheme. With 200 epochs, it can
achieve high accuracy for the forecasting value error with low values (<0.1).

After detecting the LEDs, the OCC signal was selected from multiple LEDs in the LED
region using the down-sampling algorithm. The C-OOK signal was detected by extracting
the central intensity point of the LEDs. The preamble was detected by the neural network
as show in Figure 3.

The raw data (10,000 samples) were collected by the rolling shutter camera at different
distances (2 m, 6 m, 10 m, 16 m, and 22 m) at different velocity speeds, including the
preamble and the payload parts. To avoid overfitting the model, we used a basic deep
learning neural network model with two hidden layers. Following preamble detection, we
were able to reliably detect the start of frame of C-OOK signals, which improved the OCC
system performance compared with the conventional technology in mobility environment.
In the case of overfitting, the accuracy of the test dataset is undermined when there are six
or more hidden layers.
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3.3. Channel Coding

In many digital communication systems, channel coding is a critical component. It
is also known as a forward error control approach in digital systems for detecting and
reducing bit errors. Channel coding can be employed on both the transmitter and receiver
sides to increase system reliability. Channel coding is deployed on the transmitter side
to encode raw data by adding additional bits prior to modulation. On the receiver side,
however, channel coding is employed to decode data. The bit error can easily be discovered
and fixed using channel coding. The relevant channel coding was used in our experiment,
based on the length of the MIMO C-OOK sub-packet.
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4. Implementation
4.1. The Pixel Energy Per Bit to the Spectral Noise Density Ratio Computation and Noise Modeling

The pixel noise in the CCD/CMOS cameras is approximated [22] using Equation (1)
as follows:

n ∼ N(0, δ(s)2) (1)

where s is the value of a pixel, δ2(s) = s · a · α + β, a is the “1” and “0” amplitude,
and α, β specify the fitting factors obtained in the experiments. Model-fitting coeffi-
cients were employed in our implementations and could be predicted experimentally [22].
Equation (2) [22] is used to calculate the pixel Eb/N0 on the receiver side, assuming that
each symbol comprises one bit as follows:

Pixel
Eb
N0

=
E
[
s2]

E[n2]
≈ a2 · ∆

a · α · ∆ + β
(2)

where Eb is the energy for each bit, N0 is the noise density, s is the intensity pixel values,
∆ = Texp osure/Tbit refers to the camera exposure duration divided by the bit interval, and
α, β are the fit parameters. The theoretical relationship between pixel Eb/N0 and image
amplitude shown in Figure 4.
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4.2. The Experimental SNR Measurement

The SNR measurements illustrate the link between communication distance, SNR, and
exposure times. Additionally, the appropriate exposure period could be changed to obtain
the desired BER value, as well as the OCC system’s communication distance. The SNR was
measured during the trials using an LED (9 V DC-3W). The devices used in this experiment
are shown in Figure 5. A rolling-shutter camera was set to exposure durations of 50–500 µs
and communication distances of 5–20 m. In the model of the system, an LED (9 V DC-3W)
was employed.
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The Signal to Noise (SNR) values were measured at distances of 5, 10, 15, and 20 m
for both the ON and OFF states of the LEDs. When LEDs are turned off, it is considered
as background noise; the pixel amplitude SNR is shown by the green line in Figures 6–9.
The background noise depends on the noise of the optical environment, but it does not
depend on exposure time or distance. When the LEDs were turned on, their signal power
was considered; the SNR is presented as a red line with varying distances. The SNR in
decibel (dB) was determined according to the measurement below.
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In Equation (3), B is the background noise, and A is the LED signal power. The number
of samples measured is denoted by n. The camera’s received pixel intensity is larger when
there is a shorter communication distance and lower with an extended communication
distance. Furthermore, the SNR calculation was also affected by the exposure time as shown
in Figure 10. In this case, the image sensor acted as a low-pass filter, which smoothed out the
high-tone signal with longer exposure times. The communication bandwidth decreases as
the exposure period increases, resulting in a reduction in the overall noise power dispersed
over the bandwidth.

