An Experimental Investigation of the Influence of Water and Oxygen Fugacity on Differentiation of MORB at 200 MPa

JASPER BERNDT*, JÜRGEN KOEPKE AND FRANÇOIS HOLTZ

INSTITUT FÜR MINERALOGIE, UNIVERSITÄT HANNOVER, WELFENGARTEN 1, D-30167 HANNOVER, GERMANY

REGEIVED APRIL 15, 2002; AGCEPTED JULY 28, 2004

ADVANGE AGGESS PUBLICATION OGTOBER 1, 2004

Abstract

Crystallization experiments were performed at 200 MPa in the temperature range $1150-950^{\circ} \mathrm{C}$ at oxygen fugacities corresponding to the quartz-fayalite-magnetite (QFM) and $\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}$ buffers to assess the role of water and $\mathrm{f}_{\mathrm{O}_{2}}$ on phase relations and differentiation trends in mid-ocean ridge basalt (MORB) systems. Starting from a primitive ($\mathrm{MgO} 9 \cdot 8$ wt \%) and an evolved MORB (MgO 6.49 wt \%), crystallization paths with four different water contents ($0.35-4.7$ wt $\% \mathrm{H}_{2} \mathrm{O}$) have been investigated. In primitive MORB, olivine is the liquidus phase followed by plagioclase + clinopyroxene. Amphibole is present only at water-saturated conditions below $1000^{\circ} \mathrm{C}$, but not all fluid-saturated runs contain amphibole. Magnetite and orthopyroxene are not stable at low $\mathrm{f}_{\mathrm{O}_{2}}$ (QFM buffer). Residual liquids obtained at low $\mathrm{f}_{\mathrm{O}_{2}}$ show a tholeitic differentiation trend. The crystallization of magnetite at high $\mathrm{f}_{\mathrm{O}_{2}}\left(\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}\right.$ buffer $)$ results in a decrease of melt $\mathrm{Fe} \mathrm{O}^{* /}$ MgO ratio, causing a calc-alkaline differentiation trend. Because the magnetite crystallization temperature is nearly independent of the $\mathrm{H}_{2} \mathrm{O}$ content, in contrast to silicate minerals, the calc-alkaline differentiation trend is more pronounced at high water contents. Residual melts at $950^{\circ} \mathrm{C}$ in a primitive MORB system have compositions approaching those of oceanic plagiogranites in terms of SiO_{2} and $\mathrm{K}_{2} \mathrm{O}$, but have $\mathrm{Ca} / \mathrm{Na}$ ratios and FeO^{*} contents that are too high compared with the natural rocks, implying that fractionation processes are necessary to reach typical compositions of natural oceanic plagiogranites.

KEY WORDS: differentiation; MORB; oxygen fugacity; water activity; oceanic plagiogranite

INTRODUGTION

Since the late 1950s, many experimental studies have focused on the investigation of phase relations in natural
basaltic systems for a better understanding of the differentiation mechanisms under crustal pressures and temperatures. Most of these experiments have been carried out at 1 atm (e.g. Osborn, 1959; Grove \& Bryan, 1983; Grove \& Baker, 1984; Juster et al., 1989; Snyder et al., 1993; Thy \& Lofgren, 1994; Toplis \& Carroll, 1995, 1996), assuming that the small pressure difference between shallow magma chambers and the surface does not influence significantly the results and implications drawn from these studies. It was considered that the low volatile content of basaltic melts (volatiles are incorporated in melts only under pressure) has little influence on phase relations. One of the benefits of these studies was to evaluate the role of $f_{\mathrm{O}_{2}}$ (oxygen fugacity), which is a critical parameter controlling the crystallization of $\mathrm{Fe}-\mathrm{Ti}$ oxides in iron-bearing systems.

Concerning the role of volatiles, especially $\mathrm{H}_{2} \mathrm{O}$, the broad absence of amphibole as a primary cumulate phase in tholeiitic plutonic complexes (e.g. Skaergaard, Kiglapait, Pleasant Bay, typical oceanic crust) has been taken as evidence for very low water activities during the main stage of fractionation of these melts. However, the common presence of small amounts of interstitial amphibole within typical oceanic gabbros indicates that water may play a role, at least during the late differentiation stage of mid-ocean ridge basalt (MORB) (e.g. Gillis, 1996; Dick et al., 2000; Coogan et al., 2001). Studies on water contents in basalts by Sobolev \& Chaussidon (1996), Danyushevsky et al. (2000) and Kovalenko et al. (2000) showed that even for primitive MORB the $\mathrm{H}_{2} \mathrm{O}$ content varies from <0.1 up to $1.5 \mathrm{wt} \%$. Assuming an initial water content for a primitive MORB liquid of $0.5 \mathrm{wt} \%$ at a pressure corresponding to shallow levels, the crystallization of $60 \mathrm{wt} \%$ of anhydrous minerals

[^0][^1]Table 1: Composition of natural primitive MORB and synthetic MORB B1 and B2 (starting material)

	n^{a}	SiO_{2}	TiO_{2}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathrm{FeO}{ }^{* \mathrm{~b}}$	MnO	MgO	CaO	$\mathrm{Na}_{2} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{O}$	$\mathrm{P}_{2} \mathrm{O}_{5}$
Natural MORB		$49.47^{\mathrm{b}}(16)^{\mathrm{d}}$	$0.83(10)$	$16.35(54)$	$8.71(49)$	$0.16(9)$	$9.80(26)$	$12.35(33)$	$2.16(12)$	$0.07(5)$	$0.09(5)$
Synthetic MORB B1	18	$49.64(27)$	$0.87(5)$	$16.07(16)$	$8.63(7)$	$0.15(7)$	$9.77(9)$	$12.44(16)$	$2.28(9)$	$0.08(3)$	$0.08(5)$
Glass of run 42	10	$51.38(57)$	$1.46(11)$	$15.97(57)$	$10.98(25)$	$0.19(15)$	$6.16(29)$	$10.50(30)$	$3.06(24)$	$0.12(7)$	$0.18(12)$
Synthetic MORB B2	12	$51.17(23)$	$1.43(6)$	$15.93(16)$	$10.72(26)$	$0.21(7)$	$6.49(7)$	$10.57(13)$	$3.13(11)$	$0.15(4)$	$0.19(7)$

