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We consider the deformation and burst of small fluid droplets in steady linear, 

two-dimensional motions of a second immiscible fluid. Experiments using a computer- 

controlled, four-roll mill to  investigate the effect of flow type are described, and the 

results compared with predictions of several available asymptotic deformation and 

burst theories, as well as numerical calculations. The comparison clarifies the range 

of validity of the theories, and demonstrates that they provide quite adequate 

predictions over a wide range of viscosity ratio, capillary number, and flow type. 

1. Introduction 

I n  this paper, we discuss the behaviour ofa  fluid drop, freely suspended in a second, 

immiscible, viscous fluid which is undergoing a general linear two-dimensional flow. 

The flow-induced stress on the drop surface tends to deform the drop, and the 

interfacial tension between the phases resists this deformation. Under some conditions, 

the interfacial forces are insufficient to balance the viscous stresses, and the drop 

bursts. The problem is of both practical and academic interest, and has thus received 
considerable attention in the fluid-mechanics literature over the past fifty years. Our 

particular contribution lies in a systematic investigation of the effect of vorticity in 

the imposed flow for so-called ‘strong’ flows, where the magnitude of the strain rate 

exceeds that of the vorticity. 
In  most practical applications, the objective is to  disperse one fluid phase in 

another, either to  form an emulsion, or to increase the surface area between the two 

phases for more efficient heat and/or mass transfer. I n  these cases, determination of 

flow conditions resulting in drop burst is of paramount importance. Examples include 
dispersion of anti-static or anti-soiling agents, dispersion of colour concentrates, and 

blending of immiscible polymer systems to form two-phase structures of unique 

properties (Grace 1971). 

Even when the drop does not burst, the distortion produced by a given flow is of 
interest in understanding the rheological behaviour of flowing emulsions. Emulsions 

are known to exhibit such non-Newtonian characteristicsas shear-dependent viscosity, 
viscoelasticity , and normal stress differences in rectilinear flow, even when the 

concentration of the dispersed phase is small (Frankel & Acrivos 1970 ; Barthks-Biesel 

& Acrivos 19733). From a knowledge of the deformation of the drops forming the 
dispersed phase and of the disturbance flow in their vicinity, a constitutive equation 
can be developed (at least in principle) for the emulsion. 

t Current address: Dynamic Solutions, Inc., 2355 Portola Road, Ventura, CA 93003, USA. 
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From a theoretical point of view, the drop-deformation problem is extremely 
difficult. The equations of motion must be solved for the flow both inside and outside 

the drop, with boundary conditions applied on its surface. However, the shape of the 
drop is not known a priori, but must be determined as part of the solution. To date, 
no general solution has been found, but progress has been made through asymptotic 
analysis for slightly deformed drops, a slender-body theory for highly elongated drops 

which applies when the viscosity of the drop is small compared with that of the 
suspending fluid and the velocity gradient is large, and numerical analyses for selected 
intermediate cases. Recent review articles by Acrivos (1983) and Rallison (1984) 
describe these efforts in considerable detail. A brief summary is included in $4 below. 

On the experimental side, a relatively large number of studies of drop deformation 
and breakup have been reported. These date back to  the pioneering work of 
G. I .  Taylor (1934). I n  this early work, Taylor investigated drop behaviour experi- 
mentally in two flow fields, simple shear flow, where the magnitudes of the vorticity 
and strain rate are equal, and two-dimensional pure-straining flow. The former flow 
was generated in a parallel-band apparatus, and the four-roll mill was evidently 
invented to  produce the latter. Although few in number, Taylor’s experiments 
uncovered most of the qualitative aspects of the drop deformation and burst process, 
including the following general conclusions : 

1. At low flow strengths, drops of all viscosity ratios deform into prolate spheroids. 
The longest axis of the drop is initially aligned with the principal axis of strain for 
both irrotational and simple shear flows. 

2. When the drop viscosity is low compared with that of the suspending fluid, the 
shear rate required for burst becomes quite large, and the drops attain highly 
deformed steady shapes with pointed ends. Under some conditions, small drops are 
ejected from these pointed ends, a phenomena which has come to be called ‘tip 
streaming ’. 

3. When the ratio of drop to  suspending fluid viscosity is large, drop behaviour 
is qualitatively different in simple shear and irrotational flow fields. I n  irrotational 
flows, burst occurs a t  low strain rates. In  simple shear, on the other hand, viscous 
drops assume slightly deformed shapes which are unaffected by further increases in 
the shear rate, and drop burst becomes impossible beyond a certain critical viscosity 
ratio. 

The dramatic qualitative difference in drop burst between pure-straining flow and 
simple shear flow furnishes a motivation for study of the drop-deformation and burst 
process in flows of intermediate vorticity. While such flows can be generated in the 
four-roll mill (Giesekus 1962; Fuller & Leal 1981), experimental difficulties in 

controlling the drop a t  the centre stagnation point of such flows have, until now, 
prevented studies of their effect on drop behaviour. In  the limiting case when there 
is no vorticity (the case considered by Taylor 1934), the control problem is simplified 
because the dividing streamlines are a t  right angles to the roller geometry, and hand 
control is possible, though only at  the cost of fairly large variations in the flow with 
time. For other strong flows, however, the dividing streamlines are at angles to the 
roller geometry, and the complications are too severe for successful manual control. 
For this reason, almost all of the drop-deformation and burst experiments that  
followed those of Taylor (1934) (e.g. Rumscheidt & Mason 1961 ; Torza, Cox & Mason 
1972 ; Grace 1971) have been restricted to simple shear and/or two-dimensional 
pure-straining flow. A notable exception is the work of Hakimi & Schowalter (1980), 
who studied drop deformation in the flow produced in an orthogonal rheometer. I n  
this device, flows of varying vorticity-to-strain-rate ratio can be generated, but the 
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flows are always ‘weak ’, meaning that the magnitude of the vorticity is always larger 
than that of the strain rate. Thus, the experiments were limited to small deformations 

(Dp < 0.2), and only one viscosity ratio ( A  = 0.09). 
In order to investigate experimentally the problem of drop deformation and burst 

for flows between simple shear and hyperbolic extension, we developed a computer- 
based control system for the four-roll mill. The drop position was sensed using a 
digital television camera, and the speeds of stepping motors driving the rollers were 
regulated to maintain the drop at  the centre of the device. A detailed description of 
the apparatus and control system is reported in Bentley & Leal (1986). Using this 
device, we systematically investigated the effect of flow type on the deformation and 
burst of drops in Newtonian fluids, covering a wide range of viscosity and strain- 
rate-to-vorticity ratios. Computer control of the experiment not only allowed us to 

study intermediate flows that had not been previously investigated, but also resulted 
in drop deformation and burst data of considerably improved quality for the 
irrotational flow limit. In the present paper, we report the results of this experimental 
investigation, including detailed comparisons with the predictions of available drop 
deformation and burst theories. 

2. Problem statement 

We consider the behaviour of a drop of volume $xu3, viscosity p‘ and density p’, 
that is freely suspended in an infinite bath of a second fluid of viscosity p and density 
p. The interfacial tension between the two immiscible fluids is u. The interface is 

assumed to transmit tangential stresses undiminished ; thus other possible surface 
effects such as interfacial viscosity and interfacial tension gradients are neglected. 
Far from the drop, the suspending fluid undergoes a steady linear flow. The situation 

is illustrated schematically in figure 1. Both fluids are Newtonian and incompressible, 
so that the governing equations are the NavieI-Stokes equations and the continuity 
equation, applied inside and outside the drop. At the drop surface, the velocity fields 
satisfy the conditions of continuity of velocity and tangential stress, and the normal 
stress suffers a jump due to the interfacial tension. In  our experiments in the four-roll 
mill, we generate an approximation to the idealized linear flow in a bath of finite size. 
Also, surface impurities present in the real system may affect the behaviour of the 

fluid-fluid interface. We assume that these are small effects. 
When the governing equations are put in dimensionless form, with the undeformed 

radius of the drop a as the characteristic lengthscale, the inverse of the magnitude 
of the velocity-gradient tensor, G-I, as the characteristic timescale, and aG as the 
velocity scale, the following dimensionless parameters appear : 

(1) 
PI h = - (viscosity ratio), 
P 

(Capillary number), 

pG2a 

P 
R=-- (Reynolds number), (3) 

(4) 
P’ 

K = - (density ratio). 
P 

In our experiments, we restricted our attention to cases where viscous effects 
dominated, so that the Reynolds number based on the drop size was always negligible. 
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a, G 

FIGURE 1. Schematic of problem. 

We also considered only neutrally buoyant drops, K = 1.  Under these conditions, the 

evolution of the drop shape depends only on the viscosity ratio, the capillary number, 
and the nature of the applied flow. In  the flows which can be (approximately) 
generated in the four-roll mill, the form of the velocity-gradient tensor is characterized 
by a single parameter a, which specifies the relative strength of the strain rate and 
vorticity in the flow. This parameter is defined by: 

The ratio of the magnitude of the rate-of-strain tensor to that of the vorticity in such 
flows can be expressed as : 

magnitude of strain rate - 1 +a 
-- 

magnitude of vorticity 1 -a' 

In  particular, u = + 1 for pure-straining flow, a = 0 for simple shear flow, and a = - 1 

for purely rotational flow. Streamlines for thc positive values of CY are shown in 

figure 2. For any a, the vorticity vector is in the negative z-direction, and the principal 
axes of the rate-of-strain tensor are in the x- and y-directions. The angle Be between 
the x-axis and the linear exit streamline is given by 

u-1 
sin (28,) = - 

a + l '  
(7) 

I n  our experiments, photographs of the drop were taken with the camera mounted 
perpendicular to  the plane of the flow, yielding a projection of the drop in the 
(5, y)-plane. For convenient comparisons to theoretical predictions, two distinct 
scalar measures of drop deformation were determined. These are illustrated in 
figure 3. The first defines a deformation parameter D, in terms of the longest and 
shortest semi-axes of the drop cross-section ( L  and B respectively), following Taylor 
(1934) : 

L - B  
D --- 

f - ~ + ~ '  

and is strictly applicable only for elliptically deformed drops, though it is used in 
practice whenever the deformation is small. This parameter is zero for spherical drops 
and asymptotically approaches unity as the drops become infinitely extended. When 
LIB is large (highly deformed drops), however, D, changes very little with increasing 
deformation, and in this case a different measure of the deformation is more 
appropriate. We follow the precedent of previous studies and choose the ratio of the 
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a = 0.4 a = 0.2 a = 0.0 

FIQURE 2. Streamlines of flow field of equation ( 1 )  for a 2 0. 

