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1. Introduction

Machine learning1 and knowledge acquisition from experts provide different and, on the
face of it, complementary means of developing knowledge-based systems. The apparent
manner in which the strengths of one match the weaknesses of the other has led to integration
of the two approaches. This integration is expected to be synergistic in effect, the resulting
combined approach being more effective than either of its components. However, although
there have been case studies documenting successful applications of these integrated tech-
niques (Buntine & Stirling, 1991; Morik, Wrobel, Kietz, & Emde, 1993; Nedellec, Correia,
Ferreira, & Costa, 1994; Webb, 1996), no previous research has provided comparative
evaluation of the relative merits of integrated approaches as opposed to either constituent
approach on its own. In particular, it has not been demonstrated that integration of machine
learning with knowledge acquisition can outperform with respect to any measure either of
the original approaches alone.

Let us hasten to point out that we do not suggest that it is ever possible to perform machine
learning in total isolation from a wider process of knowledge acquisition. To the contrary,
machine learning cannot be performed without first selecting an appropriate class of model
for the machine learning system to explore and specifying a suitable vocabulary and hence
ontology for the domain. Indeed, it is credible that this is often the most significant part
of the knowledge acquisition task. By the phrase “machine learning alone” we refer to the
use of machine learning in a manner only loosely coupled with knowledge acquisition, in
contrast to tightly integrated use of the technique.
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In the research presented herein we sought to demonstrate that integrated use of machine
learning can provide tangible benefits. In particular, we tested the hypotheses that the
integration of machine learning with knowledge acquisition from experts can:

• produce more accurate expert systems than either constituent approach alone (the in-
creased accuracy hypothesis);

• make knowledge acquisition less difficult than direct knowledge acquisition from ex-
perts without machine learning (the decreased difficulty hypothesis); and

• increase the developer’s confidence in the accuracy of the resulting expert system (the
increased confidence hypothesis).

We do not suggest that combining these techniques will always provide these benefits,
but only that they will be apparent for appropriate knowledge acquisition tasks. Note
that the decreased confidence hypothesis makes only comparative predictions between
knowledge acquisition from experts with and without machine learning. We do not predict
that integrating machine learning with knowledge acquisition from experts will ever be less
difficult than machine learning alone, as the former requires more input than the latter.

Ideally, evaluation of these hypotheses would examine true experts engaged in genuine
knowledge acquisition tasks performed in real-world contexts. However, knowledge acqui-
sition is a very expensive process. In most cases, the cost of applying multiple techniques
to a single real-world knowledge acquisition problem would be prohibitive, let alone the
cost of using each technique multiple times to enable statistical analysis of the observed
differences. This may explain why previous evaluation has been restricted to case studies.
Although such studies can demonstrate the capacity of a system to perform a specific task,
they cannot provide comparative evaluation of alternative approaches. In view of these con-
siderations, this research idealizes aspects of the knowledge acquisition process in order to
perform controlled experimental comparisons of alternative techniques. In particular, we
compare knowledge acquisition with and without integrated machine learning facilities.

2. Previous evaluation of integrated approaches

The literature contains a number of case studies demonstrating successful applications
of techniques for integrating machine learning with knowledge acquisition from experts.
Buntine and Stirling (1991) describe the development of an expert system for routing in the
manufacture of coated steel products. While they do not use software that directly integrates
machine learning with knowledge acquisition from experts, they describe a process that
tightly couples the two. They emphasize the value of having an expert validate learned
rules and place restrictions on the rules that are developed. They point to the importance of
input from the expert in order that he accept the final expert system. While they state that ‘a
number of cases have been reported which demonstrate that the generic interactive induction
approach gives superior performance in real knowledge acquisition tasks to non-interactive
induction and to knowledge acquisition by interview’, the basis for this conclusion appears
to be subjective judgment rather than experimental evaluation.

The knowledge acquisition tool MOBAL (Morik et al., 1993), and its forerunner BLIP
(Morik, 1987), has been applied to a wide variety of knowledge acquisition tasks. These
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systems use first-order representations and they provide tools for specifying ontologies,
learning rules from examples, revising rules using examples, and learning new predicates
from examples. The user and learning systems collaborate to construct an expert system,
with either party able to perform successive refinements to the evolving system.

Morik et al. (1993) present a case study in which MOBAL was used to acquire knowledge
of basic German traffic laws. The resulting traffic-law expert system seeks to infer liability,
likely fines, and whether a court appearance will ensue from specific traffic violation cases.
The developers seeded the knowledge acquisition process by defining a set of 13 background
rules, such as that parking is not permitted on a sidewalk, and then presented 12 example
cases. A cycle of machine learning followed by refinement of the background knowledge
ensued, until the developers were satisfied by the rules that the learning component inferred.

Another case study examined the use of MOBAL to create a prototype expert system for
diagnosis of infantile jaundice (Morik et al., 1993). On the basis of experience applying the
tools to develop this system, the authors conclude that the system’s representation formalism
is suitable for this domain; that the system’s capabilities would usefully be extended to
support revision of existing predicate definitions; and that the project demonstrated that the
tools could be used as an expert system shell as well as for knowledge acquisition.

The Telecommunications Security Domain (Sommer, Morik, Andr´e, & Uszynski, 1994;
Morik et al., 1993) is presented as a further study of knowledge acquisition using MOBAL. It
covers the specification, validation and application of a security policy for communications
network access control. The use of the tools led to the creation of a new concept, thesenior
operator, that had previously been missing from models of the domain. It also identified
implicit policies that were pursued by network administrators and captured these policies
in explicit rules.