${ }^{\text {a }}$ Number of analyses.
${ }^{\text {b }}$ Oxide concentrations from microprobe are normalized to $100 \mathrm{wt} \%$ with all Fe as FeO^{*} (total iron).
${ }^{c}$ Average composition of primitive MORB compositions from: Frey et al. (1974), Bryan \& Moore (1977) and Natland \& Melson (1980), all cited by Elthon (1991); Langmuir et al. (1977); Spulber \& Rutherford (1983) and Christie \& Sinton (1986), cited by Brooks et al. (1991); McKenzie \& Bickle (1988).
${ }^{d}$ Numbers in parentheses are one standard deviation of replicate analyses in terms of least units cited.
results in an increase of water activity $\left(a_{\mathrm{H}_{2} \mathrm{O}}\right)$ up to about 0.23 [calculated after Burnham (1979) for MORB at $1100^{\circ} \mathrm{C}$ and 100 MPa ; see below]. Thus, it can be expected that the water activity of MORB liquids increases with differentiation to values that influence phase relations in these systems (especially at high degrees of fractionation), even if the stability field of amphibole may not have been reached.
Few experimental data are available to understand the effect of $a_{\mathrm{H}_{2} \mathrm{O}}$ on the differentiation trends of primitive MORBs at moderate pressure (e.g. $\leq 200 \mathrm{MPa}$). Spulber \& Rutherford (1983) performed experiments using a primitive MORB from the Galapagos Spreading Centre to assess the origin of plagiogranites in oceanic ridges, but $a_{\mathrm{H}_{2} \mathrm{O}}$ was not varied systematically. Further experimental investigations have been carried out in more alkali-rich compositions. The comparison of results from melting and crystallization experiments of Holloway \& Burnham (1972) on the 1921 Kilauea tholeiite at $a_{\mathrm{H}_{2} \mathrm{O}} \sim 0.6$ with those of Yoder \& Tilley (1962) and Helz (1973, 1976), at water-saturated conditions, shows that water influences phase relations and that the occurrence of amphibole influences the differentiation from andesitic to rhyolitic residual melts. Sisson \& Grove (1993a, 1993b) investigated phase relations in calc-alkaline systems at watersaturated conditions, and Kawamoto (1996) carried out melting experiments at $a_{\mathrm{H}_{2} \mathrm{O}} \leq 1$ in similar systems. Those workers emphasized the dramatic role of water and pointed out that the absence of amphibole in these systems does not necessarily mean that dry conditions are prevailing.

The lack of experiments in basaltic systems at moderate pressure $(100-500 \mathrm{MPa})$ in the presence of volatiles is due to experimental problems. The formation of quench crystals is a serious problem when performing experiments with low-viscosity basaltic compositions, and often hampers the interpretation of results from phase equilibrium studies (e.g. Hamilton et al., 1964; Holloway
\& Burnham, 1972; Helz, 1973, 1976). In this study, all experiments were carried out in internally heated pressure vessels (IHPV) using a rapid-quench sample holder to avoid the formation of quench crystals during cooling of the experimental charge (Holloway et al., 1992; Roux \& Lefevre, 1992; Berndt et al., 2002). A first series of experiments was undertaken to provide information on the influence of $a_{\mathrm{H}_{2} \mathrm{O}}$ on phase relations in a primitive MORB system at 200 MPa and $f_{\mathrm{O}_{2}}$ corresponding to the $\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}$ buffer using both a primitive and a fractionated synthetic 10 -component MORB glass (Table 1). As the $f_{\mathrm{O}_{2}}$ of natural MORB lavas is found to vary generally between QFM -2 and QFM +1 (where QFM is the quartz-fayalite-magnetite buffer) (e.g. Carmichael \& Ghiorso, 1986; Christie et al., 1986), we performed a second series of crystallization experiments under redox conditions corresponding to the QFM buffer. For these experiments, the sample holder was equipped with a hydrogen membrane to control and adjust $f_{\mathrm{O}_{2}}$ (Berndt et al., 2002). All experiments were performed in the temperature range $1150-950^{\circ} \mathrm{C}$ and at 200 MPa , a typical pressure of MORB magma chambers under the midocean ridge system at depths between 3 and 6 km (e.g. Fisk, 1984; Nicolas, 1989). For a better understanding of the role of water during differentiation of MORB, the initial water content of our experimental systems was varied systematically ranging from $0.35 \mathrm{wt} \%$ to $4.7 \mathrm{wt} \% \mathrm{H}_{2} \mathrm{O}$. The results are used to estimate the influence of $\mathrm{H}_{2} \mathrm{O}$ and $f_{\mathrm{O}_{2}}$ on stability of $\mathrm{Fe}-\mathrm{Ti}$ oxides and MORB liquid line of descent.

EXPERIMENTAL TEGHNIQUES

Apparatus

All experiments were performed in a large-volume IHPV working vertically with pure Ar or $\mathrm{Ar}-\mathrm{H}_{2}$ mixtures as pressure medium. A detailed description of the apparatus

Fig. 1. Intrinsic $f_{\mathrm{O}_{2}}$ of the IHPV measured by solid sensor technique after Taylor et al. (1992) and calculated $f_{\mathrm{O}_{2}}$ using coexisting magnetiteilmenite pairs (Andersen et al., 1993) from runs at intrinsic conditions. Continuous lines show $\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}$ and QFM buffer curve. Dashed line shows the shift of $f_{\mathrm{O}_{2}}$ relative to the $\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}$ buffer curve at lower water activities $\left(a_{\mathrm{H}_{2} \mathrm{O}}=0 \cdot 3\right)$ and more reducing conditions in the experiments. NiPd sensor measurements after Taylor et al. (1992) were performed using both Pt and $\mathrm{Au}_{80} \mathrm{Pd}_{20}$ capsules.
has been given by Berndt et al. (2002). Formation of quench crystals during cooling the experimental charge was avoided using a rapid-quench system [see experimental setup described by Berndt et al. (2002)] in which up to six capsules are fixed to a Pt-wire in the hot zone of the furnace. By fusing the Pt -wire, the capsules drop onto a cold copper block placed at the bottom of the sample holder (about $25^{\circ} \mathrm{C}$). The intrinsic $f_{\mathrm{O}_{2}}$ (pure Ar as pressure medium) of the IHPV has been measured at four temperatures $\left(900-1200^{\circ} \mathrm{C}\right)$ using the Ni- Pd solid redox sensor technique after Taylor et al. (1992) and is equivalent to the $\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}$ solid oxygen buffer (Fig. 1).

