$$
A D-769492
$$

AN EXPERIMENTAL INVESTIGATION OF A HIGH LIFT DEVICE ON THE OWL WING

George William Anderson
Air Force Institute of Technology
Wright-Patterson Air Force Base, Ohio
March 1973

DISTRIBUTED BY:




```
    Hi- Force losittute of Tectmology
    Wrigi:-Patte:Sor n:2, ohiu - i,jiz33
```

Unclassified
IB. GROUP

4. UESCR,PTIVE NOTES (T )PR OI report and inciuatwe dates)

AFIT Thesis

George r. Anderson
: Copiouin, USAF


- Miprceed for public release, distribution unlimited.

JEpiryc. Hit, Captain USAF yright-Patterson AFB, Ohio
Director of formation

A study was made of the aerodynamic function of the comblike fixtures found on the leading edge of owl wings. Microphotograph of an owl's wing showed the conj to resemble a row of spanwise twisted airfoils oriented to form a cascade. Smoke flow visualization tests on an owl wing showed that the comb acts as a cascade winch turns the flow close to the wing leading edge in a spanwise diraccion. Flow visualization experiments were run using flat plate and cambered airfoils with combs in a low speed three-dimensional wind tunnel. Results showed that the leading edge comb produced a stationary spanwise vortex that delays flow separation at high angles of attack. The high lift device was related to the vortex lift phenomena observed on delta wing aircraft. The comb's shall relative size, simple structure, and lack of moving parts may make it attractive for aircraft use.

## Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE
US Department of Commerce
Springfield VA 22151

## Best <br> Available Copy



AS NOTED IN THE NTIS ANNOUNCEMENT, PORTIONS OF THIS REPORT ARE NOT LEGIBLE HOWEXER, IT IS THEBEST REPRODUCTION AVAYABLE FROM THE COPY FURNISHED NTES BX THE CONTRIBUTOR.

## AN EXPERIMENTAL INVESTGATION OF

## A HIGH LIFT DEVICE ON THE OWL HING:

Thesis
GAM/AE/73-6 GEORGE Y. ANDERSON

> 'Apiroved for public release' dis:ribuun unimited.

# AN EXI cRIMEATAL NNESTIGATION OF 

## AHIGHELET DEUCE ON THE OWL WING

## THESIS

# Presented to the Faculty of the School of Lngineering: of the Air Force Institute of Technology <br> DC Air University In Partial Fulfilment of the Requirements for the Degree of Master of science 

by

George W. Anderson, B.S: Captain USAF

Graduate Aerospace-Hechanical Engineering March ly̆73

Approved for public release; distribution unlimited.
id

## Preface

Bionics, the sfudy of natural engineering systems, does not have a Jarge representation in the Hecrature of engineering. In fact, it is regarded by many as an uñonventinal approach to solving eng ineerIng probbems. Such a stand disregards the worderful advantage of havIng a working system or, in esseñe, the answer to the problemavait. able for observation and experiment. Wth the answer alreadiknown. one can concentrate on understanding and to some degree duplicating the system.

1 credit my introduction to binics to Captaln James nichmond reo cently graduated from the Aerospace Test Phot School at Edvards Aeb. Callornia. His knowedge of the phenomena related to owl frignt was the beginning of thls study. The focus of the study on the leading edge combof the owl wing wás Inspired by the book Structure forme Movement, by Henrichorertel. In this book the function of the comb is tuentified as unsolved problem in fluid dynamics Must important. thwever, the study would not bave been practical without the findings made by Dr. R.A. Kroeger of the University of Tennessee Space Institute. in a wind tunnel test of the owl wing.

1 made many friends in the engineering and biological sciences during my study of the owl ving. it would be less than fitting to omit the names of these who spent the most time in giving advice, direction, and encouragement In the study. Aeronautical enginaers Jerry Martin and James Snyder of the Prellminary Design Division, Directorate of Advanced Systems Design, ASD, sponsored the project and acted as advisors. Professor Harold C. Larsen, L: Colonel Frederick F. Tolle, and Captain R.F.

Bestgen were the AFiT faculty advisors. Captaln Roger Crawford and Mre Howard White of the Elight Dunamestaboratory contributed theip per sonal effort, techical hibrary and wind tund fethtoso finaliy. Mr. Robert Hoods, ovision of widfe State of ohio zandiro Richard Patterson of the outdoor Education Center, Antioch Coliege, made avaht abie Five owls and a thorough background of the owl s hablts and fight behaviour. To these people owe not onty the suceess of this profect but of iso an increased appreciation for the bionic approach to engineering studies:

Goorge M. Anderson

## Contents

Preface ..... 16
List of Figures ..... vir
List of Tithes ..... IxLtst of symbols$x$
Abstractxi

1. Tntroduction ..... 1
Rúrpose
Method: ..... a
Background ..... 1 ..... 2
2. Owi Wing Confliguration
. 1 ..... 5
3. Literature survé of Test Dota ..... 14
Wind tunner Test of ow wing
14
14
Kater Tundel Experiment
Kater Tundel Experiment ..... 17
Free flight Test of Live Owls ..... 17
1V. Phystcal Characteristics of owl Wings ..... 21
General features ..... 2
Wing Measurements
Wing Measurements ..... 24
Hooked Cemb
Hooked Cemb
Conclustons
Conclustons ..... 30 ..... 30 ..... 31
V. Experimental Equipment ánd Model Description. ..... 37
Wind Tumels
Photography ..... 37
Model's ..... 40
Airfolls ..... 40
Hooked Comb ..... 40
Procedure ..... 40 ..... 42
VI. Results ..... 47
Part 1
47
47
Part 2
Part 2
48
48
Part 3
Part 3
61
61
Theory
Theory
61
61
Vortex Lift
Vortex Lift
61
61
Spanwise Blowing
66
66
Bastard Wing ..... 68