FIQURE 3. Scalar measurements of deformation. 

half-length of the deformed drop to the undeformed radius Lla. In  all cases, the 

orientation angle of the drop (the angle between the longest axis of the drop and the 
major principal axis of the rate-of-strain tensor) was also measured. 

In the experiments reported here, we focused our attention on two aspects of drop 
behaviour. First, we investigated the equilibrium deformation and orientation of 
drops in steady flows as a function of C, for various values of viscosity ratio and flow 
type : 

(9) 

Second, we investigated the critical capillary number required for drop burst, as a 

function of flow type and viscosity ratio: 

D, = D,(C; A, a) or Lla = L/a (C;  A, a) and 0 = 0(C; A, a). 

c, = C,(A;a). (10) 

When burst was observed, the maximum stable deformation (the deformation at C 
just below C,) and corresponding orientation angle were measured : 

DfC = DfC(A;a)  and@, = @,(A;a).  (11) 
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3. Fluid systems and experimental procedure 

The four-roll mill used in this study, and the associated video camera/computer 
control system, are described in detail by Bentley (1985), and by Bentley 6 Leal 

(1986). For present purposes, we note that the cylinders had a diameter of 10.16 cm 
and a length of 15.5 cm, and that the gap width between adjacent rollers was set a t  

2.54 cm. In general, i t  has been shown that a good approximation to  a linear flow, 
i.e. u = Vu'x,  with Vu given by ( 5 ) ,  can be realized in a well-designed four-roll mill 
over a square central region between rollers whose sides are approximately equal to 
the gap width between rollers, i.e. 2.54 cm in the present case, provided that la1 2 0.2. 

Thus, the dimensions of our four-roll mill are sufficient to allow a drop with an 
undeformed diameter of 1 mm (typical of our experiments) to  be stretched to a length 

25 times its initial radius without encountering any significant deviation from the 
ideal linear flow for these flow types. The restriction to values la1 2 0.2 is a conse- 
quence of geometric constraints which restrict the accuracy with which flows with 

smaller a can be generated in the four-roll mill. For example, simple shear flow (i.e. 
a = 0) is achieved (approximately) as the limit when one diagonally opposing pair 
of rollers is co-rotating, while the other pair is completely stationary. But the 
second, stationary pair of rollers lies directly in the path of the flow, and this dis- 
rupts the motion and degrades the comparison between the ideal simple shear flow 
and the flow which is actually produced in the four-roll mill. 

Drop deformation and burst experiments were performed for fourteen different 

drop-suspending fluid systems, ranging in viscosity ratio from 0.001 to about 100. 
The drop fluids were a series of eleven Dow Corning Silicon fluids, with kinematic 
viscosities ranging from 5 to  60000 cst. Two suspending fluids, Pale 4 Oil and Pale 
170 Oil (oxidized castor oils available from CasChem, Inc. of Bayonne, NJ) were used. 

Table 1 shows the measured viscosity and density for each of these fluids. For each 
fluid system, five different flow types, a = 1.0,0.8,0.6,0.4 and 0.2, were investigated. 

The kinematic viscosities and densities of each fluid were measured as a function 
of temperature in the range of 2&25 "C using a series of Cannon-Fenske capillary 
viscometers and a pycnometer. All of the fluids have been reported to be Newtonian 
over the shear-rate range covered by our experiments (Rumscheidt & Mason 1961). 

The interfacial tension between the fluids was measured using a ring tensiometer 
(Fisher Scientific Model 20). These interfacial tension measurements were generally 
not very accurate owing to  the small density differences between the two phases. 
Consequently, the interfacial tension was also calculated from the initial slope of D, 
versus Gpa, assuming that the O( 1 )  theory of Taylor (1934) accurately describes the 
drop deformation in the limit of small deformations. Table 2 shows a comparison of 
the interfacial tensions measured from the ring-tensiometer experiments and inferred 
from the drop deformation experiments, and figure 4 shows a graphical comparison 
of the two. As can be seen, the two measures were generally in reasonable agreement, 
with an average difference of 3.3 yo and a maximum difference of 14.2 % between them. 
The ring-tensiometer values were consistently lower than those inferred from the drop 
deformation data, perhaps indicating some aging of the interface in this measurement 

which is absent in the deformation experiments. A more pronounced effect of this 
type was reported by Grace (1971). Because they are thought to be more reliable, 
the interfacial tensions computed from the small deformation theory were used in 
both the deformation and burst plots in this paper. 

For each fluid-system/flow-type combination, the following experimental procedure 
was employed: A small drop ( x 1 mm radius) was introduced into the centre of the 
four-roll mill. The computer was directed to  centre the drop (by turning the 
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Viscosity (P) Density (g/cm3) 
Fluid 
no. Fluid type 20. oo 22.5" 25.0" 20.0" 22.5" 25.0" 

1 
2 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

Pale 4 oil 
Pale 170 oil 

5 cs SF 
50 cs SF 

100 cs SF 
200 cs SF 
500 cs SF 

1000 cs SF 
2000 cs SB 
5000 cs SB 

loo00 cs SB 
30000 cs SF 
60000 cs SF 

1000000 cs SF 

53.32 
14.17 
0.051 9 
0.527 3 
1.050 
2.139 
5.336 

11.07 
27.76 
70.21 

126.1 
320.6 
673.3 

1082.5 

41.97 
11.44 
0.0495 
0.5008 
0.9964 
2.031 
5.059 

10.56 
25.69 
66.88 

119.1 
303.2 
638.8 

1018.8 

33.55 
9.475 
0.0474 
0.4774 
0.9483 
1.937 
4.807 

10.02 
24.41 
63.46 

113.0 
289.0 
607.7 
968.8 

0.996 1 
0.9773 
0.918 1 
0.9623 
0.9645 
0.969 2 
0.972 1 
0.971 6 
0.9732 
0.9737 
0.9747 
0.9754 
0.9777 
0.987 8 

0.995 3 
0.9756 
0.916 1 
0.9602 
0.961 8 
0.9667 
0.9697 
0.9697 
0.971 8 
0.972 1 
0.9724 
0.972 9 
0.975 1 
0.9782 

0.993 1 
0.9736 
0.9138 
0.957 8 
0.9598 
0.9657 
0.967 6 
0.9675 
0.9696 
0.9699 
0.9703 
0.970 7 
0.9726 
0.9735 

TABLE 1. Viscosity and density as a function of temperature for the fluids used in this study. The 
notation SF indicates a commercially available grade of silicon fluid, while SB indicates a blend 
of two grades resulting in the specified properties. 

System 
no. 

1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

Susp. 
fluid 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 

Drop 
fluid 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
12 
13 
14 

Temp. 
O C  

20.8 
21.6 
21.6 
22.3 
22.5 
21.8 
22.8 
21.9 
22.4 
21.2 
21.8 
22.0 
22.7 
22.4 

PI2 

49.5 
45.51 1 
46.45 
42.80 
42.00 
45.25 
40.80 
44.60 
42.45 
47.8 
45.25 
11.93 
1 1 .25 
11.53 

(PI 
P d  

0.051 
0.01 1 
1.015 
2.038 
5.059 

(PI 

10.70 
25.52 
67.68 

119.3 
313.0 
648.6 
308.0 
637.3 

1021 .o 

URT 

A 

0.001 
5.34 
0.22 
0.048 
0.12 
0.24 
0.63 
1.52 
2.81 
6.55 

14.3 
25.8 
56.6 
88.6 

USD 

(dynes/cm) 

3.44 
5.32 
4.55 
4.52 
5.25 
5.14 
5.34 
5.41 
5.40 
5.52 
5.66 

(dynes/cm) 

3.98 

5.23 
5.27 
5.54 
5.51 
5.37 
5.41 
5.46 
5.98 
5.94 
5.19 
5.53 
5.41 

- 

TABLE 2. Fluid system properties, corresponding to the conditions of the experiments. The fluid 
numbers refer to table 1. uRT indicates the interfacial tension measured using the ring-tensiometer 
method, and as, indicates the interfacial tension inferred from the small-deformation data. 

appropriate rollers). A still photograph of the undeformed drop was taken for later 
determination of its exact size. The temperature of the suspending fluid was measured 
to allow interpolation of the viscosity of the two phases. 

A t  this point, the flow was started at the lowest practical shear rate (about 0.05 s-l). 

After a period of time which depended on the viscosity ratio (longer for higher 
viscosity ratios), the drop was assumed to  be at an equilibrium deformation and a 
photograph taken. For convenience, the computer was directed to log the shear rate, 

time and picture number. The shear rate was then slowly increased through a series 

of small steps (about 0.01 s-l each). Photographs were taken a t  intervals in the shear 
rate sufficiently closely spaced to define the deformation curve accurately. 
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A 

A 

3 6 

FIGURE 4. Comparison of ring tensiometer and drop deformation interfacial tension measures. 

I n  most experiments, a shear rate was reached for which no steady drop shape was 
possible. This was termed the critical shear rate for drop burst. When this point was 
reached, the drops were allowed to extend until their length was approximately ten 
times their initial diameter, and then the flow was turned off. The drops did not 
fragment while the flow was on, but when it  was stopped, most of the drops broke 
up through a complex, interfacial-tension-driven motion. Some of the highest- 
viscosity-ratio drops returned to the initial spherical shape without fragmenting. The 
transient motion of the drops in the critical flow and the motion subsequent to 
stopping the external flow will be the subject of a future communication. 

