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ABSTRACT

Given a graph, SimRank is one of the most popular measures of

the similarity between two vertices. We focus on efficiently calcu-

lating SimRank, which has been studied intensively over the last

decade. This has led to many algorithms that efficiently calculate

or approximate SimRank being proposed by researchers. Despite

these abundant research efforts, there is no systematic comparison

of these algorithms. In this paper, we conduct a study to compare

these algorithms to understand their pros and cons.

We first introduce a taxonomy for different algorithms that cal-

culate SimRank and classify each algorithm into one of the follow-

ing three classes, namely, iterative-, non-iterative-, and random
walk-based method. We implement ten algorithms published from

2002 to 2015, and compare them using synthetic and real-world

graphs. To ensure the fairness of our study, our implementations

use the same data structure and execution framework, and we try

our best to optimize each of these algorithms. Our study reveal-

s that none of these algorithms dominates the others: algorithms

based on iterative method often have higher accuracy while al-

gorithms based on random walk can be more scalable. One non-

iterative algorithm has good effectiveness and efficiency on graphs

with medium size. Thus, depending on the requirements of dif-

ferent applications, the optimal choice of algorithms differs. This

paper provides an empirical guideline for making such choices.

1. INTRODUCTION
In many applications, it is important to measure the similarity

between two vertices in a graph. Notable examples include col-

laborative filtering in recommendation systems [7, 9, 23, 1], link

prediction for web searches [17, 15], web spam detection [3], and

so on [2, 25]. Not surprisingly, many different similarity measures

have been introduced by researchers over the last decade. Among

these measures, SimRank is one of the most popular.

Calculating SimRank can be computationally expensive because

the similarity between two vertices not only depends on them-

selves, but also potentially on all other vertices in the same con-

nected component—the intuition is that two nodes are similar if

their neighbors are also similar. Therefore, there is a large body of

research that focuses on optimizing and approximating SimRank.

However, there are no systematic studies of existing algorithms,

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 5
Copyright 2017 VLDB Endowment 21508097/17/01.

and it is difficult for developers to choose an algorithm for a giv-

en dataset and target accuracy. This motivates us to compare these

algorithms empirically and provide such a guideline for developers.

Taxonomy of Existing Work. Existing algorithms of com-

puting SimRank can be classified into three classes, namely, (1)

iterative method, which iterates to the fix point, (2) non-iterative
method, which solves a linear system (often with a low-rank ap-

proximation), and (3) random walk, which models the computa-

tion as random walks over the graph. These classes are logically

equivalent: (1) previous work has established the equivalency be-

tween iterative method and random walk [8], and (2) we show in

this work, theoretically, that non-iterative method is equivalent to

an approximate version of random walk (Section 3). This connec-

tion provides insights on understanding the SimRank algorithms

and explaining our empirical result. Figure 1 shows this taxonomy.

Summary of Methodology. To compare different algorithms

fairly, we re-implement all of them with the same data structure and

execution framework, and our implementations are at least as fast

as the state-of-the-art work [20]. We compare these algorithms with

multiple metrics including efficiency, effectiveness, robustness, and

scalability. We also study the impact of different graph structures

on the performance of these algorithms.

Summary of Results. We find that, across twelve real-world

datasets, iterative method, if it can finish execution, has the high-

est accuracy; however, this method often suffers from scalability

issues on large graphs. Non-iterative method algorithms based

on low-rank matrix decomposition do not support top-k query well.

Moreover, their accuracy is often lower due to the lossy low-rank

approximation. On the other hand, Par-SR, a non-iterative algo-

rithm that does not adopt the low-rank approximation but uses the

sparse matrix techniques instead, has good efficiency and effective-

ness. Algorithms based on random walk can often scale to large

graphs; however, their performance and accuracy are often sensi-

tive to the structure of the graphs. For graphs with a local sparse

structure (Section 5.1.1), TopSim-based solutions perform better;

while for graphs with a local dense structure, algorithms based on

Monte Carlo sampling, like FP-SR and TSF, often perform better.

Summary of Contributions. In this work, we compared

the existing SimRank algorithms and conducted experiments to

demonstrate their differences. Our contribution is as follows:

1. We introduced a taxonomy of different algorithms for com-

puting SimRank and classified each existing algorithm into

one of the three categories.

2. We proved theoretically the relationship between non-
iterative method and random walk and analyzed the loss

of accuracy of non-iterative method.
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Figure 1: Taxonomy of SimRank algorithms.

3. We re-implemented all of the algorithms with the same

framework and optimized each to give a fair comparison.

4. We empirically compared these algorithms on efficiency, ef-

fectiveness, robustness as well as scalability. Based on the

result, we provided suggestions on how to choose an algo-

rithm for a given dataset and target accuracy.

Overview. The rest of the paper is organized as follows: We in-

troduce the preliminaries and the taxonomy of SimRank in Sec-

tion 2 followed by the relationships of these categories in Section 3.

In Section 4, we present different algorithms under the three cate-

gories and discuss their advantages and disadvantages. Experimen-

tal results are shown in Section 5 and related work is described in

Section 6. Finally, we conclude the work in Section 7.

2. OVERVIEW OF SIMRANK
We first review the definition of SimRank and introduce the top-

k query problem. We then describe the taxonomy of the different

algorithms for computing SimRank. Table 1 summarizes some no-

tation frequently used in this section.

2.1 Problem Definition
Given a graph G(V,E), SimRank measures the similarity be-

tween two vertices using the graph structure. The intuition is that

two vertices are similar if they are connected to neighbors that are

also similar. Formally, the SimRank score between two vertices a
and b is defined as follows:

S(a, b) =







1 if a = b,

c

|I(a)||I(b)|

|I(a)|
∑

i=1

|I(b)|
∑

j=1

S(Ii(a), Ij(b)) if a 6= b,

(1)

where c is a damping factor between 0 and 1 and I(a) represents

all the in-neighbors of vertex a. The SimRank score between a

vertex and itself, i.e., S(a, a), is always 1. If a vertex a has no

in-neighbors, ∀b 6= a, S(a, b) = 0.

Let A be the adjacency matrix of the graph G, W the column-

normalized matrix of A, and S the similarity matrix that we want

to calculate. We can rewrite Equation 1 as

S = (c ·W ′SW ) ∨ I, (2)

where I is an identity matrix and W ′ is the transpose of W . The

operator ∨ sets the diagonal elements of the left-hand side to the

corresponding element of the right-hand side.

For many applications, it is not necessary to compute the ful-

l matrix S, and many algorithms, as well as our study, focus on

Table 1: Summary of notations.

Symbols Description

G(V,E) Graph G with vertex set V and edge set E

I(a) In-neighbors of vertex a

d Average in-degree of a graph

n,m Number of vertices and edges in a graph

S(a, b) SimRank score between vertices a and b

W
Column-normalized matrix of

the adjacency matrix of graph G

W ′ Transpose matrix of W

I Identity matrix

c Damping factor

t, T tth step and iteration number

r Rank

answering top-k queries [12, 11, 10, 5, 20, 6]1:

DEFINITION 1. (Top-k Query) Given a vertex u as the query

vertex and a constant number k, the task of answering the top-k
query returns k vertices that are most similar to u together with the

corresponding scores.

2.2 Taxonomy of SimRank Algorithms
Existing algorithms can be organized with the following taxono-

my, namely (1) iterative method, (2) non-iterative method, and

(3) random walk. We now describe these categories and leave the

detailed discussion and description of each algorithm to Section 4.

Iterative Method. Iterative method answers the SimRank

query in an iterative way following

St = (c ·W ′St−1W ) ∨ I, (3)

where t is the number of iterations. Algorithms in this category [8,

16, 26] follows Equation 3 by iterating to the fix point. To make

each iteration faster, different algorithms exploit different optimiza-

tions to reduce the redundant computation for each iteration.

