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Abstract. The intersection of large ordered sets is a common problem in the cofftitnet evaluation of boolean
queries to a search engine. In this paper we propose several ird@iga@ithms for computing the intersection of
sorted arrays, and in particular for searching sorted arrays in thedatén context. We perform an experimental
comparison with the algorithms from the previous studies from Demairpe-@rtiz and Munro [ALENEX 2001],
and from Baeza-Yates and Salinger [SPIRE 2005]; in addition, we imgiérnd test the intersection algorithm
from Barbay and Kenyon [SODA 2002] and its randomized variant384003]. We consider both the random
data-set from Baeza-Yates and Salinger, the Google queries useehigiri®et al., a corpus provided by Google
and a larger corpus from the TREC Terabyte 2006 efficiency queearstralong with its own query log. We
measure the performance both in terms of the number of compariedrsearches performed, and in terms of the
CPU time on two different architectures. Our results confirm or improgedkults from both previous studies in
their respective context (comparison model on real data and CPSumesaon random data), and extend them to
new contexts. In particular we show that value-based search algofiarizem well in posting lists in terms of the
number of comparisons performed.

1 Introduction

The intersection of large ordered sets is a common probletheirtontext of the evaluation of relational queries to
databases as well as boolean queries to a search engineofdtease complexity of this problem has long been well
understood, dating back to the algorithm by Hwang and Limfaver three decades ago [13, 14], and the average
case has been studied in the case of the intersection of ta/odeen the elements are uniformly distributed [9].

In 2000, Demainet al. [11] introduced a new intersection algorithm, termiehptive, which intersects all the
sets in parallel to find the shortest proof of the result. lrubsequent study [12], they compared its performance
in practice, relative to a straightforward implementatadran intersection algorithm, and proposed a new and better
adaptive algorithm which outperformed both in practiceeymeasured the number of comparisons performed, on
the index of a collection of plain text from web pages. In 2(B&rbay and Kenyon [4] introduced another intersection
algorithm, which adapts to the correlation between the sesfrithe query, and one year later Barbay [3] introduced
a randomized variant. To the best of our knowledge, neithérase algorithms were implemented before our study.
In 2004, Baeza-Yates [1] introduced an intersection allgorj based on an alternative technique. Baeza-Yates and
Salinger [2] measured the performance of the algorithmrim$eof CPU time, on pairs of random arrays.

In this paper we consider the number of comparisons and leemperformed, as well as the CPU time on two
different architectures (RISC and CISC), on three diffedata sets: (i) a random data-set similar to the one coresider
by Baeza-Yates and Salinger [2], (ii) the query log used bynBieeet al. [12] on a larger data-set provided by Google,
and (iii) and the GOV2 corpus, of si8&1G B, with a larger query log, both from the TREC Terab686 efficiency

* A preliminary version of this paper appeared in [6].



qguery stream. This combines the previous studies and allmme compare all the aforementioned algorithms on
common platforms. We propose several variants for thesatgion and search in sorted arrays in the context of their
intersection:

— We propose a variant of the algorithm from Baeza-Yates [hjctv performs the intersection of more than two
sorted arrays without sorting the intermediary resultss Variant is significantly faster than the original alglnit
on real instances, both in terms of the number of comparigerfsrmed and in terms of CPU time.

— We reduce the number of comparisons performed by eachéatéra algorithm by introducing value-based search
algorithms, and we further improve the performances bydicing an adaptive value-based search algorithm.

— We show that a variant of binary search optimizes the cactierliban the original version, when the arrays are
too large to fit in memory.

The paper is structured as follows: in the next Section weritesthe data-sets and the architectures on which we
evaluated the various algorithms discussed. In Section 8esgeribe in detail the intersection and search algorithms
studied. In Section 4 we present and analyze our experimergasures in the various contexts. We conclude in
Section 5 with a summary of our experiments.

2 Experimental Set-up

The practical studies of intersection algorithms from Dereat al. [12] and from Baeza-Yates and Salinger [2] com-
pare the performance of different algorithms in differeotexts (random or practical) and using different measures
(CPU or number of comparisons), so these results are nattifimomparable. In this paper we measure the perfor-
mance of these algorithms in the same setting as thesestadiesell as in a larger corpus, on which the performance
of algorithms is more sensible to cache effects.

2.1 Data-sets

Random, uniformly distributed data: We compare the performance of the algorithms on pairs oédats gener-
ated in the same way as Baeza-Yates and Salinger [2]: segpiehimteger random numbers, uniformly distributed in
the rangd1, 10°]. The lengthn of the longest sequence varies fran®00 to 22, 000 by steps o83, 000. The lengthn
of the shortest sequence varies frdfd to 400 by steps ofi00.

For each algorithm and each pair of sizesm ), we generate0 instances. We measure the number of comparisons
once for each algorithm and instance, and we average théngitime overl, 000 executions. Each execution, for
a given combination of algorithm and instance, is separftad the next one with the same combination by the
execution of all the other algorithms on all the instancégs Thsures a realistic simulation of the cache behavior.

Google Corpus and Query Log: We compare the performance of the intersection algorittmamswer real queries
on a sample web corpus, both provided by Google. This is thmegpuiery log used by Demaimeal. [12], but on a
substantially larger and more recent data set.