Starting material

For experiments under oxidizing conditions (MnO $\mathrm{Mn}_{3} \mathrm{O}_{4}$ buffer) two synthetic starting compositions (Table 1) were used for the crystallization experiments: a primitive MORB glass (B 1) and a more evolved MORB glass (B2) corresponding to a residual glass composition obtained after 50% crystallization of B 1 at $1100^{\circ} \mathrm{C}$ (run 42; Table 1). Only the B1 composition was used for experiments under reducing conditions (QFM buffer). Starting materials were made from synthetic oxide and carbonate powders. Oxide powder mixtures were placed into a Pt crucible and fused twice (grinding between fusions) at $1600^{\circ} \mathrm{C}, 1 \mathrm{~atm}$, and a $\log f_{\mathrm{O}_{2}}$ corresponding to about -0.68 (air). To avoid alkali loss from the glass, melting duration was $<1.5 \mathrm{~h}$. Electron microprobe analyses of chips extracted from the top, middle and bottom of the glass showed that they are homogeneous. The glass B1 lies within the compositional range of natural primitive MORBs (Table 1).

Sample preparation and experimental procedure

First attempts were made by preparing the samples with dry powder of the starting glasses (grain size $<50 \mu \mathrm{~m}$) and a given amount of water added into $\mathrm{Au}_{80} \mathrm{Pd}_{20}$ capsules. After loading the capsules into the sample holder, they were held for about 1 h above the liquidus temperature at 200 MPa to obtain a homogeneous distribution of $\mathrm{H}_{2} \mathrm{O}$ in the melt and to allow redox equilibrium of the melt. In a second step, temperature was lowered to the desired run temperature. Resulting products clearly showed disequilibrium features such as complex zonation of minerals. Compositional variations for $\mathrm{Al}_{2} \mathrm{O}_{3}$ in clinopyroxene were as high as $5-9 \mathrm{wt} \%$ within a single crystal. To avoid these effects, charges with dry glass plus water were brought directly to the desired run temperature. Results at relatively high temperatures $\left(1050-1150^{\circ} \mathrm{C}\right)$ did not show disequilibrium features, but mineral sizes and distributions were heterogeneous at lower temperatures and low water activity $\left(a_{H_{2} \mathrm{O}}\right)$. This is probably due to crystallization taking place before homogeneous distribution of water is achieved in the glass powder.
Therefore, the experimental strategy consisted in using pre-hydrated glass powder as starting materials (Gaetani \& Grove, 1998; Müntener et al., 2001). Large amounts of dry glass powder were placed into $\mathrm{Au}_{80} \mathrm{Pd}_{20}$ capsules [internal diameter (i.d.) 0.5 cm ; outer diameter (o.d.) 0.54 cm at 3 cm length] and stuffed with the help of a steel piston. Distilled water was added to the charge using a microsyringe in five steps to achieve homogeneous $\mathrm{H}_{2} \mathrm{O}$ distribution within the capsule. Sealed capsules were heated at $1250^{\circ} \mathrm{C}$ and 200 MPa (above the liquidus) at the desired $f_{\mathrm{O}_{2}}$ (either $\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}$ or QFM buffer conditions) for 24 h in an IHPV equipped with the rapid-quench hydrogen-membrane device described above. Homogeneous crystal- and bubble-free glasses were obtained and the water contents were determined by Karl-Fischer titration (KFT) (Table 2; for technique and precision see Behrens (1995)]. Final bulk water contents of the glasses vary between 0.35 and $4.7 \mathrm{wt} \%$ and are shown in Table 3.
The pre-hydrated glasses were finally crushed in a steel mortar and sieved to fractions of $100-200 \mu \mathrm{~m}$. About $50-80 \mathrm{mg}$ of the hydrous glass powders were sealed in $\mathrm{Au}_{80} \mathrm{Pd}_{20}$ capsules (i.d. 0.3 cm ; o.d. 0.34 cm at 1 cm length). A set of up to four capsules (corresponding to the four bulk $\mathrm{H}_{2} \mathrm{O}$ contents of Bl and B 2) were fixed to the rapid-quench device and brought directly to run temperature. Phase relations were investigated at 200 MPa , at $50^{\circ} \mathrm{C}$ intervals in the temperature range $1150-950^{\circ} \mathrm{C}$ (Table 3). The run durations for oxidizing experiments were $\sim 20 \mathrm{~h}$, except for charges 62 and 61 (B1; 72 h) and $111(\mathrm{~B} 2 ; 96 \mathrm{~h})$. The products of these longer experiments were compared with those of the 20 h runs conducted at the same pressure and temperature

Table 2: Comparison between water solubility measured by Karl-Fischer titration (KFT) analysis and calculated by the thermodynamic model of Burnham (1979) assuming $\mathrm{a}_{\mathrm{H}_{2} \mathrm{O}}=1$ for MORB at 200 MPa

	wt $\% \mathrm{H}_{2} \mathrm{O}$	
	KFT analysis	Burnham model
$\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}$ buffer; $200 \mathrm{MPa} ; 1250^{\circ} \mathrm{C}$		
$\mathrm{B1}^{\mathrm{a}}$	4.70 ± 0.09	4.54
B 2	4.50 ± 0.10	4.57
QFM buffer; $203 \mathrm{MPa} ; 1200^{\circ} \mathrm{C}^{\mathrm{b}}$		
B 1	4.46 ± 0.02	4.50

${ }^{\mathrm{a}}$ B1 and B2 represent starting compositions used in this study (Table 1).
${ }^{\text {b }}$ Data from Berndt et al. (2002).
confirming identical results (runs 45, 42 and 104; see below and Table 3a and b). Experimental duration for runs under reducing conditions was limited by the diffusive Fe loss to the capsule material and varied with temperature from 2 to $9 \cdot 2 \mathrm{~h}$ (Table 3c). After quenching each capsule was weighed to check for leaks and then punctured to determine if a fluid phase was present or not. A cross-section of each capsule (including the sample container) was prepared as a polished section for electron microprobe analysis of solid phases and the noble metal.