Nedellec and Causse (1992) and Nedellec et al. (1994) provide brief descriptions of two
case studies of the use of their tool APT. The application domains covered are design of
loudspeakers and evaluation of commercial loan applications. In the first domain, few
examples were available, so the developers used APT to assist the expert to generalize
these examples and to ‘elicit and correct’ missing domain knowledge. Nedellec and Causse
assert that ‘the expert could easily evaluate the cases proposed by APT, and could understand
when APT pointed to a deficiency in the domain theory’ and that ‘the knowledge acquisition
principles of APT help the expert to identify missing or incorrect knowledge and to integrate
the modifications in an efficient way’. For the commercial loans domain, Nedellec and
Causse used APT to refine an existing expert system, producing a system that was one
fifth the size of the original and consequently more efficient. It also provided structure
to the domain knowledge that was missing from the original. This case study provides a
comparison between knowledge acquisition with and without integrated use of machine
learning. However, the integrated approach had a considerable advantage as the project
took a system developed by knowledge acquisition alone and examined the effects of using
machine learning for its further refinement. It remains unclear how refining the initial
expert system using conventional knowledge acquisition without machine learning would
have fared had equivalent effort been expended.

Webb (1996) describes a case study in which undergraduate computer science students
used The Knowledge Factory to produce expert systems for an artificial medical domain.
Evaluation of questionnaires administered on completion of the project revealed that the
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students found the system easy to use, regarded the system to be a valuable tool, and
believed that machine learning was useful for knowledge acquisition. Webb concluded
that ‘these results can be considered as a proof-of-concept for the proposition that non-
knowledge-engineers can readily collaborate with a machine learning system to develop
expert systems’. Again, however, the study provided no comparative evaluation of the
integrated approach against any alternative. Techniques that integrate machine learning
with knowledge acquisition from experts have been demonstrated to work, but do they
work better than, or even as well as, the alternatives?

3. Experimental design

We wished to explore this question by comparing the integrated use of machine learning
during knowledge acquisition with each constituent approach in isolation. Only if the
integrated approach demonstrably outperforms each of its constituent approaches can it
credibly be claimed that the integration provides benefit per se.

Matched-pairs experimental designs allow more powerful comparison of treatments than
independent sample comparisons. In consequence, they should be used where possible. We
did not believe we could adequately match experts, however, and hence used a less powerful
independent samples design to compare knowledge acquisition by experts with and without
access to machine learning. In past experiments we have sought to overcome this problem
by using the same expert in both treatments, allowing us to match each expert with himself,
but it is also necessary to match the experimental units with respect to knowledge acquisition
task. A single expert performing two different tasks would not adequately control all factors
other than the experimental manipulation. We previously attempted this by disguising a
single knowledge acquisition task as two different tasks (Webb & Wells, 1996). However,
such an attempt can always be criticised on the grounds that the expert’s view of the task
is an important aspect of a knowledge acquisition scenario, and even apparently superficial
differences in the expert’s perceptions may affect their behavior.

To maximize the statistical power of the analyses, given the small numbers of subjects,
we tested each subject twice, once for each treatment excluding learning alone, for which
subjects were not required. To minimize the introduction of experimental confounds through
order and practice effects, and due to differences between the two tasks, we defined two
knowledge acquisition tasks and evenly divided subjects between each treatment for each
task. Each subject received one treatment for one task in the first session and then the
other treatment and task in the second session. To minimize order effects and confounds
introduced by task differences, we assigned the integrated version as the first task for half
of the subjects while we assigned it as the second task for the other half. We randomized
this assignment using a random number generator. By randomly assigning subjects to
treatments, all four (2× 2) combinations of treatments and tasks were covered.

In contrast to the need for unmatched comparisons between the integrated and knowl-
edge acquisition alone treatments, matched-pair comparisons were possible between the
integrated and learning alone treatments. For the latter treatment, we used the machine
learning system to induce rules from the same training data we provided to a subject when
they were using the integrated software. We then evaluated these rules against the matching
test data.
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Creating these three treatments made it possible to test the increased accuracy hypothesis
by examining the performance of expert systems created under each condition. We randomly
selected training and test data for each subject for each task. The training data were available
during knowledge acquisition but the test data were withheld. We then evaluated the expert
system by applying it to the test data. Different random selections of training and test
cases were performed for each subject, in order to minimize the possibility that atypical
training/test splits would unduly affect the experimental results. As noted above, the training
and test data used in the integrated treatment were also used in the learning alone treatment,
permitting matched-pairs analysis.

The remaining two hypotheses relate to less tangible aspects of performance and re-
quired more indirect evaluation. One indirect effect of reducing knowledge acquisition
difficulty might be to reduce knowledge acquisition time. A less difficult task will usually
be completed more swiftly. Hence, the relative times taken to complete a task under each
treatment can be taken as an indirect source of evidence with respect to the decreased dif-
ficulty hypothesis. Significant reductions would seem to support the hypothesis, although
they would not be conclusive. A second indicator of task difficulty is the expert’s subjective
judgment. A questionnaire was designed to elicit such judgments from the subjects. For
ease of presentation, the questionnaire design and results are discussed together, below.

The increased confidence hypothesis related directly to subjective judgment, so we ex-
tended the questionnaire to canvas the subject’s confidence in the accuracy of the expert
systems created under each treatment. As straight machine learning does not directly in-
volve the subject in the development of the expert system, it appeared appropriate only
to make this comparison between the treatments in which the subjects would be active
participants, the integrated and knowledge acquisition alone treatments.

While not pertaining to our hypotheses, we also measured the relative complexity of
the knowledge bases developed in the belief that this may interest some researchers and
practitioners.