Noniterative Method. The operation ∨ in iterative method
makes it hard to apply the techniques in linear algebra, such as

the low-rank approximation of a matrix, to calculate SimRank ef-

ficiently. As a result, non-iterative method [6, 12, 27] uses a

correction matrix (1− c)I to replace the operation ∨ as follows:

S = c ·W ′SW + (1− c)I. (4)

Because Equation 4 is a linear system, we can take advantage

of decades of studies on solving linear systems to design efficien-

t approximation algorithms. However, because (1 − c)I is only

an approximation of ∨, it sometimes incurs a loss of accuracy in

computing the true SimRank score, as we discuss in Section 3.2.

Random Walk. It is also possible to interpret SimRank with cou-

pled random walks. The SimRank score S(u, v) is equal to the

expected-f meeting distance [8], which can be computed as:

S(u, v) =

∞∑

t=0

ct ·
∑

w∈V

pft(u, v, w), (5)

where c is the damping factor, V is the set of vertices, and

pft(u, v, w) is the probability of a pair of random walks Lu, Lv

satisfying the following conditions: (1) Lu and Lv start from u
and v, respectively; (2) The lengths of Lu and Lv are t; and (3) Lu

and Lv meet at w and it is the first time that they meet.

Based on Equation 5, one can calculate the expected-f meeting

distance for the SimRank computation, which treats random walks

1There are other tasks related to SimRank, e.g., all-pairs SimRank
query [8, 16, 26], single-pair SimRank query [12, 6, 10, 5, 20, 14],
range query [6], and similarity join [27, 28, 24]. In this paper, we
focus on the top-k query because of its popularity.
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as building blocks. To calculate the expected-f meeting distance,

different algorithms exploit different techniques, like enumerating

all the possible coupled random walks [11] or sampling some of

them for estimation [10, 5, 20] via efficient sampling techniques.

3. DISCUSSION OF TAXONOMY
The equivalency between iterative method and random walk

was known in the original SimRank paper [8]. We now establish

the relationship between non-iterative method and random walk.

3.1 Theoretical Analysis
From Equation 4 we have

S(u, v) = (1− c)

∞∑

t=0

ct · e′u(W
′)t ·W tev, (6)

where eu is an n× 1 all-zero vector except that the uth element is

1, and similarly for ev . We further expand Equation 6 as

S(u, v) = (1− c)

∞∑

t=0

ct ·

n∑

i=1

((W teu)
′)i · (W

tev)i, (7)

where ((W teu)
′)i and (W tev)i denote the ith elements of vectors

(W teu)
′ and W tev , respectively.

We can think of W as the transition matrix and eu and ev as the

probability vectors of two random walks Lu and Lv starting from

vertices u and v, respectively. Thus, (W teu)
′
i represents the prob-

ability of random walk Lu ending at vertex i at the tth step. A sim-

ilar analysis holds for (W tev)i. As a consequence, ((W teu)
′)i ·

(W tev)i is exactly the probability of two random walks meeting

at vertex i at the tth step. Then
∑n

i=1((W
teu)

′)i · (W
tev)i is the

probability of u and v meeting at all vertices at the tth step.

Comparing with Equation 5, it is clear that the value of Equa-

tion 8 is exactly the expected-f meeting distance between u and v
without the first-meeting restriction:

∞∑

t=0

ct ·

n∑

i=1

((W teu)
′)i · (W

tev)i (8)

Comparing Equations 7 and 8, it can be inferred that the result

of non-iterative method is scaled (by (1− c)) to that of random
walk without guaranteeing first-meeting.

3.2 Implication on Accuracy
We just showed that non-iterative method is equivalent to ran-

dom walk without the first-meeting constraint. We now analyze

the impact of this relaxation on accuracy of non-iterative method.

THEOREM 1. Assume that the accurate SimRank score be-

tween vertices u and v is S(u, v), and that the SimRank score com-

puted without the first-meeting constraint is S′(u, v), then we have:

1 ≤
S′(u, v)

S(u, v)
≤

1

1− c
.

PROOF. Let f(u, v, w) denote the contribution of two random

walks starting from u and v, respectively, and meeting at vertex w
and only at vertex w. Then according to Equation 5, we have:

f(u, v, w) =
∞∑

t=0

ct · pft(u, v, w), (9)

where c is the damping factor of SimRank and pft(u, v, w) is de-

fined in Equation 5.

Correspondingly, let f ′(u, v, w) represent the first-meeting con-

tribution plus those of later meetings from vertex w, i.e.,

f ′(u, v, w) =
∞∑

t=0

(

ct · pft(a, b, w)

+

∞∑

l=1

cl+t · pft(a, b, w) · pl:(w,w)−→(x,x)

)

, (10)

where pl:(w,w)−→(x,x) represents the probability of two random

walks that both start from vertex w meeting at any vertex x at the

lth step.

Combining Equations 9 and 10, we have:

f ′(u, v, w) = f(u, v, w) ·

(

1 +
∞∑

l=1

clpl:(w,w)−→(x,x)

)

,

i.e.,

f ′(u, v, w)

f(u, v, w)
= 1 +

∞∑

l=1

clpl:(w,w)−→(x,x). (11)

Considering that pl:(w,w)−→(x,x) ≤ 1, we have:

f ′(u, v, w)

f(u, v, w)
≤ 1 +

∞∑

l=1

cl =
1

1− c
. (12)

Furthermore, we have the following inequality straightforwardly

following from Equation 11:

f ′(u, v, w)

f(u, v, w)
≥ 1. (13)

According to the definition of f(u, v, w) and f ′(u, v, w), we

have:
S′(u, v)

S(u, v)
=

∑n

w=1 f
′(u, v, w)

∑n

w=1 f(u, v, w)
. (14)

Combining Equations 12, 13, and 14, we have:

1 ≤
S′(u, v)

S(u, v)
≤

1

1− c
.

4. ALGORITHM ANALYSIS
In this section, we elaborate on the state-of-the-art algorithms

that compute SimRank according to the taxonomy in Figure 1.

4.1 Iterative Methodbased Algorithms
The key for algorithms based on iterative method is to reduce

the repetitive computation during the iterations. The accuracy of

iterative algorithms depends on the number of iterations. Theoreti-

cally, the result is accurate asymptotically.

4.1.1 NaiveSR

Naive-SR [8] is a naive iterative solution following Equation 3.

It computes the similarity between all vertex pairs with O(Td2n2)
time and O(n2) space cost, where d is the average in-degree. To

speed up, Naive-SR also provides some pruning skills by setting

the SimRank score between two vertices far apart to be zero.

4.1.2 PartialSR

Partial-SR [16] is an improved version of Naive-SR. Partial-SR

stores the intermediate results, namely partial sums, to avoid some

redundant computation.

Redundant computations exist in each iteration. As shown in

S(a, b) =
1

I(a) · I(b)

∑

x∈I(a)

∑

y∈I(b)

S(x, y)

︸ ︷︷ ︸

PartialI(b)(x)

, (15)

the part denoted by PartialI(b)(x) is computed repeatedly whenev-

er S(a, b) is computed, where vertex x is an in-neighbor of vertex
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a. For example, as shown in Figure 2, vertex a and vertex b have

a common in-neighbor c. To get S(a, p) and S(b, p) for a given

vertex p, PartialI(p)(c) is computed twice.

Partial-SR stores all the partial sums that have been computed

in an iteration to accelerate the computation. Therefore, Partial-SR

improves the computation cost of SimRank from O(Td2n2) time

to O(Tdn2) with additional O(n) space cost.

Discussion. Two optimizations are further applied for a speed-

up. First, only the upper triangular of the similarity matrix S is

computed due to its symmetry. This reduces the processing time

by half. Second, not all partial sums are computed in each itera-

tion. When computing S(a, ∗), we compute only part of the partial

sums, i.e., PartialI(a)(y) with y belonging to {I(b)|b < a}. This

also helps reduce the processing time.

a b

c d e f

Figure 2: An example graph for Partial-SR and OIP-DMST.