The set of web pages contaifiss, 760 text documents i16.85 gigabytes of text. As the documents or web pages
of the corpus were not given a numerical identifigoriori, we numbered the documents as they were indexed, by
assigning a number indicating its order in the indexing pssc The resulting inverted word index Ha$04, 335
alphanumeric Al keywords with HTML markup removed.

The query log corresponds 50000 entries. For more details on the query log we refer the remdBemainect
al. [12], where its properties are discussed in detail.



TREC GOV2 Corpus and Query Log: We consider a larger web corpus and an associated query togh form
the data-set TREC GOV2. This web corpus was collected by REECQ competition in information retrieval, through
a partial crawl of US government websites.

The GOV2 web corpus corresponds to approxima3ély GB of text, which once indexed associas&s515, 138
keywords to the references 86,197,524 documents. Each document is on average7 KB long, most are in
HTML but some are in PDF. The document numbering scheme Fsthiat certain groups of documents have numbers
close to each other. As a result, this creates gaps in the enimgbscheme where certain numbers between document
groups do not appear.

The query log provided with the TREC GOV2 corpus correspaad80, 000 queries with click-through togov
domains. We randomly selected a sampl8,@00 queries for our simulations. There wei@h queries involving only
one keyword, an@d05 queries where a keyword didn’t exist in the inverted wordexdThis leaveg590 non-trivial
gueries, which corresponds to a query log of similar sizéaéodne used on the Google data-set. The average size of
a query is4.42 keywords. Table 2.1 shows the number of keywords distidouith the queries: most queries have less
than11 keywords.

[

# of keywords k) 2 |3 |4 |5 6 |r |8 |9 |10 |11 |12 |13 |14 |15 |16 |17 |18
# of queries 105|778 (12661217793 |414 (198 |98 |53 |44 |14 |7 |4 |5 |2 |0 |1 |1
Table 1. The distribution of the sizes of TREC queries: on averdgg keywords per query.

2.2 Machines and Compilers

We implemented the algorithms i@++, and we ran our experiments on two architectures. For eatdtitecture,

we measured only the performance of the intersection oedantrays once they have been loaded in memory (and
eventually cached on the swap partition of the hard-drikeparticular, we did not measure the performance of the
indexing structure, which retrieves those arrays from tigex on the hard-drive.

The INTEL platform: For all data-sets we used a PC runnlrighux ver si on 2. 4. 20-31. 9 on a processor
Intel (R} Pentium R) 4, at2.66GHz with a low level 1 cache oK, a level 2 cache o§12K, 1GB of
memory and a swap partition of sizel 6G B. We measured the CPU time using that scl function, specific to the
Pentium, which measures the number of processor cycleshemuk includes the time taken by hard-drive accesses
to the swapped partition, and by cache misses. The programsasmpiled on this machine usiggc 3. 2. 2 with
the optimization option C3.

For the largest data-set, we also measured the CPU time tigrig nmes function, from thesys/ti nes. h
library, to allow the comparison with the equivalent measuon the other platform, which does not support the
rdt scl function.

The SUN platform: For very large instances we ran additional simulationsguaimJl t r aSparc |11 server from
Sun running Unix or8 processors &00 MHz, with 16GB of RAM. As the largest sorted array usess M B, and
as each instance is composed of at nmi@sarrays, no instance uses more tH#&n3, hence all intersection instances
hold in main memory on this machine. This is a RISC architegtwhich means in particular that multiplications and
divisions are not directly supported by the processor botmted through function calls.
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Algorithm 1 Pseudo-code favs
SvS(set, k)
1: Sort the sets by sizéset[0]| < |set[1]] < ... < |set[k]]).
2: Let the smallest sett[0] be the candidate answer set.
3: for each sefS from set doinitialize ¢[S] = 0.
4: for each sefS from set do
5. for each element in the candidate answer st
6: search foe in S in the range/[S] to | S|,
7
8

and updaté[S] to the rank ofe in S.
if e was not foundhen

9: removee from candidate answer set,
10: and advance to the next element in the answer set.
11: end if
12:  end for
13: end for

The CPU time was measured on this machine using threes function from thesys/ ti nes. h library, which
returns the elapsed real time, including time taken by cawisses. The programs were compiled on this machine
usinggcc 2. 95. 2 with the optimization option C3.

3 Algorithms

In this paper we define search and melding algorithms sepgrab that we can study the impact of new search
algorithms on all melding algorithms, and find the best coraton over all possible ones.

3.1 Melding Algorithms

Various algorithms for the intersection bfets have been introduced in the literature [1, 2, 3, 4, J1 Atlong those,

we do not consider the naive algorithm, which traverses e@acy linearly, as both theoretical and experimental
analysis show that its performance in the comparison madsignificantly worse than the ones studied here. For
similar reasons we do not consider either fldeptive intersection algorithm, proposed by Demaebal. [11], nor

the algorithm proposed by Hwarej al. [12]. Instead we focus on four main algorithms, some of theith winor
variants.

SvS and Swapping SvS:SvS is a straightforward algorithm widely used, which intetsebe sets two at a time in
increasing order by size, starting with the two smallest @&lgorithm 1). It performs a binary search to determine if
an element in the first set appears in the second set. We aisideo variants of it which replace the binary search
with various other searches.

Demaineet al. considered the variariwapping_SvS, where the searched element is picked from the set with
the least remaining elements, instead of the first (injtiathallest) set ir§vS. This algorithm was first proposed by
Hwanget al. [13]: it performs better when the size of the second set istambially reduced after a search although
experiments show that this does not happen often.