## List of guries

Figure
Page
i owl Wing Configuration: ..... 634
Hooked Comb Magnified 20x. (The Wingtip ts to the Lefit ..... 11
5
Trailing Ede Fring ong Magnified 30 x ..... 12
6
Smooth Feather Vañe surface ..... 1378
910
2
2. Planform of Great Horned Owl Wing ..... 3
First Primary Feather with Hooked Comb ..... 10
Downy Eather Vane Surface ..... 13.
Fow over the ow Wing at Low Angles of Attack ..... 15
Fow over the Ow wing at Hoh Angles of Atack ..... 15
Streamines on Upper Wing Surface at High Angle of Attäck ..... 16
Streamilnes on Upper Wing Surface at High Angle of Artack and Leading Edge Gomb Removed (6) ..... 18
Flow turning Creating by the Hooked Comb (6) ..... 19
Comb shape Used in Warep Tunnel Experiments ( $(5)$ ..... 19
Wing Plañorm of Live Gieat Horned Owl. Bastard Wing, Located Forward at Mid-Span ..... 22
Wing of Live Barn Owl ..... 23
Owl Wing Sections ..... 26.
17
Wing Sections 1 and 2 ..... 27
Wing Sections 3 and 4 ..... 28
Section 5. Position of Tip Feathers Under Aeroelastic During Gliding Flight ..... 29
Comb Blades Magnified 30X ..... 32
21 View of Comb from Free Stream Direction ..... 33
22 Garbule Structure in Base Region ..... 3
23 Comb Blade, Top View ..... 34
24
Conb Blade, Side View ..... 34
25
Comb Blade, Lefi Oblique ..... 35
26
Comb: Biude, Right oblfane: ..... 35
27 Foi Triee foot Wind Tuñel ..... 38
28
ARL Low Turbutence Wind Tunnel ..... 39
29
Wind Models ..... 4
30 Tepered Comb Models. ..... 43
31 Hooked Comb Hodels ..... 44
32
Smoke Jow oń gastc ing Model A a- $15^{\circ}, V 5 \mathrm{ft} / \mathrm{sec}$ ..... 51
33 Who A fitted whith comb o $5 \% \mathrm{y}-5 \mathrm{ft} / \mathrm{sec}$ ..... 51
34. Spanwise Flow Turning:$a=30^{\circ}, y-f t / \mathrm{sec}$$S 2$
35 Spamise Vortexa $30^{\circ}, V-5 f i k z c$52
36
Low Pressure Region Under bastard ving av $30^{\circ}, 5 \mathrm{ft} / \mathrm{sec}$ ..... 53
37. Vortex Street Shed from Wing Leading Egge- $20 \%$ V 0 ft/sec53
38 Incipient stali on Plain Wing Nodel c
$\alpha=2^{\circ}, V=15 \mathrm{ft} / \mathrm{sec}$ ..... 54
39 Fully Separated Flow
x- $27^{\circ}, V=15 \mathrm{ft} / \mathrm{sec}$ ..... 54
404342 Flow Fully Attached Above Plain Wing Stail- $=23, V=15 \mathrm{ft} / \mathrm{sec}$56$\alpha 25^{\circ}, V-15+6$ se5
44. Large Separation Regionn ze 60\% Spañ$a-27^{\circ}, y=15 \mathrm{ft} / \mathrm{sec}$57
45 Small Separation Region at 75 Spar $0-27^{\circ} y=15 \mathrm{ft} / \mathrm{sec}$ ..... 57
46 Training Edge Separation: $\alpha=29 \% V=15 \mathrm{ft} / \mathrm{sec}$ ..... 58
47 Eully Separated flow
$\mathrm{a}=30^{\circ} \mathrm{V}=15 \mathrm{ft} / \mathrm{sec}$ ..... 58
48: Vortex Core thuninated$\alpha-30 \% v=15 \mathrm{ft} / \mathrm{szc}$59
49 Bastard Hing Instahedfflow Reatitaches$\alpha=30^{\circ}, V=15 \mathrm{ft} / \mathrm{sec}$59
50 Approaching Stall with Bastard Wing installed $a=34^{\circ}, v-15 \mathrm{ft} / \mathrm{sec}$ ..... 60
$5 i \quad$ Fully Separated Fiow$\alpha=40^{\circ}, V=15 \mathrm{ft} / \mathrm{sec}$60
52 Separated flow, Blowing off
$\alpha=35^{\circ}, V=25 \mathrm{f}: / \mathrm{sec}$ ..... 62
53
Actached Flow, Blowing on $a=35^{\circ}, v=25 \mathrm{ft} / \mathrm{sec}$ ..... 62
54 Vortex Stheet on Deita Wing (is) ..... 63
55 Hon-Linear Lift for Several Deita Wings (21) ..... 65
56 Non-Linear Wingtip Lift for Several Plànforms (14) ..... 67
57
iwo-Dimensionial Streami ines with Sparwise Blowing (16) ..... 68
56 Three-Dimensisnal Surface Flow Marked with Slurry (16) ..... 69
59 Lift Curves Obtained for Various Degrees of Biowing (i6) ..... 69
60 Vortex Sheets Genarated by the Bastard Wing ..... 70

## ctst of rables.

Table Page
1 Meásurenents of Severed Great Horned Owl Ving ..... 25
a Owl Wing Section Héasureñents ..... 25
111 Comb ofmensions ..... 45

## CAK/AE/73. 6

## List of Symbols

A Wing aspect rotio b bls
b Wing span.
c Ving choriod
$c_{\ell}$ Section lift coeffecient
G Total int coefficient
$C_{i_{\text {max }}}$ Naximumift coefficient
$C_{i j}$ Homéatum coefficient
$C_{1}$ Constant of proportionality for non-l inear wing-tip life
D Drag
1 Lift
.i. Máss flow-silugs/sec
9 Dynamic pressure
ane Reynolds number, $\frac{\rho V \ell}{\mu}$
s Wing area
Vj Jet velocity, spanilise blowing
$V_{50} \quad$ Freestream velocity
$y$ Weight
a Angle of attack

- Hass density of air


## Abstract

 8A study was made of the aerodynamic function of the comblike fixtures found on the leading edge of owl wings. Microphotographs of an, owl s' wing showed the comb to resemble row of spanwise twisted alrfolls oriented to form a cascade: Smoke fiow visualization tésts on an ow wing showed that the comb acts as a cáscade which turns the foow ciose to the wing leading edge in a spantise direction. Fiow visualizatoon experiments were Fun using flat plate and cämered afrojis with combs in a low speed three dimensional wind tunnel Results showed inat the leading edge comb produced a stationary spanwise voritex that delays flow separation at high angies of attack. The high lift device was related to the vortex lift phenomena observedion delta wing aircraft. The comb's small relative size, simple strupture, and lack of moving parts may make it attractive for aircraft uise.

## 1. Infroduction

## Purpose

Achievement of higher lff coefficients at extremely low irspeeds is oproblen of great importance in current stoldvol arcraft development. In spite of intensive research in this area miny of the current and proposed hiyh life systems suffer from serious shortconings. Among. thése are excessive mechanical complexity and high engtne thrust peñalties. In viow of these problemis an ideal high lift device could be ensvisioned a: one having, no moving parts, no direct use of engine thrist. and negligible effect on high speed performance. The high lift device found on the wings of most species of owls Jeserves the ofrodynamicist's attention in that it appears to have all of these ideal qualities. A previous wind tunnel study of an actual owl wing has identified the high llft function of a comb-like cascade located on the leading edge. Because of the limited nature of the study, no detalled data was gathered on the flow mechanism or performance of the high lift device. The purnose of this study was to identify the flow mechenism present on the owl wing and to produce a suitable analog or model of the device from which performance data could be measured in the wind tunnel. Further, recommendations are made as to the suitability of this device for use on conventional airfolls.

## Method

The general method of study followed guidelines appropriate for a thonics typa of investigation. The first step required examining and photographing the wings of live owls, obtaining components of owl wings for precise sectioning and measurement, and gathering data on owi flight

GAWAE/73-6
from biologists and naturalists: Concurrently a literature search was wade to gather avallabie data on aerodynimic theory relevant to bird Aifhic. Following the physical study of the owl wing, enough data was avallable to design and construit a model of the leading edge comb. This comb was tested on several simple aifoils using flow visualization techniques in= threedimensional wind tunnelo Insight gatned In the fiow visualization study suggested chahges in the comb model until a close duplication of the flow over the owl wing was attotined. Several fiow visüalization techniques were tried theluding smoke, thanium dioxide slurry, and tufts. The smoke tests proved to be the most successful and were used almost exclusively in the latter stages of the study. obiere vations from the smoke visualization showed the flow field to have niany of the characteristics associated with the leading edge vortex pheriomena observed on sharp leading edged del ta wings operating at high angles of attack. The literature search was then directed toward studles in this area and was successful in locating material that alded in explaining the fiow mechanism.