Loss of iron

To avoid iron loss to the sample container (e.g. Johannes \& Bode, 1978; Sisson \& Grove, 1993a), $\mathrm{Au}_{80} \mathrm{Pd}_{20}$ capsules were used because Fe solubility is lower in $\mathrm{Au}_{80} \mathrm{Pd}_{20}$ than in Pt , and $\mathrm{Au}_{80} \mathrm{Pd}_{20}$ has a higher melting point than pure Au , which allowed us to perform experiments up to $1250^{\circ} \mathrm{C}$ (Kawamoto \& Hirose, 1994). The glasses and capsule walls were analysed with the electron microprobe to check for iron loss or enrichment, respectively. No iron was detected in the capsule material of experiments performed under oxidizing conditions and the total Fe content of the hydrous glasses was equivalent to that of the dry starting material. Experiments performed under QFM buffer conditions showed significant iron loss as a result of Fe diffusion into the $\mathrm{Au}_{80} \mathrm{Pd}_{20}$ capsule material. Therefore, the $\mathrm{Au}_{80} \mathrm{Pd}_{20}$ capsules were pre-saturated in iron at $f_{\mathrm{O}_{2}}$ corresponding to the QFM buffer at 200 MPa and $1200^{\circ} \mathrm{C}$ (conditions similar to the desired $f_{\mathrm{O}_{2}}$ in the crystallization experiments at $a_{\mathrm{H}_{2} \mathrm{O}}=1$) following the procedure described by Ford (1978). Thus, iron loss could be limited in our study. A melt composition profile of run 130 (Table 3c), performed above the liquidus temperature at $1150^{\circ} \mathrm{C}$ and with about $4.58 \mathrm{wt} \% \mathrm{H}_{2} \mathrm{O}$ melt water content, showed that iron has been lost mainly
from the rim of the experimental charge, which is in direct contact with the capsule material. In the middle of the capsule the initial iron concentration of the glass was preserved. The average iron content along the profile was lowered by about 4.8% relative to the starting material. Iron loss from the other experiments performed at $1150^{\circ} \mathrm{C}$ was estimated to be between 6 and 8% relative by mass balance calculations. At temperatures below $1100^{\circ} \mathrm{C}$, Spulber \& Rutherford (1983) and Sisson \& Grove (1993a) emphasized that no significant amount of iron was lost from their samples to the capsule material, which is in accordance with our results. Therefore, the iron content of the glasses analysed in the middle of the capsule is believed to be realistic. This is confirmed by $\mathrm{Fe}^{2+}-\mathrm{Mg}$ olivine-melt partition coefficients, which agree with published data for this mineral.

Calculations of $\boldsymbol{a}_{\mathrm{H}_{2} \mathrm{O}}$ and $f_{\mathrm{O}_{2}}$

It has been shown that the thermodynamic model of Burnham (1979) is not always correct for the calculation of $a_{\mathrm{H}_{2} \mathrm{O}}$ and melt water contents, especially at high pressures (e.g. water solubility can be underestimated by 20% relative at 500 MPa ; Holtz et al., 1995). At 200 MPa , calculated $\mathrm{H}_{2} \mathrm{O}$ solubilities after Burnham (1979) for synthesized MORB glasses B1 and B2 agree well with the contents determined by KFT for these glasses (Table 2). Thus, we have used the model of Burnham (1979) to calculate melt water content at $a_{\mathrm{H}_{2} \mathrm{O}}=1$. In addition, for runs in which $a_{\mathrm{H}_{2} \mathrm{O}}$ was <1, water activities have also been calculated using the model of Burnham (1979) and the water contents of the melts determined by mass balance and electron microprobe (see below).

For runs performed under oxidizing conditions the $f_{\mathrm{H}_{2}}$ was imposed by the vessel and corresponds to the $\mathrm{MnO}-$ $\mathrm{Mn}_{3} \mathrm{O}_{4}$ solid oxygen buffer [based on the equation of Chou (1978)]. For experiments at lower oxygen fugacities a proportion of H_{2} was added to the pressure medium (Ar) to reach a final pH_{2} at run conditions resulting in an $f_{\mathrm{O}_{2}}$ corresponding to the QFM buffer at water-saturated conditions (Table 3c). It should be noted that in waterundersaturated experiments $f_{\mathrm{H}_{2} \mathrm{O}}$ and thus $f_{\mathrm{O}_{2}}$ decrease with $a_{\mathrm{H}_{2} \mathrm{O}}$ (Scaillet et al., 1995), resulting in much more reducing $f_{\mathrm{O}_{2}}$ conditions at low $a_{\mathrm{H}_{2} \mathrm{O}}$ (Table 3).
Melt $\mathrm{Fe}^{2+} / \mathrm{Fe}^{3+}$ ratios were calculated using the method of Kress \& Carmichael (1991). As emphasized by Baker \& Rutherford (1996) and Gaillard et al. (2001), the expression of Kress \& Carmichael (1991) has not been calibrated for hydrous glasses. For $\mathrm{H}_{2} \mathrm{O}$-saturated rhyolitic melts Baker \& Rutherford (1996) and Gaillard et al. (2001) showed that water has an oxidizing effect on the melt $\mathrm{Fe}^{2+} / \mathrm{Fe}^{3+}$ ratio relative to the Kress \& Carmichael (1991) expression, especially at $f_{\mathrm{O}_{2}}<\mathrm{NNO}+1.5$ (where NNO is the nickel-nickel oxide buffer). For the hydrous experiments performed in this study at the QFM buffer (which is below the NNO buffer conditions), the
Table 3a: Experimental conditions and results for composition $\mathrm{B1}\left(\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}\right.$ buffer)

[^2]Table 3b: Experimental conditions and results for composition $B 2\left(\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}\right.$ buffer)

[^3]Table 3c: Experimental conditions and results for composition B1 (QFM buffer)