Small Adaptive: Small_Adaptive is a hybrid algorithm, which combines the best propertie3vsfandAdaptive

(see Algorithm 2). For each element in the smallest set,rfiop@s a galloping search on the second smallest set.

If a common element is found, a new search is performed ingh®iningk — 2 sets to determine if the element

is indeed in the intersection of all sets, otherwise a newcbeia performed. Observe that the algorithm computes

the intersection from left to right, producing the answemicreasing order. After each step, each set has an already
examined range and an unexamined rasgell Adaptive Selects the two sets with the smallest unexamined range
and repeats the process described above until there istaséis been fully examined.

Algorithm 2 Pseudo-code f@mall Adaptive
Small_Adaptive(set,k)

1: while no set is emptylo

2.  Sort the sets by increasing number of remaining elements.

3:  Pick an eliminatoe = set[0][0] from the smallest set.
4: elimset « 1.

5. repeat

6: search foe in set[elimset)].

7 incremenelimset;

8: until s =k oreisnotfoundinset[elimset]

9: if s=k then
10: adde to answer.
11:  endif
12: end while

Sequential and Random Sequential:Barbay and Kenyon [4] introduced a fourth algorithm, calfeduential,
which is optimal for a different measure of difficulty, basadl the non-deterministic complexity of the instance. It
cycles through the sets performing one entire gallop searehtime in each (as opposed to a single gallofieg

in Adaptive), so that it performs at mogtsearches for each comparison performed by an optimal namrdigistic
algorithm: its pseudo-code is given in Algorithm 3.

A randomized variant [3JRSequential, performs less comparisons th&equential on average on instances
where the searched elements are present in roughly haléddrtlays, rather than in almost all or almost none of the
arrays. The difference witRequential corresponds to a single line, the choice of the next set wiwesearch for
the “eliminator” (line12 in Algorithm 3): Sequential takes the next set available whii€equential chooses one
at random among all the sets not yet known to contain the editar.

Baeza-Yates and Baeza-Yates SortedBaezaYates algorithm was originally intended for the intersection wbt
sorted lists. It takes the median element of the smalleatigtsearches for it in the larger list. The element is added to
the result set if present in the larger list. The median ofthaller list and the rank insertion of the median in the large
set divide the problem into two sub-problems. The algorittuives recursively the instances formed by each pair of
subsets, always taking the median of the smaller subseteamndigng for it in the larger subset. If any of the subsets is
empty, it does nothing. In order to use this algorithm onanses with more than two lists, Baeza-Yates [1] suggests
to intersect the lists two-by-two, intersecting the snsdllists first. As the intersection algorithm works for sdrtists

and the result of the intersection may not be sorted, thdtrestuneeds to be sorted before intersecting it with the next
list, which would be highly inefficient. The pseudo-codeBaezaYates algorithm is shown in Algorithm 4.



Algorithm 3 Pseudo-code faequential
Sequential(set, k)
1: Choose an eliminataer = set|[0][0], in the seelimset « 0.
2: Consider the first set,— 1.
3: while the eliminatore # co do

4: searchimsetl[i] fore
5 if the search found then
6: increase the occurrence counter.
7 if the value of occurrence counterkighen outpute end if
8: endif
9: if the value of the occurrence countekisor e was not foundhen
10: update the eliminator ©«— set|i][succ(e)].
11: endif
12:  Consider the next set in cyclic order— i + 1 modk.
13: end while

To avoid the cost of sorting each intermediate result setjntreduceSo_BaezaYates, a minor variant of
BaezaYates, which does not move the elements found from the input to éselt set as soon as it finds them,
but only at the last recursive step. This ensures that tieegles are added to the result set in order and trades the cost
of explicitly sorting the intermediate results with the totkeeping slightly larger subsets.

Algorithm 4 Pseudo-code f@aezaYates
BaezaYates(set, k)
1: Sort the sets by sizéset[0]] < |set[l]| < ... < |set[k]]).
2: Letthe smallest setet[0] be the candidate answer set.
3: for each seket[i],i =1...k do
4: candidate « BYintersect(candidate, set[i],0, |candidate| — 1,0, |set[#]] — 1)
5
6

sort the candidate set.
: end for

BYintersect(setA, setB,minA, maxA, minB, maxB)

1: if setA or setB are emptythen return( endif.
: Letm = (minA + maxA)/2 and letmedianA be the element atetA[m].
: Search fomedianA in setB.
. if medianA was foundthen
addmedianA to result.
end if
. Letr be the insertion rank afedianA in setB.
. Solve the intersection recursively on both sides ahdm in each set.

N U A WN

Each of those algorithms has linear time worst case behavitre sum of the sizes of the arrays, and each
performs better than the others on a set of instances. NatBdbhzaYates, So_BaezaYates, Small_ Adaptive and
SvS take active advantage of the difference of sizes of the aatbthatSmall_Adaptive is the only one that takes



advantage of how this size varies as the algorithm elimgalements, whil8equential andRSequential ignore
this information.

3.2 Search Algorithms

We extend the set of search algorithms tested to value-tsgedthms, such asnterpolation, Extrapolation
or Extrapol_Ahead; and to some cache oblivious search algorithms, su@ld@sded_Binary.