## Background

The unusual configuration of the owl wing was first brought to the attention of the aeronautical engineering community in 1934 when Lieutenant Cosmander R.R. Graham, R.N. wrote an articia on the subjuct in the Journal of the Royal Aeronautical Society (i). In this arsicle entitled "ihe silent flight of Owls" Graham describes the hooked comb:

Where is a remarkably stiff, comb-like fringe on the front margin of every feather that functions as a leading edge. The teeth of this comb are extensions of the barbs, or fibres, that form the front webb of the feacher. They vary lis length and distance apart
actording to the size o he bird and to their position Th the wing. The large of them are 400 mm in length, and 0.55 apart (1)e

This comb along with the other peculiarities of the owil wing was considered by Grahari as contributing to the owl's gulte flight. in the case of the comb, he proposes that aerodyamic guteting ls caused by a reduction in fiow velocity at the leading edge of the wing. following. Grahom, a trief consideration of the combts posible effect on sound generation is made by August Raspet In an arcicie pubitished on 1960 antitled Miophysics of Bird fllght" (2) Raspet compares the cömbs to cylindrical wires generating aeollan tones and notes that the frequency of the emitted tone is a function of the cylinder diameter: In later years the common use of varlous types of vortex generators to delay flow sèparation on airfolls has promoted the theory that combs. function in this manner and are not primarily intended for aerodynamic quieting, E.f. Blick of the University of Oklahoma states in an article entitied "bird Ac"odynamics" that stralght pins piaced on the feading. edge of an airfoil in an arrangement resembling the hooked comb results in an increase in lift (3). A recent NASA Technical Memorandum also sheoris that leading edge serrations result in significant increases in maximum lift coefficient by generating chordwise oriented vortices (4). The best presentation of the problem in engineering terms, however, appears in the book Struc, ure-Form-Hovement by Heinrlch Hertel (5). Here, the analysis considers shape, slze, orientation, and applicable Reynolds nember of the combwing system. Hertel makes the Important observation that the hooked comb does not resemble the vortex or turbulence generators used on conventional airfoils because of the orientation of the comb blades relative to the airfoll surface. The son-
clusion that Hertel reaches is that the function of the comb ts an unsolvéd problem in flutd dynamícs (5) In 1972 an extensive studs on owl fight waś made by Re Kroeger and others at the University of Tent pessee Spise Institute (6) The study entitled Low Speed Aerodinanjos. Sor UltranQuiet Flight, was a broad effort whose purpose was to measure the noise generated by the owl in filithe and to identify any mechanisms khat contributed to noise suppression. An important part of the study Eertered on the tooked comb conitguracionand involved a wind tunnel test of an owil wing. The results of this test showed that the comb delayed flow séparation on the outer half of the wing up to extremely high angles of attick. By probing the flow find with fufts, a mpping of the streamines over the top o the wings way obtained. This led to the discovery that the comb was producing a vortex shaet at the wang Teading edge and drecting spanise flow toward the ringtip. the data on streamltres and the discovery of the high lift function of the combs provided the basis on which the present study was undertaken.

## Gस $A / 4 E / 73-6$

## Ho: Dul Ming Configuration:

The Configuration of the owl wing extiblts features common to most birds. The skeletal structure consists of a inxage of bones that closeyf resembles the human arm. in figure the analogy can be tollowed starting with the sholitder joint, progressing down the upper arm, and reminating at the wris. joint. Outhoard of the wrist joint are bon sontrollable by the bird that terminate in feathers oriented at right angles to the direction of flight. These feathers are termed the primary flight feather's. Taken as a group they form a movable outert. portion of the wing that is often referred to collectively as th, manus. The feathers of the manus can be moved independently or as a group by the muscles. Filling out the remaining planform of the wing are the secondary feathers. These are held in place sy the flest or pataglum surrounding the bones of the forearm. The patagium in addition to securing the secondary feathers also forms the contour of the leading edge of the inner portion of the wing. Projecting forward from the top of the wrist area are a grouping of two to three short feathers that act as controllable aerodynamic "thumb". This feather system is cilled the alula or bastard wing and is well developed on the owl. The physical shape of the wing is completed by the presence of covert leathers which do not contribute to the pianform of the wing but give it additional contour or thickness. The covert feathers are attached to the pataglum both above and below the main filght feathers and concentrate, additional thickness on the wing in the region directly behind the led ding edge.

The primary and secondary feathers form the wing planform and are of special interest since they are also the wing's load carrying structure.

CAM/AE13"6.


## CATAE/BU 6

These feathers are composed of a central shaft with yanes or surfaces tunning along most of its bength. The vane is bullt up of a sertes of parallel rods or terbs that are bound together along their tength by barbules. The barbules function in a manner analogous to hook and eye fasteners or, mote closely, to the Velcro tape úsed as fástener in some elothing. This feature allows the barbs to form a selfarestoring surface when parted by abnormal leeal stresses.

It is obvious that the owl wing is a variable geometry device which lhtegrates the bird's thrust añ Mfit producting mechanisiss ás well as providing nost of the neanss for flight control. These factors requife. the whe to change its shape and configuration and to change from an active to a passive role as thrust requirements dictate one category of wing changes not under direct muscular control of the bird is the aeroelastic properties of the fllght feathers. Aerodynamic forces actIng on chese feathers can be resolved into tors lonal and bending moments actirg on the shaft. In-flight bending moments acting on the primary feathers of the manus cause the wingtip region to beend upward and open into a series of multipie airfoils. The orientation of these individual airfolls is not in the plane of the wing and varies with the owl's filight: condition. A close examination of the manus region in figure 2 shows that the first two primary feathers have their vane planform specifically designed to accentuate the slot effect. Bending effects on the secondary feathers result in a change in the physical camber of the inboard sections of the wing. Torsional moments about the feather shafts appear to play an important part in controlling the porosity of the wing surface. This porosity is formod by the slots that open between the filght feathers during the flapping or powered phases of flight. The
function and degree of thits porosity is not well understood, however. several studies bave been conducted in this fleld by the Russians (7,8)..

The ow wing possesses a number of characteristics not generaliy found on other bird wings. The first of these is the hooked comb on the leading edge of the first and second primary feathers. figures 3 and 4 show the comb position on the first primary feather. The comb is formed by the ends of the barbs that radiate from the shaft of the feathers. foward the extremity of she barbs the barbules that normally hold the vane together, part and allow the tif of the barbs to tulst along the raxis: to can be seen that the barbs toper sharply at the ends and retain the batbules on the outhoard side. The size of the Individual brazs of the comb that is formed varies with the size and species of owl as well as with the position along the shoft of the feather: Representative dimensions are 2 mi. for the separated portion of the bạrb and 0.7 mm. between bärb tips (5). A second peculiarity of the owl wing is the fringing that occurs in the vanes that make up the traking edge portions of the wing. This is shown in figure 5 . Instead of binding the vane together out to the apex of the barbs, the barbules again release their hold and the resulting separation of the barbs forms a discontinuous surface. The appearance of the separated barbs is quite different from that of the leading edge comb. On the trailing edge the barbs form soft, flexible streamers from which minute barbule filaments Cadiate in all directions. The final characteristic is the downy upper surface on the portions of the vanes that come in contact with adjacent feathers during filight. The contrast between downy and smooth areas on the upper vane surfaces is shown in figures 6 and 7 . Because the downy surfaces are present only in areas of physical centact, it is presumed



## OU/AE/T3:

that they perfon either a lubricating or quieting function (5).


1


Figure 5. Trailing Edge Fringing Magnified $30 \%$

Figure 6. Smooth Feather Vane Surface
$!$

Figure 7. Downy Feather Vane Surface

## GAM/AE/73:6

111. Literature Survey of Test Data.

The study of owl flight by Kroeger (6) contains a great deat of data on the aérodynamic performance of the individual devices present on the owl wing. The data relevant to the hooked comb problem falls in three main categories. These are wind tunnel tests of a severed owl wing, water tunnel tests of hooked comb analog, and free flight experiments using live owls. Each of these experiments is discusssed with respect to their contributions to the understanding of the function of the hooked comb.