4.1.3 OIPDMST

OIP-DMST [26] eliminates duplicate computation in a finer

granularity than Partial-SR. The basic idea is to change the com-

putation order of partial sums and use partial sums of a vertex to

compute the others if these two vertices share many common in-

neighbors. Next, we discuss the repetitive computation in partial

sums and introduce how to determine the computation order.

Duplicate summations exist when computing partial sums. For

example, in Figure 2, vertex a and vertex b have three com-

mon in-neighbors, {c, d, e}. When computing PartialI(a)(p) and

PartialI(b)(p) with respect to a given vertex p, Partial-SR com-

putes them separately. However, OIP-DMST uses PartialI(b)(p)
to compute PartialI(a)(p) as PartialI(a)(p) = PartialI(b)(p) +
S(f, p), which eliminates two additions.

A cost graph GS is constructed to determine the computation

order of partial sums. Each vertex in GS denotes a partial sum and

each edge represents the cost of using one partial sum to compute

the other. Then the minimum spanning tree of GS describes the

computation order of partial sums in OIP-DMST. As a result, OIP-

DMST needs O(dn2) time to generate the cost graph and O(n2)
time to find the minimum spanning tree.

Discussion. Like Partial-SR, only the upper triangular similar-

ity matrix is computed in OIP-DMST. However, this cannot ac-

celerate the computation as much as it does for Partial-SR. This

is because the computations of partial sums and SimRank scores

in OIP-DMST are strictly separated. All the partial sums for ver-

tex u have to be computed before getting any SimRank score with

respect to u. Furthermore, the partial sums are interrelated since

some of them are needed to compute others. As a result, all the

partial sums have to be computed.

4.1.4 Summary

The main optimization of iterative method lies in reusing in-

termediate results. Partial-SR and OIP-DMST calculate SimRank

faster compared to Naive-SR by storing the partial sums. However,

there still exist two shortcomings in algorithms based on iterative
method. One is that the time complexity of these algorithms is

at least quadratic and they cannot process large-scale graphs effi-

ciently. The other is that these algorithms cannot get part of the

SimRank scores without computing the whole similarity matrix.

Thus, when handling a single-pair query or a top-k query, iterative

algorithms have to compute all SimRank scores for indexing.

4.2 NonIterative Methodbased Algorithms
The basic idea of non-iterative method-based algorithms is to

use linear algebra techniques, such as the low-rank approximation

of a matrix and sparse matrix multiplication, to solve Equation 4.

4.2.1 NISim

NI-Sim [12] was the first non-iterative algorithm to compute

SimRank. It uses two operators, the Kronecker product and the

vectorization operator, to extract the similarity matrix and further,

it uses the low-rank approximation to approximate SimRank.

Preprocessing phase. Based on the Kronecker product and the

vectorization operator, Equation 4 can be rewritten as:

vec(S) = (1− c)(I − c(W ′ ⊗W ′))−1 vec(I).

Moreover, NI-Sim performs singular value decomposition (SVD)

on matrix W ′ to get an approximation. Let W ′ = UΣV , according

to the Woodbury formula,2 then S can be computed as

vec(S) = (1− c)(vec(I) + cKuΛVr),

where Ku = U⊗U , Λ = (K−1
Σ −cKvu)

−1, and Vr = Kv vec(I).
Kvu = KvKu. As a result, matrices Ku, Λ, and Vr are stored as

the index for querying.

Querying phase. In this phase, NI-Sim uses the matrices stored

in the index to answer the query as

S(i, j) = (1− c)(I(i, j) + cVlVr),

where Vl can be computed as Vl = Ku((i− 1)n+ j, :)Λ.

Discussion. NI-Sim computes a single-pair SimRank query in

O(r4) time with O(n2r2+r4) space. The accuracy loss of NI-Sim

comes from the low-rank approximation of a matrix and from ig-

noring the first-meeting constraint. However, there are three short-

comings in this algorithm. First, the expensive index space require-

ment and the high complexity of SVD have restricted the applica-

tion scope of NI-Sim to small graphs. Second, SVD cannot pre-

serve the relative order of SimRank scores because it focuses on

minimizing the absolute error while SimRank scores are close to

each other empirically. Third, there is not an error bound for NI-

Sim for common cases.

4.2.2 SimMat

SimMat [6] is another non-iterative algorithm that computes

SimRank. It does so based on the Sylvester equation3 and low-rank

approximation of a matrix.

Preprocessing phase. SimMat transforms Equation 4 into the

form of the Sylvester equation by multiplying by W−1 on the left:

1

c
(W ′)−1S − SW =

1− c

c
(W ′)−1. (16)

Then an eigen decomposition is performed on matrix W :

W = PDP−1,

where D is the diagonal matrix with eigenvalues as the diagonal el-

ements and P is composed of the corresponding normalized eigen-

vectors. With some equivalence transformations, the result matrix

S is computed as

2http://mathworld.wolfram.com/WoodburyFormula.html
3https://en.wikipedia.org/wiki/Sylvester equation
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S = (P ′)−1XP−1,

where X can be computed via solving the following equation:

1

c
D−1X −XD =

1− c

c
D−1P ′P. (17)

To improve the efficiency further, SimMate and SimMats are

proposed via low-rank approximation techniques. For example,

SimMats performs SVD on matrix P−1 and stores the intermediate

matrix as the index.

Querying phase. SimMat uses the index to compute the Sim-

Rank scores. Furthermore, SimMat uses efficient pruning through

the Cauchy–Schwarz inequality for answering the top-k query.

Discussion. Likes NI-Sim, SimMat loses accuracy because of

the low-rank approximation and not guaranteeing first-meeting.

SimMat can be applied to limited real-world graphs. This is be-

cause when transforming the initial SimRank formula into the form

of the Sylvester equation in Equation 16 and computing the inverse

matrix of D following Equation 17, matrices W and D are required

to be reversible, which is hard to satisfy in real-world graphs.

4.2.3 ParSR

Par-SR [27] interprets SimRank as a linearized formula follow-

ing Equation 6. The most important part of Par-SR is that it answers

a top-k query without computing the whole similarity matrix. Sim-

Rank scores with respect to a given vertex u are computed as:

[ST ]∗,u = (1− c)
T∑

t=0

(W ′)t ·W teu. (18)

To reduce further the computational cost of Equation 18, Par-

SR uses the seed germination model [27] and successfully re-

duces the number of duplicate computations in each iteration, and

thus achieves O(Tm) time and O(Tn) space for answering a

top-k query. Furthermore, PrunPar-SR can reduce unnecessary

edge accesses. It uses sparse matrix multiplication technique to

reduce the number of accessing irrelevant vertices and achieves

O(min{Tm, d2T }) time efficiency, where d is the average in-

degree. In the following, Par-SR means PrunPar-SR for simplicity.

Discussion. Par-SR can be viewed as a special kind of random
walk-based algorithms according to the analysis in Section 3. It us-

es matrix–vector multiplication to simulate the random walks and

naturally groups the random walks with the same end vertices be-

cause a vector is inherently a hash map.

4.2.4 Summary

Non-iterative method uses (1− c)I to approximate the diago-

nal correction matrix and breaks the holistic nature of the SimRank

computation. However, SimMat, NI-Sim, and Par-SR all suffer

from not guaranteeing first-meeting as a consequence. Moreover,

different non-iterative algorithms lose accuracy from their own op-

timization techniques, such as the low-rank approximation of a ma-

trix and the limited number of iterations.

4.3 Random Walkbased Algorithms
Algorithms based on random walk interpret the similarity as

the expected-f meeting distance of two different vertices. These

algorithms fall into two categories: (1) Monte Carlo, which sam-

ples some coupled random walks to estimate the SimRank scores

by a Monte Carlo simulation, like KM-SR [10], FP-SR [5], and TS-

F [20], and (2) path enumeration, which enumerates all the possible

coupled random walks, like TopSim [11].