Run	wt \% $\mathrm{H}_{2} \mathrm{O}^{\text {a }}$ bulk	wt \% $\mathrm{H}_{2} \mathrm{O}^{\text {b }}$ in melt	$\mathrm{a}_{\mathrm{H}_{2} \mathrm{O}}$	$f_{\mathrm{H}_{2} \mathrm{O}}$ (bar)	$\log f_{\mathrm{O}_{2}}{ }^{\text {c }}$ (bar)	$\triangle \mathrm{FM} \mathrm{M}^{\text {d }}$ (bar)	Phases and modal proportions ${ }^{\text {e,f }}$							ΣR^{2}
$1150^{\circ} \mathrm{C}$; 207 MPa; 2.2 h														
130	6.52	$4.58{ }^{9}$	1	2085	-8.51	$+0.20$	gl(100)	$f 1$						
129	$2.01{ }^{\text {j }}$	2.08	0.33	696	-9.46	-0.75	gl(96.7)	ol(3.3)						0.97
$1150^{\circ} \mathrm{C} ; 206 \mathrm{MPa}$ 2h														
128	$0.96{ }^{\prime}$	1.02	0.10	215	-10.56	-1.85	gl(94.5)	01(5.5)						0.76
127	$0.35{ }^{\text {j }}$	0.38	0.02	36	-12.12	-3.41	gl(91.9)	ol(5-9)	cpx (0.3)	pl(1-9)				0.83
$1100{ }^{\circ} \mathrm{C} ; 203 \mathrm{MPa}$; 3 h														
134	$6.41{ }^{\text {j }}$	4.53^{9}	1	1998	-9.27	$+0.09$	gl(95.6)	Ol(4-4)	$f 1$					0.45
$1100{ }^{\circ} \mathrm{C} ; 204 \mathrm{MPa}$; 3 h														
132	2.00°	$2 \cdot 37$	$0 \cdot 40$	806	-10.15	-0.80	gl(84.4)	ol(7-9)	$\operatorname{cpx}(4 \cdot 8)$	pl(2.9)				$0 \cdot 68$
$1100^{\circ} \mathrm{C} ; 203 \mathrm{MPa}$; 3.1 h														
133	$1.01{ }^{\text {j }}$	$1 \cdot 49$	0.20	398	-10.67	-1.31	gl(67.3)	ol(8-2)	$\operatorname{cpx}(9 \cdot 0)$	pl(15.5)				0.82
$1100^{\circ} \mathrm{C} ; 204 \mathrm{MPa}$; 3.1h														
131	$0.47^{\text {i }}$	0.85	0.07	150	-11.61	-2.26	gl(55.6)	ol(11-2)	$\operatorname{cpx}(13 \cdot 7)$	pl(19.5)				$0 \cdot 43$
$1050^{\circ} \mathrm{C} ; 207 \mathrm{MPa}$; 4.5 h														
142	6.36'	$4.84{ }^{9}$	1	1999	-10.05	-0.01	gl(80.8)	oll $7 \cdot 3)$	$\operatorname{cpx}(11 \cdot 9)$	pl(tr)	$f 1$			0.42
141	$2.03{ }^{\text {i }}$	3.33	0.64	1289	-10.43	-0.39	gl(60.9)	01(8.6)	$\operatorname{cpx}(17 \cdot 6)$	pl(12.9)				$0 \cdot 41$
$1050^{\circ} \mathrm{C} ; 208 \mathrm{MPa} ; 4.6 \mathrm{~h}$														
140	$0.96{ }^{\prime}$	$2 \cdot 90$	0.51	1024	-10.57	-0.54	gl(33.0)	ol(12.1)	$\operatorname{cpx}(24 \cdot 3)$	pl(30.6)				$0 \cdot 28$
$1050^{\circ} \mathrm{C} ; 200 \mathrm{MPa}$; 4.7h														
143	0.55	2.04	0.32	616	-10.95	-0.91	$\mathrm{gl}(27 \cdot 2)$	ol(12.6)	$\operatorname{cpx}(26 \cdot 2)$	pl(34.0)				0.35
$1000^{\circ} \mathrm{C} ; 207 \mathrm{MPa} ; 9.2 \mathrm{~h}$														
148	4.46	5.06^{9}	1	1947	-10.76	$+0.01$	gl(48.8)	ol(11.4)	$\operatorname{cpx}(24 \cdot 2)$	pl(15.6)	$f 1$			0.13
$1000{ }^{\circ} \mathrm{C} ; 207 \mathrm{MPa} ; 5.5 \mathrm{~h}$														
147	1.91	5.01	0.99	1921	-10.76	+0.02	gl(38.2)	ol(11.5)	cpx(26.3)	pl(24.0)				0.19
146	1.12	5.04	0.99	1946	-10.74	$+0.03$	gl(20.2)	ol(12.0)	$\operatorname{cpx}(31 \cdot 8)$	pl(35.9)				0.28
145	0.55	3.52	0.64	1248	-11.13	-0.36	gl(14.5)	ol(14.5)	$\operatorname{cpx}(29.1)$	pl(40.7)				0.40
$950^{\circ} \mathrm{C} ; 206 \mathrm{MPa} ; 7.5 \mathrm{~h}$														
153	4.46	5.12^{9}	1	1879	-11.48	+0.09	gl(18.5)	Ol(4-9)	$\operatorname{cpx}(25 \cdot 8)$	pl(28.5)	am(22-3)	$f 1$		0.56
152	1.91	$5 \cdot 12^{9}$	1	1879	-11.48	+0.09	gl(14.2)	ol(8-2)	cpx(23.3)	pl(35.9)	am(18.4)	$f 1$		0.31
151	1.12	$5 \cdot 17^{9}$	1	1879	-11.48	+0.09	gl(7.9)	ol(8-1)	cpx(29.1)	pl(36.6)	am(17-3)	ilm(1.0)	$f 1$	0.16
150	0.55	-	-	1879	-11.48	$+0.09$	O1 ${ }^{\text {k }}$	$\mathrm{cpx}^{\text {k }}$	pl ${ }^{\text {k }}$	am^{k}	ilm ${ }^{\text {k }}$			

Notes and abbreviations are given below Table 3a.
calculated melt $\mathrm{Fe}^{2+} / \mathrm{Fe}^{3+}$ ratios were not corrected with respect to the melt water content, because the data of Baker \& Rutherford (1996) and Gaillard et al. (2001) were obtained for water-saturated conditions in very silicic melts only. Thus, the effect of dissolved $\mathrm{H}_{2} \mathrm{O}$ on the $\mathrm{Fe}^{2+} / \mathrm{Fe}^{3+}$ ratio in basaltic melts, especially in runs at $a_{\mathrm{H}_{2} \mathrm{O}}<1$, is unknown.

Analytical techniques and determination of phase proportions

Electron microprobe analyses of glasses and minerals were performed with a Cameca Camebax and a Cameca SX 100 instrument and are listed in Table 4. Analytical conditions for minerals were $15 \mathrm{kV}, 15 \mathrm{nA}$ beam current, and counting times of 5 s for Na and K , and 10 s for all other elements. Glasses were analysed with a defocused beam of $20 \mu \mathrm{~m}$ with a 5 nA beam current and counting times of 2 s for Na and K , and 5 s for the other elements. In crystal-rich runs (glass $<30 \mathrm{wt} \%$) the beam was defocused as much as possible, but loss of alkalis was observed for spot sizes $<15 \mu \mathrm{~m}$. In this case analyses were corrected by a loss factor using the Bl hydrous starting glasses as standards with known water contents.