I n  some cases (high-viscosity-ratio drops in the more rotational flow fields) the 
drops did not burst with increasing shear rate, but instead attained a small 
deformation which remained essentially constant with increasing shear rate. This is 
analogous to the behaviour in simple shear. 

The photographs from the experiments were analysed by projecting the negatives 
onto the screen of a microfiche viewer. The length, breadth, and orientation angle 
of each drop was measured, allowing calculation of the scalar deformation measures 
D, and Lla. 

4. Theoretical estimates of drop deformation and conditions for burst 

We have mentioned previously that there have been several theoretical studies of 
drop deformation and burst. One of the main objectives of our present investigation 
is to provide a detailed comparison with the predictions from these theories for the 
drop shape and the conditions for burst. In  this section, we review the existing 
theoretical analyses, particularly those aspects that  are necessary for providing 
predictions of drop shapes for the specific conditions and flows that we have studied 
experimentally. 
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4.1. Small-deformation theory 

We begin with the small-deformation theory for zero Reynolds number that was 
pioneered by Taylor (1932,1934). In this approach it is assumed that conditions exist 
such that the drop is only slightly deformed from spherical, so that the method of 

domain perturbations can be used to determine the velocity fields inside and outside 
the drop, as well as the drop shape. Higher-order corrections to Taylor's original 
analysis have been considered by a number of authors, including Cox (1969) and 
Barthks-Biesel & Acrivos (1 973a). The results of these investigations were unified and 
clarified in a critical review by Rallison (1980). 

Rallison (1980) presented a general analysis, valid for nearly spherical inertialess 
drops in a linear shear field. In this formulation, the drop surface r is represented 
by a superposition of spherical harmonics of second and fourth order: 

r = 1+er3F:VV - +c2 (-$)F:F+l.5H:VVVV - +O(e2) .  (12) (3 [ (31 
Here r = (x-x):, and the dimensions are sealed by a, the undeformed radius of the 
drop. The tensors F and H are symmetric and traceless tensors of second and fourth 
rank respectively. Rallison (1980) gives equations for the evolution of these tensors 
as : 

DF 
Dt 

D H  

E- = a,E+e{C-'a, F+a, Sd(E.F)}+s2(C-'a,Sd(F.F) 

+a4 EF:F+a, FE: F+a, Sd(E0F.F) +a, H:E) + 0(e3 ,  C-'e3), (13) 

EE = b,  Sd4(EF)+E{boC-'H+b2C-1Sd,(FF)+b3Sd,(E.H) 

+ b, Sd4(E. FF)}  + 0(s2 ,  C-le2 ) 3  (14) 

where E is the rate-of-strain tensor. The vorticity enters through the Jaumann, or 

corotational, derivative which is defined for a second-order tensor, A, as : 

-- DA - A+ V.VA + @.A-A.8)  
~t at 

where G? is the vorticity tensor. In (13) and (14), a,*, and b o d ,  are rational functions 
of the viscosity ratio, and all except b, and b,, which have not been derived to date, 
are given by Barthhs-Biesel & Acrivos (1973~) .  The definitions of the symmetric 
deviators of second- and fourth-rank tensors, Sd and Sd,, are also supplied. Retaining 
only the first two terms on the right-hand side of (13) yields Taylor's original result. 

These equations apply whenever the deviation from sphericity is small. Steady 
small deformations occur in two distinct cases; either the flow strength is weak 
(C small), or the viscosity ratio is large in a flow with vorticity. Barthks-Biesel & 
Acrivos (1973~)  applied (12)-(14) for the weak-flow case, setting E = C in (13), and 
including the terms of order s3C-' (the a6 and a, terms which appear in (16)). They 
obtained the equations : 

DF 
6 ~t = a, €+a, F+ €{az Sd(E.F) + a3 Sd(F.F)} + e2{a, EF: F + u5 FE: F+ a, FF: F 

+a, Sd(E-F*F) +a, H : E +  a, H : F }  + 0 ( e 3 ) ,  (16) 

(17) 
aH 

E X  = b, H+ b,  Sd,(€F) + b, Sd,(FF) + O(E) .  
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There are several important points concerning the expansion leading to (16) and 
(17). First, as noted by Bathks-Biesel & Acrivos (19734, algebraic complexities 
forced some inconsistencies in the order of expansion. From (16), the second-order 
deformation tensor F is known to O(c2).  For consistency in calculation of the shape 
(equation (12)) the fourth-order tensor H should thus be known to O(s). However, 

the coefficients b, and b, could not be calculated, so (14) was necessarily truncated 
after the O(1) terms. Similarly, terms of O(c3),  including a sixth-rank deformation 
tensor, should be included in (12), but these also could not be derived. Barthks-Biesel 
& Acrivos ( 1 9 7 3 ~ )  suggest using (12), (16), and (17)  as an approximation to the full 
asymptotic problem, and that is the approach followed here, with the exception 
discussed below for high-viscosity-ratio cases. 

When the small deformation is due to a high viscosity ratio in a rotational flow 
instead of a small capillary number, a different expansion is more appropriate, in 
which l / A  appears as the small parameter. In this case, the behaviour of the 
coefficients a, and b, as A --f co cause some of the terms in (13) and (14) to 'jump order '. 
In the high-A limit, (13) and (14) yield (Rallison 1980 equations (8) and (9)): 

Df = iE+ A -1{ - fi C-1F + Sd(E* F) - iE - 3EF: F 
Dt 

DH 
- Dt = &Sd,(EF)+b;Sd,(E.H)+b~Sd,(E.FF)+O(A-',C-'A-' 1. 

When terms of O(e2) are retained in (16), and the limiting values of a, as A - t c o  
substituted, all terms of (18) are preserved (as well as a few which are higher order 
in A-l and have been truncated from (18)). Therefore, computations using (16) will 
remain accurate to O(A-l) for large viscosity ratio. However, owing to the inconsistency 

in the expansion order mentioned above, (17) does not allow calcuation of H even 
to 0 ( 1 )  in the high-viscosity-ratio limit. The unknown b, and b, terms in (la), which 

had to be truncated in going to (17), may 'jump order' (depending on their behaviour 
as A+ co) and thus appear as O(1) in (19). Empirically, calculations retaining the 
fourth-order tensor terms calculated from (17) gave drops with unrealistic lobed 
shapes for high-viscosity-ratio systems. Therefore, for viscosity ratios greater than 
3.0, the fourth-order tensor terms were dropped in calculating shapes from (12). This 
gave much more realistic drop shapes in the high A limit, and deformations which 
compared well with the experimental observations. 

For the steady-deformation case, simplifications of (16) and (17) are possible. 
Equation (17) can be solved for H directly in terms of E and F, and the result 
substituted into (16). Use of an identity for the fourth-order symmetric deviator then 
yields (Barthks-Biesel & Acrivos 1973a) : 

0 = a,, E +al F+ €{a2 Sd(E*F) + a, Sd(F*F) - R. F+ F*Q) 

+e2(cl EF: F+ c2 EE: F+c, FF: F+ c, FE: F+c,  FE: E 

+ c6 Sd(E*F*F) +c, Sd(€*E.F)}, (20 ) 

where cl-c, are algebraic combinations of a, and b,, and are given by BarthBs-Biesel 
& Acrivos ( 1 9 7 3 ~ ) .  

To apply (12), (17) and (20) to the four-roll-mill flow of (5), E and Q are substituted 
into (20), and the component equations written. The requirements of symmetry and 
tracelessness yield three independent components of F ;  F,,,  q2, and F22. For 



Drop deformation and breakup 25 1 

convenience, the first two are written in the linear combinations S = F,, + F,, and 
D = 4,- F,,. H has five independent non-zero components; H,,,, ,  H,,,,, H,,,,, H,,,,, 
and H,,,,. In  terms of S, D ,  and F,,, (20) reduces to the system of nonlinear algebraic 
equations : 

0 = 2a0 A +a, D+e{a, AS+a ,  S D  + 2( 1 -a)} +e2{2c, AT+ 2c, A2D 

+ c3 TD + c4 AD2 + 2c5 A2D + cg A(+S2 + 2 q 2  +!$I2) + C, A2D},  (21) 

+ e2{c3 TF,, + c4 ADF,, 
2 

+2c5 A 2 4 ,  +c, A,&,}, (22) 

o = als+eI+-a,(S2-tT) +e2 C,ST+~,ASD 

3 

where T is defined as F: F and A as i(1 +a). Substituting into (17) yields: 

+2c5 A'S+- 

} {  
3 

These equations reduce properly to equations (4.1) of Barthks-Biesel & Acrivos 
( 1 9 7 3 ~ )  for two-dimensional extensional flow (a = 1) and, with appropriate rotation 
of the coordinate system, to equations (5.1) for simple shear flow (a = 0) ,  except that 

the coefficient of the c, term in equation (5.1) of Barthks-Biesel & Acrivos ( 1 9 7 3 ~ )  
should be $ rather than i. 

The system (21)-(23) was solved for S, D ,  and F,, using a Newton iteration scheme. 
Once S, D ,  and F,, are known, calculation of the components of F and H is 
straightforward. For purposes of computing D,, the scalar measure of deformation 
defined by (8), (12) can be applied in the ( z  = 0)-plane, yielding: 

r(0) = 1 + 3e{Fl, COS, 8 + 2F12 cos 0 sin 8 + F,, sin2 e} 

+e2 -T+ 105(H,,,, COS~O+~H,,,, C O S ~ B  sine 17 
+6H,,, ,  cos2B sin2B+4Hl,,, cosB sin38+H,,,, sin4B) , (29) 

where 0 is the angle from the x-axis in the (x, y)-plane. The maximum and minimum 
of r ( 8 )  are then L and B respectively. The orientation angle is defined as the angle 
for which r(e) is maximum. 