At a short distance, the received pixel intensity values are higher, while at a long
distance, they are modest. As revealed in Figure 10, the shutter speed, distance, and camera
exposure time also affect the SNR values. Figure 10 depicts the relationship between SNR
and pixel intensity at 50, 100, 300, and 400 µs of exposure time.
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4.3. BER Estimation for the Optical on–off Keying Modulation

At the receiver side of the communication system, the electrical intensity of the signal
is given as follows:

r(t) = I(t) +
+∞

∑
i=−∞

I(t)aig(t− iTsymbol) + n(t) (4)

where ai is the level of the ith OOK symbol and ai∈ {0,1}. We assumed that the probabilities
of bits 0 and 1 were P0 and P1, while g(t) is the rectangular function, and Tsymbol represents
the symbol duration. Since only AWGN is present in the optica channel model, the BER
can be displayed [21] in Equation (5) as shown below.

Pe =
1
2

erfc(

√
Eb

2σ2
n
) (5)
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Owing to the presence of only the AWGN channel, the OOK signal for bits 0 and 1 is
presented as follows:

r(t) =
{

n(t), ai = 0
2I(t) + n(t), ai = 1

(6)

Figure 11 shows the bit error probability of the O-OOK modulation versus pixel energy
per bit to noise density ratio in the AWGN channel. The figure shows that the optical OOK
schemes require a pixel Eb/N0 of at least 11 dB to achieve a BER of 10−4. By properly
controlling the camera’s exposure period, the proposed system was able to obtain a BER
of 10−4 at a distance of 20 m as shown in Figure 10. As shown below, we can improve the
SNR by increasing the exposure time; however, it reduces the bandwidth of OCC system.
As a result, the exposure time setting must be carefully evaluated in order to achieve better
results and a suitable modulation scheme [26].
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4.4. Implementation Results

Figure 12 shows the architecture adopted for the MIMO C-OOK scheme. Each packet
includes the same sub-packets to support the frame rate variation effect. An SN was used to
generate the sub-packet’s serial number. The data payload of each sub-packet in a contained
packet was the same. In reality, SN is divided and managed according to the combination
of the transmitter’s packet rate and the frame rate of the camera. Undersampling occurs if
the frame rate is lower than the transmitter packet rate. Oversampling, by contrast, occurs
when the frame rate exceeds the transmitter packet rate. The transmitter packet rate is
defined as the number of packets that include various payloads and that are continuously
transmitted in a given time (e.g., 60 packets/s). Data packet frames with a smaller number
of data sub-packets (DSs) were included in the proposed data frame structure, and each DS
included payload data and an SN. The SN included the data packet’s sequence information,
as well as the payload’s identifier. In practice, payload identification is useful since it
allows the camera to detect the new payload in the case of oversampling, as well as missed
payloads in the case of undersampling.
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4.4.1. Oversampling

When a camera’s frame rate exceeds the transmitter’s packet rate by at least two
times, the data packet is sampled multiple times, resulting in the oversampling effect.
Additionally, packet merging problems occur at the receiver end. The SN was introduced
to the DS to address this issue because it advanced the receiver’s ability to reduce the effect
of the camera’s frame rate variation. When the receiver detects an identical SN value in
the DS of different packets, the redundant data are deleted. As shown in Figure 13, the
receiver discards consecutive packets with the same SN and merge packets with successive
SNs (n − 1, n, n + 1). The DSs are then added to the data packet and repeated N-times in
our suggested algorithms to decrease the packet loss rate when the camera cannot capture
imaged in the time occurring between sub-packets. To improve the OCC system’s reliability
by preventing missing packets as a result of a change in the camera’s frame rate, the N
value must be calculated using Equation (7) as follows:

N ≥ (Tcam)max
DS_length

(7)

where Tcam is the gap-time interval of a camera and DS_length is the interval of a Data
Sub-packet frame. As shown in Equation (7), if the N value is more than Tcam

DS_length , we can
obtain at least one Data sub-packet twice, in which case oversampling occurs.