We needed to create two knowledge acquisition tasks to which the three treatments could
be applied. To facilitate fair comparison between treatments and to keep the complexity of
the experimental task within manageable bounds, we limited the tasks to those aspects of
knowledge acquisition to which machine learning can be directly applied without the need
for further involvement from an expert. To this end, we selected data sets from the UCI
repository of machine learning data sets (Merz & Murphy, 1997) to form the core of the
knowledge acquisition tasks. This meant that the tasks were constrained as the selection of
model types, vocabularies, and ontologies were already completed.

We needed, however, to employ experts for the integrated and knowledge acquisition
alone treatments. To ensure that levels of expertise were controlled, we “created” these
experts by providing the subjects with expertise in the domains.

We acknowledge that this experimental design results in simple artificial knowledge acqui-
sition tasks that have abstracted out important elements of full-scale real-world knowledge
acquisition projects. Such simplification is an inevitable price of controlled experimenta-
tion and it is standard practice in the social sciences. Factoring out possible confounds
is important if we are to systematically evaluate hypotheses. We believe that we have
managed to retain non-trivial aspects of knowledge acquisition in our design. Subjects are
provided with expertise in a domain and tools with which to express, explore, and evaluate
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models that capture that expertise. We have carefully controlled the scenario so that the
only difference between those tools is that one includes tightly integrated machine learning
facilities and the other does not.

Section 5 provides the details of how we implemented this design. Before presenting
these details, in the next section we discuss the knowledge acquisition software used in the
experiments.

4. The Knowledge Factory

This research was part of a project that developed The Knowledge Factory system. It was
therefore natural that we should use this system for the study. We present here a brief
description of this system and relate it to other software for integrating machine learning
with knowledge acquisition from experts. More details about the system are available
elsewhere (Webb, 1992, 1996; Webb & Wells, 1995).

The Knowledge Factory is an interactive environment that was developed with the inten-
tion of enabling a domain expert to collaborate with a machine learning system throughout
the knowledge acquisition and maintenance process. Most approaches to integrating ma-
chine learning and knowledge acquisition from experts require the involvement of a trained
knowledge engineer (Attar Software, 1989; Buntine & Stirling, 1991; Davis & Lenat,
1982; De Raedt, 1992; Gams, Drobniˇc, & Karba, 1996; Morik et al., 1993; Nedellec &
Causse, 1992; O’Neil & Pearson, 1987; Schmalhofer & Tschaitschian, 1995; Smith, Win-
ston, Mitchell, & Buchanan, 1985; Tecuci & Kodratoff, 1990; Wilkins, 1988). Like the
approach of Tecuci (1995), The Knowledge Factory is distinguished by being designed for
direct use by experts with minimal training or experience in knowledge engineering. The
system also differs from a number of knowledge elicitation systems designed for direct use
by experts (Boose, 1986; Compton, Edwards, Srinivasan, Malor, Preston, Kang, & Lazarus,
1992), not only by the provision of machine learning facilities, but also by not relying upon
the expert to give suitable solutions for all cases that are encountered.

The Knowledge Factory employs simple knowledge representation schemes in order to
accommodate the target user group, as many users have great difficulty using the first-order
representations commonly used by knowledge acquisition environments (e.g., Kodratoff
& Vrain, 1993). In consequence, we restricted the knowledge representation scheme to
flat attribute-value classification rules and the knowledge base to a set of production rules.
Moreover, the antecedent of a rule consists of tests on attribute values and the consequent is
a simple classification statement. All rules directly relate input attributes to an output class.
This simple attribute-value representation contrasts with the first-order representations used
by most recent integrated systems (De Raedt, 1992; Morik et al., 1993; Nedellec & Causse,
1992; Schmalhofer & Tschaitschian, 1995; Tecuci & Kodratoff, 1990; Wilkins, 1988).

Due to the needs of the target user group, we have also kept the interface simple. An
approach calledcase-based communicationmotivates the primary mechanisms for inter-
action between the expert and the machine learning system. The system communicates
the support for the rules that it develops by displaying the example cases that a rule covers
correctly, covers incorrectly, or fails to cover, as well as the cases that the rule set as a whole
classifies correctly, classifies incorrectly, or leaves unclassified. The expert can critique
rules by providing complete or partial counterexamples, and can explore alternatives to
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current rules by specifying cases that a rule should or should not cover. In addition, the
user has facilities for directly editing rules and example cases and for modifying the set of
attributes with which example cases are specified.

The machine learning facilities support induction of new rules and inductive refinement
of existing rules. Machine learning can be applied at any time to create or revise a complete
rule set or the subset of rules that relate to a single class only. During inductive refinement,
the user can restrict the types of modification possible for each existing rule. The machine
learning algorithm, DLGref2 (Webb, 1993), adds rule refinement capabilities to DLG (Webb
& Agar, 1992), which is in turn a variant of Michalski’s (1983) AQ. DLGref2 seeks to
modify an existing set of rules the least amount necessary to optimize a user specified
preference criterion. When there are no pre-existing rules, DLGref2 is equivalent to DLG.

5. Experimental method

We developed two versions of The Knowledge Factory, one containing the machine learning
facilities and one with these facilities excised. The former was used for the integrated
treatment and the latter was used for the knowledge acquisition alone treatment. For the
learning alone treatment, the experimenters applied the machine learning facilities of The
Knowledge Factory to the learning tasks.

Note that the version of the software without machine learning capabilities is not a straw
man. Even with the learning facilities removed, The Knowledge Factory is still a fully
functional knowledge acquisition environment. The system contains both extensive facil-
ities for specifying and editing rules and for evaluating the performance of those rules on
example data.