The stability of the calculated shapes was assessed through a conventional 

I 

9 F L X  167 
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linear-stability analysis as described by Barthbs-Biesel & Acrivos (19734. For the 
flow field of (5),  the problem is reduced to  finding the eigenvalues of two matrices, 
an 8 x 8 matrix of disturbances to  the components of F and H which are non-zero 
at  steady state, and a 6 x 6  matrix of disturbances to the components which are 
zero a t  steady state. The components of the two matrices can be found in Bentley 
(1985). The eigenvalues were computed using a routine supplied as part of the IMSL 
subroutine library. 

The deformation and orientation curves (Of and 0 versus e or C) were calculated 
for every flow-type/viscosity ratio combination investigated experimentally. Follow- 
ing Barthbs-Biesel & Acrivos (1973a), we calculated thc curves to  O(e) by discarding 
the O(e2) terms in (16), and to O(e2) by retaining these terms. In both cases, (12) was 

used in its entirety except that  the fourth-order tensor terms were disregarded for 
A > 3 as described above. Each curve was calculated by starting at nearly zero e 

(or C), using an undeformed sphere as the initial guess for the Newton iteration 
technique. The calculated deformation was used as the new initial guess, and the 
process repeated for higher e. 

In  this manner, the deformation curve was computed until some condition 
indicating drop burst was reached. The calculation was then backed up a step, and 
the step size reduced by a factor of 20 to determine the critical Capillary number, 
C, (or e,) as closely as possible. We considered burst to be indicated either by the 
lack of a solution to (21)-(23), or an instability in the solution revealed by the linear 

stability analysis. In  most cases, burst was manifested by inability to find a 

steady-state solution. When unstable solutions were found, the instability was always 
in the 8 x 8 matrix, and continuing the calculation to  higher e revealed that the value 
of e for which no solution existed was within 0.6 yo of the value for unstable solutions. 
Also, when burst was indicated by the lack of existence of a steady solution, the 
eigenvalues for the 8 x 8 matrix were small negative numbers, decreasing in magnitude 
with increasing e. Thus, the two criteria for burst nearly coincided for the cases we 

investigated. 
It should be noted that, a priori, there is no reason to be particularly optimistic 

about the accuracy of drop-burst predictions from the small-deformation theory. In  
general, drop burst occurs a t  deformations which are not especially small, outside 

of the range where the small-deformation theory is technically valid. Even disregarding 
this, there is no rigorous justification for the inherent assumption that the lack of 

a stable solution to the approximate governing equations necessarily means that a 

solution of the exact equations is likewise lacking. Thus the burst predictions of the 
small-deformation theory must be tested, either through experiments or through 
more exact numerical calculations. As we will see in $5 ,  it turns out that the 
small-deformation theory not only reproduces the qualitative features of the drop- 
burst curves quite accurately, i t  also provides a surprisingly good quantitative 
estimate for drop burst when the viscosity ratio is greater than about 0.05. 

4.2. Large-deformation theory 

The small-deformation theory does not accurately predict drop deformation or burst 
for A less than about 0.05. For these cases, highly-deformed steady drop shapes are 
possible, and a theory valid for small perturbations from the spherical shape would 
not be expected to apply. Fortunately, for h Q 1 ,  an analytical solution which takes 
advantage of the observed slenderness of the drops is available. 

As for the small-deformation theory, Taylor (1964) was the first to present solutions 
for highly elongated drops. The analysis was refined and clarified by Buckmaster 
(1972, 1973), and Acrivos & Lo (1978). 
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We consider the analysis for a drop of low, but finite viscosity ratio. This case was 
considered by Acrivos & Lo (1978) for an axisymmetric extensional flow 

u, = Gx, u, = -aGr, ug = 0,  (30) 

far from the drop. In this case, the drop cross-section is circular and the centreline 
position is known (aligned with the x-axis). The drop is assumed slender, and its 

surface is represented by : 
r = sR(x), 

where the slenderness ratio defined by 

(31) 

U 
e=- 

GpL ’ 

is assumed small. In this problem, the creeping-flow equations must be solved for the 
flow both inside and outside the drop. The analysis reveals that slender drops can 
exist only for h < O(e2), and the drop shape is then given by: 

R(z )  = ~ [ 1 + ( 1 - 3 i ] ( 1 - x 2 ) ,  8 (33) 

where IP = e2/h. Acrivos & Lo (1978) have shown that this solution is stable only 
for K2 < y. When the condition of volume conservation is applied to (33), we obtain 
the deformation relation : 

(34) 

This equation implicitly relates the dimensionless length, 6 = LA+/,, to the flow 
strength. A plot of the deformation curve (34) is given by Acrivos & Lo (1978). For 
values of Chi up to about 0.12, the deformation increases rather slowly. At that point, 
however, the deformation increases sharply, reaching a maximum steady extension 
of 6 = 0.630 at K2 = y. This point, defined as drop burst, occurs at a dimensionless 

shear rate, Chi equal to 0.148. For this burst criterion to be applicable, the slenderness 
ratio, R(O)/L must be small, which requires that (5h)t 4 1 .  

Hinch & Acrivos (1979) extended the slender-drop theory to the case where the 
applied shear was a two-dimensional straining motion (a = 1 in (5)), considering this 
flow field to be a perturbation to axisymmetric straining flow. While the analysis was 

complicated by the fact that the non-axisymmetric nature of the imposed flow caused 
the cross-section of the drop to be non-circular, the analysis of Hinch & Acrivos (1980) 

revealed that the deformation pattern and burst criterion for drops in the two- 
dimensional flow is nearly identical to that for axisymmetric extensional flow. This 
is because the cross-sectional area of the drops is very similar in the two flow fields 
despite differences in the details of the cross-sectional shape, and it is apparently this 
area which governs the deformation and burst. Their results indicated that L / a  in 
a two-dimensional extension differs by a t  most 2 %  from that predicted by the 
axisymmetric theory. The additional complexity in computing L / a  using the results 
of Hinch & Acrivos (1979) was therefore judged by us to be unnecessary, and in 
comparisons between the experimental and predicted deformation curves ( L / a  
vs. C), the results of the axisymmetric theory were used. The burst criterion for 
drops of low viscosity in two-dimensional extensional flow is nearly identical to the 
prediction of the axisymmetric theory : 

C, At = 0.145. (35) 

This result was used in comparisons to the experimental burst data for the a = 1 case 
shown in figure 25. 

9-2 
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Extension of the slender-drop theories to other two-dimensional flows (0 < a < 1) 

has not been attempted to date. The analysis is complicated by the fact that the 
cross-section of the drop is not only non-circular, but the position of the centreline 
is not known a priori. However, the analysis of Hinch & Acrivos (1979) for two- 
dimensional-straining flow suggests that as long as the cross-sectional area is 
comparable to that of a drop in axisymmetric extensional flow, the details of the 
cross-sectional shape will not be particularly important. Also, from the experimental 
observations, we know that long slender drops, for which this theory is expected to 
apply, align with the exit streamline of the flow field for 0 < a < 1. At this orientation 
they experience an ‘effective strain rate’ equal to Gai (see 55.3). These facts suggest 
the possibility of an approximate ad hoe theory for intermediate flows based upon 
the rigorous theoretical results of Hinch & Acrivos (1979) for a = 1. In this ad hoe 

approach, we assume that the features of the deformation and burst process for 
a = 0.8, 0.6, 0.4 and 0.2 are similar to those for a = 1, but with an effective strain 
rate Gai replacing G. Thus an approximate deformation curve should be obtained 
from (34) with Gai replacing G. The results of this calculation are compared to the 

experimental observations for A = 0.001 in figure 24. For predictions of the bursting 
point for intermediate flows, a similarly adapted version of (35) was employed : 

0.145 

at 
C,At = -. 

The predictions from this equation are compared to the experimental data for a = 0.8, 
0.6, 0.4 and 0.2 in figure 28. 

5. Results and comparison with theory 

In  the next two sections, we present the results of our experimental measurements. 
We begin in $5.1 with a description of drop shapes at  steady state. Rather than 
presenting all available data (which can be found in Bentley 1985) we initially 
concentrate on five cases representative of the behaviour for small, medium, and large 
values of the viscosity ratio. Following this, we present all available data from the 
present study for steady deformation and orientation as a function of capillary 
number with a = 0.2, 0.4, 0.6, 0.8 and 1.0, and 1.08 x < A < 57. These data 
illustrate that changes of the flow type, while holding the viscosity ratio constant, 
have little qualitative influence on the behaviour of the drop, at least for drops of 
moderate to low viscosity ratio, i.e. A < O(1). Finally, in 55.2, we present data on 
the conditions for drop burst. 

5.1. Drop deformation 

For very low values of the capillary number C the drop deformation was similar for 
all viscosity ratios and flow types. All drops were deformed into ellipsoids aligned 
along the principal axis of extension (the x-axis of figure 2). As the shear rate was 

increased, however, the deformation characteristics became strongly dependent upon 
the viscosity ratio and the rotational character of the applied flow. We begin by 
considering the experimental results for low-viscosity-ratio drops ( A  < 0.02). 

5.1.1. Low-viscosity-ratio drops 

Low-viscosity-ratio drops ( A  < 0.02) required quite large values of the capillary 

number for burst, and were able to attain steady shapes which were highly 
deformed. The lower the viscosity ratio, the greater the sustainable steady deformation 
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and the greater the capillary number at  the point of burst. As the shear rate was 
increased beginning with initially small values, the radius of curvature at the ends 

of the drop decreased, and eventually the ends appeared to be pointed. The transition 
from ellipsoidal deformation to pointed ends occurred at C( 1 +a) approximately 

equal to 0.5. The ends were more cusp-like for lower-viscosity drops, and for all 
pointed drops the ends became sharper as the shear rate increased. The drop 
orientation angle monotonically approached the angle of the exit streamline of the 
flow field ( - 3.2', - 7.2', - 12.7" and -20.9' for a = 0.8,0.6,0.4 and 0.2, respectively) 

as the shear rate increased, and the drops became more elongated. Steady aspect 
ratios as high as 20 were observed for the lowest-viscosity-ratio systems studied. Even 
in the most rotational flow considered (a = 0.2), the centreline of the drop remained 
straight, without any signs of the S shape which is characteristic of low-viscosity-ratio 
drops in simple shear flows (Taylor 1934; Grace 1971; Torza et al. 1972). 