Phase proportions (wt \%) were determined by mass balance (glass analyses were normalized to $100 \mathrm{wt} \%$). Melt water contents in runs with $a_{\mathrm{H}_{2} \mathrm{O}}<1$ were calculated using the known melt fractions and bulk water content of the starting materials. No attempts were made to consider the water content in amphiboles, because runs within the amphibole stability field (Table 3; see Fig. 4) were water saturated.
The melt water content was also estimated for all runs with the 'by-difference' method (Devine et al., 1995; Koepke, 1997). Comparison of melt water contents obtained by mass balance $\left(a_{\mathrm{H}_{2} \mathrm{O}}<1\right)$ and from the 'Burnham model' ($a_{\mathrm{H}_{2} \mathrm{O}}=1$) with the water contents determined with the 'by-difference' method show good agreement (Fig. 2).
In experiments with low melt fractions, in which watersaturated conditions mostly prevailed, melt water contents obtained by the 'by-difference' method were relatively higher than those from the 'Burnham model' (see triangles in Fig. 2 for runs with $a_{\mathrm{H}_{2} \mathrm{O}}=1$). This is probably due to too low microprobe totals resulting from analyses of very small melt pools with a beam that could not be defocused. Analyses of glasses in runs with low melt fractions were possible because small batches of crystal-free residual liquid were located along the capsule rim. This was especially the case for run 151 containing about $8 \mathrm{wt} \%$ melt. However, for the near-solidus experiments 47 and 46 the remaining glass pools were too small to be analysed even with a focused beam. Hence, phase proportions (vol. \%) have been estimated from backscattered electron (BSE) images using analySIS ${ }^{\text {© }}$
3.0 software (Gardien et al., 1995; Koepke et al., 1996). The proportion in wt \% (Table 3a) was recalculated assuming typical average densities for the solid phases and for the melt (melt density of $2.28 \mathrm{~g} / \mathrm{cm}^{3}$ is estimated from glass composition of run 48 after Lange (1997), Lange \& Carmichael (1990) and Ochs \& Lange (1999)]. For these two experiments the melt compositions were roughly determined by mass balance calculations.

Experimental limitations and general aspects on the effect of $\mathrm{H}_{2} \mathrm{O}$ on experimental results

It should be emphasized that there are different ways to understand the effect of $\mathrm{H}_{2} \mathrm{O}$ on mineral compositions and liquid lines of descent. The effect of bulk water content can be estimated by comparing experimental charges obtained at identical temperature with different bulk water content of the charge. However, comparison of such experiments shows that the crystal amount is not the same at different bulk water contents, especially for high-temperature runs (e.g. runs $42-45$ at $1100^{\circ} \mathrm{C}$; Table 3a; Fig. 3a). In these high-temperature experiments, residual melts have different water contents and therefore different $a_{\mathrm{H}_{2} \mathrm{O}}$. In contrast, for low-temperature runs (e.g. runs $34-37$ at $1000^{\circ} \mathrm{C}$, Table 3a) the crystal content is always high enough to attain fluid-saturated conditions (as a result of crystallization of mostly anhydrous phases). Thus, at high temperatures, a decrease of the bulk water content results in a strong decrease of $a_{\mathrm{H}_{2} \mathrm{O}}$ in the experimental charge. In contrast, at low temperature, only small changes in $a_{\mathrm{H}_{2} \mathrm{O}}$ with changing bulk water content are expected. In subsequent sections, results are discussed as a function of either bulk water content or $a_{\mathrm{H}_{2} \mathrm{O}}$. It is emphasized that these two parameters are not identical.

From the discussion above, it could be expected that, at low temperatures (e.g. 950 and $1000^{\circ} \mathrm{C}$), experimental conditions are always fluid saturated (water saturated), and all other parameters being equal (P, T, bulk composition, $f_{\mathrm{O}_{2}}$), the phase assemblage and composition should be identical. The results in Fig. 4 show that this is not the case because the melt proportion, the relative proportions of minerals and, therefore, melt composition (see Figs 9 11) differ as a function of the bulk water content. An additional possible explanation is that despite the presence of a free fluid phase in these runs (Table 3) $a_{\mathrm{H}_{2} \mathrm{O}}$ may be decreased by the presence of air in the capsules. Thus, $a_{\mathrm{H}_{2} \mathrm{O}}$ slightly decreases with decreasing bulk water content because of the higher $\mathrm{N}_{2} / \mathrm{H}_{2} \mathrm{O}$ ratio in experiments with starting glasses containing low water contents. The $X_{\mathrm{H}_{2} \mathrm{O}}$ [defined as $X_{\mathrm{H}_{2} \mathrm{O}} /\left(X_{\mathrm{H}_{2} \mathrm{O}}+X_{\mathrm{N}_{2}}\right)$] in these charges was estimated to be 0.92 (for lowest bulk water contents). The small changes in $a_{\mathrm{H}_{2} \mathrm{O}}$ for given bulk water contents at low temperature influence both composition
Table 4a: Electron microprobe analyses of run products for composition $\mathrm{B1}\left(\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}\right.$ buffer conditions)