The experiments were conducted as part of an assignment for a third-year undergrad-
uate university course in computing. The use of undergraduate computing students with
minimum knowledge acquisition training and no knowledge acquisition experience seemed
appropriate, as the tool is intended for users with little training in knowledge engineering.

5.1. The knowledge acquisition tasks

All 18 students in the third year unitArtificial Intelligence and Expert Systemsat Deakin
University were given an assignment that involved two knowledge acquisition tasks. The
student body comprised both Information Systems and Software Development students. All
students involved were asked whether they would consent to take part in a research study
and were told that they could withdraw their consent at any stage during the experiment.
One student exercised the option of not participating, leaving 17 subjects.

The study commenced in the sixth week of the unit. Up to that point, the students had
been exposed to overviews of knowledge acquisition principles and techniques, and they
had been taught programming in the CLIPS expert system language. During the study, the
students received further lectures and laboratory sessions on CLIPS programming and two
discursive lectures on knowledge acquisition principles and techniques. Thus, while having
good computer skills, the subjects were, at best, novice knowledge engineers.

The Glass and Soybean Large data sets from the UCI repository were selected to form
the tasks. We chose these data sets to provide a mix of different characteristics. Of the two
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possible class variables for the Glass data set, we used the one that defines three classes:
Float, Notfloat, and Other. The Soybean Large data set defines a task with 19 classes
(different diseases). The Glass data set has nine real valued attributes while the Soybean
Large data set has 35 categorical attributes. The Glass data set has 214 cases while Soybean
Large has 683 instances.

To provide subjects with expertise in the domains, we ran C4.5rules (Quinlan, 1993)
to create sets of rules and then presented these rules to the subjects, providing them with
background knowledge about the domain. C4.5rules was used in order to provide different
insights and analysis from those provided by The Knowledge Factory. To simulate different
types of expert knowledge, we used different procedures to generate these rules for each
data set.

For the Glass domain, background knowledge was generated by running C4.5rules on the
entire data set and then extracting all the rules for the class Other. Only the rules for this
single class were presented to the subjects. This simulates a situation where the expert has
an accurate and well-defined procedure for identifying cases of one class but not the others.

For Soybean Large, one half of the data (342 cases) was randomly selected for back-
ground knowledge generation. As this selection process was independent of that used to
select training and test cases during testing, described below, some of the selected cases
belonged to a subject’s training set and others to the test set. C4.5rules was applied to this
random selection of cases to develop a set of rules. This simulates a situation where the
expert has considerable insight into the classification task, but does not have the ability to
perfectly classify all possible cases. Whereas the background rules for Glass enabled cor-
rect classification of both training and test cases for one class only, the background rules for
Soybean Large enabled reasonably accurate, but not perfect, classification for all classes.
The accuracy of the background rules when applied to the entire Soybean Large data set
was 86.1%.

The knowledge acquisition tasks were defined by random selection of training and test
cases. For Glass, each subject was allocated 172 training and 42 test cases. For Soybean
Large, each subject was allocated 342 training and 341 test cases.

All subjects participated in three laboratory sessions of three hours each at one week
intervals. Table 1 presents the instructions given to each subject. The first session provided
training in use of the software and an introduction to the type of task that they were to
perform. The subjects were provided with both Glass and Soybean Large training data, on
which the software was demonstrated and on which they could practice. In particular, they
were shown how the rules developed using training data could be evaluated with respect
to test data. They were informed that such evaluation would be used to grade the expert
systems that they developed in the subsequent two sessions. Subjects received different sets
of training data in the training and experimental sessions and access to the data provided in
the training session was restricted to the duration of that session.

It is possible and desirable that the subjects gained some expertise in glass fragment
analysis and soybean disease diagnosis during the training session, but it is probable that the
subjects remembered little domain-specific knowledge over the one week interval between
sessions, other than the background rules with which they were provided. Subjects were
not provided with access to their test data. Evaluation was performed by the experimenters
after the laboratory session.
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Table 1.Instructions given to subjects in the study.

SCC376 Assignment 1 1997
To be completed in laboratory sessions in the weeks starting April 21 and April 28.

20 marks (10 marks for each part)

This assignment places you in the role of an expert system developer. You will have two knowledge acquisition
tasks. Each is to be performed with a different version of The Knowledge Factory knowledge acquisition software.
One version includes machine learning facilities and the other does not. Your assignment disks each provide
• a copy of The Knowledge Factory (TKF.InductionOn or TKF.InductionOff);
• a The Knowledge Factory project file containing 200 example cases (<id>.prj)
• a text file detailing your knowledge of subject matter (<id>.briefing)
• a manual in Microsoft Word format (Manual.InductionOn or Manual.InductionOff).
Your task is to use that copy of The Knowledge Factory to create rules for that domain.
The two tasks are soybean disease diagnosis (Part A) and glass fragment analysis (Part B). You will be provided
with a summary of knowledge about these two tasks along with sets of case histories of past cases.
Assignments will be marked on their predictive accuracy in classifying previously unseen cases.
The ‘correct’ rules for each task will vary from student to student, so there is no benefit in sharing data or rules
with other students.
Different students will be randomly assigned different versions of The Knowledge Factory for each task to allow
us to study the relative power of different aspects of the system. Marks will be standardized for all students with
each version of the system for each task so that no student is disadvantaged. The results of this comparison will
be discussed in class.
We wish to use outcomes of this assignment for research purposes to evaluate the strengths and weaknesses of the
different versions of The Knowledge Factory that are used. To this end you will be given a consent form. If you do
not wish to have your project included in this research, tick the box labeled “do not consent”. Otherwise tick the
box labeled “hereby consent”. Those that do not participate in the research project will be in no way penalized.
Those that do participate will not be personally identified for research purposes and will contribute to research on
knowledge acquisition that will be of benefit to the class and to the expert systems development community.
The materials for these tasks will be distributed in the laboratory sessions. You will be marked on the expert
systems on disk when the session is completed. A questionnaire will be distributed at the end of the last laboratory
session, which participants will be asked to complete.
If you have any questions please contact Zijian Zheng (room SD108, telephone 5227 1325).
Thank you in anticipation for your cooperation.