A t  the point of burst, the drops no longer attained a steady shape, but extended 
continuously in time with the ends remaining pointed, becoming drawn into a thread 

of essentially constant radius. The ' tip-streaming ' phenomenon reported by previous 
researchers (Taylor 1934; Rumscheidt & Mason 1961 ; Torza el al. 1972; Grace 1971) 
was not observed in our experiments. It is possible that the magnification of our 
optical equipment was insufficient to resolve tiny drops being ejected from the drop 
ends. However, Torza et al. (1972) reported a correlation between tip streaming and 
the rate of change of the shear rate. They indicated that tip streaming occurred when 

the shear rate was changed rapidly, but apparently was suppressed for low dG/dt. 

Absence of tip streaming in our experiments (if it could be proven) would support 
this conclusion, since care was taken to increase the shear rate slowly to avoid 

transient phenomena. 
Figure 5 shows a plot of the deformation parameter D, and orientation angle 19 

versus capillary number for steady deformed drops in a flow with a = 0.8 and a 

viscosity ratio of 1.08 x The behaviour of this drop in flows with other values 

of a (0.2,0.4,0.6 or 1.0) is qualitatively identical to that illustrated here for a = 0.8. 
The error bars shown in the figure are typical of the experimental uncertainties in 
D, and C in all of the deformation plots. The solid line shows the predictions of the 
O ( E )  small-deformation theory of Barthks-Biesel & Acrivos (19734, and the dashed 
line represents their O(s2) theory. The asterisks terminating the theoretical lines 
indicate the theoretically predicted point of breakup at each level of approximation. 
In  this case, it can be seen that both of the small-deformation theories agree with 
the observed deformation within the experimental error only for small values of 
capillary number, where D, is essentially linear with C as predicted by the classic 

analysis of Taylor (1934). The O(s)  and O(s2) corrections to the Taylor result predict 
a positive curvature in D, vs. C, with the O(s) theory predicting a larger deformation 
at a given C and a lower critical C at burst than the O ( 2 )  theory. Although the O(s2) 
theory is in slightly better agreement with the experiment, the predicted burst point 
(C, = 0.280) still differs from the observed bursting point (0.51) by 45%! The 
experimental deformation curve exhibits positive curvature at low C, but has an 
inflexion point at about C = 0.3, which is close to the value at  which the transition 
to pointed ends occurs and where the 0 ( e 2 )  theory fails. The rather poor agreement 
between the predictions of the small-deformation theory and the experiment (except 
at low C) is not surprising, since low-viscosity-ratio drops require high C for burst, 
and exhibit highly-deformed steady shapes, while the theory is valid only when D, 
is small. We would expect a more accurate prediction for the elongated steady shapes 
from the slender-drop theory. 
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Figure 6 shows the dimensionless length L / a  plotted versus C for the same 
experimental conditions. The curve represents the predictions of the slender-drop 
theory. The agreement between the theory and the experiment improves with 
increasing deformation, as is expected since the theory is asymptotically valid as 
L/a+ 00. The predicted bursting point, C, = 0.513, compares favourably with the 
observed value, 0.51. 

Figure 7 shows a comparison between actual photographs of the deformed drops 
and the predictions of the small-deformation and slender-drop theories. The lines 

visible in the photographs are caused by small refractive index gradients in the 
suspending fluid which arise from minute temperature gradients. They appear along 
the exit streamlines of the flow, where fluids from opposite sides of the tank meet. 
The second and third photographs are compared with the O(e2) small-deformation 
theory, and the last four with the slender-drop theory. The comparison with the O(e2) 
theory is reasonable for the second photograph, with C = 0.175 and D, = 0.31, 
although there are larger differences between the experimental and calculated shapes 
than is suggested by the 1 % difference between the experimental and predicted values 
of D, for this case. The ends of the calculated shape are more blunt, and the 
approximations inherent in representing the shape with only tensors of order two and 

four are apparent from the slight ‘bump ’ in the sides of the drop. As the capillary 
number is increased, the shapes predicted by the small-deformation theory become 
increasingly unrealistic, as can be seen from the third photograph, a t  C = 0.265, 
where the predicted shape bears only a superficial resemblance to that found 
experimentally (the length and breadth, and hence D, are comparable). The O(e2) 
small-deformation theory predicts burst at  C, = 0.28, so for the remainder of the 
photographs the comparison is to the predictions of the slender-drop theory. 

Qualitatively, the predicted and observed shapes are similar, especially for C 2 0.409. 
For the most extended drop in this sequence, the difference between the theoretical 
and experimental L / a  was about 20 yo. The predictions of the slender-drop theory 
would undoubtedly improve for lower-viscosity-ratio systems, or for this system at 
larger values of Lla. 

5.1.2. Intermediate-viscosity-ratio drops 

All fluid systems with the viscosity ratio between 0.02 and 2.0 behaved in a 

qualitatively similar manner. The ends of the drops remained rounded to the point 
of burst (with less viscous drops exhibiting a lower radius of curvature), and the 
orientation angle varied monotonically from zero (aligned with the x-axis) a t  low 

capillary number to alignment with the exit streamline of the flow as the bursting 
point was approached. The critical capillary number and the maximum stable 
deformation both decreased as the viscosity ratio increased for all flow types 
investigated. As the critical shear rate was approached, drop burst was indicated by 
the appearance of ‘flat sides’, where the radius of curvature in the x-y cross-section 
became infinite along the length of the drop. Once this point was reached, no steady 
shapes seemed possible. The drop sides became concave and the drop was pulled into 
a thread, with the smallest radius at the central portion. The shapes of drops 
undergoing this transient motion at  the critical capillary number were surprisingly 
similar over a wide range of viscosity ratios (all A > 0.02). The qualitative aspects 
of the burst phenomena and the maximum stable deformation seemed independent 
of the flow type. The mode of burst observed corresponds roughly to the ‘B-2 ’ mode 
described by Rumscheidt & Mason (1961) and Torza et al. (1972). This is consistent 
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0 0.1 0.2 

a: 

FIQURE 8. Deformation curve for a = 0.6, h = 0.118. Symbols, experiment; -, O(E) theory; 
_-- , O(9) theory. 

with the descriptions of burst reported by Taylor (1934), Rumscheidt & Mason (1961), 

and Grace (1971) for drops in two-dimensional irrotational flow. 
Figure 8 shows a plot of D, and 8 versus C for h = 0.118 in a flow with a = 0.6. 

In  this case, the predicted values of the scalar deformation measure, D,, are in 

surprisingly good agreement with the experimental observations, even up to D, = 0.5. 
The predictions of the O(s) and O(e2) theories are similar, with the O(e2) theory 
predicting slightly higher deformation near the bursting point, and slightly lower C, 
at burst. The data lie above both calculated deformation curves, with burst occurring 
at C, = 0.21, compared to 0.228 and 0.220 predicted by the O(E) and O(e2) theories, 
respectively. The orientation angles predicted by the theory agree reasonably well 
with those observed, particularly in view of the difficulty in accurately measuring 
these angles from the photographs of the drops. 

Figure 9 shows the comparison between the actual drop shapes and those predicted 
by the O(e2) small-deformation theory for the same parameters as figure 8. The 
agreement is satisfactory for C up to about 0.2, at which point the drops assume 
shapes which could only be satisfactorily represented by including higher-order 
deformation tensors. The ‘bumps ’ in the theoretically calculated drop shapes are 
present in this case also (and, as pointed out by Barthbs-Biesel & Acrivos (1973a), 
for all but high viscosity ratios), but are less pronounced than for lower viscosity 
ratios. In the final photograph in the sequence, the drop is shown bursting, while the 
theory predicts a steady shape for that value of C. 
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FIGURE 10. Deformation curve for a = 0.4, A = 1.58. Symbols, experiment; -, O(E)  theory; 
__- , O(E*) theory. 

Experimental observations for a second ‘ intermediate-viscosity-ratio ’ case, 
A = 1.58, a = 0.4, are compared to the calculated deformation and orientation in 
figure 10. In  this case, at  a given C, the O(e2) small-deformation theory predicts a 

deformation which is greater than that observed, while the O ( E )  theory predicts 
lower-than-observed deformations. Thus the experimental points are ‘bracketed ’ by 
the two theoretical curves, with neither supplying a particularly accurate prediction. 
The bursting point (Cc = 0.178) is underestimated by 18 % by the O(e2) theory and 
overestimated by 43 % by the O ( E )  theory. This bracketing of the data, with an upper 
bound on the bursting point supplied by the O ( E )  result and a lower bound supplied 
by the O ( 8 )  result, is typical of the small deformation theory for 0.5 < A < 3. 

Photographs for this case are compared to shapes calculated from the O(e2) theory 
in figure 11. The theory predicts drop burst at  C, = 0.146, so no calculated shapes 
are included for the last three photographs in the sequence. The final photograph 
shows the drop bursting. The calculated shapes are in qualitatively good agreement 
with the experiment, as are the predicted orientation angles. From comparisons 
between the photographs of figures 7 ,  9, and 11, it is apparent that the ends of 
the deformed drops become blunter with increasing viscosity ratio, and that these 
shapes are more readily represented by the theory, which retains only second- and 
fourth-order deformation tensors. 
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FIGURE 12. Deformation curve for a = 0.4, A = 14.4. Symbols, experiment; -, O(E)  theory; 
_-- , O(e2) theory. 