4.4.2. Undersampling

Undersampling occurs when the frame rate falls below the transmitter’s packet rate.
In this instance, the payload is lost (in contrast with oversampling). Figure 14 displays a
scenario in which a missing payload is produced, and the SN is used to detect it. The SN
was long enough in this situation for the receiver to detect the missing payload. The SN
length in each frame was increased according to the payload sequences. The error could
be identified by comparing the SN of two consecutive DSs if one payload is missing. The
length of the SN determined the number of various states. Using two bits for the SN length,
four missing payloads of transmitted packets were be identified. When one of the errors
was identified, correcting the remaining errors became easier. This occurred when two
successive packets had two non-consecutive SNs (n − 1 and n + 1) as shown in Figure 14.
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4.4.3. Implementation

In this paper, we implemented the neural network for a MIMO C-OOK scheme several
times using different cameras to verify the effect of frame variation. Additionally, the SN
length was carefully selected to optimize the overall process. The results of the MIMO
C-OOK scheme with a conventional decoder and deep learning decoder are shown in
Figure 11, and the parameters of the proposed scheme are shown in Table 1. Figure 10
shows the experimental setup environment, and Figure 13 shows the MIMO C-OOK
waveform at the receiver side. For LED detection, after 7000 training epochs, the average
loss for the neural network model was approximately 0.12. We also tested the performance
of the trained model for a real environment with different communication distances and
the mobility effect. Figure 15 shows the scenario for our implementation using two LEDs,
and Figure 16 shows the implementation results of the MIMO C-OOK system using a deep
learning neural network for decoding data.
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Figure 17 shows the results of the MIMO C-OOK scheme using a conventional decoder
and a deep learning neural network with different communication distances and the same
exposure times. When using the same distance and environment, the deep learning neural
network decoder significantly enhanced the system’s performance, more so than the con-
ventional decoder. Figure 10 shows the modification of the pixel SNR by setting an exposure
time to increase the SNR value. This increase in the system performance will, however,
increase the likelihood of the fuzzy states of the LEDs reducing the optical bandwidth.
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Table 1. The parameter characteristics of the proposed scheme.

Transmitter

Optical clock rate 8 kHz 10 kHz

RLL code Manchester code 4B6B code Manchester code 4B6B code

Forward Error
Correction Reed Solomon code (15,11)

LED type 9 V, 3 W

Number of LEDs 2 3

Packet rate (packet/s) 30

Receiver

Camera type Rolling Shutter Camera (FL3-U3-132C-CS)

Camera frame rate (fps) 60

Data rate of OCC system

Uncode bit rate (kbps) 1.8 2.7 3.375 5.06

Code bit rate (kbps) 1.32 1.98 2.22 3.71
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Table 1 displays the parameter characteristics of the proposed scheme with the results
after deploying the scheme several times with different optical clock rates (8 kHz and
10 kHz), and the number of LEDs (two and three LEDs). The table displays the imple-
mentation results with a high data rate. By increasing the packet length, LED number
or optical clock rate, we can improve the performance of the OCC system. However, as
we mentioned above, the optical clock rate and the DS length must suit the rolling rate
camera, distance and image size. The deep learning neural network can be used for LED
detection and can also provide support for decoding the data, which will help to improve
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the performance for long communication distances and in mobile environments. In our
implementation, we applied the proposed scheme using a velocity of 2 m/s (walking speed)
to ensure that it would be applicable for indoor applications that consider the mobility
effect. We implemented the MIMO C-OOK scheme with a pair of LEDs at a communication
distance of 2 m, a visual representation of which is given in the Supplementary Materials
section of this paper.

5. Conclusions

This study proposed the MIMO C-OOK scheme for the mobility environment using a
Deep Learning network. With deep learning algorithms, we applied a scheme not only for
LED detection and tracking but also for decoding data.

Firstly, we employed a deep learning neural network to detect multi-LEDs. With
the rolling-shutter effect, the LED displayed images as black and white strips, which
complicated the clear detection of LEDs compared with RoI detection. Besides that, the
SNR measurement with different distances was measured at different exposure times.
Therefore, we were able to analyze the relationship among the following three parameters:
communication distance, exposure time, and Signal to Noise values.

Furthermore, a deep learning neural network for data decoding will be helpful for long
communication distances, particularly concerning the mobility effect. The measurement of
Bit Error Rate of the MIMO C-OOK scheme using a Deep Learning decoder with different
distances was proposed compared with the Matched filter decoder. Based on our proposed
approach, we found that the BER can be reduced in the mobility environment.

Supplementary Materials: The following supporting information can be downloaded at: https://
youtu.be/pJJkRXj2Ulk. The supplementary material video shows the implementation of our proposal
scheme at the distance of 2 m.
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