4.3.1 KMSR

KM-SR [10] is based on two observations. First, SimRank s-

cores can be approximated by a linear form in Equation 6. Second,

W teu can be thought of as the probability vector of vertex u end-

ing at each vertex after randomly walking t steps. Furthermore, the

probability vector can be computed via

W teu = E[eu(t)], (19)

by a Monte Carlo simulation, where E[eu(t)] is an n × 1 vector

with each element representing the expected probability of u end-

ing at the corresponding vertex at the tth step.

Combining these two techniques, KM-SR handles the top-k
query by a two-phase process.

Preprocessing phase. The preprocessing phase of KM-SR

consists of two parts, candidate selection and upper bound com-

putation. The intuition of candidate selection is that the vertices

frequently reachable from vertex u are probably the points where u
meets other vertices. Following this idea, KM-SR uses Monte Car-

lo simulation to select frequently reachable vertices for each vertex

u as follows.

For each vertex u, repeat the following procedure P times:

1. Sample a random walk W0 with length T from u, denoted

by {w01, w02, . . . , w0T }.

2. Sample Q random walks from u with length T , namely,

W1, . . . ,WQ.

3. For each vertex v in W0, KM-SR adds it to the candidate

list if there are at least two random walks ending at v at the

corresponding step.

KM-SR stores all the frequently reachable vertices for each ver-

tex as the index. The space and time needed are both O(n). Fur-

thermore, in the upper bound computation process, KM-SR stores

the norm of the probability vector for each vertex to filter the Sim-

Rank scores when querying.

Querying phase. Given a top-k query with respect to vertex u,

KM-SR first enumerates the vertices that have common frequent-

ly reachable vertices with u via the index. Then it computes the

similarity between u and the enumerated vertices via Equations 6

and 19. Finally, the top-k similar vertices are picked as the answer.

Discussion. The candidate selection in the preprocessing phase

is too harsh and there are few vertices in the candidate list. Suppose

that the random walk starts from u and ends at vertex w0i with

probability pi, then the probability of at least two random walks

ending at w0i can be computed as:

1− (1− pi)
Q −Q · pi · (1− pi)

Q−1.

Since there are T end vertices in random walk W0 and the pro-

cess is repeated P times, the expected number of candidates for

vertex u is:

P
T∑

i=1

(1− (1− pi)
Q −Q · pi · (1− pi)

Q−1). (20)

Furthermore, the probability of random walk W0 ending at a cer-

tain vertex, pi, is exponential to the step of the random walk, which

can be approximated by the average in-degree of vertices on the

path of random walk W0 as

pi ≈

(
1

d

)i

,

where d is the average in-degree. When the number of steps in-

creases, pi converges to zero. As a result, the value of Equation 20

is small. With the parameters set in the original work, i.e., P = 10,
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T = 11, and Q = 5, only a few vertices are preserved, mostly less

than ten for each vertex.

4.3.2 FPSR

FP-SR [5] uses the FPG data structure to store compactly the

random walks sampled via Monte Carlo simulation as well as the

distance at which each two random walks meet for the first time.

In the following, the FPG data structure is introduced and the de-

tailed operations during the preprocessing and querying phases are

provided.

FPG. An FPG organizes in a compact way one random walk with

length T for each vertex together with the distance where each two

random walks meet for the first time. FP-SR assumes that once two

random walks meet, they walk together. A good property of FPG is

that if the similarity of vertex pair (u, v) is not zero, then these two

vertices must be in the same branch of an FPG, which significantly

improves the search efficiency.

Preprocessing phase. FP-SR builds the FPGs as the index.

When building an FPG, FP-SR generates one uniform edge ei for

each vertex independently and extends random walks that have the

same last vertex i with edge ei. This not only improves the indexing

efficiency but also ensures the independence until the first meeting.

The space needed is O(nRg).

Querying phase. Given a top-k query of vertex u, FP-SR needs

to scan the branches in the FPGs that contain u and calculates Sim-

Rank scores with the stored distance where u meets others. The

graph connectivity of FPGs helps to filter out vertices that rarely

meet u.

Discussion. FP-SR answers a top-k query efficiently because it

does not need to calculate the distance where the query vertex meets

others when querying. The distance is also stored in FPGs. More-

over, the graph connectivity of a FPG helps to prune the vertices

that never meet the query vertex.

FP-SR has two shortcomings. One is that it is hard for FP-SR to

scale to large graphs for high accuracy since one FPG yields only

one meeting chance for a vertex pair. If high accuracy is required,

the space cost is expensive. The other one is that two random walks

are dependent in a top-k query because FP-SR assumes that two

random walks walk together after their first meeting. Although this

reduces the index space, the error bound is hard to give.

4.3.3 TSF

TSF [20] employs Monte Carlo sampling techniques to estimate

SimRank scores following random walk. It uses the novel one-

way-graph data structure to store the random walks efficiently. In

the following, we first describe the one-way-graph data structure

and then introduce the preprocessing and querying phases of TSF.

Oneway graph. A one-way graph is a novel compact data

structure that contains a random walk for each vertex. It is a graph

satisfying that each vertex has at most one outgoing edge, which

naturally meets the need of random walks that each vertex random-

ly chooses an outgoing edge.

Preprocessing phase. TSF samples Rg one-way graphs as the

index, where each one-way graph contains exactly n vertices and

no more than n edges. The time and space needed are O(nRg).

Querying phase. When answering a top-k query with respect

to vertex u, TSF repeats the following process for each indexed

one-way graph: (1) TSF samples Rq random walks starting from u
and extracts the meeting vertices and (2) for each meeting vertex v,

it expands on that one-way graph to find vertex u′ that meets u at

vertex v. The SimRank scores are estimated from these meetings.

The connectivity of one-way graphs also helps to filter out vertices

that are rarely reached by vertex u.

Discussion. TSF uses the two-phase sampling technique to cope

with a SimRank query. Each one-way graph is reused Rq times,

thus, it can achieve higher accuracy with limited index space by re-

sampling more random walks when querying. The graph connec-

tivity of one-way graphs can help to filter out unnecessary vertices

when querying top-k as FPGs do in FP-SR. However, the reuse

of one-way graphs also leads to a dependence among the random

walks for a top-k query.

4.3.4 TopSim

TopSim [11] avoids the global access of the graph because it

computes SimRank via enumerating the random walks within a

short distance.

For a top-k query of vertex v, TopSim repeats the following pro-

cedure T times: (1) It enumerates all the vertices that reach v at the

tth ∈ [1, T ] step and saves these vertices in the meeting point list

Ut and (2) for each meeting point u in Ut, TopSim enumerates the

vertices v′ that are reachable from u at the tth step. Intuitively, v′

and v meet at vertex u in exactly t steps, which contributes to the

similarity between vertex v and v′. After T steps, all the SimRank

scores with respect to vertex v are computed.

During the traversal of similarity paths, there exist some repeated

searches on the paths and TopSim-SM is proposed to merge such

similarity paths. For example, path {a −→ b −→ c −→ d} and path

{a −→ e −→ c −→ d} can be combined as {a −→ b/e −→ c −→ d}. As

a result, one traversal on edge {c −→ d} can be eliminated.

Furthermore, two heuristic solutions are provided for higher effi-

ciency by sacrificing effectiveness, i.e., TrunTopSim and PrioTop-

Sim. TrunTopSim sets two thresholds, h and η, to truncate the

high-degree vertices in the set of meeting points Ut when expand-

ing random walks. PrioTopSim applies a priority pool to select the

top H meeting point in Ut for answering a top-k query in a certain

time.

Discussion. TopSim-SM handles a top-k query in O(d2T ) time,

where d is the average in-degree and T is the length of the ran-

dom walk. As a result, TopSim-based algorithms can process large

graphs, since the efficiency does not rely on the scale of graphs.