5.1.3. High-viscosity-ratio drops 

For drops of viscosity ratio greater than 3, the vorticity in the flow field had 

pronounced effects on the drop orientation and deformation characteristics. For flows 
with vorticity, (a + l . O ) ,  the drops were aligned with the z-axis only for very small 
deformations, with the magnitude of the orientation angle increasing rapidly with 
increasing shear rate. Indeed, at moderate deformations, the magnitude of the 
orientation angle even exceeded that of the exit streamline. Upon further increase 

of the shear rate, the magnitude of the orientation angle went through a maximum, 
and decreased to the angle of the exit streamline as the bursting point was 
approached. This behaviour was particularly evident for the more rotational flows 

considered, a = 0.4 and 0.2. In those flows, limiting viscosity ratios were found, 
above which breakup was not possible. The limiting viscosity ratio for a = 0.2 was 
approximately 27, and for a = 0.4 the value was about 57. The relationship between 
viscosity ratio, drop orientation, and bursting point is discussed in $5.3. 

Figure 12 shows the deformation and orientation curves for a high-viscosity-ratio 
case, A = 14.4, in a flow with a = 0.4. In calculating D, the fourth-order tensor terms 
have been discarded as discussed in $4.1 above. In this case, the O(s) theory proved 
virtually useless, predicting that the drop attains a steady shape without bursting 
as the shear rate increases. In contrast, the O(s2) theory predicts the deformation 
curve with surprising accuracy, and the predicted bursting point, C, = 0.165, agrees 
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FIGURE 14. Deformation curve for a = 0.2, h = 27.3. Symbols, experiment; -, O ( E )  theory; 

-__ , O(e2) theory. 

well with the observed value of 0.176. The critical deformation at breakup, however, 

is underestimated by the theory. 
Both the experimental results and the predictions of the O(s2) small-deformation 

theory show the orientation angle 8 going through a maximum with increasing 

shear rate as discussed in $5.3. The observed maximum magnitude of 8 was 22O, in 
reasonable agreement with the theoretical prediction of 18'. 

Figure 13 shows the comparison between the observed drop shapes and those 
calculated from the O ( E ~ )  theory for this case, h = 14.4. The comparison is good for 
C less than about 0.10. The more eccentric shapes at higher C cannot be accurately 
represented by retaining only the second-order deformation tensor, but the calculation 
of the fourth-order tensor fails at high viscosity ratio as discussed in $4.1. An accurate 
calculation of the fourth-order tensor would probably have improved the comparison 
for C = 0.13 and 0.16, particularly in the latter case where the theory with only the 
second-order tensor predicts a steady drop shape with physically unrealistic concave 
sides. 

Figure 14 shows the deformation and orientation curves for a case where no drop 
burst was observed, with a flow type of 0.2 and a viscosity ratio of 27.3. The 
predictions of the 0 ( e 2 )  theory (without the fourth-order tensor) were quite accurate, 
predicting a limiting deformation of about 0.083, compared to the observed 
0.085 f O . O 1 .  The O ( s )  theory predicted a limiting value of about 0.07. The predicted 
limiting orientation angle for the 0(s2 )  theory was about -40°, in good agreement 
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FIGURE 16. Drop deformation curves for different a for h = 1 . 1  x lo-*: 0 ,  a = 1.0; A, a = 0.8; 

0, a = 0.6; #, a = 0.4; X, a = 0.2; -, O(9)  theory. 

with the observations. At this orientation, the effective straining motion is apparently 
so low that the drop shape remains essentially constant. This is discussed in 35.3 
below. 

Finally, figure 15 shows the comparison in this ase between the photographs and 

the shapes predicted by the O(s2) theory. It can be seen that the deformation is small 
for all C, and thus the theoretical and experimental shapes are very similar. 

5.1.4. Flow-type effects 

Figures 16 t o  23 are provided to show systematically the effect of flow type on drop 
deformation. Each figure shows experimentally measured values for D, and the 
predictions of the O(e2) small-deformation theory at a particular viscosity ratio for 
five different flow types (a = 1.0, 0.8, 0.6, 0.4 and 0.2). The experimental points for 
different flow types are distinguished by different symbols, and in every case the 
theoretical curves go in order of decreasing a from left to  right. 

For low and intermediate viscosity ratios (figures 16-19), the qualitative behaviour 
of the drops is not highly dependent on the flow type. Deformation is smaller for lowcr 
a a t  fixed C mainly because the magnitude of the rate-of-strain tensor ( = 1  G( +a)) 
decreases with decreasing a. Except for the lowest viscosity ratios ( A  = 1.1 x and 
1.1 x where the O(e2) small-deformation theory predicts no drop burst for 

a = 0.2) the O(s2) theory reflects the observed trends. For viscosity ratios above 2.80, 

the vorticity starts to  have more dramatic effects, with the ratio of capillary numbcr 

4 
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required for burst in the rotational flows relative to  that for a = 1.0 increasing, 
particularly for u = 0.4 and 0.2. The results for drop burst as a function of viscosity 

ratio and flow type are discussed in detail in $5.2. 
Figure 24 shows the experimental results for each flow type for the lowest 

viscosity-ratio system ( A  = 1 . 1  x plotted as L / a  versus C for convenient 

comparison to the large-deformation theory. The plot includes data for each flow type 
considered, as well as the predictions of the large-deformation theory described in 
$4.2. As can be seen, the theory gives acceptable results near the burst point ( L / a  
about 7) .  Burst for the next-lowest viscosity-ratio system considered ( A  = 1.1  x 
occurred a t  L/a  of about 3.5, and agreement with the slender-drop theory was poor, 
in keeping with the nature of the theory, which is valid only in an asymptotic sense 

for large Lla.  

5.2. Drop burst 

In  this section we consider the conditions which lead to drop burst for a given fluid 
system. In fact, drop burst depends not only on the instantaneous flow conditions 
(i.e. flow type and capillary number), but on the entire time history of velocity 
gradient experienced by the drop. That is, drop burst is a functional over the history 
of Vu. For example, Torza et al. (1972) reported that drops could be made to burst 
in simple shear by a sudden increase in shear rate to a value below that required for 

burst when the shear rate was slowly increased. The same behaviour was observed 
in the theoretical study of Hinch & Acrivos (1980). 

A complete investigation of the drop-burst functional would be impossible, due to 

the many degrees of freedom available in specifying the velocity-gradient history. 
Thus, in this work, we limit our attention to  one such history. Specifically, we consider 
only the case where the form of the velocity-gradient tensor is constant (fixed flow 
type) and the flow strength is increased very slowly, so that  the drop goes through 
a progression of equilibrium states. The bursting point is defined as the shear rate 
for which no steady shape exists (if there is such a shear rate). This particular choice 
of flow history provides a sufficient condition for drop burst, in that any other 
approach to a constant flow field (e.g. a step increase in shear or a ramped shear rate) 
will result in drop burst a t  the same or lower final shear rate. Thus our results can 

be used to predict an upper bound for the size of a drop which can exist indefinitely 
in a given flow field. 

Figure 25 shows the critical capillary number for burst C,, as a function of viscosity 
ratio for two-dimensional irrotational flow (a = 1 ) .  Data from the present study are 
compared with the observations of Taylor (1934), Rumscheidt & Mason (1961), and 

Grace (1971). The unbroken curve shows the predictions ofthe O(e2) small-deformation 
theory discussed in $4.1, and the dashed line shows the predictions of the large- 
deformation theory described in $4.2. The result of Rallison’s (1981) numerical 
calculation for A = 1 is also included. 

As can be seen, all of the experimental data are in reasonable agreement, with the 
possible exception of the data point a t  h = 1 reported by Taylor (1934). Typical error 
bars for our experiments are shown on the figure. Uncertainties for the earlier 

experiments would presumably be larger owing to the difficulties associated with hand 
control of the flow device. For A 2 0.05, agreement between the burst predictions 
of the O(e2) small deformation theory and our observations is surprisingly good, 
especially considering the approximations inherent in the theory. The deviation 
between the theory and experiment is maximum near A = 1.0, with the theory 
underestimating C, by about 20 yo. It is not known why this maximum occurs a t  
A = 1 .O. The numerical calculation of Rallison (1981) for A = 1 agrees very well with 



Drop deformation and breakup 273 

0 I , , , , , . . , I  . . . . I , , . I  I I . , . , , . .  

the data. Further, for low viscosity ratios, the large-deformation theory predicts burst 
with acceptable accuracy. 

The trend in figure 25 for large viscosity ratio is also of some interest. I n  our 
experiments, we see that the critical capillary number is essentially constant for 

viscosity ratios above about 3.0. In  contrast, Grace (1971) concluded from his data 
that C, goes through a minimum for h about 1, and then steadily increases with 
increase of the viscosity ratio above that value. We believe that Grace's conclusion 
is in error for the following reason : as the viscosity of the drop increases, the timescale 

for deformation increases as well. This makes the experiments more difficult since a 
much longer wait between increases in the shear rate must be allowed for the drop 

to attain a steady shape. I n  our experiment, the drop's position was controlled 
automatically, so great patience was possible. In  a hand-controlled experiment, 
however, the difficulty in controlling the drop may have forced the experimenter to 
increase the shear rate before the drop attained an equilibrium shape (or burst) at 

the lower shear rate. The effect of such an  error would be to observe drop burst at 
a higher shear rate than the actual critical value. The error would be expected to be 
greater for larger viscosity ratio since the time constant is higher for more viscous 
drops. The predictions of the O ( E ~ )  small-deformation theory (shown in figure 25)  and 
the numerical calculations of Rallison & Acrivos ( 1978) for axisymmetric extensional 
flow both support our conclusion that the critical capillary number for drop burst 
in irrotational flows tends to  some constant as viscosity ratio increases. 