Binary Search and variants: Binary search is well known in the literature. The adequatiglémentatioh finds the
insertion rankp of a keyz in a sorted se#! of sizen in 1 + log, n comparisons. In the context of the intersection of
sorted arrays, several elements are searched in eachardhy) many applications those elements are of increasing
size, so that the position of the last lookup during the mmesisearch is a lower bound for the position of the currently
searched element. While using this lower bound reduces tmdauof comparison (we call thislaptive Binary),

it yields a slower CPU performance when the array is verydamd partially cachedlotal Binary ignores this
lower bound and uses the cache more efficiently.

We test a third variantRounded_Binary, which represents a trade-off betwe@daptive Binary and
Total_Binary: it performs the same comparisons tHartal Binary So long as the compared elements are larger
than the lower bound obtained from the previous search, efwwoint it switches to a more sophisticated mode taking
advantage both of the positions of the previous comparjsams of the lower bound. This variant always performs
more comparisons thatdaptive Binary and less thamotal Binary, but it performs better in terms of CPU on
instances where the array searched is very large, due te edfeitts.

Galloping Search: Originally introduced by Bentley and Yao [7]inbounded search is the problem of searching
for the insertion rank of a keyz in a sorted sefd of unbounded size. The algorithm probes tHesys with index
{1,3,7,15,...,2° — 1} in sequence till it finds a keyl[2¢ — 1] larger thanz, and then performs a binary search4n
between position8‘~! — 1 and2¢ — 1. This technique is sometimes calledke sided binary search [15], exponential
search [8], doubling search [4], or galloping [11, 12]: we will use this last name for our implementatidalloping
search. It solves the unbounded search proble?iag, (p+1) comparisons.

Interpolation and Extrapolation Search: Interpolation Ssearch has long been known to perform significantly
better in terms of comparisons over binary search on datoraly drawn from a uniform distribution, and recent

developments suggest that interpolation search is alsasamable technique for non-uniform data [10]. Searching fo
an element of value in an arrayset[i| on the range to b, the algorithm probes positiaf{a, b, ) defined as follows:

I(a,b,e) = { (b—a)J +a

We propose a varianExtrapolation search, which involves extrapolating on the current andipos positions
in set[i]. Specifically, the extrapolation step probes the infigk, p;, €), wherep!, is the previous extrapolation probe.
This has the advantage of using “explored data” as the baisgafculating the expected index: this strategy is similar
to galloping, which uses the previous jump value as the Basihe next jump (i.e. the value of the next jump is the
double of the value of the current jump).

e — setli][a]
set[i][b] — set[i][a]

11t can be implemented in two different ways, each of them optimizing ardifeperformance measure, the number of two-
way comparisons, closer to CPU time, and the number of three-wayar@sops, closer to the running time in the context of
hierarchical memory. As the other implementation performed poorljl@oatexts, we discuss here only the one optimizing the
number of two-way comparisons.



Extrapolation Look Ahead Search: We propose another search algoritfEatrapol_Ahead, which is similar to
extrapolation, but rather than basing the extrapolatiothercurrent and previous positions, we base it on the current
position and a position that is further ahead. Thus, ourg@inbex is calculated b¥(p;, p;+1, ¢) wherel is a positive
integer that essentially measures the degree to which tinepeation uses local information. The algorithm uses
the local distribution as a representative sample of th&ibligion betweenset[:][p;] and the eliminator: a large
value of corresponds to an algorithm using more global informatishile a small value of correspond to an
algorithm using only local information. If the index of thaecsessogucc(e) of e in set|i] is not far fromp;, then

the distribution betweenet[i][p;] andset]i][p; + [] is expected to be similar to the distribution betweer[:][p;]
andseti][succ(e)], and the estimate will be fairly accurate. Thus if the setiisty, or piecewise uniform, we would
expect this strategy to outperform interpolation becahseset is locally representative. On the other hand, if the se
comes from a random uniform distribution then we would exjp&erpolation to be better because in this case using
a larger range to interpolate is more accurate than usingaiesmange.

4 Experimental Results

In each of the contexts defined in Section 2 we test all therigfgos defined in Section 3 and we measure their
performance in terms of the number of searches and compargaformed, and in terms of CPU time. The CPU
times for the Random and Google data-sets correspond onigé&sures on theNTEL platform, as the instances are
too small for the execution time to be measured onstue platform. Both platforms are considered for the larger
TREC GOV2 data-set.

Note that the number of searches for a fixed merging algoritbhes not depend on which search algorithm is used
(they all return the same position), and that the number ofgarisons performed does not depend on the architecture.
Despite the fact that the CPU time on a particular instanneskightly vary from one execution to another, we verified
on small sampless() queries from the TREC data-set, all queries from the Googte-det) that the CPU measures
over a single run yield the same conclusion than averagiegiovruns: hence we report our results on larger samples
with a single run.

4.1 Experiments on random, uniformly distributed data

In the context of randomly generated data, we only measwegdnformance of the algorithms with two lists, in
a similar way to the study by Baeza-Yates and Salinger [2]ciwkhompare the CPU performance on random data
of the combination®aezaYates usingAdaptive_Binary, Small_ Adaptive usingGalloping and of the naive
linear algorithmBaezaYates usingAdaptive_Binary was the best combination. We test a larger set of algorithms,
on random data generated in a similar way, and we measurehmiberformance in CPU time and the number of
comparisons and searches. Note Hsfquential behaves exactly the sameSsjuential on two arrays and is not
represented.