The software, manuals, and data were given to the subjects on a computer disk. The task
was performed in a supervised computing laboratory environment. Subjects were able to
ask questions of the experimenters at any stage during the experiment, but responses were
restricted to details directly relating to how to operate the software. Other than this, the
only assistance that the subjects obtained was in the form of access to the system’s help
facilities and the user manual.

5.2. Software employed

The Knowledge Factory operates within the Macintosh software environment. Previous
experience with student use of The Knowledge Factory software had shown that there was a
tendency for students to explore the full range of features that it provided, including multiple
modes of machine learning and multiple modes of rule interpretation (Webb, 1996). As
these capabilities did not bear directly upon the issues to be explored by this study, they were
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disabled. The default machine learning and rule interpretation settings were employed, with
one exception.

By default, The Knowledge Factory applies rules in a mode that lets the system withhold
decisions. This outcome occurs when no rule covers a case or when multiple rules for
different classes cover a case. Such results make it extremely difficult to compare the
performance of alternative expert systems, as there is no definitive manner in which to
compare a system that achieves an accuracy ofx1% ony1% of cases for which it reaches a
conclusion with a system that achievesx2% accuracy ony2% of cases.

To obviate this problem, The Knowledge Factory was set to a mode in which, when no
rule applied to a case, it assigned the most common class from the training set, and when
multiple rules covered a case, it assigned the class predicted by the highest quality rule (in
terms of performance on the training set). For this experiment, the quality of a rule was
judged by the function

quality =
{
−1 if n > 0
p otherwise

(1)

wherep is the number of cases correctly classified by the rule andn is the number of cases
incorrectly classified. With this evaluation function, the specific-to-general search used in
this learning algorithm avoids rules that cover any negative cases. As a consequence, there
is no need to distinguish between the quality of alternative rules that cover negative cases.

Further features of the system that did not directly bear upon the experimental question but
that had potential to seriously degrade performance if misused were also disabled. These
were:

• all facilities for adding, deleting, or otherwise transforming attributes, as subjects had
access to no source of knowledge that could warrant such actions.

• the ability to generate new cases, as subjects had no knowledge by which to generate
new reliable example cases.

• the ability to load from external files either additional example cases or sets of rules, as
these could not be used in a sensible manner within the scope of the experiment.

• the facility for deleting example cases, as subjects were informed that all example cases
were accurate and hence had no basis for sensible case deletion.

• mechanisms for dividing the example cases into training and test sets, as the number of
example cases made available to the students was too small for this facility to be useful.

In addition, to prevent subjects from exchanging data between versions of the system or
using other data analysis tools, the students were prevented from outputting the data in any
form other than as a project file, the system’s internal format for data representation.

To simplify the task of tracking progress, subjects were presented with a computer disk
containing the appropriate version of the system along with a project file pre-loaded with
the training data. The software was modified to require the system to be run from that disk
and only on the original project file (although that file could be updated by The Knowledge
Factory under the user’s direction).
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The software was also modified to ensure that projects saved by one version of the system
could not be input into another. This prevented subjects in one condition from obtaining
and using a copy of the software for the other condition.

5.3. Experimental manipulation

Two versions of the software were created. The version enabled with machine learning had
the full functionality of The Knowledge Factory software other than the disabled features
noted above. The knowledge acquisition alone version was identical to the integrated
version, except that four commands were disabled:

• Develop New Rules deletes any existing rules and then applies the DLG machine
learning algorithm (Webb & Agar, 1992) to the training examples to form a new set of
rules.

• Revise Current Rule Set applies DLGref2 (Webb, 1993) to refine the current set of
rules. This inductive refinement algorithm seeks to modify each of the existing rules
the least amount necessary in order to optimize the preference criterion, as defined by
equation 1. The user can specify that selected rules not be modified in this process.
After all existing rules have been processed, new rules are added to the rule set to cover
any example cases not covered by the modified rule set.

• Revise Rules For Current Decision is identical to Revise Current Rule Set, except that
only rules for the class of the currently selected rule are modified or added to the rule
set.

• Form Alternative Rules takes an existing rule and presents a set of alternative rules
that correctly classify all cases correctly classified by the original rule and incorrectly
classify no example case that was not incorrectly classified by the original rule.

We should emphasize that, although the knowledge acquisition alone version of the soft-
ware did not contain the machine learning capabilities described above, it still retained a
comprehensive set of facilities for rule specification, editing, and evaluation.

5.4. Likely knowledge acquisition processes

As experienced users of the software, we would have approached the subjects’ tasks in the
following manner. With the integrated system, we would:

1. specify rules for existing domain knowledge;

2. apply the machine learning facilities to refine the current rules;

3. evaluate the resulting rule set in the light of both the original domain knowledge and
case-based evaluation of rule performance;

4. if deficiencies are detected, modify the rule set by direct editing or using the example-
based editing facilities, then return to step 2.
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Table 2.Mean and standard deviation for predictive accuracy.