Run	Phase	n	SiO_{2}	TiO_{2}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	FeO^{+3}	MnO	MgO	CaO	$\mathrm{Na}_{2} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{O}$	$\mathrm{P}_{2} \mathrm{O}_{5}$	Total	$\chi_{\text {Ph }}{ }^{\text {b }}$	$K_{\text {d }}{ }^{\text {c }}$
66	gl	6	$49.67(20)^{\text {d }}$	0.85(9)	16.01(21)	8.599)	$0.1418)$	$9.83(10)$	12.39(21)	2.33(19)	0.10 (8)	$0.09(9)$	$94.80(76)$	82.66	
65	gl	3	49.88(1.12)	0.77(12)	16.29(30)	9.06 (75)	0.10(9)	9.21(8)	12.41(12)	2.20(24)	$0.0311)$	0.04(2)	97.88(89)	78.15	
	ol	4	41-48(21)	0.04(2)	$0.04(2)$	8.41 (5)	0.15(2)	50.45(15)	0.33(8)	0.02(8)	$0.01(0)$		$100 \cdot 93$	91.45	0.334
64	gl	3	50.19(19)	0.86(10)	16.72(20)	8.51(19)	$0.17(3)$	8.41 (7)	12.77(6)	2.27(5)	$0.07(5)$	$0.03(3)$	98.89(62)	75.31	
	ol	5	41.24(31)	$0.02(2)$	$0.05(3)$	10.00(22)	$0.18(4)$	49.08(12)	$0.34(4)$	$0.01(0)$	$0.01(1)$		100.93	89.74	0.349
63	gl	6	50.34(45)	0.93(16)	16.58(18)	8.79(28)	$0.15(17)$	8.00(19)	12.5(17)	$2.51(25)$	$0 \cdot 11(7)$	0.05(9)	98.78(75)	71.59	
	ol	4	41-35(22)	0.01(2)	$0.05(4)$	11.26(9)	0.20(5)	48.07(15)	0.41(3)	$0.01(1)$	$0.01(1)$		101.39	88.38	0.331
	cpx	4	51.67(31)	0.47(9)	4.50(15)	6.11(38)	$0.18(5)$	$16.84(14)$	21-11(56)	0.25 (3)	$0.01(1)$		$101 \cdot 14$	47/10/43	0.318
	pl	4	49.37(98)	0.10(2)	30.90(50)	1.39(19)	0.02(2)	0.80(20)	16.12(67)	2.39(36)	$0.02(0)$		101.12	78.7	1.35
45	gl	4	50.15(74)	0.82(6)	16.29(35)	8.69(29)	0.17(5)	8.97(18)	12.47(40)	2.26(28)	$0 \cdot 11(5)$	0.08(9)	$94 \cdot 98(76)$	81.31	
	ol	8	41-49(20)	$0.03(2)$	0.04(2)	$6.72(18)$	$0.21(5)$	51.34(40)	0.23(2)	$0.01(1)$	$0.01(1)$		100.07	93.16	$0 \cdot 319$
44	gl	6	50.16(47)	0.91 (14)	17.42(40)	9.47(34)	0.21(2)	7.12(14)	11.95(20)	2.58(32)	$0.09(6)$	0.09(8)	96.79(98)	73.73	
	ol	6	40.82(11)	0.02(1)	0.08(3)	10.14(21)	0.22(8)	48.83(60)	0.33(4)	$0.01(1)$	$0.01(1)$		$100 \cdot 45$	89.68	0.327
	cpx	4	48.08(32)	0.55(8)	6.70(16)	7.61 (26)	$0.09(4)$	14.74(18)	$21.73(14)$	$0.27(4)$	$0.00(1)$		99.77	43/12/45	0.269
	pl	5	46.42(56)	0.12(6)	31.47(1.07)	1.85(52)	$0.01(1)$	$0.82(50)$	17.05(41)	1.63(8)	$0.02(1)$		99.39	85.2	2.26
43	gl	4	50.96(53)	1.25(10)	17.12(80)	10.19(73)	$0.14(13)$	6.12(17)	11.22(29)	2.64 (16)	$0 \cdot 14(2)$	0.22(14)	97-43(1-11)	67.39	
	ol	6	40.18(23)	0.02(2)	$0 \cdot 10(8)$	13.13(19)	0.29(5)	44.89(73)	0.36(3)	$0.02(1)$	$0.01(1)$		99.00	$85 \cdot 90$	0.339
	cpx	5	49.09(62)	$0.63(3)$	5.76(58)	7-79(37)	0.15(5)	14.71(49)	20.84(40)	0.37(6)	$0.01(1)$		99.35	43/13/44	$0 \cdot 351$
	pl	4	49-29(1.50)	0.06(2)	$30.63(24)$	$1.36(27)$	$0.05(3)$	$0.41(16)$	15.32(79)	2.72(54)	$0.02(1)$		99.85	75.6	1.33
42	gl	10	51.38(57)	1.46(11)	15.97(57)	10.98(25)	0.19(15)	6.16(29)	10.50(30)	3.06(24)	$0.12(7)$	0.18(12)	97.54(96)	64.00	
	ol	7	39.98(24)	$0.03(4)$	$0.08(11)$	14.68(14)	0.29(2)	43.64442)	$0.36(4)$	$0.01(1)$	0.00 (0)		99.09	84.12	0.335
	cpx	5	49-29(39)	0.61(5)	5-28(28)	8.16(30)	$0.19(4)$	15.13(23)	$20.40(30)$	$0.36(3)$	$0.01(1)$		99.43	44/14/42	0.294
	pl	6	49.67(56)	0.08(5)	29.93(81)	1.566 (2)	$0.04(3)$	0.45(19)	14.94(43)	2.87(27)	$0.0311)$		99.56	74.1	1.52
62	gl	3	49.79(4)	0.82(6)	16.07(21)	8.84(4)	0.19(2)	9.10(7)	12.79(17)	2.11(6)	$0.12(3)$	$0.17(7)$	95.15(70)	81.31	
	ol	3	41.24(23)	$0.03(1)$	$0.05(2)$	$6.71(14)$	$0.31(7)$	$51.44(14)$	0.24(3)	$0 \cdot 0011$	0.00 (0)		100.03	93.39	0.318
61	gl	3	51.35(65)	1.34(3)	16.28(52)	10.68(14)	$0.16(7)$	6.20(22)	$10.54(37)$	3.16(32)	$0.13(8)$	$0.15(9)$	97.92(61)	64.51	
	ol	2	40.12(4)	0.06(4)	$0.14(17)$	14.69(28)	0.37(9)	43.66(21)	$0.35(8)$	$0.01(1)$	$0.01(1)$		99.40	84.12	0.343
	cpx	2	49.38(25)	$0.60(1)$	5.28(34)	8.17(19)	0.20(1)	15.28(8)	$20 \cdot 30(25)$	$0.35(4)$	$0.01(1)$		99.55	44/14/42	0.301
	pl	3	49.95(8)	0.17(6)	29.87(20)	1.34(11)	$0.01(1)$	$0.43(2)$	15.027)	2.70(2)	$0.02(1)$		99.48	75.4	1.67
41	gl	2	51.13(33)	0.98(5)	18.17(10)	8.62(46)	$0.24(14)$	6.03(4)	12.19(8)	2.43(18)	$0.07(1)$	0.15(9)	94.16(98)	74.76	
	ol	3	41-19(6)	0.02(3)	$0.04(3)$	9.90 (14)	0.30(9)	46.70(52)	0.19(3)	$0.02(2)$	$0.01(1)$		98.37	89.37	0.338
	cpx	3	49.49(58)	0.64(18)	5.88(33)	6.75(5)	0.28(3)	15.20(56)	21.22(46)	$0.32(5)$	0.00 (0)		99.77	44/11/45	0.408
	pl	3	46.39(4)	0.06(3)	33.55(15)	1.18(6)	$0.04(5)$	0.18(3)	18.24(33)	1.41(4)	$0.01(0)$		101.04	87.7	2.58
	mt	2	0.49(20)	2.47 (2)	7-20(74)	57.56/22.19	$0.38(6)$	7-49(20)	$0.45(11)$	$0.02(2)$	$0.00(1)$		98.22	7.26	