We show on the plots the number of comparisons and CPU timadifferent intersection and search algorithms
as a function of the size of the largest list when the size of the smallestiists fixed, for various values of.. The
standard deviation is usually very low, hence we omit in tharés with more than two plots on them.

Comparison with Baeza-Yates and Salinger [2]:In terms of CPU time, our results agree with Baeza-Yates and
Salinger’s study: botBaezaYates andSo_BaezaYates UsingAdaptive Binary outperform any other combination

of algorithms. Figure 1 shows the performance of the five bastbinations of algorithms on this data-set. As Figure 2
shows, none of the other search algorithms perform betiarttie initial choice proposed by Baeza-Yates and Salinger.
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Fig.1. CPU times for the five best combinations of algorithms on random gedeiastancesBaezaYates using
Adaptive Binary performs the best for all size ratios, closely followeddwapping SvS andSvS usingGalloping.
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Fig. 2. CPU times for all search algorithms in combination vBttezaYates. The best search algorithm is the one proposed
originally, Adaptive_Binary.
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The superiority ofAdaptive_Binary over all search algorithms when usiBgezaYates Or So_BaezaYates
is easily explained: value based search algorithms sudh&srpolation are too costly in CPU time, and adap-
tive search algorithms such &alloping or Extrapol_Ahead are inefficient when the searched position is in
the middle of the array on average. The superiorityBagézaYates among melding algorithms is relative, as
SvS and Swapping SvS perform well for almost any search algorithm. The differeric CPU performance be-
tweenBaezaYates andSo_BaezaYates usingAdaptive_Binary, SvS, Swapping SvS or Small_Adaptive using
Galloping is minimal (see Table 2).

Number of searches and comparisonsin terms of the number of search@agezaYates, SvS, Swapping SvS and
Small_Adaptive perform the best, whil8equential andSo_BaezaYates perform much more searches (see again
Table 2). The difference of performance betwBenzaYates andSo_BaezaYates is easily explainedBaezaYates
performs one more comparison per search to reduce the ddoyaine more value, which increases the number of
comparisons but reduces the number of searches in compaoiSe BaezaYates. The difference of performance
betweerSequential and the other algorithms is due to the fact theduential always chooses the new eliminator
on the array previously searched: in the context where thme@hts of the array are uniformly drawn and of very
different size, it always results in a worse performance ttfeoosing the eliminator from the smallest array.

Algorithm Searches Comparisons Runtime
SvS 200 1024 Extrapol_Ahead) 242986 Rounded_Binary)
Swapping SvS 200 1024 Extrapol_Ahead) 230916 fdaptive Binary)
Small_Adaptive| 200 1024 Extrapol_Ahead) 435828 (Galloping)
BaezaYates 199 1066 ([nterpolation) 188258 fdaptive_Binary)
So_BaezaYates | 328 1064 (nterpolation) 218156 fdaptive Binary)
Sequential 385 1198 Extrapol_Ahead) 327075 fdaptive_Binary)

Table 2. Total number of searches and comparisons and total running timerped by each algorithm on the Random data-set,
when associated with the search algorithm performing the best with it. Tinéemof searches and comparisons are correlated,
although the difference in terms of the number of searches perfooeteterBaezaYates andSo_BaezaYates does not corre-
sponds to the difference in the number of comparison performedCPhétimes are not correlated with the two other measures.

In terms of the number of comparisons, the use of value basartls algorithms such aterpolation,
Extrapolation Or Extrapol_ Ahead results in a better performance for any melding algorithmose algorithms
outperform other search algorithms on the uniform distidsuof elements in the arrays.

The best combinations regarding the number of comparisoedonmed are Swapping SvS using
Extrapol_Ahead andBaezaYates Using Interpolation, even though Figure 3 shows th&tapping SvS with
Extrapol Ahead has a small advantage o&tezaYates with Interpolation.

Fixing the size of the smallest list to other sizes does riet #he relative ranking (see Figure 4), so we only report
the data form = 200. For completeness we summarize the results across allthlgsron the whole Random data set
in Table 3.

4.2 Experiments on the Google data-set

Solving the queries provided by Google on the index of thein eveb-crawl, Demainet al. [12] studied the com-
binations of algorithmsSmall_Adaptive usingGalloping, SvS andSwapping_SvS usingAdaptive Binary, and
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Fig. 3. Number of comparisons f@®aezaYates usingInterpolation andSwapping_SvS USingExtrapol_Ahead onthe
Random data-seswapping_SvS with Extrapol_Ahead performs visibly better.
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Fig. 4. CPU times for the five best combinations of algorithms on the Random dateith the smallest list of size 400. The
order of the algorithms is the same than when the smallest list has siZa@98Yates usingAdaptive_Binary performs
the best for all size ratios.
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SvS Swapping_SvS|Sequential|BaezaYates|So_BaezaYates|Small_Adaptive
cmp  cpu cmp cpu cmp  cpucmp  cpu cmp cpu cmp cpu
Total_Binary 28152623972815 254008439745754028112500184501] 4025442815 677318
Adaptive Binary|24692550642469 230916263232707516201882581620 2181562469 444474
Rounded_Binary |26232429862623 246871399743643826292427734190 3913472623 443064
Galloping 20872453332087 244216223733231124102559452373 2860402087 435828
Interpolation |10672791271067 280624124237477910662754631064 3046161067 466444
Extrapolation [12813755851281 371444144446420312613739471262 4019331281 547751
Extrapol_ Ahead [10244132091024 404841119857610910854264521073 5060751024 584941

Table 3. Total number of comparisons and CPU times performed by each algooiter the Random data set. In bold, the best
performance in terms of the number of comparisons, for variousingeldgorithms in combination witBxtrapol_Ahead, and
the best performance in terms of CPRdezaYates usingAdaptive Binary.

found the combinatio8mall Adaptive usingGalloping to outperform the others in terms of the number of com-
parisons performed.