Data set Integrated System KA Alone Learning Alone

Soybean Large 88.5± 4.4 84.4± 3.6 87.8± 1.6
Glass 81.3± 7.7 59.0± 17.3 79.2± 8.0

We would have used the same procedure with the knowledge acquisition alone system but
for step 2. During the training session we used the full version of this process with the
integrated system to demonstrate the software. However, while it was used in the training
session, it was not explicitly described to the subjects. Subjects were free to employ the
software as they saw fit.

6. Evaluation of expert system quality and acquisition difficulty

Seventeen students consented to participate at the commencement of the study and none
withdrew thereafter. The expert systems that these subjects developed were compared on
predictive accuracy and number of rules. Knowledge acquisition time was also compared.

6.1. Predictive accuracy

Table 2 presents the mean predictive accuracy obtained for each treatment. The mean
accuracy for the integrated treatment is significantly higher than that for knowledge acqui-
sition alone in each each domain (one-tailed two-sample t tests; Soybean Large:t = 2.1,
p = 0.026; Glass:t = 3.35, p = 0.001).

When compared with the predictive accuracy obtained by the subjects in the integrated
condition, both mean accuracy results for learning alone are lower than the corresponding
means obtained through the use of machine learning with knowledge acquisition from
experts. One-tailed matched-pairs t tests reveal that one of these differences is significant
at the 0.05 level (Glass:t = 2.5, p = 0.021) but the other is not (Soybean Large:t = 0.9,
p = 0.279). It should be noted, however, that the power of these comparisons is low (only
eight and nine pairs being involved, respectively) and hence that the failure to obtain a
significant difference for the Soybean Large data provides only weak evidence that there
was no advantage for the integration of machine learning with knowledge acquisition for
this domain.

To assess the quality of the background knowledge with which subjects were provided,
it is valuable to consider the accuracy of the rules supplied for this purpose when applied
to the subjects’ test sets. On the training and test sets in the integrated condition, for
Soybean Large the mean accuracy was86.8± 1.4 and for Glass it was64.3± 6.1. For the
knowledge acquisition alone training and test sets, the mean accuracies were85.8 ± 1.8
for Soybean Large and62.4 ± 5.4 for Glass. These variations between treatments are
to be expected for such small sample sizes and do not represent a statistically significant
difference (two-tailed two-sample t tests; Soybean Large:t = 1.3, p = 0.211; Glass:
t = 0.7, p = 0.518). Comparing the performance of the background knowledge rules
with the accuracy of the rules produced in the corresponding integrated and knowledge
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Table 3.Mean and standard deviation for time in minutes.

Data set Integrated System KA Alone

Soybean Large 73± 45 131± 19
Glass 16± 19 115± 38

acquisition alone treatments, the only significant difference is an increase in accuracy for
the integrated treatment on the Glass data (one-tailed matched-pairs t tests; integrated
Soybean Larget = 1.1, p = 0.153; integrated Glass:t = 9.6, p < 0.001; knowledge
acquisition alone Soybean Large:t = 1.0, p = 0.186; knowledge acquisition alone Glass:
t = 1.2, p = 0.134). While the decreases in accuracy from the background knowledge
rules to the rules formulated by the subjects in the knowledge acquisition alone treatment
are not significant, the power of the tests is low given the small sample sizes. It seems
credible that subjects have in general failed to capture all information available to them in
the models they created.

In summary, the integrated treatment has created expert systems for each domain that have
higher mean accuracy than those created by the knowledge acquisition alone treatment,
learning alone, or the background rules with which subjects were provided their stimulat
domain knowledge. While these differences were not significant for the Soybean Large
domain, they were for the Glass domain, providing support for our increased accuracy
hypothesis.

6.2. Knowledge acquisition time

The second major variable analyzed was knowledge acquisition time. Recall that we used
this factor as an indirect measure of knowledge acquisition difficulty. We predicted that
integrated knowledge acquisition would be less difficult than knowledge acquisition without
machine learning and hence that the subjects in the integrated condition would take less
time to complete their projects than those in the knowledge acquisition alone condition. The
mean knowledge-acquisition times in minutes are presented in Table 3. One-tailed two-
sample t tests revealed significant differences between integrated and knowledge acquisition
alone treatments for each domain (Soybean Large:t = 3.3, p = 0.002; Glass: t = 1.9,
p = 0.037). The incorporation of machine learning significantly reduced acquisition time.
Indeed, for the second task, when the subjects were more experienced in the use of the
software and the performance of these types of task, the average knowledge-acquisition
time with the use of machine learning was less than one tenth of the time without.

Times were not recorded for the learning alone treatment, as this did not relate to the
experimental hypotheses. However, as the machine learning facilities of The Knowledge
Factory take less than a minute to complete an expert system for each full data set from
which the training sets were drawn, it is safe to conclude that learning alone is substantially
faster than either of the other approaches.
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Table 4.Mean and standard deviation for number of rules.

Data set Integrated System KA Alone Learning Alone

Soybean Large 46.9± 11.9 44.8± 25.6 35.3± 2.3
Glass 19.0± 3.0 13.7± 8.4 17.1± 1.6

6.3. Complexity

Although no predictions were made about the complexity of the rule sets formed by each
treatment, results are presented here for the interested. We recorded the number of rules
for each expert system developed and present the mean and standard deviation for each
treatment in Table 4. Two-tailed two-sample t tests revealed no significant differences
between integrated and knowledge acquisition alone treatments for either domain (Soybean
Large: t = 0.225, p = 0.832; Glass:t = 1.7, p = 0.222). One-tailed matched-pairs t tests
showed that the increase in complexity from learning alone to integrated was significant
for Soybean large but not Glass (Soybean Large:t = −3.0, p = 0.016; Glass:t = −2.0,
p = 0.089). Although most of these results are not significant, little comfort can be drawn
therefrom, as the small number of subjects meant the analyses had low statistical power.
It remains credible that the increase in accuracy resulting from combination of machine
learning with knowledge acquisition from experts is matched by correspondingly more
complex expert systems. However, this increased complexity may be needed to obtain the
improved accuracy, rather than being a direct product of the integration process.