Wind Tunnel Test of Owl Wing
A small owl wing was placed in a low speed wind tunnel and the flow over the wing stucied with smoke visualization and tufts. Kroeger found that the smoke flow over the outer half of the wing varied with angle of attack. As shown in rigures 8 and 9, the flow over the wing turned inboard at.low angles of atcack and outboard at high angles of attack. An examination of the flow pattern on the upper wing surface also revealed marked variatlons with angle of attack. At low angles of attack, the streamlines were primarily chordwise and no effect of the leading edge comb on the flow fleld could be seen. At high angles of attack, the comb created a spanwise flow toward the wingtip. This spanwise flow is shown in the surface streamline sketch of figure 10. In addition to creating this spanwlise flow component, the combs generated a vortex sheet at the wing leading edge. This vortex sheet extended from the bastard wing at mid-span out to the tip of the first primary feather. The action of the vortex sheet appeared to delay flow separation on the outer half of the wing to an angle of attack in excess of

## GAM/AE/JS=6



Figure 8. Flow Over the Ow! Wing at Low Angles of Attack


Figure 9. Flow Over the Owl Wing at High Angles of Attack

## GAH/AE/73-6



CAR/AETB-6

30 degrees. When the comb was removed from the leading edge, the wing stalted at a much dover angle of attack and a mapping of the surface flow (figure lif incicated that the spanwise vortex sheet wás absènt. Kroeger reported that the comb's effect on the flow field was highly three dimensional. As stoiw, in figure 12, the turfiting of the fiow through the comb is highest at the wing surface and decreases wifth increasing distance from the wing surface until the fiow th chordwise at the comb tips. No deformation of the comb cecuried during these tests in spite of the small relacive size of the individual teeth. in explaining the overali flow field or the uppep wing surface, Kroeger suggests that the vortex sheet and the unusual countertotating flow fields at mid-chord are created by the mutual action of the hooked comis, the bastard wing, and the slotted wingtip.

Hater Tunnel Experiment
Kroeger attempted to duplicate the vartex sheet flow created by the comb system in a small water tunnel. The shape shown in figure 13 proved successful. The comb was made of .0014 shim stock and each of the blades were twisted until the tips had a zero angle of attack with respect to the free stream. Although the analog appeared to create a vortex sheet downstream of the comb, no gests were conducted to measure its function as a high lift device.

## Free Flight Test of Live Dwls

A Barred owl (Strix yaria allenl) was used in Kroeger's ilight tests. The owl wis constrained to fly a relatively fixed flight path and measurements were taken by meins of photogra,hs. By computing velom city and glide angle during the gliding portions of the owi's flight,

GAMAEP-6


## SA $/ A E / 730$



Figure 12. Flow Turning Created by the Hookea Comb (6)

-Figure 13. Comb Shape Ised in Nater Tunnel Experiment (6)

GN/AE/T3 6
averige Revnotós nuinber and wo values were obtalned. tta keynolds nuber of approxiately $1.3 \times 10^{5}$, Kroeger reports the orly g tiong. Lo to be on the order of tus. This ts very low performance when compared to reported values of 16 to 20 for a soaring siack búzzazd Tif. Leter modifications of the oul's wirg Including removal of the leading: -dge conb failed to produce any noticable change in filight performonce. This result tended to Indicate thet the full aerodynanic copability of the wing was not used at the figh glide ansle used in the experfont.

## CAAER 6

## IV. Physical Characteristics of ed Kings

General Features:
Owls are classified in the biological order strigiformes. Most. of the members of this order haye the thoked conb configuration. For this investigation spectes of five ow'e were studied, the great horned owi (bubo virgintanus) and the barn owi (fyto alba). The planforms of their wings are shown in Figures 14 anu 15. In both photographs the hooked comb is plainly visible bin the first primary feather. The wing of the great horned owl is held in a position close to that observed in gliding flight. The outiline of the wing shows it to have an untapered inboäd section with an elliptically shaped típ or manus regioni Also, the individual prinary feathers exhibit elliptical tips. The bastard wing is Tocated at the approximate mid-point of the leading edge and is faired into the surrounding covert or contour feathers. The covert feathers, especially on the inner wing, are extremely light and downy. This characteristic lends credence to the theory held by several authors that the coverts form a compliant surface that functlons to delay boundary layer transition ( 5,9 ). This ability of a compliant surface to delay transition has been established by Kramer (10). Several flights of the great horned owl were observed. The owl was induced to fly between elevated perches in an outdoor enclosure 40 feet long. On most of the flights the owl-flew directily ovar the observer at heights of $2-3$ feet. A number of characteristizs were moted during the filghts:

1. The owl has an extremely long glide phase during which the wing remalns relatively fixed in planform
$G A / A E / 73-6$

and sweep. Figure 14 shows the wing held th a portion close to that observed In flight.
2. The bastard wing: was teld slighty open and swept fotward,
3. The deflection of the primary feathers was small but the tip slots:were clearly vistble.
4. The gllde angle was approximately 15 degreés.
5. Openings were not visible between the secondary feathers durling the gitating phase.

## Wing Measur ements:

Detralled measurements of an owl wing were made to study its aerodynamic characteristics. The wing was formed into a gliding configuration and the masturement in Table t taken. Since the welght of the Owl wäs not available it was computed using the wing loading value typical of this species (11). The flight Revnoids number was based on the chord length taken at mid-span and a velocity of $25 \mathrm{ft} / \mathrm{sec}$. The wing loading value of . $637 \mathrm{l} \mathrm{bf} / \mathrm{ft}^{2}$ is close to that meassured for other pre: dator: birds such as havks but is very low compared to conventional aircraft. By comparison, the U-IOD Hello Courler alrcraft which is capable of axcellent. 5 TOL performance has a wing loading of $14.7 \mathrm{lbf} / \mathrm{ft}^{2}$ (12). Figures 18 and 19 show the wing sections that were taken at representative positions along the span. All the sections resemble cotiventional airfoils in that they can be deseribed by distributing a thickness envelope over a camber line, Section 1 was taken in the region between the wing root and the wrist area. This represents the thickest part of the wing and is highly cambered. Section 2 taken between the wrist and the end of the region covered by covert feathers

Table:
Heasurements of Severed Great forned Owl Wiag


Table il
Owl Wing Section Measurements

| Section | Chord <br> (c) | in | Camber | Camber <br> Position | Max. <br> Thickness |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 9.7 | $.14 c$ | $.32 c$ | $.08 c$ | Leading <br> Edge Radius |
| 2 | 9.5 | $.09 c$ | $.44 c$ | $.07 c$ | $.03 c$ |
| 3 | 9.4 | $.08 c$ | $.41 c$ | $.03 c$ | sharp |
| 4 | 8.1 | $.09 c$ | $.51 c$ | $.02 c$ | sharp |

*Weight caiculated from wing loading value of reference 5 . *wing area includes the body area intercepted by the wing.

## CAM/AE/73:6





Figure 15

## Section 5. Position of Tip Feathers Under Aeroelastic Ueflection During Giliding Flight

remains falrly thick but has reduced camber. A nazked change in shape ofcurs in sections 3 and 4. These sections are located in the manus region where the surface is composed of only the primary feathers. Eoth sections have sharp leading edges, low relative camber, and small thickness. Outboard of section 4 the wing breaks Into a saries of mulcipie airfolls. The relative positions of these airfoll sections ere shown in Figure 19. Considering the struciure of the wing, changes In the geonetry of the inboard seitions during gliding filght should be relatively small. Table 11 lists the section values of camber, maximum thickness, and leading edge radius. Using these values, the following comments can be mada:
f. Section thas a naximun camber of 14 which is much. figher than on conventional airfoils where values rarely exceed 4\%. This high camber suggests high. section $C_{1_{\text {max }}}$ and large pitching moments. (13).
2. Setoicicns 3 and 4 have thicknesses below the minimum value of $4 \%$ usually given as a structural 1 imit in preliminapy ä̈rcraft design (14).
3. The maximum thickness on section 4 is located behind mid shord suggesting a large percentage of laminar flow.