However, they are sensitive to the graph structure. This is because

TopSim-based solutions enumerate all or most of the random walks

within a short distance. As a result, it runs fast on sparse graphs but

slowly on dense graphs. TopSim-based algorithms loses accuracy

because the length of random walks is short.

4.3.5 Summary

The key to Monte Carlo sampling-based algorithms, like FP-SR,

KM-SR and TSF, is to sample efficiently these coupled random

walks when querying or to store the random walks efficiently while

preprocessing. They lose efficiency due to the limited samples used

for estimating the expected-f meeting distance. Algorithms based

on path enumeration, like TopSim, focus on how to reduce the num-

ber of random walks efficiently. The accuracy loss comes from the

short length of the random walks.

5. EXPERIMENTAL ANALYSIS
We analyze the pros and cons of each algorithm with extensive

experiments. In particular, each algorithm is evaluated via effec-

tiveness, efficiency, robustness, and scalability (defined in Section

5.1.2). In the following, we first introduce the experimental envi-

ronment, then both the effectiveness and efficiency are compared
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according to the three categories; finally, the robustness and the

scalability of these algorithms are reported.

5.1 Experimental Environment
All experiments are conducted on a machine powered by two X-

eon(R) E5530@2.40GHz CPUs and 96GB memory, under Ubun-

tu 14.04.1 LTS. All the algorithms are implemented in C++ and

compiled by g++ 4.8.4 with the -O3 option. The low-rank approx-

imation of a matrix is computed via Armadillo [18], a C++ linear

algebra library.

5.1.1 Datasets

Experiments are conducted on both synthetic and real-world

datasets. The real-world datasets consist of small, medium, and

large datasets as shown in Table 2. The synthetic datasets are gen-

erated via networkX4.

Table 2: Dataset statistics.

Graph V E d

Tuning

BA1 1.0k 5.0k 5.0

BA2 1.0k 10.0k 10.0

BA3 5.0k 50.0k 10.0

ER1 1.0k 5.0k 5.0

ER2 5.0k 50.0k 10.0

Small

AirLine (AL) 0.5k 72.0k 157.8

ODLIS.NET (OD) 2.9k 18.2k 6.3

CA-GRQC (CG) 5.2k 29.0k 5.5

P2p-Gnutella08 (PG) 6.3k 20.8k 3.3

WikiVote (WV) 7.1k 103.7k 14.6

Medium

webNotreDame (ND) 0.3M 1.5M 4.6

webBerkStan (BS) 0.7M 7.6M 11.1

webGoogle (WG) 0.9M 5.1M 5.8

Large

LiveJournal (LJ) 4.8M 69.0M 14.2

wikipedia-en (WP) 25.9M 601.0M 21.1

it-2004 (IT) 41.3M 1150.7M 27.9

twitter (TW) 41.7M 1468.4M 35.3

In this paper, we further classify these graphs into two types, lo-

cal sparse and local dense ones. If a small proportion of the vertices

in a graph take up most of the edges, then this graph is a local dense

one. For example, WV, LJ, and TW are local dense graphs and the

rest of the real-world datasets in Table 2 are local sparse graphs.

Take WV as an example. More than 60% of the vertices have ze-

ro in-degree in WV, and as a result, the rest of the vertices form

a dense subgraph. For simplicity, we use “dense” and “sparse” to

represent “local dense” and “local sparse” in the rest of the paper.

5.1.2 Evaluation Metrics

Effectiveness, efficiency, robustness, and scalability are used to

evaluate each algorithm.

Effectiveness. For effectiveness, Precision, normalized dis-

counted cumulative gain (NDCG), and average difference (AvgDif-

f) are used to evaluate the quality of the returned top-k similar ver-

tices in a top-k query. In the following, these criteria are intro-

duced.

Suppose that the set of top-k similar vertices with respect to u
returned by the accurate algorithm and the approximate algorith-

m are {TopK} and {TopK′}, respectively. The corresponding

scores are S(u, v) and S′(u, v). Precision@k is defined as

Precision@k =
#|{TopK} ∩ {TopK′}|

k
,

where #|{TopK}∩{TopK′}| denotes the number of elements in

the set {TopK} ∩ {TopK′}. NDCG@k is

4http://networkx.github.io/

NDCG@k =
1

Zk

k∑

i=1

2Si − 1

log2(i+ 1)
,

where Si is the exact SimRank score of vertex u at rank i in the

returned top-k vertices and Zk is a normalization factor which en-

sures that the NDCG@k of an accurate solution is 1. AvgDiff@k
is defined as

AvgDiff@k =

∑

v∈{TopK}∩{TopK′} |S(u, v)− S′(u, v)|

#|{TopK} ∩ {TopK′}|
,

where |S(u, v) − S′(u, v)| denotes the absolute difference and

#|{TopK} ∩ {TopK′}| represents the number of elements in the

intersection of the two sets.

Algorithms have good effectiveness if they have high Precision

and NDCG and low AvgDiff. We set k as 50 for these criteria fol-

lowing the analysis in Section 5.2.2. For simplicity, Precision, ND-

CG, and AvgDiff are used to represent Precision@50, NDCG@50

and AvgDiff@50 in the rest of the paper, respectively.

Efficiency. Efficiency describes the speed of answering Sim-

Rank queries. In particular, the preprocessing time and query time

for each algorithm are reported.

Robustness. Top-k queries for an algorithm with respect to ver-

tices with different local structures have different performance. Ro-

bustness is used to describe how these queries differ in terms of ef-

ficiency. If an algorithm answers top-k queries on all vertices with

the same time cost, this algorithm is the most robust.

Scalability. For scalability, graphs with a different number of

vertices are used to demonstrate how the efficiency of these algo-

rithms change when the graph scale increases.

5.1.3 Parameter Setting

Of the ten algorithms we studied, there are five algorithms (NI-

Sim, SimMat, KM-SR, FP-SR and TSF) having hyperparameters.

Different settings of the hyperparameters, as we will show in Sec-

tion 5.2, often lead to different effectiveness and efficiency. For

fairness, we conduct careful parameter tuning to choose the most

appropriate parameters for each algorithm following the state-of-

the-arts [20, 12]: varying each parameter on several small graphs

and use it for large graphs. If the original paper hardcoded the val-

ue of a hyperparameter with justification, we follow their settings.

For example, for TopSim, we set T = 3 [11]. For Monte Carlo

sampling-based algorithms and NI-Sim, graphs with different local

structures and different scales are used for tuning according to the

analyses of algorithms in Section 4. Based on the tunning results in

Section 5.2.1, we use the parameters for each algorithms shown in

Table 3. For hyperparameters that are used to define the objective,

we set them as c = 0.8 and T = 10.

Table 3: Parameter values used in our study.

TSF FP-SR KM-SR NI-Sim

Rg = 300, Rq = 40 R = 500 R = 300 r = 30

5.1.4 Experiment Clarification

Some experiments could not be carried out due to the high time

or space cost. The corresponding reasons for those experiments

not being conducted is presented in Table 4. For example, the ro-

bustness of iterative algorithms was not checked because they are

robust by definition; the effectiveness on medium and large dataset-

s was not evaluated since the accurate SimRank algorithms, which

are used to compute effectiveness, ran out of memory, etc.
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Figure 3: Precision of FP-SR, KM-SR, TSF and NI-Sim with various parameter settings on five datasets.
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Figure 4: Effectiveness of different algorithms with various k for top-k queries on WikiVote.

Table 4: Experiments we omit in our study and the reasons.

Experiments not conducted Reasons

Efficiency of iterative algorithms on

medium and large datasets

Out of memory

Robustness of iterative algorithms Robust by definition

Scalability of iterative algorithms Out of memory

Effectiveness on medium and large

datasets

Cannot be computed because iterative al-

gorithms, which are used for computing

effectiveness, run out of memory

NI-Sim on medium and large datasets Out of memory

Robustness of NI-Sim Robust by definition

Scalability of NI-Sim Out of memory

Furthermore, the reported query time and effectiveness of each

algorithm on each dataset are estimated from 100 queries via s-

tratified sampling according to the vertex in-degree if there is no

specific clarifications.