7. Questionnaire

The questionnaire was completed by the subjects at the end of the last laboratory session.
Table 5 presents the questions asked and mean ratings provided by subjects in response. All
ratings used a scale of 1 to 5, with 1 denotingnot at alland 5 denotingvery. Questions 1a to
4a did not appear on the questionnaire, but rather were derived from responses to questions
3 to 6 as described below.

7.1. Questionnaire design

We designed this questionnaire to examine a number of issues. The first four questions
relate to the hypothesis that the integrated approach would be less difficult than knowledge
acquisition alone. To minimize confounds from expectancy effects, whereby subjects’
responses are influenced by their beliefs about the experimenters’ expectations, questions
comparing the integrated and knowledge acquisition alone treatments were either measured
indirectly or cross-validated via indirect assessment. Questions 1 and 2 were cross-validated
by the indirect questions 1a and 2a which were derived by reinterpretation of subjects’
answers to questions 3 and 4. For subjects given the integrated software for the soybean
disease diagnosis task, the results for 1a and 2a are the responses for questions 3 and 4,
respectively. For the remaining subjects, the results for 1a and 2a are the responses for 4
and 3, respectively. For example, a subject with learning enabled software for the soybean
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Table 5.Questionnaire given to subjects after the study.

No. Question Rating

1 How difficult was it to use “TKF.InductionOn”? 1.8
2 How difficult was it to use “TKF.InductionOff”? 3.4
3 How difficult was it to create an expert system for soybean disease diagnosis? 3.2
4 How difficult was it to create an expert system for glass fragment analysis? 2.7
5 How accurate do you think the expert system you created for soybean disease diagnosis will

be when applied to the additional unseen evaluation cases?
3.3

6 How accurate do you think the expert system you created for glass fragment analysis will be
when applied to the additional unseen evaluation cases?

3.4

7 Do you think that “TKF.InductionOn” is a useful tool for building expert systems? 4.5
8 Do you think that “TKF.InductionOff” is a useful tool for building expert systems? 3.3
9 How valuable do you think machine learning is for knowledge acquisition? 4.1
1a How difficult was it to create an expert system for the task for which you used

TKF inductionon?
2.1

2a How difficult was it to create an expert system for the task for which you used
TKF inductionoff?

3.8

3a How accurate do you think the expert system you created using TKFinductionon will be
when applied to the additional unseen evaluation cases?

3.8

4a How accurate do you think the expert system you created using TKFinductionoff will be
when applied to the additional unseen evaluation cases?

2.9

Note. The names “TKF.InductionOn” and “TKF.InductionOff” referred to the integrated and knowledge
acquisition alone versions of The Knowledge Factory software, respectively.

domain was given the same rating for the implicit question 1a,How difficult was it to create
an expert system for the task for which you used TKFinductionon?, as they provided for
question 3,How difficult was it to create an expert system for soybean disease diagnosis?

To evaluate the increased confidence hypothesis, questions 5 and 6 were designed to
examine the effect of the system employed on the subject’s perception of the quality of
the knowledge base developed. To reduce expectancy effects, the systems were referred
to by task rather than by system. However, the subjects’ answers to these questions were
reinterpreted as 3a and 4a. For a subject given integrated software for the soybean disease
diagnosis task, the result for 3a was the response to question 5 and the result for 4a was the
response to question 6. For the remaining subjects these pairings were reversed.

While not directly pertaining to the experimental hypotheses, questions were added seek-
ing to explore subject’s judgments about the value of the integrated approach. Questions
7 and 8 were designed to evaluate the subject’s perception of the relative usefulness of the
two versions of the system. Question 9 was designed to elicit the subject’s perception, after
using each version of the software, of the value of the main distinguishing feature between
the two versions. It was not apparent how expectancy effects might be minimized for these
questions.

7.2. Questionnaire results

Because we hypothesized that subjects would find it easier to develop an expert system with
the aid of machine learning, we predicted that the responses would be lower for question 1
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than 2. One-tailed matched-pairs t tests supported this prediction (t = −5.5, p < 0.001).
Questions 1a and 2a were designed to cross-validate the results for questions 1 and 2. A
one-tailed matched-pairs t test confirmed the analogous prediction that the mean answer for
1a should be lower than that for 2a (t = −4.9, p < 0.001).

No predictions were made with respect to differences between questions 3 and 4 because
the relative difficulty of the two tasks was unknown. Two-tailed matched-pairs t tests showed
no significant differences (t = 1.0, p = 0.355), so we cannot conclude that subjects felt
either problem to be more difficult.

Subjects were expected to anticipate higher predictive accuracy when using machine
learning (3a) than when not (4a) and this prediction was confirmed by a one-tailed matched-
pairs t test (t = 2.7, p = 0.009)2. No prediction was made with respect to whether the
subjects would expect a difference in predictive accuracy between domains (questions 5
and 6). A two-tailed matched-pairs t test of the sixteen pairs of answers to these questions
showed no significant differences (t = 0.2, p = 0.887), providing no evidence that subjects
expected higher predictive accuracy for either domain.