## thoked Comb

In order to model the hooked comb, its exact shape and orientation was studied. Since the comb is too small to inspect without magnification, a laburatory comparator was used to select sections for microm photography. A 35 mm single lens reflex camera with bellows attachments giving negative magnifications of $10-30 \mathrm{X}$ was found to be sultable. Hicrophotographs of the comb are presented in Figures 20 through 26. Figure 20 shows a top view of the comb system magnified $30 X$. Even at this high magnification, the surface formed by the barbuies appears to be fairly solid except for the fringing at the tips. Separation of the barbules from the adjoining barb occ irs some distance prior to the beginning of the taper in the outer portion of the comb. Because of this, the barbule surface overlaps the adjoining barb for short distance. This characteristic cannot be fabricated in a mode? cur from a flat sheet. Figures 21 and 22 show the comb from the direction of the free stream when the wing is at an angle of attack of 30 degrees. in

Figure 21 a coscade is formed by the barbules which resemble a series of individual blades and turn the flow toward the wing tip. If the individual barbuie surfacés are assumed zo be relatively impermeable, the ability of the cascande to turin the flow may be quite high. A primary variable in cascade geonetry is blade solldity, defined as the ratio between blade chord lengt:h and blade separation. In this cascade the solidity is quite high in the base reglon and tapers off toward the tif as the barbule chord length decreases.

Figure 22 shows the shape of the barbs on the underside or the wing surface. The shape remains rectangular until reaching the comb where it shanges sharply and becomes cyindrical. A critical parameter in specifying the orientation of the barbs is the angle at which they radiate from the vane axis. This value is approximately 25 degrees and varies little along the span of the feather. This contrasts with the large variations in barb angle present on a flight feather without the hooked comb. Further insight into the shape of the indiyidual blades or barbule surfaces can be gained by sectioning a single barb from a leading edge primary feather and photographing it from several angles. The photographs in Figures 23 through 26 show the barb in the top, left side, and two oblique views. (The hole appearing in all views was made by a pin during sectionling.) The top and side views show the twist of the barb along its axis. No twist could be seen in the barbule surface about the jarb axis.

## Conclusions

A number of conclusions were made after considering the wil's wing structure and aerodynamic performance:


Figure 2i. View of Comb from Free Stream Direction


Figure 22. Barbule Structure in Base Region

## Ch4/A $/ 73-6$

1. The great horned owl was cupaile of nigher glidIng values of (to than reported by kroegen. This may suggest why Koegeris removal of the leading edge comb failed to caưse a change in the owls gliding performance.
2. The bastard wing is used dur ing gliding fltghe.
3. Except for the tip region, the wing could be considered an unbröken surfạce during the giding, phase.
4. The wing sections in the region of the comb are thin and have sharp leading edges.
5. The hooked comb shape with the exception of the barbule oiverlap in the base region can be fabricated from a flat sheet.
6. An important parameter in constructirg the comb appears to be the 25 degree angle at which the axis of the barb radiates from the feather vane.

## U. Sxperimental Equipment and Model Deseription

Mind Tunnels
Two wind tünels were used during thu course of thls study. Most of the work was done in the 3 foot tunel belonging to the AF light Dynamics Laboratory. This tunnel is an open circuit, closed test section unit capable of velocities up to $30 \mathrm{ft} / \mathrm{sec}$. The physical layout of the tunnel ( E igure 27) consists of a moden tube measuring 3 feet in diameter and ten feet long. The airflow is controlled by variable speed $D C$. motor-installed at the exit of the tunnel. The motor drives a three-bladed propeller located behind adjustable guide vanes that reduce undesirabie rotational velogities in the test section. Turbulence reduction is accomplished by use of a removable honeycomb section placed in the tunnel entrance. The test section is viewed through a large plexiglass window on the right wall of the tunnel and accessibility to models is afforded by a port on top. During this test the tunnel was equipped with a commercially manufactured smoke generator called the "Cloud Maker" (jesting Michines Inc.l. This unit produces a thick white smoke by evaporating mineral oll. A high pressure bottle of carbon dioxide is used to force the smoke into a glass jar which acts as a reservolr. From the reservoir the smoke is injected into the tunnel through a rubber tube connected to a 3-foot section of 3/16" diameter staisless steel tubing. To obtain multiple smoke streams, a second sunnel was used briefly. The tunnel belonged to the AF Aerospace Research Laboratory (Figure 28). It consists of a closed section, open circuit unit with a $1^{\prime} \alpha^{\prime}$ square test cross section. Air enters the tunnel through ten screens and is contracted in a nozzle before reaching




the test section. Air fow is induced by a fan driven by a the con stant speed uotor, Velocity is controlied by odjusting louvers in the fan section . Smoke is generated by evaporating kerosene using an enectr:cheating element. The smoke is injected into the tunnel throught? plpes placed in front of the entrance screens. Because of the multiple screens and the high contraction ratio of the nozzle, extremely low turbülence flow is produced in the test section.


#### Abstract

Photögraphy Pictures of the smoke flow patterns required a very high speed film. The film was Polaroid Type 57 with an ASA 3000 speed. The camera was a Grafiex $4 \times 5$ used in conjunction with a high intensity strotoscopic IIght source. Best results were obtained with camera settings of fi6 at $1 / 100 \mathrm{sec}$.


Models
Alrfoils. Three airfoil shapes were used in the experiment. All were cul. from . $065^{\prime \prime}$ aluminum sheet and hid sharpened leading edges. The planform and camber of the models are shown in Figure 29. Model A was a flat plate with an elliptically shaped tip. Model $B$ was similar in planform but had circular are camber. Model $C$ was cambered only on the forward position of the wing and had a restangular shaped tip. The models were supported in the tunnel by the sting system shown in Figure 27. To minimize interference effects of the mounting and provids an end plate for the wing root, a $10^{\prime \prime} \times 10^{\prime \prime}$ aluminum plate could be attached to the sting at the wing root.

Hooked Comb. The best fabrication results were attained with .0041 brass shim stock, which is easily cut with small scissors and can be shapad
-


Model A

Model B


Model C

$R=19^{\circ}$

Figura 29. Wing Models
using tweezers. The first design (Figure 30 ) was constructed by baying off series of parallel ines oriented at a 25 degree angle to the leading edge. The blades formed by these lines were then given an. elliptiçal taper. The seçond design répresents an attenpt to Induce a hook shape into the comb. To produce the hook, circular arcs are drawn from positions specified in the dimensions of figure 31. The two combs of each type illustrate the different shapes that can be obtained by variation of the specified dimensions. Table 1 la gives the dimerclons of the comis that were used in the tests. As the table shows, the mast successful combs were quite small and difificult to fabricate. To aid in working with such small dimensions, arcs were drawn with a $4 \times 0$ Rapidograph pell and the parallel lines were applied from dry transfer sheets.

Procedure
Every effort was made to keep the hooked comb and wing modeis as simple as possibie. In the previous sections a number of other devices on the owl wing were identified which could contribute to the mechanism that delays flow separation. Two of the devices ware considered for model testing. These were the bastard wing and the slotied wing tip, The bastard wing was modeled with a small winglet cut from shim stuck which could be fastened at various positions and angles to the wing surface with modeling clay. The slotted wing tip may also be signifim cant but was not studied lere because of the difficulties involved in duplicating its aeroelastic bending and vibration characteristics.
of the three types of flow visualization mathods attempted, only one was scacessful. A slurfy made with titaniun dioxide and kerosene


Figure 30. Tapered Comb Hodels


Figure 31. Hooked Comb Models

## Table lla

Cond Dimensions:

*Model 1 has untapered blades.
*縕del 7 is consti,cted using circular arcs.