5.2 Parameter Sensitivity
To ensure the fairness of our comparison among different algo-

rithms, we present the sensitivity analyses of the parameters used

in our experiment.

5.2.1 Sensitivity of Parameters in Algorithms

As discussed in Section 5.1.3, we use several graphs with dif-

ferent local structures and scales to tune FP-SR, KM-SR, TSF and

NI-Sim. The graphs are shown in Table 2. In particular, ER1 and

ER2 are generated based on the Erdos–Renyi model, in which all

the pairs of vertices are connected randomly with a given probabil-

ity. BA1, BA2, and BA3 are based on the Barabasi–Albert model,

which has a similar characteristic to real-world social networks.

The parameter sensitivity of these algorithms is shown in Figure 3.

Only the result of Precision is presented but it is similar for NDCG.

Note that there are two parameters for TSF (Rg and Rq) and we set

Rq as 40 and vary Rg following the original paper [20].

Figure 3 shows the parameter sensitivity of FP-SR, KM-SR, TS-

F, and NI-Sim on five different graphs. Not surprisingly, all algo-

rithms have higher Precision when the sampling number or the rank

of NI-Sim increases. We choose the most appropriate parameters

for each algorithm by a tradeoff between effectiveness and efficien-

cy. For example, R for FP-SR is set as 500 since the Precision of

FP-SR increases more slowly after 500. Similarly for KM-SR and

TSF in Figure 3(b) and 3(c), we set Rg for TSF and R for KM-

SR to 300. For NI-Sim, the rank is set to 30. It can be inferred

that Precision increases more slowly after 30. Another reason not

to choose a higher rank is that NI-Sim answers a top-k query in

O(nr4) time. A higher rank incurs a higher efficiency loss. The

resulting parameters from the experiments are shown in Table 3.

We find that, varying each hyperparameter has significant impact

on Precision for all algorithms. Therefore, for all algorithms with

hyperparameters, we recommend the users to tune them on small

graphs with similar local structures. In the rest of the paper, we use

the parameters tuned here by graphs with different local structures,

which can serve as a common case for comparison.

5.2.2 Sensitivity of k in Topk Queries

Previous works [11, 20, 27, 12] use different k values in met-

rics like Precision@k, NDCG@k, and AvgDiff@k to evaluate the

effectivenss of a SimRank algorithm. For fairness, we design an ex-

periment on two real-world datasets, WV and PG, to demonstrate

how these metrics in the different algorithms that compute Sim-

Rank would change when k varies. We vary k from 5 to 50 in steps

of 5. The result for WV is shown in Figure 4 while that for PG is

not presented because it is similar.

Figure 4 indicates that the relative order of Precision, NDCG,

and AvgDiff of each algorithm is well preserved as the parameter k
increases. A special phenomenon is that the AvgDiff of Par-SR and

KM-SR has a descending trend when k increases. This is because

both Par-SR and KM-SR ignore the first-meeting constraint. In the

following, we consider Par-SR in the explanation.

Given a top-k query with respect to vertex u, suppose that the

set of top-k similar vertices returned by the accurate algorithm and

Par-SR are {TopK} and {TopK′}, respectively. The score re-

turned by the accurate solution is S(u, v). Assume the accurate s-

core computed without guaranteeing first-meeting is S′(u, v), then

the score returned by Par-SR can be represented as (1− c)S′(u, v)
according to the discussion in Section 3.

With the above notations, AvgDiff@k of Par-SR is computed as

AvgDiff@k =

∑

v∈{TopK}∩{TopK′} |(1− c)S′(u, v)− S(u, v)|

#|{TopK} ∩ {TopK′}|
.

Furthermore, considering that S′(u, v) and S(u, v) are close to

each other practically due to our empirical observation, AvgDiff@k
of Par-SR can be further approximated by: |(1 − c)S′(u, v) −
S(u, v)| ≈ c · S(u,v), i.e.,

AvgDiff@k =

∑

v∈{TopK}∩{TopK′} c · S(u, v)

#|{TopK} ∩ {TopK′}|
,
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Figure 5: Results for non-iterative algorithms. Precision, NDCG, and AvgDiff describe the effectiveness while query time indicates

the efficiency. The dotted lines represent the exact solutions. The AvgDiff of exact solutions is 0.

where c · S(u, v) means the multiplication of c and S(u, v). When

k increases, more vertices with smaller SimRank scores are includ-

ed in the answer. However, AvgDiff@k is the average of these

differences, so AvgDiff@k decreases.

5.3 Effectiveness and Efficiency
In this section, the algorithms in different categories are com-

pared separately. Both efficiency and effectiveness are evaluated

for each SimRank algorithm.

5.3.1 Comparison of Iterative Algorithms

The efficiency of Partial-SR and OIP-DMST, together with the

corresponding optimized versions, namely, Opt-Partial-SR and

Opt-OIP-DMST, which only compute the upper triangular part of

the similarity matrix, are presented. The result of Naive-SR is not

presented for simplicity since Naive-SR consumes more time than

Partial-SR and OIP-DMST theoretically and experimentally. The

results are shown in Figure 6, where the run time of an algorithm

refers to the computation time for all-pairs SimRank. Effective-

ness is not considered because iterative algorithms produce exact

solutions.
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Figure 6: Run time (seconds) of iterative algorithms.

Figure 6 shows the efficiency of iterative algorithms on the five

datasets. First, OIP-DMST performs better than Partial-SR in most

cases since OIP-DMST reduces the amount of redundant compu-

tation in a finer granularity. For example, Partial-SR needs 130
seconds to finish the computation on WV while OIP-DMST needs

104 seconds. The reason why OIP-DMST is a little slower than

Partial-SR on PG is that PG is a sparse graph and there is little

redundant computation for partial sums, while OIP-DMST needs

extra time to determine the computation order of partial sums. Sec-

ond, Opt-Partial-SR is nearly twice as fast as Partial-SR because

half of the computation of the partial sums in Opt-Partial-SR are

avoided. On CG, for example, Partial-SR needs 34 seconds and

Opt-Partial-SR needs 18 seconds. Third, Opt-OIP-DMST does not

speed up as much as Opt-Partial-SR does. This is because the com-

putation of partial sums and SimRank values are separated. All

the partial sums have to be computed before getting any SimRank

scores. Finally, the efficiency of Opt-OIP-DMST is not always bet-

ter than Opt-Partial-SR due to the different degree of improvement

from the optimization of computing half of the similarity matrix.

For example, Opt-OIP-DMST is faster than Opt-Partial-SR on AL

but slower on WV.

5.3.2 Comparison of Noniterative Algorithms

Effectiveness and efficiency of the non-iterative algorithms are

evaluated with five small datasets. Specifically, comparisons be-

tween NI-Sim and Par-SR are reported since SimMat cannot run

on these datasets due to the irreversibility of the transition matrix

W . The results are shown in Figure 5.

Effectiveness. Figures 5(a) and 5(b) show that Par-SR outper-

forms NI-Sim in terms of Precision and NDCG. This is because

the accuracy of Par-SR is influenced by the number of iterations

and SimRank is accurate enough with ten iterations [10]. Howev-

er, NI-Sim loses accuracy because it uses SVD to approximate the

real SimRank scores but SVD fails to preserve the relative order of

estimated values.

Figure 5(c) indicates that NI-Sim does not always perform better

than Par-SR on AvgDiff. For example, AvgDiff of NI-Sim on WV

and AL is better than that of Par-SR but worse on OD and CG.

This is because, although both Par-SR and NI-Sim are based on

non-iterative method, which ignores the first-meeting restriction,

NI-Sim adopts SVD to compute SimRank. Thus, the NI-Sim result

fluctuates around the “accurate” SimRank scores computed without

guaranteeing first-meeting. As a result, the AvgDiff of NI-Sim is

sometimes better than Par-SR, sometimes worse.