We measured the performance of each combinations of digmsion the same queries, but on the index of a larger
web crawl, also provided by Google. Similarly to the resglt®en by Demainet al., we show on the plots the number
of comparisons and CPU times as a function of the numbefrkeywords in the queries, which corresponds to the
number of arrays forming the instance. The standard dewiati the two by two difference of performances on each
instance, not represented here, was always very low. Wetbmistandard deviation of the average performance of
each algorithm on instances composed afrays: it mostly represents the variation of difficulty argaueries with
k keywords, and not the stability of the results.

Comparison with Demaineet al. [12]: Considering the same algorithms studied by Demeiia., our results agree
with the previous studySmall_ Adaptive usingGalloping performs less comparisons than the other algorithms, but
in fact Small_Adaptive does not behave much differently fragrS andSwapping SvS, as the combinationsvs
usingGalloping andSwapping_SvS usingGalloping performs almost equally: the improvement in the number of
comparisons performed is mainly due to the usage o&#hé oping search algorithm (see Figure 5). This similarity
of performance is likely to come from the fact that witl286 keywords per query on averag®tS, Swapping SvS
andsmall_Adaptive behave the same on instances which consist of only two arrays

The number of comparisons performed is further reduced éyifie of value based search algorithms. All inter-
section algorithms benefit from the uselafterpolation, and all excepBaezaYates andSo_BaezaYates benefit
even more from the use @ktrapol_Ahead, the variants that we introduced (see again Figure 5). Aswtrehe best
combination of search and melding algorithms regardingntiraber of comparison performed &eall Adaptive,
SvS and Swapping_SvS usingExtrapol_Ahead, and results in an important improvement over the best isolut
proposed by Demainet al..

Study of Barbay and Kenyon'’s [4] algorithm: The algorithm proposed by Barbay and Kenyon [4] and its ramdo
ized variant [3] are both performing noticeably more congmrs than the other intersection algorithms measured,
independently of the search algorithm chosen (see TablEhg.high number of comparisons is correlated with the
high number of searches performed: the algorithms failswbdi shorter proof by cycling through the arrays.

The searches performed Bgquential are shorter on average than other similar algorithms: ttie b&tween
the number of comparisons and the number of searches is mvafesthan for other algorithms such &ssS (see
again Table 4). This is probably explained by the fact 8wjuential performs many searches of average size, as
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Fig. 5.Number of comparisons f@vs usingAdaptive_Binary, Galloping, Interpolation Or Extrapol_Ahead onthe
Google data-setalloping andInterpolation successively improve okdaptive Binary search. The performance of
Extrapol_Ahead is almost indistinguishable fromnterpolation’s although Table 5 shows that it does perform slightly
better.Swapping_SvS andSmall_Adaptive show the same behavior.
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Fig. 6. CPU times for the four best combinatiorss:S andSwapping_SvS usingGalloping search, an@aezaYates and
So_BaezaYates usingAdaptive Binary search on Google data-seuS, Swapping SvS andSo_BaezaYates perform
very similarly, butBaezaYates performs slightly worse.
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opposed to algorithms such &S which perform many small searches in the smallest arraysa bew rather large
ones in the other arrays,

Algorithm ComparisonsSearchefatio

SvS usingGalloping 16884 3542 |4.77
Swapping_SvS usingGalloping 16884 3541 |4.77
Small_Adaptive usingGalloping 16884 3542 |4.77
Sequential usingGalloping 25440 5801 |4.39
RSequential usingGalloping 24518 5873 |4.17
BaezaYates UsingGalloping 24285 3327 |7.30
So_BaezaYates USingGalloping 20935 5209 |4.02
BaezaYates USingAdaptive Binary 18543 3327 |5.57
So_BaezaYates USingAdaptive_ Binary| 15689 5209 |3.01

Table 4. Number of comparisons and searches performed on the GooglseaiatBhe average cost of a search (the log of its
length), here measured in number of comparisons, is small€etprential andRSequential than forSvs, Swapping SvS or
Small_ Adaptive.

Note that the number of comparisons (and ratiopaézaYates andSo_BaezaYates usingGalloping iSs not
representative: when usinglaptive Binary search, which is better suited to their behavior, the paréorces in
terms of the number of comparisons are much better (see @ghla 4). The melding algorithi®o_BaezaYates is
more efficient in terms of the number of comparisons tRaszaYates, although it performs more searches, which
still results in a slightly smaller number of comparisons gearches: this corresponds to the additional comparison
performed byBaezaYates to check if the searched element is present in the searched ar

Real time on real data: The CPU performances are correlated with the number of cosqgpes for all melding and
search algorithms, except for the value based search g such aBxtrapol_Ahead (see Figure 6). The fact that
Interpolation performs more comparisons thBrtrapol_Ahead (See Figure 8), but uses less CPU time indicates
that the cost of the extra memory accesses perform&sttapol Ahead is more significant than the reduction in the
number of comparisons: it might result in an additional eatiss, since it is at distan¢gn of the previous access,
wheren is the number of remaining element in the array.