CAK/AE/73\%6
mixed according to the instructions of reference 15 did nec give consistent results because of the low speed range of the wind tunnels. Juft's applied directly to the upper wing surface gave no information on flow befiavior above the spanwise vortex region existing behind the comb. The use of smoke was successful in showing the effect of the combs on the flow field when the experimental sequence was:

1. Test each wing model without the comb attäched and record stalling angle of attack.
2. Test wing with comb installed.
a. Check flow through the comb for spanwise turning at high angies of attack.
B. Check for stationary vortex sheet aft of the comb.
E. Test wing with comb and bastard wing installed and record stalling angle of attack.

## V1. Results

The results of the expeniment are grouped in threeparts: Part 1 represents the prelimany observations of the comb's effect on the flow field at the low tunnel speed of 5 ft/sec. Part 2 shows the high मift function of the comb at increased tunnel speeds of $15 \mathrm{ft} / \mathrm{sec}$, and part 3 relates the comb flow field to that created by spanvise blowing: across the wing.

## Part 1

The preliminary low speed tests were conducted using the flat plate wing (A). The first five comb models were glued to the upper surface of. the wing with the comb blades extending forward over the sharpened leading edge. The low turnel speed of $5 \mathrm{ft} / \mathrm{sec}$ was used to obtain coherent smoke patterns so that detailed streamline behavior could be observed. Smoke flow over the wing prior to fitting the comos (Figure 32) showed that the streamlines proceed directly chordwise. With the combs installed, the flow pattern changes noticeably. At low angles of attack, (Figure 33) the flow through the comb continues chordwise but exhibits considerable stagnation on the wing surface indicating some reduction in flow velocity. At high angies of attack near 30 degrees (Figure 34), the comb turns the fiow spanwise toward the wing tip. If the comb extands in the wing tip, the flow through the comb becomes entrained it a stationary voriex core that moves laterally across the wing and rolls up in the trailing tip vortex (Figure 35). Placing the winglet at mid-span (Figure 36) destroyed the vortex. Instead of moving spanwise the flow: moved into the region just under the winglet and stagnated. This was likely caused by the winglet inducing attached flow in this area while
the rest of the flow on the cper wing surface remine fully separated. increasing tumel velocisy did ot cause attached flow angles of attăck ébove the plafo wing stall. lnstead a classical vortex strect. was periodically shed from the leading edge (figure 37). Variations in comb twist and winglet orientation caused no changes in the observed flow patterns. The stetionary voritex existed only when the flow was fully separated and the winglet was not instalred. To clóse out the preitiminary tests a cong with untapered blades was trijed. No stâtionary vortex was created by thi's configuration and it was discontinued.

## Part 2

None of the comb modelis were suctcessful in Increasing the stalling angle of attack of the flat plate wing (A) or the fully cambered wing (B) using tunnel speeds up to the maximum avallable of 30 ft/sec. At this point in the experiment, new insight into the theory of the comb operation suggested two changes which proved successful. The first was to more closely madel the bionic geometric ratio of como blade length to wing chord. Wing $C$ in combination with comb 6 or 7 reduced this ratio to $2.5 \%$ which approximated more closely the value of $1.8 \%$ measured on the owl wing. Second, a sharper leading edge was made by fastening the comb to the bottom surface of the wing. This allowed the $.004^{\prime \prime}$ shim stock at the base of the comb to become the wing leading edge. The tests of these wing/comb combinations proved successful in delaying flow separation to a marked degree. No difference in performance could be deduced between the two comb models even though they differed greatly in shape and solidity. At a tunne: speed of $15 \mathrm{ft} / \mathrm{sec}$, the stalling angle of attack was delayed from 22 degrees to 30 degrees. Stall could be
further delayed up to 35 degrees if the bastard wing was mounted on the wing: the optimun position for the bastard wing was ot nid-spen with a forvard sweep of 45 degrees and raised from the wing surfaçe 30 degrees. Uing performance was very sensitive to changes in bastard wing sweep. Changes in root mounting angle with the wing surface seemed to have mich léşs effëčt.

A close study of the smoke flow pictures gave considerable insight into the flow mechanism responsible for creating the high lift behavior. Pictures of the wing without the comb installed established the stalling angle on attack to be near 22 degrees (figure 38). The stall was characteristically abrupt with no sign of transition of osciliation. At angles of attack well above the stall (figure 39), the fiow was fully separated at the leading edge. Instal:ing the comb produced no chanyes in flow behavior on the wing at angles of attack below 22 degrees. As the angle of attack approached the 22 degrees, however, increasing separation was evident at the wing trailing edge (Figures 40-41). As angle of attack increased above 22 degrees, the flow first tecame strongly reattached at the trailing edge (Figure 42) and then the vortex region at the leading edge began to grow progressively larger (Figures 43-44). Moving the smoke probe toward the wingtlp (Figure 45) showed the vortex region was now smaller in size and of greater intensity. In the regions where the vortex was strong an apparent stagnation point was formed by the smoke flow impinging on the wing surface directly behind the vortex region. As the wing approached the stalling angle of attack (Figure 46), separation was evident at the trailing edge. Stall occurred abruptly (Figure 47) much in the same manner as the plain wing. The nature of the vortex core was examined by injecting smoke into the
region just behind the comb (Ftgure 488), The smoke was entrained in the voriex and oftitnes tits position on the wing. Placing the bastard wing on the rodel reestablished the vortex flow fiele at angles of attack up to 34 degrees (figures 49-51), Again; seperation is evident at the trailing edge just prior to stall.

At the conclusion of the experiment a small owl wing was tested in the smoke tunnel to compere its performance with that of the model. A similar vortex region was oliserved on the owl wing dind the stalling angle of attack agreed within one degree with that of the model.


Figure 32. Smoke Flow on Basic Wing Modei A $\alpha=15^{\circ}, v=5 \mathrm{ft} / \mathrm{sec}$


Figure 33. Wing A Fitted with Comb C $7=5^{\circ}$, $V=5 \mathrm{ft} / \mathrm{sec}$


Figure 34. Spanwise Flow Terning
$\alpha * 30^{\circ}, V=5 \mathrm{ft} / \mathrm{sec}$


Figure 35. Spanwise Vortex $a=30^{\circ}, V=5 \mathrm{ft} / \mathrm{sec}$


Figure 36. Low Pressure Region Under bastard Wing $\omega=30^{\circ}, V=5 \mathrm{ft} / \mathrm{sec}$


Figure 37. Vartex Street Shei from Wing Leading Edge $a=20^{\circ}, V=15 \mathrm{Ft} / \mathrm{sec}$


Figure 38. Incipient Stall on Plain Wing Model $C$ $\alpha=22^{\circ}, V=15 \mathrm{ft} / \mathrm{sec}$
 1

Figure 39. Fully Separated Flow $\alpha=27^{\circ}, V=15 \mathrm{ir} / \mathrm{sec}$

## ERY/RE/73-6



Figure 42. Flow Fully Attached Above Plain Wing Stall $a=23^{\circ}, y=15 \mathrm{ft} / \mathrm{sec}$


小ı • $n$

Figure 43. Leading Edge Separation Region Evident $\alpha=24^{\circ}, V=15 \mathrm{fr} / \mathrm{sec}$