Efficiency. Figure 5(d) indicates that Par-SR is much faster than

NI-Sim. For instance, Par-SR takes 0.005 seconds for a top-k query

while NI-Sim needs 1.744 seconds on PG. This is because, al-

though the time complexity for answering a top-k query in NI-Sim

and Par-SR is linear for both, the constant factor of NI-Sim is much

larger than that of Par-SR.

Summary. Par-SR outperforms NI-Sim in terms of effectiveness

and efficiency. This also indicates that the techniques based on

matrix decomposition do not work well with SimRank problems.

5.3.3 Comparison of Random WalkBased Algo
rithms

In this section, a comparison among algorithms which are based

on random walk is conducted. Par-SR is also compared since it

can be viewed as a special kind of algorithm based on random
walk as discussed in Section 3 and it outperforms the other two

non-iterative algorithms.

The datasets used here are five small datasets and three medium

datasets. We run these algorithms on all of the small datasets but

only the results for WV and PG are presented, as shown in Figures

7 and 8. For medium datasets, only the efficiency is presented in

Tables 5 and 6. The effectiveness cannot be computed because

accurate SimRank scores cannot be estimated for these medium

graphs as we claimed in Table 4.

Effectiveness. TopSim-based algorithms perform better on ef-

fectiveness than Monte Carlo sampling-based algorithms with lim-

ited samples. For example, the Precision and the NDCG of TopSim

based algorithms are higher than those of TSF, FP-SR, or KM-SR

on WV, as shown in Figures 7(a) and 7(b). This is because the

accuracy loss of TopSim-based algorithms comes from the limited
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Figure 7: Results for algorithms based on random walk on WikiVote. Precision, NDCG, and AvgDiff describe the effectiveness

while query time indicates the efficiency. The dotted lines represent the exact solutions. The AvgDiff of exact solutions is 0.

0 5 10 15 20 250.5

0.6

0.7

0.8

0.9

1.0

P
r
e
c
is

io
n

(a) Precision

0 5 10 15 20 250.5

0.6

0.7

0.8

0.9

1.0

N
D

C
G

(b) NDCG

0 5 10 15 20 250.00

0.02

0.04

0.06

0.08

0.10

A
v
g
D

if
f

(c) AvgDiff

0 5 10 15 20 2510
−4

10
−3

10
−2

10
−1

10
0

Q
u

e
ry

T
im

e
(s

)

FP-SR

KM-SR

TSF

TopSim-SM

PrioTopSim

TrunTopSim

Par-SR

(d) Query Time

Figure 8: Results for algorithms based on random walk on P2p-Gnutella08. Precision, NDCG, and AvgDiff describe the effectiveness

while query time indicates the efficiency. The dotted lines represent the exact solutions. The AvgDiff of exact solutions is 0.

length of the random walks and SimRank converges fast in a short

distance. However, the accuracy of Monte Carlo sampling-based

algorithms like TSF is restricted by the number of samples used.

Monte Carlo sampling-based algorithms perform better on local

sparse graphs than on local dense graphs. For example, the Pre-

cision of FP-SR on WV is lower than that on PG, 0.57 and 0.89,

respectively, as shown in Figures 7(a) and 8(a). WV is a local dense

graph and it incurs more paths starting from the query vertex than

PG. As a result, the original number of sampled random walks can-

not characterize well all the paths in WV. The number of samples

has to increase if a higher accuracy on WV is needed.

TSF performs better than FP-SR on dense graphs. For example,

the Precision of TSF on WV is 0.83, much higher than that of FP-

SR, 0.57, as shown in Figure 7(a). When answering a top-k query,

FP-SR scans the indexed FPGs while TSF resamples Rq random

walks for each indexed one-way graph. Thus, the number of cou-

pled random walks used in TSF is much higher than that of FP-SR.

Algorithms not guaranteeing first-meeting have poor AvgDif-

f but good Precision and NDCG. For example, Par-SR has poor

AvgDiff on WV and PG, about 0.01 and 0.06, respectively, but it

has good Precision and NDCG, as shown in Figures 7 and 8. This is

because the results for Par-SR are scaled to the accurate SimRank

scores without guaranteeing first-meeting by a factor of (1− c), as

discussed in Section 3. Therefore, the SimRank score is not accu-

rate but the relative order is preserved.

Efficiency. The efficiency of TopSim-based algorithms is sensi-

tive to graph density. TopSim-SM performs poorly for dense graph-

s. For example, a single query for TopSim-SM on WV takes 16
seconds while it needs only 0.001 seconds on PG, as shown in Fig-

ures 7(d) and 8(d). This is because TopSim-based algorithms rely

heavily on local graph structures. They enumerate all the random

walks like TopSim-SM. TrunTopSim and PrioTopSim improve the

efficiency by pruning random walks with small probabilities. How-

ever, this still does not ease the situation because the number of

random walks is still exponential with the number of walking step-

s. For example, on WV, TrunTopSim takes 8.2 seconds to answer a

top-k query, PrioTopSim takes 1.36 seconds while TSF needs only

0.06 seconds, as shown in Figure 7(d).

The efficiency of TSF is better than that of KM-SR, while it is

worse than that of FP-SR. For example, when answering a top-k
query on ND, TSF takes 0.67 seconds while FP-SR needs 0.11 sec-

onds and KM-SR uses 28.2 seconds, as shown in Table 5. The effi-

ciency of KM-SR is poor because all SimRank scores with respect

to the given vertex have to be computed for picking the k most sim-

ilar vertices as the answer. However, FP-SR and TSF use the graph

connectivity of the index to avoid a global search of the top-k sim-

ilar vertices. Furthermore, TSF is slower than FP-SR because TSF

resamples Rq random walks and calculates the points where the

sampled coupled random walks meet when querying, while FP-SR

just needs to scan the indexed FPGs because the information about

the meetings is also stored in the FPGs.

Table 5: Query time (seconds) on medium datasets.

ND BS WG

KM-SR 28.2 305 160

TopSim-SM 0.09 0.04 0.03

TrunTopSim 0.08 0.02 0.02

PrioTopSim 0.01 0.01 0.01

TSF 0.67 0.16 0.10

FP-SR 0.11 0.02 0.02

Par-SR 0.22 0.53 0.80

Table 6 shows the index building time of Monte Carlo sampling-

based algorithms. It can be concluded that FP-SR needs more time

to build the index. For example, FP-SR needs 168.2 seconds while

TSF needs only 18.8 seconds on BS. This is because FP-SR not

only samples the random walks but also computes the points where

each pair of random walks first meet when building the index.

Table 6: Index building time (seconds) on medium datasets.

ND BS WG

KM-SR 32.7 47.6 69.8

TSF 8.9 18.8 28.4

FP-SR 79.5 168.2 216.6

Summary. Algorithms based on random walk have their own

advantages and disadvantages. Path-enumeration-based algorithm-

s, like TopSim-based solutions, have good accuracy but their ef-

ficiency is sensitive to graph density. FP-SR can answer a top-k
query fast but the index cost is expensive. TSF achieves a balance

between space and time cost with good accuracy. The efficiency of

KM-SR is not acceptable.

5.4 Robustness Analysis
To demonstrate the robustness of each algorithm, two experi-

ments on LJ and BS, a dense graph and a sparse graph, respectively,

were conducted with the in-degree of vertices increasing from 10
to 160 in steps of 10. The results are shown in Figure 9. The query

time for each in-degree is the average of ten queries. The results for

TopSim-SM and KM-SR on LJ are not presented since they cannot

finish in 20 hours. Iterative algorithms were not evaluated because
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Figure 9: Robustness of SimRank algorithms on webBerkStan and LiveJournal.
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Figure 10: Scalability Results.

they are robust by definition.