Figure 26 shows the maximum steady deformation attained by the drop for pure 
extensional flow, a = 1 (as measured by the deformation parameter D,) a t  a capillary 
number just below the critical value for breakup. Data and theoretical predictions 

are presented from the same sources as for C,. Accurate determination of Df,c  is 
difficult, since the deformation changes rapidly with small increases in C near the 
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FIGURE 26. Deformation at critical capillary number as a function of viscosity ratio for 
a = 1.0. See figure 25 for key. 

burst point (see figure 12, for example). This is reflected in the considerable scatter 
in the data. Agreement between our observations and the predictions of both 

small-deformation and large-deformation theories is acceptable. Most of the other 
available data indicates deformations at  the bursting point which are considerably 
higher than we observed. In  particular, the critical deformations reported by Grace 
(1971) are much higher than we observed. We attribute this discrepancy to the 
difficulty in distinguishing stable shapes from slowly evolving transients as discussed 

above. 
Figure 27 shows photographs of the most extended stable shapes observed in 

irrotational flow (a = 1)  for each viscosity ratio investigated. For the lowest two 
viscosity ratios investigated, the shapes are highly extended and show pointed ends. 
With increasing viscosity ratio, the shapes become blunter. It is interesting that the 
shapes are nearly indistinguishable for all viscosity ratios greater than unity. 

Figure 28 shows our observations for C, for all five flow types investigated. In the 
plots, the solid curves represent the predictions of the O(s2) small-deformation theory, 
the broken curves represent the predictions from our ad hoc generalization of the 
large-deformation theory, and the solid points show the results of Rallison's (1981) 
numerical calculation for h = 1.  For all flow types except irrotational flow (a = 1 ,  

for which comparisons to the results of other researchers has been presented above), 
there are no previous experimental studies to compare our results with. 

It can be seen that agreement between the small-deformation theory and the obser- 
vations is quite good for h 2 0.05 for all flow types. As was the case for a = 1,  the 
small-deformation theory underestimates C, by approximately 20 % for a viscosity 
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A = 1.05 x 10-3 

C, = 0.475, Df,c = 0.896 

A = 1.1ox 10-2 

C, = 0.259, Dr,, = 0.791 

A = 2.13 x lo-* 

C, = 0.237, Df,, = 0.680 

A = 4.80 x lo-* 

C, = 0.208, Dt,= = 0.565 

A = 0.124 

C, = 0.173, Df,, = 0.485 

A = 0.230 

C, = 0.156, Dr,,  = 0.444 

A = 0.60 

C, = 0.136, Dr,, = 0.415 

A = 1.46 

C, = 0.120, Df,, = 0.396 

A = 2.80 

C, = 0.1 12, Dr,= = 0.394 

A = 7.30 

Cc = 0.103, Df,c  = 0.41 1 

A = 13.8 

C, = 0.103, Dr, ,  = 0.362 

A = 24.5 

C, = 0.106, Dr, ,  = 0.347 

FIQURE 27. Drop shapes at critical capillary number for irrotational shear flow. 
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FIGURE 28. Effects of flow type on critical capillary number for drop burst. Plots shown are for 
a = 1.0, 0.8, 0.6, 0.4 and 0.2 and go in order of increasing a from top t o  bottom. 0, a = 1.0; A, 
a = 0.8; 0, a = 0.6; V, a = 0.4; x ,  a = 0.2; B, Rallison (1981) numerical; -, O(e2) small- 
deformation theory ; ---, large-deformation theory. 

ratio near unity, while Rallison's (1981) numerical results provide a somewhat better 

estimate. For a = 0.4 and a = 0.2 the O(s2) small-deformation theory predicts a 

viscosity ratio (46.6 for a = 0.4 and 14.7 for a = 0.2) above which no drop burst is 
possible. This is analogous to the well-known behaviour in simple shear flow, except 

that  the limiting viscosity ratio is lower ( A  = 3.6) in simple shear flow, since the 
vorticity is higher. As mentioned above, the existence of viscosity ratios for which 

breakup is impossible for these two flows was verified experimentally. Drops with 

viscosity ratios of 27 and above could not be burst in flows with a = 0.2, and drops 
with A > 57 could not be burst in the flow type corresponding to a = 0.4. 

For a = 0.2, the small-deformation theory also predicts a lower limit in viscosity 

ratio below which drop burst is not possible. However, this feature of the small- 
deformation theory is not realistic. It should be noted that the predicted deformation 

at the point of burst becomes very large as the viscosity ratio decreases, and the 
small-deformation theory is far outside its expected region of validity. 
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PIQURE 29. Effects of flow type on deformation and orientation angle at the critical capillary 
number. Numerical results of Rallison (1981) go in order of increasing a from top to bottom. Points 
for a = 1 .O and 0.8 coincide. See figure 28 for key. 

While there is some scatter in the data, it appears from figure 28 that the ad hoc 
extension of the slender-body theory for a = 1 provides acceptable predictions for 
C, in the absence of a more rigorous theory for intermediate flows, i.e. a < 1. It is 
probable that the agreement would be better if the experiments were extended to 
lower viscosity ratios. 

Figure 29 shows the comparison between our results and the predictions of the 
available theories for the deformation, Df,C, and orientation, Bc,  at the critical 
capillary number as a function of h for all flow types investigated. The large- 
deformation theory provides no prediction for Bc since i t  is assumed that the drops 
align with the angle of the exit streamline, an assumption which our observations 
support. Similarly, the Dfsc  predicted by the large-deformation theory is the same 

for all flow types, and is in reasonable agreement with the data for all flow types for 
the lowest-viscosity-ratio case investigated. 

Generally, the agreement between predictions of the O(e2) small-deformation 
theory and the observations for Df,, are not as good as the agreement for C,, most 
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probably owing to the difficulty in accurately determining Df,c. Similarly, the 
comparison between the numerical results and the experiments is also less favourable, 
but it should be noted that accurate numerical determination of Df,c is likewise 
difficult. One interesting feature of figure 29 is that both the small-deformation theory 

and the numerical results predict that the critical deformation should depend on the 
flow type, with both predicting larger Df,c for more rotational flows for h < 8. (In 
figure 29, the solid rectangular points showing the numerical results for Df,c coincide 
for a = 1.0 and 0.8, and go in decreasing order of a from bottom to top for the other 
three points.) In  contrast, our experiments do not show any clear differences between 
the different flow types (except as discussed below for high viscosity ratios with 
a = 0.2). The reason for this discrepancy is not known, other than the large 
uncertainty in Df,c. 

5.3. Discussion 

We have seen in the preceding two sections that the small-deformation and 
slender-drop theories provide predictions for deformation, critical flow strength, 
critical deformation, and critical orientation which are at  times surprisingly accurate. 
In this section we present a more physical interpretation of our results, particularly 
in regard to the effect of vorticity on the deformation and burst process. We shall 
see that many of the interesting trends observed in the experiments can be explained 
through a qualitative analysis of the interaction between the orientation of the drop 
and the magnitude of the extension rate component which it experiences as a 

consequence of its orientation. 
We first consider the orientation of a freely suspended body in a linear shear field 

of the type described by (5) .  Analytic results are readily available for the case where 

the body is a solid ellipsoid of revolution, but when the body is a deformable drop 
the situation is considerably more complicated. Thus our approach is to consider the 
orientation of a solid particle, and use the insight gained from this to make qualitative 
predictions for a deformable drop. 

Since the creeping-flow equations and boundary conditions are linear for a 

suspended solid particle, we can consider separately the angular velocity of the solid 
particle in a purely rotational flow and in a purely extensional flow, and then 
superimpose the results to determine the angular velocity in the actual flow, which 

is a superposition of pure strain and vorticity. In the purely rotational flow, a particle 
of any shape rotates with the local fluid vorticity. In the flow of equation (5), the 
angular velocity due to the rotational component of the flow field is thus aligned with 

the z-axis, and is given by: 

W, = -G(1 -a). (37) 

In the two-dimensional pure-straining flow, the angular velocity depends on the 
orientation and shape of the solid particle. When the particle is isotropic, the angular 
velocity is zero. When the shape is anisotropic (e.g. an ellipsoid of revolution), the 
angular velocity is greatest when the longest axis of the particle is aligned at k45" 
from the principal axis of strain, since at  this orientation the long axis is per- 
pendicular to every streamline. When the long axis of the particle is aligned with the 
principal axis of strain, the angular velocity is zero. An expression for the angular 
velocity of an ellipsoid of revolution in a two-dimensional pure-straining flow 
(u = gx, w = -gy, z = 0) is given by Chaffey, Takano & Mason (1965): 

we = -gb  sin 28, (38) 
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where b is a scalar characterizing the eccentricity of the particle. It is related to the 
equivalent axis ratio of an ellipsoid re by 

This quantity ranges from zero for a sphere to + 1 for an infinite rod. In  (38) 8 is 
the angle between the longest axis of the particle and the x-axis. In the flow of (5), 
the strength of the extensional portion of the flow (i.e. g in (38)) is given by G ( l  +a). 