Figure 45. Small Separation Region at 75\% Span $\therefore \dot{a}=27^{\circ}, V=15 \mathrm{f} / \mathrm{sec}$




Figure 46. Trailing Edge Separation $\alpha=29^{\circ}, V=15 \mathrm{jt} / \mathrm{sec}$
$\qquad$


Figure 47. Fully Separated Flow $\alpha=30^{\circ}$ V a $15 \mathrm{ft} / \mathrm{sec}$


Figure 49. Bastard Wing installed-Flow Reathaches $\alpha=30^{\circ}, \forall \sim 15 \mathrm{ft} / \mathrm{sec}$


Figure 50. Approaching Stall with Bastard Wing Installed $\alpha=34^{\circ}, V=15 \mathrm{ft} / \mathrm{sec}$

Figure 51. Fully Separated Fizn a $=40^{\circ}, V=15$ ㄴ…es

## Part 3

The flow field seen on a wing equipped with spanwise blowing appears to be the same as that produced by the comb. An air jet was instalied at the leading edge of wing t. The jet axis was rriented spanwise and photographs of the flow were 解de with ạd without blowing at an angle of attack well above normal wing stall. The test was conducted in the ARL wind tunnel which could provide multiple smoke streams. Figure 52 show the wing fully stalled. The alr hose obscüres the streamines in the upper left corner of the picture. In figure 53 the blowing is on and the vortex region is clearly outlined by the smoke streams. Ho further tests were run as excellent pictures of spanwise blowing were avallable for further study in references 16,17 and 18 ,

Theory
Vortex lift. It appears that the comb generates a spanwise leading edge yortex sheet which leads to the high lift characteristics observed in the flow visualization experiments. This vortex sheet is composed of leading-edge-separated vortex filaments that are formed when the flow is unable to negotiate the sharp leading edge of the airfzil and separates. Unswept wings with sharp leading edges shed this vorticity as a perlodic vortex street similar to that observed behind bluff bodies. Figure 37 is an excellent example of the vortex street generated by the test wing before the comb was perfected. As the airfoil is swept back in the flow field, the flow changes character. The vortices do not periodically shed from the wing surface but roll up into what is termed a vortex sheet. Figure 54 shows a diagram from Maltby (19) of the vortex sheet produced by a delta wing operating at an angle of attack. In the sketch, the leading-eoge-separated vortex distribution is represented by discrete

1


Figure 52. Separated Flow, Blowing off $\alpha=35^{\circ}, v=25 \mathrm{ft} / \mathrm{sec}$

11 • 11


Figure 53. At tached Flom, Blowing on

filaments beginning at the leading edge and rolling up to form a surface. This surface is the so-called vortex sheet and is seen to enclose a core of rotating fluid that grows in size and strength as it flows streamise along the upper wing surface. The presence of chis stationary vortex sheet on the upper wing surface creates a low pressüre region of separated flow under the outer flow field. Experiments have shown that the outer flow field flows smoothly over the separated begion sini restanties to the wing surface just beniad tive vortex sheet (20). The lift forces produced by a delta wing are characterized by a non-linear variation with angle of attack. Figure 55 shows typical lift $\therefore \because$ inr wings with aspect ratios of $.5,1.0$, and 2.0. in : Ariree cases the slope of the lift curve increases with angle of attack until $C_{l_{\text {max }}}$ is reached. Following Polhamus (21), the lift forces are separated into two components. The first is the conventional linear ift obtained by a solution of the ideal flow about the airfoil. The second component is termed non-linear or vortex lift and is identified by Polhamus as the force resulting from the low pressure field created on the wing surface in the area of the separated flow containing the vortex sheet. Comparison of the increments of lift produced by each component shows two trends. The first is the increase in vortex lift as angle of attack is increased. This can be attributed to the increased vortex shedding which produces lower pressures in the separated region. The second trend is the increase in the ratio of vortex lift to linear lift as the aspect ratio decreases. This is explained by noting that lowering the aspect ratio of the delta wing implies greater sweep which increases the fraction of wing area that is in contact with the vortex - sheet. Stall does not usually occur on the delta or swept wing in the

```
    GAM/AE/73-5
```



Figure 55. Non-Linear Lift for Several Delta Wings. (21)

normal mañer. The decrease in $C_{2}$ after reaching $C_{L_{\text {max }}}$ is typtcally gradual and is accompanied by a large increase In the drac forte. The mechanism involved is thought to be a breakdown of the ordered flow in the vortex region that occurs first at the wing trailing edge and travels fonward as the angle of attack is increased above $C_{L_{\text {max }}}$ (20). The well established fiow pattern observed of, the delta wing appears to resemble that found on the unswept wing equipped with the leading edge comb. The three elements that allow the vortex sheet to form on the delta wing. are seen as: (a) the existence of leading-edge-separated yortices, (b) a spanwise velocity component, and (c) a favorable pressure gradient on the wing surface to prevent vortex breakdown or bursting. in comparison, the experiments with the unswept wing/comb combination show that: (a) leading-edge-separated vortices exist at the sharp leading edge of the wing, (b) spanwise velocities are produced at the wing leading edge by the mechanical turning action of the cascade-like comb, and (c) a favorable spanwise pressure gradient exists at high angles of attack because of the vortex sheet created by the flow around the sharp wing tip region. It should be noted that the existence of the tip vortex alone can contribute sizable non-linear lift increments-especially on rectangular wings of very low aspect ratio. Reference 14 shows this increment to be expressed as,

$$
\Delta C_{L} \approx c_{1} a^{2}
$$

where $C_{1}$ represents a coefficient that is based on aspect ratio and planform. A graph of this effect is shown in Figure 56.

Spanvise Elowing. An excellent analogy exists between the flow field produced by the hooked comb and the effect of spanwise blowing
acrôss an unswept rectăngùlas wing. Dixon (16) and others
$\because$ conducted spanmise blowing: tests on a wing similar to those tested in this study and. reports flow patterns closely resemoling those found in the comb tests. Dixon's model was a flat plate with a sharpened leading edge and had an air jet losated at the


Figure 56. Non-ilinear Wing-tip Lift for Several Planforms (i4) quarter chord pesiticn of the wing root ariented to blow spanwise across the wing. Figure 57 shows a cross section sketch of the streamlines created by the jet at an angle of attack well above the normal flat plate stall. The unique characteristic of this two-dimensional view is the apparent stagnation point that forms on the top of the wing surface just behind the leading erge vortex sheet. When the overall three-dimensional flow field is considered, this point represents a line of division between the flow entrained in the vortex and cile exterior fleld. Figure 58 shows the resulting streamlines on the upper wing surface obtained by dixon using a slurry for flow visuallzation. The "herring bone" appearance of the streamlines near the leading edge is like that obtained in simlar tests of delta wings (i9), While the line of division between the two types of flow is not strictiy a stagnation line, there is no stream ise comporent of velcelty and the spanwise valocity is relatively smail. This

GAN/AET73-6
analogy offers an explanation
of the unusual line of stagnation reported by Kroeger on the owl wing (6).

Dixon's experiments
give some Indication of the non-linear lift values $\therefore$ achieved by spannise blowing. Figure 59 shows the


Figure 57. Two-Dimensional StreamIInes with Spanwise slowing (16)
lift curves obtained for
vartous degrees of blowing. The blowing coefficient is defined as:

$$
c_{\mu}=\frac{\dot{m} V_{j e t}}{q S}
$$

where $S$ represents the wing surface area. To represent the increment of lift actually produced by the spanwise blowing, an additional curve has been suparimposed to show the non-linear lift due to tip effec:. This was computed using the method of reference 14.