Figure 9 presents the robustness of each algorithm on BS and

LJ. First, Monte Carlo sampling-based algorithms are robust. For

example, the efficiency of TSF remains almost unchanged as the

vertex in-degree increases on BS and LJ, as shown in Figures 9(a)

and 9(b). This is guaranteed by the Monte Carlo sampling tech-

niques. The fixed number of samples used prevents the efficiency

of these algorithms from being affected by the graph structures.

Second, Par-SR is robust as well. This is because the time com-

plexity of Par-SR is linear with the number of the edges in the graph

when the iteration number is set as ten. Finally, TopSim-based al-

gorithms are heavily affected by the vertex in-degree. The query

time increases wildly as the vertex in-degree increases, as shown in

Figures 9(a) and 9(b). This is because the length of random walks

in TopSim-based algorithms is fixed (T = 3) but they enumerate

most of the random walks. As the in-degree of the query vertex

increases, the local graph becomes denser and it incurs exponen-

tially more random walks. Therefore, the TopSim-based solutions

require more time to answer the query.

Summary. TSF, KM-SR, FP-SR, and Par-SR are robust and can

answer a top-k query in a stable time. TopSim-based algorithms are

sensitive to the graph structure and the query time increases sharply

as the in-degree of the query vertex grows.

5.5 Scalability Analysis
We report how each algorithm performs for graphs with different

scales. The datasets used here have various numbers of vertices

from 0.2 million to 1 million, with the average in-degree set as

ten. The result for KM-SR is not presented for clarity of the figure

because KM-SR consumes 200× more time than other algorithms

on these datasets. The scalability of iterative algorithms was not

tested because they can only handle small graphs. Furthermore,

extra large real-world datasets are used to demonstrate how each

algorithm performs under large-scale graphs.

Figure 10 demonstrates how the efficiency of each algorithm

changes when the scale of the graphs increases. First, the efficien-

cy of FP-SR and TSF remains almost unchanged when the graph

becomes bigger. This is because both FP-SR and TSF use a fixed

number of random walks to approximate SimRank scores. The in-

creased graph size causes the index building process to consume

more time but has little effect on the in-memory query process.

Second, TopSim-based algorithms are not influenced by the graph

scale because they enumerate all the random walks in a local area

(T = 3) to compute SimRank scores. When the scale of the graph-

s increases while the local structures remain unchanged, the effi-

ciency of TopSim-based solutions is stable because the number of

random walks used for computing SimRank remains unchanged.

Finally, the query time of Par-SR increases linearly with respect to

the graph scale. This is because the time complexity of Par-SR is

linear with the graph size when the iteration number is set to ten.

Table 7 shows the efficiency of SimRank algorithms on four

large real-world datasets. First, FP-SR cannot handle large graphs.

For example, FP-SR on WP runs out of memory due to the high

space cost for the index. Second, TSF can process large graphs,

like IT and WP, efficiently. The reason why TSF needs more time

on TW is that TW is so dense that fewer vertices are filtered by the

connectivity of one-way graphs. Third, TopSim-based algorithms

cannot answer a top-k query in large dense graphs, like TW. This

is due to the extremely dense substructure of TW. Finally, Par-SR

can handle large graphs, like LJ and IT, in a relatively stable time.

Table 7: Query time (seconds) on large datasets. “MLE” stands

for “memory limited error”.

LJ WP IT TW

TopSim-SM 660.5 13.04 1.93 MLE

TrunTopSim 17.1 4.87 0.48 MLE

PrioTopSim 0.99 0.39 0.25 3603

TSF 0.63 2.29 1.31 174.7

FP-SR 0.12 MLE MLE MLE

Par-SR 22.11 68.03 116.6 751.2

Summary. The efficiency of TSF and FP-SR does not change

too much when the graph scale increases if the indices can be put in

memory. TopSim-based solutions can scale to large graphs but their

efficiency relies on the local structure of the graphs. The efficiency

cost of Par-SR increases linearly when the graph scale increases.

6. OTHER ALGORITHMS
Graph computing has attracted a lot of research interests [19, 22,

21, 4]. SimRank is an important similarity measure in graphs and

most of the SimRank algorithms are discussed and re-implemented

in our paper. However, there are still some other algorithms that do

not belong to the three classes or have poor performance for a top-

k query theoretically. Now we introduce them as a complement to

the SimRank topic.

FSSR. Li et al. [14] proposed FS-SR to compute the single-pair

SimRank in O(Td2 ·min{dT , n2}) time based on random walk.

However, it is expensive for FS-SR to handle a top-k query since it

has to calculate all SimRank scores with respect to the given vertex.

BlockSimRank. Li et al. [13] introduced BlockSimRank, an

efficient similarity computation algorithm that exploits the block

structure. BlockSimRank first partitions the graph into blocks.

Then it computes similarity scores in each block iteratively. Final-

ly, the similarity between vertices in different blocks is estimated.

As a result, BlockSimRank achieves a performance improvement

from O(Tn2d2) to O(Tn
4
3 d2) on average.

SRJ. Zheng et al. [28] introduced a new SimRank join-based

query problem, which aims to find vertex pairs (u, v) from two ver-

tex sets U and V (u ∈ U, v ∈ V ) whose SimRank scores are larger

than a given threshold. They proposed SRJ, which uses some stored

SimRank scores to compute the unknown ones by solving linear e-
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quations. However, SRJ cannot scale to large graphs because it

depends on the product graph (G×G).

TSJ. Tao et al. [24] introduced the top-k SimRank-based simi-

larity join problem, and proposed a solution, TSJ, which encodes

each vertex as a vector and computes SimRank via a vector–vector

multiplication. To cope with the top-k similarity join problem, TSJ

identifies 2k candidates and uses a tree-based WAND algorithm to

identify the answers based on the candidates. TSJ needs O(ndT )
space to store the vectors via sparse representation, where d is the

average in-degree of the graph.

7. CONCLUSION
In this paper, we discussed in depth the existing algorithms that

compute SimRank and classified them into three different cate-

gories, i.e., iterative method, non-iterative method, and random
walk. Furthermore, we set up a unified environment and compre-

hensively compared the algorithms via different metrics, including

efficiency, effectiveness, robustness, and scalability. Another crite-

ria is how easy an algorithm is to tune (e.g., users might prefer a

parameter-free algorithm even if it is slightly slower or less accu-

rate); however, as we will see, our guideline won’t change even if

we take the cost of hyperparamter tuning into consideration.

We provide the following high-level suggestions for choosing

algorithms given a SimRank task.

1. For sparse graphs, TopSim-based solutions perform better;

for small dense graphs, Par-SR is the most suitable solu-

tion. Moreover, Par-SR and TopSim-based have no hyper-

paramters to tune.

2. If the workload does not fit into the category above, Monte

Carlo sampling-based algorithms are recommended. For ex-

ample, we recommend TSF given large local dense graphs

(e.g. Twitter in Table 7.).

Furthermore, with the theoretical analyses and experimental s-

tudies, we summarized a grade table that describes the pros and

cons of each algorithm under different metrics in Table 8. There-

fore, users can find a good option given a SimRank task.

Table 8: Grades of algorithms for different metrics. The grade varies

from zero to five, and a higher grade indicates that the algorithm is bet-

ter at the corresponding metric. “I,” “N,” and “R” stand for iterative
method, non-iterative method, and random walk, respectively.

Algorithms Method
Effi-

ciency

Effective-

ness

Robust-

ness

Scala-

bility

Naive-SR I 1 5 5 1

Partial-SR I 1 5 5 1

OIP-DMST I 1 5 5 1

SimMat N 0 0 0 0

NI-Sim N 1 1 5 2

Par-SR N 3 5 5 4

KM-SR R 2 4 5 2

TSF R 4 4 5 5

FP-SR R 5 3 5 4

TopSim-SM R 4 5 2 5

TrunTopSim R 4 5 2 5

PrioTopSim R 5 4 3 5
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