However, we did expect subjects to regard the version of the software that provided
machine learning facilities as more useful than the version that did not (questions 7 and 8).
This prediction was confirmed by one-tailed matched-pairs t tests (t = 4.6, p < 0.001).
Similarly, subjects were expected to provide high ratings for the value of machine learning
for knowledge acquisition (question 9), and a one-tailed t test shows that the mean responses
were significantly higher than 3, the middle value (t = 7.7, p = 0.005).

These results show that the subjects believed the machine learning facilities to be useful,
found the knowledge acquisition process easier when the machine learning facilities were
available, and had greater confidence in the expert systems developed with the aid of machine
learning.

8. Discussion

The subjects in this experiment had minimal expertise in knowledge engineering and were
given limited training in the use of the software. This was intended both to prevent the
experimenters from unduly guiding the subjects and hence confounding the results and to
simulate the use of the software by domain experts rather than knowledge engineers. We
acknowledge, however, that the third year computing students employed in this study have
more sophisticated computer awareness than the typical domain expert and that this may
have influenced results. The limits of the subjects’ domain expertise should also be noted.
Providing subjects with a set of classification rules can be expected to produce only a low
fidelity simulation of real-world expertise. Domain experts utilize many types of knowledge
and it is debatable whether any resemble simple classification rules. The motivations of
real experts also differ from those of our subjects, for whom the primary motivation was to
maximize student grades. Further, key steps of the knowledge acquisition task were done
for the subjects, namely, the selection of the type of model to form and the definition of a
vocabulary (here the attributes and their values) and hence ontology.

Notwithstanding these caveats, the subjects were provided with some form of expertise
in each domain, they were motivated to maximize the predictive accuracy of the expert
systems that they created, and the experiment systematically evaluated the relative efficacy
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of knowledge acquisition from these experts with and without access to machine learning
facilities. The use of machine learning with knowledge acquisition from experts led to the
production of significantly more accurate rules in significantly less time than knowledge
acquisition from experts alone. This combination also led to more accurate rules than the
use of machine learning alone, a difference that was statistically significant for the Glass
domain.

At the very least, this study has demonstrated that there are contexts in which the integra-
tion of machine learning with knowledge acquisition from experts is beneficial. It remains
for future research to map in detail the types of knowledge acquisition task for which such
integration is advantageous. Although the current study has demonstrated benefit in one
context, it provides little evidence about the range of contexts for which this will occur
or whether alternative approaches to the integration will give similar results. Ideally, such
studies would be conducted with genuine domain experts engaged in real-world knowl-
edge acquisition tasks, but such large-scale experimental studies imply tremendous cost.
In consequence, evidence may have to be gathered by the less comprehensive but much
more feasible combination of circumscribed experimental studies, such as the current one,
together with individual case studies of real-world applications.

The current study has focused on a restricted part of the knowledge acquisition cycle—the
formulation, testing, and refinement of rules once an appropriate class of model and vocab-
ulary have been defined. It has demonstrated that The Knowledge Factory’s integration of
machine learning with knowledge acquisition from experts can offer benefits at this stage
of the cycle. It would be straightforward to conduct similar studies using other knowledge
acquisition software for the same tasks, which would help identify the specific features of
our approach that conferred benefit in this context. It would also be valuable to conduct
similar studies on different knowledge acquisition tasks in order to delimit the types of task
for which these techniques are beneficial. A more ambitious extension to this type of study
would examine larger scale tasks that included the formulation of appropriate ontologies.
It would be much more difficult to perform controlled experiments in such a context, how-
ever, as it is not clear how to supply examples to subjects without strongly influencing the
ontology that is selected, because an ontology is required to describe the examples. The
study of tasks that involve non-trivial selections between classes of model, such as a choice
between attribute-value or first-order representations, may be even more difficult, as most
tools support only very limited variations in the type of model employed.

9. Conclusions

Integration of machine learning with knowledge acquisition from experts has considerable
intuitive appeal. These two approaches to knowledge acquisition have different features that
appear to complement one another. In consequence, many techniques have been developed
for integrating them. However, there has been little formal evaluation of the effectiveness
of these integrated techniques.

The current study has demonstrated that integration of machine learning with knowledge
acquisition can increase the accuracy of the knowledge bases developed. The expert systems
created in this study through integrated use of both methods were more accurate than those
developed by either technique in isolation. This increase in accuracy was accompanied by
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a decrease in acquisition time in comparison to knowledge acquisition without machine
learning. This second outcome suggests that the integration of machine learning can make
knowledge acquisition less difficult. This conclusion is reinforced by subjects’ subjective
judgments. A further benefit of the integrated approach is that it can increase the developer’s
confidence in the accuracy of the resulting expert system. Finally, questionnaire results
indicated a very positive response to the manner in which machine learning was integrated
into The Knowledge Factory software.

There are a wide variety of techniques for integrating machine learning with knowledge
acquisition from experts. Those examined in this study are distinguished by being oriented
for direct use by domain experts with little knowledge engineering expertise. As the experi-
ment employed subjects of this type, it provides support for the efficacy of these techniques
in this context, although there is need for further research to delineate the scope of the
approach.
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Notes

1. Machine learningencompasses a wide variety of automated processes including explanation-based learning
and conceptual clustering. This paper concerns what Langley (1996) callsrule learning, that is, systems for
inferring logical models from data, such as decision tree or classification rule learners. For ease of exposition,
we use the termmachine learningthroughout the paper in this restricted sense.

2. One subject did not answer questions 5 and 6 from which 3a and 4a were derived and hence was excluded
from this and the next analysis.
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