Bastard Wing. The comb exper'ment also considered the effects of the bastard wing on the flow field as it was previousiy assumed to be working in conjunction with, the comb. Inciuding a small winglet at mid-span did result in higher values of stalling angle of attack in the smoke visualization experiments. This was unusual performance if the winglet is considered to be functioning only as a conventional leading adge slat. In addition to the slat effect, however, a vortex field is produced by the bastard wing. This is shown in figure 60. The forward sweep of the winglet produces a ieading edge vortex sheet
whose sense of rotation is counter-clockwise looking upstream. The conventional tralling edge vortex system is seen to have the opposite
sense. Considering its
small relative size, it is possible that the bastard wing operates in conjunc-


Figure 58. Three-Dimensional Surface Flow Marked with Slurry (16)
tion with its yortex field
to produce a spanwise fence to oppose the propagation of separated flow from the root area of the main wing. At any rate, the unusual counter-rotating flow field described by Kroeger (6) is likely due to the presence of the bastard wing.


Figure 59. Lift Curyes Obtalned for Various Degrees of Blowing (16)


Figure 60. Vortex Sheets Generated by the Bastard Wing

## Vil. Conclusions and Recommendations

The results of the study of the owl wing and the experiments with the hooked comb suggest the following conclusions:

1. The hooked comb present on the owl wing works in conjunction with a sharp leading edge to produce nen-linear lift on the outer half of the wing.
2. A rorking model of the comb system can be made from sheet metal. The critical parameters in the comb construction are thought to be:
a. A comb blade length to wing chord ratio near 1.8\%.
b. Sianting the comb ilades at a 25 degree angle relative to the wing leading edge. This slant is toward the wingtip.
c. The individual blades must be tapered.
3. The comb turns the flow only at high angles of attack. At flight angles of attack, the comb prerents an extreme.y small drag profile.
4. The small relative si, a of the comb (1.8\%) makes it attractive for use as an aircraft high lift device. it is specifically suited for aircraft pessessing unswept wings with sharp leading edges.
5. The flow field created by spanwise blowing is very similar to the flow field created by the nooked comb.
6. The bastard wing, extended on the upper surface of the owl wing during gliding flight, may act as a fence to
delay outward propagation of flow séparation fram ita thick and highly cambered wing root sections.
7. Potential applications of the comb's principle of operation can be envisioned in the fields of fluidics and combustion chamber design. Several fluidic devices already developed use separated flow to alter the performance of a nozzle. In turbojet engines, shorter combustion chamber design hinges in part on improved means of combining the air/fuel mixture. The hooked comb deserves consideration in bath these applications as it appears to be the first unpowered device reported in the literature that creates a stationary vortex sheet oriented at right angles to the direction of flow.

The following recommendations are: made:

1. Further wind tunnel tests should be conducted using a hooked comb model to measure aerodynamic forces and refine the concept of non-linèar 11 ft .
2. Larger models should be considered for any new wind tunnel tests as the small relative size of the comb makes accurste fabrication difficult.

## Bibfiography

1. Graham, R.R. "The silent Flight of Owl's" Journal of the Royal Aeronautical Society, 38: 837-843 (1934).
2. R̂aspet, August. "Biophysics of Bird Elight". Sciance, 132: 191-199 (July 1960).
3. Blick, E.F "Bird Aerodynamics". Soaring, 36: 26-31 (June 1972).

4: Soderman, Paul T. Aerodynamic Effects of Leading-Edge Serrations on a Tho Dimensional Aliffoll. MASA Tecfinical Memorandum x-2643. Washington: National Aeronautics and Space Administratioñ. September 1972.
5. Heritel, Helnrich. Structure-Form-Movement. New York: Reinhold Publishing Corp., 1966.
6. Kroeger, R.A., et al. Low Speed Aerodynamics for Ultra Quiet Flight. AFFDL-TR-71-75. Wright-Patterson ÄFB, Ohio: AF Filght Dynamics Laboratory, March 1972.
7. Shestakova, G.S. The Problem of the Penatrability of Bird's Wings. Royal Aircraft Establishment Library Translation 1743: Farnborough: Ministry of Aviation, December 1965. AD 804465.
8. Vinogradov, I.N. The Aerodynamics of Soaring Bird Flight. Royal AirRoyal Aircraft Establishment Library Translation 846 . Farnborough: Ministry of Aviation, January 1960. AD 234631.
9. Gerardin, L. Bionics. New York: McGraw-Hill Book Company, 1968.
10. Kramer, M.O. "Boundary-Layer Stabilization by Distributed Camping." Journal of Aeronautical Science, 24: 459-460 (June 1957).
11. Spark, Johñ. Owls: Their Natural and Unnatural History. New York: Taplinger rublishing Company, 1970.
12. Taylor, John W., Editor. Jane's All the World's Aircraft. New York: HeGraw-Hill Publishing Company, 1970 .
13. Jacobs, E.N. The Characteristics of 78 Related Airfoll Sections From Tests in the Variable Density Wind Tunnel. NACA Report No. 460, Washington: National Advisory Committee for Aeronautics, 1935.
14. Nicolai, Leland M. Design of Airlift Vehicles. Colorado Springs: United States Air Force Academy, July 1972.
15. Maltby, R.L. and Keating, R.F.A. Flow Visualization In Low-Speed Ulind Tunnels. RAE Technical Report Aero 2715. London: Royal Aircraft Establishment, 1960. AD 245348.
16. Dixon, C.J. Lifit Algumentaticn b. Lateral Blowing Over a Lifting Surface. AlAA Paper 10 - 69-193. Washington : Anerican iostitute. of Aeronautics and Astronatutics, Rebruary 1969.
17. Werle, $H$. and Gallon, M. Controle aEcculements par Jet Transversal. O.N.E.R.A. T.P. 1070. Chatilion: Offícé National dEtudes it de Recherches Aeróspatiales, 1372.
18. Carafolf, E, and Camarasescu, N. New Researches on Small Sivan-Chord Ratio Wings with Lateral Jets. FTD Translation HC-23-319-71. WrightPatteerson AFB, Ohio: Foreign Technology Division, USAF, 1971.
19. Malthy, R.L. "The Develoment of the Slender Deita Concept". Alrcraft Engineering, XL: 12-17 (March 1968).
20. Chang, Paul K. Separation of Flow. New York: Pergàmon Press, 1970.
21. Polhamus, E.C. A Concept of the Vortex Lift of Sharp-Edge Delita Wings Based on a Leading Edge Suction Analogy. NASA TN D-3767. Washington: National Aeronautics and Space Administration, December 1966.

## Vita

George william Aaderson was born on 26 Hovember 1941 in Greenvile, Pennsylvania, He graduated from Pymatuning Joint high school in Jamestown, Pennsylvania in 1959 and enlisted in the Air Force the seme year. After completing basic training, he was assigned to the United States Naval Academy Preparatory School at Bainbridge Naval Training Center. Maryland. In 1960, he entered the United States Alr Force Academy and graduated in 1964 with a Bachelor of Science degree and a comilssion as a Second Lieutenant in the Air Force. After graduating from pilot training at Reese AFB, Texas in 1965 , he was assigned to the 29 th Military AirIfft Squadron at McGuire AFB, N.J. as a C-i30ё́pilot. In 1967-68, he served with the 362 nd Tactical Electronic Warfare Squadron at Pleiku, RUN as an RC-47 pilot. From 1968 until entering AFiT in 1971, he served with the 30th Military Airlift Squadiron at McGuire AFB, N.J. as a C-141A instructor pilot and filght, examiner.

Permament address: | Liberty Street |
| :--- |
| Jamestown, Pennsylvania, 16146 |

This thesis was typed by Katherine Randall