For completeness we summarize the results across all tlgrion the whole data set in Table 5.

4.3 Experiments on the TREC GOV2 data-set

As for the Google data-set, we measured the nhumber of seaacitecomparisons performed and the CPU time used
by the algorithms. As in the previous section, we show on thesghe number of comparisons and CPU times for
different melding and search algorithms as a function oftln@ber of arrays forming the instances.

We restricted our study to the most promising algorithmsfftbe study on Google data set: in particular, we did
not consider the melding algorithRBequential on the TREC GOV2 data-set. The fact that the data set is larger
allows us to compare the CPU performances of the algorithmt&/o different architectures: t/8¥N station has much
more memory but a limited set of instructions, which makediplication and divisions much more costly; while the
INTEL station has a larger set of instructions, but much less mgreorthat part of the arrays will be cached on the
swap partition of the hard-drive.



15

SvS Swapping_SvS|Sequential|BaezaYates|So_BaezaYates|Small_Adaptive|RSequential
cmp cpu cmp cpu cmp cpu cmp cpu cmp cpu cmp cpy cmp  cpu
Total_Binary 582175.14258209 4.97693087 8.67457594 5.42683710 7.14058217 8.32594400Q 15.446
Adaptive_ Binary|392213.762439221 3.93755817 6.70418543 3.28415689 3.11339225 7.2085421Q0 13.401
Rounded_Binary |546744.68454671 4.831872678.260542865.32778511  6.90854679 7.99588509 14.873
Galloping 168842.79116884 2.8742544Q 4.80824285 3.95320935 3.76916884 5.98024518 11.525
Interpolation |121843.33§12184 3.434178435.64(015357 4.18212386 4.04612185 6.57717398 11.992
Extrapolation [134264.22913426 4.248196726.617174555.42614428§ 5.25813427 7.4931910Q 13.104
Extrapol_ Ahead [1212355.48012125 5.424177018.641161796.63713145 7.27912124 8.61417279 15.036

Table 5. Total number of comparisons and CPU times (in millions of cycles) perorby each algorithm over the Google data set.
In bold, the best performance in terms of number of comparisbrsandSwapping_SvS usingExtrapol_Ahead, and in terms
of CPU timesSvS usingGalloping.

Comparison with Demaineet al. [12]: In terms of the number of comparisons performed, the meldlggrithm
Small_Adaptive outperforms all the other melding algorithms, in combioativith any search algorithm, which
confirms and extends the results reported by Demetiak [12] (see Table 6). As for the Google data-set, the value-
based search algorithBExtrapol Ahead improves the performance of each melding algorithm, andairigular
the performance dfmall_Adaptive (again, see Table 6). However, unlike the Google dataisetpérformance of
Interpolation is similar to that ofcalloping. This decrease in performance is mainly due to the fact tiet t
numbering scheme of TREC documents left many “gaps” whictirdmtes to the non-uniformity of posting sets.

Study of Barbay and Kenyon's [4] algorithm: As for the Google data-set, the algoriti$@quential is much worse
than the other melding algorithms for any fixed search allgor; in terms of the number of comparisons or searches
performed as well as in terms of CPU time (see Figure 7). Tuss hints that the instances from the TREC GOV2
data-set are not too different from those from the Googla-dat, just larger, both in terms of the sizes of the arrays
and in the number of arrays.

Impact of the cache: In contrast to the measures on the Google data-set, the mwhbemparisons is not always
correlated to the CPU timings, even for comparison basetisedgorithms. In particular, when using the melding
algorithmsSmall_Adaptive Or Sequential, the search algorithrRounded_Binary performs more comparisons
thanAdaptive_Binary, but uses less CPU (see Figure 9). This indicateskihaided_Binary generates less cache
misses, summing to a better over-all time.

The same is not true with the other melding algorithms, pgesheecause the search queries generated by those
algorithms are either shorter (in which case no optimizatibthe cache is needed), or much larger (in which case
cache misses happen at a different level).

Impact of architecture differences: Not surprisingly, the cache optimization of tReunded_Binary search algo-
rithm does not give it any advantage on a machine where atldteefits in memory, such as on platfoswn: then all
the binary variants perform very similarly (see Figure 10).

We were also able to measure a quantitative difference leettvee two architectures: the difference of CPU per-
formance between the comparison and value-based seamfittaigs, such asalloping and Interpolation, iS
much larger on th&UN platform than on th@NTEL platform, and this independently of the melding algorithonsid-
ered (see Figure 11 and 12). In general, the hardware castespolation search seems higher on a SUN architecture
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Fig. 7. Number of comparisons performed by various melding algorithm coeabinith Galloping on the TREC GOV2
data-set. The difference of performance freaguential is even worse than on the Google data-set.
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Fig. 8.Number of comparisons performed by variants of binary searcltbo®@d withSmall_Adaptive onthe TREC GOV2
data-setRounded_Binary andTotal_Binary perform roughly the same, whilelaptive_Binary performs much better.
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Fig.9. CPU performance of the various variants of binary search on IMEEL platform, in combination with
Small_Adaptive. The varianRounded_Binary is better in CPU time, thanks to its optimization of the cache.
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Fig.10. CPU performance of the various variants of binary search on s platform, in combination with
Small_Adaptive. The binary searches are performing roughly the same.