Superimposing the angular velocities in the rotational and extensional flows then 
gives the angular velocity in the actual flow : 

w = w,+w, = - G ( 1 - a ) - G ( l + a ) b  sin28. (40) 

To find the steady orientations, we set the angular velocity equal to zero and solve : 

This equation has no solutions for small b (unless a = 1 ,  a vorticity-free flow), which 

means that nearly spherical solid particles will always rotate in a flow with vorticity. 
For b 2 (a- l)/(a+ l ) ,  solutions exist, with particle alignment depending on b and 
a. The least eccentric particle which has a steady orientation, b = (a- l)/(a+ l) ,  is 
aligned at -45". As b increases (increasing eccentricity) the magnitude of the 
orientation angle decreases. An infinite rod (b  = 1 )  aligns with the exit streamline of 
the flow field, 8 = !j sin-l [(a- l)/(a+ l)]. For a solid particle, no steady orientations 
with the magnitude of 8 less than this value are possible. Thus, if we did a series of 

experiments with solid ellipsoids of increasing axis ratio, we should find a monotonic 
change in the orientation angle 8 from an initial value -45" for a 'slightly deformed ' 
particle to 0 = !j sin-l [(a- l)/(a+ l)]  corresponding to the exit streamline of the flow 

for a highly elongated particle. 
The orientation of viscous drops is much more complicated since drops can 

accommodate viscous stresses through deformation. Therefore, there are two time- 
scales of importance. The first is the timescale of the flow given by G-'. This timescale 
characterizes the strength of the vorticity which is tending to rotate the drop. It 
appears in the solid-particle case as well, but since it is the only timescale, i t  does 
not affect the equilibrium orientation in that case. The second timescale characterizes 

the response of the drop to viscous stresses, and is given by Apala. For a deformable 
drop, the ratio of the second timescale to the first, Ch, is an additional parameter 
affecting the equilibrium drop orientation. The other two parameters (which affect 

the orientation of a solid particle as well) are the flow type and the anisotropy (or 

degree of non-sphericity) of the drop or particle. Unfortunately, these three 
parameters are not independent because the deformation of the drop is related to the 
timescale ratio (through both C and A )  and to the flow type. Thus it is difficult to 
determine the effect of each parameter separately, and it is necessary to consider 
increases of the timescale ratio due to increasing viscosity ratio and increasing 
capillary number separately. 

When the deformation timescale is short compared to the flow timescale (low CA), 
the drop can be thought of as responding instantaneously to the deforming viscous 
stresses. Since the extensional portion of the flow field is responsible for these 
deforming stresses (cf. the O(1) terms in the small deformation theory of equation 
(13) ) ,  i t  follows that when Ch is small, drops will be aligned with the principal axis 
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of strain (the x-axis in our experiments). This may be contrasted with slightly 

deformed solid particles where the particle initially aligns, with increase of its axis 
ratio, at 0 = - 4 5 O  from the principal strain axis. I n  the experiments, we observed 
alignment with the x-axis for all viscosity ratios and flow types when the capillary 
number was sufficiently low. When A was small and C moderate, the deformation 
became too large for the drops to respond instantaneously, and they were rotated 
away from the x-axis. 

An illustration of the effect of increasing the timescale ratio solely through increases 
in the deformation timescale is provided by comparing the orientation of drops a t  

fixed values of C and u in the series of plots in figures 16 to 23. As the ratio of drop to  
suspending fluid viscosity increases, more solid-like behaviour is observed, with the 
more viscous drops in the series exhibiting orientation angles closer to the -45' 
expected for slightly deformed solid particles. 

When the timescale ratio CA is instead increased by decreasing the flow timescale 
(increasing G and thus C a t  fixed A ,  as is done in individual experiments), the situation 
is more complicated because increasing C also causes greater deformation. From (41) 
above, it is clear that  the effect of this  greater deformation is to align the drop more 
closely with the exit streamline of the flow. For low viscosity ratios the orientation 

of the drops is between the x-axis and the exit streamline. Thus when C is increased, 
both the increase in Ch and the consequential increase in deformation serve to  rotate 
the drop towards the exit streamline, and the result is a monotonic increase in the 

magnitude of the orientation angle with increasing C. 
I n  contrast, when A is greater than about 3.0, the magnitude of the orientation 

angle may actually exceed that of the exit streamline for some values of C. In  that 
case, further increases in C have two competing effects. The effect of increasing the 
time constant ratio is to rotate the drop further from the extensional axis. However, 
the consequential increase in deformation acts to  align the drop closer to the exit 
streamline of the flow, thus tending to decrease the magnitude of the orientation 

angle. The net result of these competing effects is the appearance of a maximum in 
the magnitude of the orientation angle as the shear rate is increased in some 

high-viscosity-ratio experiments. This is illustrated in figures 20 to  23. Note that the 
O ( 8 )  small-deformation theory predicts this behaviour quite well. 

The orientation of a drop has a strong bearing on the effective strain rate which 
it experiences in the flow. We define effective strain rate as the constant of 
proportionality between the component of fluid velocity (in the undisturbed flow field) 
parallel to the longest axis of the drop and the displacement along that axis. When 
x is a unit vector in the direction of the orientation of the drop axis, this is given 
by x-u .  Since the flow is a linear shear field, u = Vu'x,  and substitution of (5) gives: 

(42 )  
1 +a 

effective strain rate = G(F) cos 20. 

Thus, the effective strain rate is a strong function of orientation, ranging from a 

maximum of G( 1 + a ) / 2  when the drop is aligned with the principal axis of strain (the 
x-axis in our device), to  zero when the drop is aligned a t  -45". Note that when the 
drop is aligned with the exit streamline (sin 28 = (a- l)/(a+ l ) ) ,  the effective strain 
rate is Gai. 

A physical understanding of many of the trends observed in our drop-burst 

experiments can be obtained by considering the interaction between the drop 
orientation in the flow and the effective strain rate it  experiences as a consequence 
of that orientation. For example, in slightly rotational flows (a = 0 .8  and 0.6) the 
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capillary number required for burst of intermediate- and high-viscosity-ratio drops 
(for which C, and Df,, are nearly constant for irrotational flow as shown in figures 
25 and 26) is correlated with the orientation angle near the burst point. From figure 
29, we note that drops of intermediate viscosity ratio are apparently of low enough 
viscosity to allow the dissipation of vorticity through internal circulation, so their 
orientation at burst is between the principal axis of strain and the exit streamline 
of the flow. With increasing viscosity ratio, however, the timescale for deformation 

increases, and the drops tend towards more solid-like behaviour, becoming oriented 
further from the principal axis of strain, with the magnitude of the orientation angle 
even exceeding that of the exit streamline of the flow. As the magnitude of the 
orientation angle increases, the effective strain rate at  a given shear rate diminishes, 
and hence a larger shear rate is required for burst. This explains the appearance of 
a minimum in C, at a viscosity ratio of about 5.0 in figure 28. 

In more rotational flows, more dramatic effects are observed. For example, in flows 

with a < 0.4, the small-deformation theory predicts (and our experiments confirm) 
the existence of limiting viscosity ratios, above which burst is impossible. This is 
evidently because the orientation of the drop is such that the effective strain rate 
is very low. For example, in a simple shear flow, drops of viscosity ratio 3.5 or larger 
align very close to -45", where the effective strain is nearly zero. Increases in the 
shear rate increase the timescale ratio Ch, causing the drops to align still closer to 
the - 45" line, neutralizing the effect of the increased flow strength, and making drop 
burst impossible. This same phenomena occurs for a = 0.2 and 0.4 as well, but at  a 
higher viscosity ratio since the ratio of vorticity to strain is lower. 

Similar reasoning can also explain the interesting trends predicted for Df,, and 8, 
for high-viscosity-ratio drops in flows with 01 = 0.4 and 0.2. The small-deformation 

theory predicts that as the viscosity ratio increases above about 10, the deformation 
at the bursting point decreases, and the magnitude of the orientation angle increases. 
This is caused by an interaction between the deformation and orientation. As we have 

noted above, high-viscosity-ratio drops are rotated by the vorticity such that the 
magnitude of the orientation angle is greater than that of the exit streamline. Near 
the bursting point, when the shear rate is increased slightly, the drop elongates in 
response, and the greater eccentricity causes it to be rotated towards the exit 
streamline of the flow, where the effective strain is larger. This higher effective strain 
rate causes greater elongation, further decrease in the magnitude of the orientation 
angle, still higher effective strain rate, etc., and leads to drop burst. The maximum 
stable deformation, of course, is the deformation at  which this process is initiated, 
and this apparently decreases with increasing viscosity ratio. Our data reflect this 
trend for a = 0.2,  but the data point for h = 27 indicates an opposite trend for a = 0.4,  
possibly due to experimental error in the (difficult) determination of Df, , .  This trend 
for high viscosity ratios is not observed for simple shear flow, since in that case the 
magnitude of the orientation angle is always less than that of the exit streamline 

(8, = -45O) and the interaction described above cannot occur. 

6.  Conclusions 
6.1. Small-deformation theory 

The small-deformation theory of BarthBs-Biesel & Acrivos (19734 gives adequate 
predictions for drop deformation for h 2 0.05. The 0 ( e 2 )  version of the theory 
generally give better predictions for the deformation than does the O ( E )  theory. It 
should be noted that good agreement between the experimental and theoretical scalar 
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deformation measure, D,, is sometimes attained even when the calculated shape is 

quite different from the observed drop shape. The O ( 8 )  theory always gives better 
predictions for the critical capillary number a t  which drop burst occurs than does 
the O(E) theory. The O ( G )  theory predicts the qualitative features of drop burst with 
surprising accuracy for viscosity ratios greater than about 0.05. The agreement is for 
all flow types investigated in our experiments and for simple shear flow. I n  particular, 

the theory correctly predicts a limiting viscosity ratio above which drop burst is 
impossible for a = 0.4,0.2, and 0.0. It can be used for quantitative estimates of C,, 
accurate to  within about 30 yo, for the two-dimensional flows we considered when 

6.2. Large-deformation theory 

The large-deformation theory of Hinch & Acrivos (1979) gives adequate predictions 

for drop shape and burst for h < 0.01 for two-dimensional pure straining motion 
(a = l), and our ad hoc extension for other flow fields provides an acceptable result 
for intermediate flows in the absence of a more rigorous theory. I n  our experiments, 
the lowest viscosity ratio considered was h = 0.001, and in that case the predictions 
for C, and L / a  a t  burst were accurate to within about 15 % for all a. It is expected 
that the agreement would improve for lower A, since the slenderness of the drop 
increases with decreasing A. 

6.3. Numerical results 

The numerical calculations of Rallison (1981) for h = 1 are in good agreement with 
the data for C,. The predicted critical deformations do not agree nearly so well with 
our observations. This can be attributed to the difficulties in accurately determining 

the critical deformation, both experimentally and numerically. Numerical results for 
other viscosity ratios are not yet available for the flows we studied. 

h > 0.05. 
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