18

100 T T T T T T T T
I average SvS Galloping ——
average SvS\|nterpolation
g 10f | i
l | | | | | | | |

N
N
o
o)

10 12 14 16 18
number of sets

Fig. 11.CPU performances @&falloping compared tdnterpolation, both combined witlsvs, when solving the TREC
GOV2 data-set on theNTEL platform. The advantage is not clear, but in t@al loping is performing a little better (see
Table 6.
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Fig. 12.0n SUN CPU performances dfalloping compared tdnterpolation, both combined wittsvs, when solving
the TREC GOV2 data-set on ti$&N platform.Interpolation is definitely performing worse.
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than an Intel architecture. We speculate that this mightaused by differences in RISC vs CISC instruction set but
remains to be studied further.

For completeness we summarize the results across all tig@rion the whole TREC GOV2 data set in Tables 6
and 7.

SvS |Swapping_SvS|Sequential|BaezaYates|So_BaezaYates|Small_ Adaptive
Adaptive Binary|13.41 [13.44 28.66 7.87 4.12 13.32
Total Binary 21.70 |21.64 39.90 22.43 28.73 21.54
Rounded_Binary |20.46 (20.57 37.83 21.43 27.15 20.44
Galloping 4.468 4.473 10.57 9.40 5.52 4.44
Interpolation | 4.60 | 4.61 11.13 8.55 4.76 4.57
Extrapolation 4.25 | 4.26 9.84 8.61 4.78 4.23
Extrapol_Ahead | 3.76 | 3.77 8.09 8.05 4.23 3.74

Table 6. Total number of comparisons (in billions) performed by each algoritiier the TREC GOV2 data set. In bold, the best
results, obtained fd8mall_Adaptive usingExtrapol_Ahead.

SvS Swapping SvS| Sequential | BaezaYates |So_BaezaYates|Small_ Adaptive
INTEL SUN|INTEL SUN| INTEL SUN|INTEL SUN|INTEL SUN| INTEL SUN
Adaptive_Binary|11730315388757686 1591699012544095765336311240136273 98411180957 230258
Total_Binary 36052618085481227 18297459838713545589334118423988081] 227041320692 244521
Rounded_Binary | 6491017534363693 1801501697973485637573018217083717 223368108728 241526
Galloping 33255 9690730686 1021971322432198165508812590440462 111422 59081 162243
Interpolation 478831349604906Q0 1402721273383275096706615766954331 142653 751627 200471
Extrapolation 4969414238350570 1478861369463283167759218594463244 171270 78606 208057
Extrapol_Ahead | 61731158138§62021 16354515539633852587303194108§81922 192490 88674 223195

Table 7. Total CPU time performed by each algorithm over the TREC GOV2 datarsketld, the smallest CPU times on theTEL
platform, obtained usin§wapping_SvS; and on theSUN platform, obtained usingvs, both in combination wittGalloping
search.
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5 Conclusions

To summarize our results:

— In terms of the number of searches performed, the best ngellgorithms areSmall Adaptive, SvS and
Swapping_SvS on random data arghall_Adaptive on real data.

— In terms of the number of comparisons performed, the bestbewtions on random data consist in one
of the melding algorithms$mall Adaptive, SvS and Swapping SvS associated with the search algorithm
Extrapol_Ahead. On real datasmall Adaptive takes the advantage on the others and forms the best com-
bination when combined withixtrapol_Ahead, which improves on the previous results [12].

— In terms of CPU time, the best performance on random dat&sponds to th@aezaYates algorithm using
Adaptive_Binary search (which confirms previous results [2]), closely fekta by theSvS algorithm using
Galloping search. On real data, the algoritt8nS takes the advantage and forms the best solution, still in
combination withGalloping search.

In terms of the number of searches or comparisons perforthegyoor performance of sophisticated algorithms
such asequential, designed to exploit short certificates of the intersedddnor of its randomized variant [3], both
on random and real data, indicates the regularity of thairtss in both settings: most instances have a long cewtificat
On the other hand, the difference of performance of thesetgion algorithnBaezaYates on random and real data
shows that real data are far from randomly uniform. In patéi the good performance of tlxtrapol Ahead
search algorithm shows that value-based search algorainensot only performing well on sorted arrays of random
elements, but also on posting lists.

In terms of CPU time, the architecture differences betwherptatforms led to both quantitative results variations
(the gaps between the performance of some algorithms wgerlan the RISC architecture than on the CISC archi-
tecture), and qualitative result variatior®{nded_Binary optimizes the cache on the architecture with the smallest
amount of memory, but not on the other one). The differencazaf between the Google and the GOV2 data set led to
gualitative changes in the CPU performance between thantarof binary search, as the variants optimized for cache
effects performed better than others on the largest datasdtworst on the smallest. As those search algorithms
are outperformed both in number of comparison performedia@PU time by more sophisticated algorithms, this
does not yield any qualitative change, but it does hint tipindzing the best search algorithm in CPU time, such as
Galloping, so that it takes a better advantage of the cache, might gi&d better CPU performances.

Finally, the best solution to compute the intersection afexbarrays corresponding to conjunctive queries in an
indexed search engines seems to be one of the simplest galdorithmsvs, already used in practice, but improved
by replacing the use of thelaptive_Binary search algorithm by an adaptive search algoritta loping search.
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