Table 4a: Continued

Run	Phase	n	SiO_{2}	TiO_{2}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathrm{FeO}^{* a}$	MnO	MgO	CaO	$\mathrm{Na}_{2} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{O}$	$\mathrm{P}_{2} \mathrm{O}_{5}$	Total	$X_{\text {Ph }}{ }^{\text {b }}$	$K_{\text {d }}{ }^{\text {c }}$
40	gl	6	53.43(83)	0.95(13)	18.40(1-15)	8.77(66)	0.20(14)	4.63(17)	10.37(65)	2.99(25)	0.11(5)	0.15(8)	94.89(45)	68.66	
	ol	6	40.44(25)	0.02(1)	0.05(3)	11.92(21)	$0.31(4)$	44.76(63)	0.29(5)	0.01(1)	0.01(0)		97.81	87.00	0.327
	cpx	3	51.36(24)	0.46(21)	4.01(35)	6.40(1)	0.19(5)	15.18(0)	21.97(51)	0.29(6)	0.01(0)		99.86	44/11/45	0.411
	pl	2	48.06(2)	0.19(5)	30.53(77)	2.07(30)	0.06(2)	$0 \cdot 76(21)$	16.36(32)	1.81(4)	0.04(2)		99.88	$83 \cdot 1$	2.60
	mt	2	0.21(5)	2.45(70)	8.48(1-16)	56.33/22.41	0.30(2)	7.15(34)	0.37(3)	0.04(2)	0.01(1)		97.75	7.49	
39	gl	5	53.64(1.53)	1.24(11)	17.82(1.51)	9.34(42)	0.21(5)	4.24(19)	9.73(96)	3.47(28)	0.23(6)	0.08(6)	96.24(1-11)	63.70	
	ol	2	40.13(23)	0.05(6)	$0.35(30)$	14.24(24)	$0.32(4)$	45.13(62)	0.32(0)	0.05(1)	0.00(0)		$100 \cdot 61$	84.96	0.311
	cpx	3	49.36(70)	$0.76(7)$	5-18(36)	7.89(11)	0.25(1)	15-59(26)	20.16(24)	0.36(6)	0.00(0)		99.55	45/13/42	0.261
	pl	3	49.52(43)	$0 \cdot 15(4)$	29.58(84)	1.58(13)	$0.00(0)$	$0 \cdot 56(14)$	14.32(64)	3.00(10)	0.04(1)		98.76	$72 \cdot 4$	1.70
	mt	2	0.16(2)	3.67(75)	6.48(41)	56.79/24.51	0.29(3)	6.56(31)	0.36(4)	0.02(4)	0.00(0)		98.83	10.99	
38	gl	2	54.54(1-21)	1.32(19)	18.17(70)	8.82(76)	0.23(8)	4-27(39)	8.79(83)	3.46(89)	0.24(6)	$0 \cdot 15(11)$	96.95(1.28)	62.05	
	ol	2	39.75(11)	0.02(2)	0.08(3)	15.60(28)	0.41(6)	43.40(47)	0.32(3)	0.05(2)	0.01(1)		99.63	83.22	0.330
	cpx	5	49.53(46)	$0.87(15)$	5.74(29)	8.58(87)	0.20(3)	15.09(10)	18.89(4)	0.39(9)	0.01(1)		99.30	45/15/40	0.418
	pl	2	50.70(87)	0.11(2)	30.01(34)	1-30(18)	0.01(1)	0.45(12)	14.25(11)	3.14(9)	0.04(0)		$100 \cdot 00$	$71 \cdot 3$	1.79
	mt	3	0.14(3)	4.94(15)	6.72(52)	52.09/25-51	$0 \cdot 30(7)$	6.04(6)	0.34(5)	0.06(5)	0.00(0)		96.15	15.47	
37	gl	3	56.17(83)	1.05(11)	18.79(33)	6.50(27)	0.13(14)	4.47(7)	8.76(29)	3.74(67)	0.14(9)	0.24(2)	94.53(1.50)	74.69	
	ol	2	41-16(10)	$0.03(4)$	0.07(4)	9.66(68)	$0.33(8)$	49-16(91)	0.20(5)	0.01(1)	0.01(0)		$100 \cdot 61$	90.07	0.325
	cpx	2	48.57(4)	0.76(3)	6.19(6)	7.54(17)	$0 \cdot 19(4)$	15.63(23)	20.50(49)	0.32(0)	0.01(1)		99.70	45/13/42	0.311
	pl	3	46.33(2)	0.00(3)	32.90(15)	1.25(4)	0.04(2)	0.19(4)	17.41(9)	1.68(11)	0.04(3)		99.83	84.9	4.43
	mt	2	0.25(16)	2.49(6)	7-13(4)	58.66/21.51	0.38(4)	7.84(9)	0.40(13)	0.01(1)	0.01(1)		98.69	$7 \cdot 20$	
	am	3	42.66(29)	1.77(3)	12.48(28)	8.21(20)	0.13(7)	17.71(6)	11.72(21)	2.44(4)	0.04(2)		$97 \cdot 15$	85.7	
36	gl	4	57.57(55)	1.07(1)	18.04(41)	6.82(42)	0.12(4)	3.88(28)	8.05(14)	3.84(23)	0.29(4)	$0.33(17)$	94.74(1.95)	$70 \cdot 84$	
	ol	2	40.90(41)	0.04(2)	0.24(28)	11.61(1)	0.31(0)	46.86(72)	0.24(4)	0.04(3)	0.01(1)		$100 \cdot 24$	87.80	0.338
	cpx	3	49.27(15)	0.86(3)	5-15(29)	7.41(81)	0.25(2)	15.66(42)	20.58(1.28)	0.34(6)	0.00(0)		99.52	45/12/43	$0 \cdot 308$
	pl	3	49-12(30)	0.24(12)	29.43(1.35)	1.93(31)	0.02(1)	1.00(45)	15-19(57)	2-10(10)	0.03(0)		99.06	79.8	3.46
	mt	2	0.22(8)	3.27(7)	6.06(7)	57.12/22.97	0.38(2)	6.96(2)	0.41(0)	0.01(1)	0.01(1)		97.42	9.66	
35	gl	4	57.53(59)	1.00(12)	19.24(1.43)	6.43(68)	0.16(12)	2.99(27)	7.74(84)	4.39(29)	0.26(7)	0.26(10)	93.85(1.13)	66.63	
	ol	3	$41.07(13)$	0.04(1)	0.25(26)	13.15(17)	0.38(5)	44.37(38)	0.23(4)	0.03(3)	0.01(1)		99.53	$85 \cdot 74$	0.332
	cpx	2	50.46(73)	0.93(18)	4.47(50)	7.15(42)	$0 \cdot 30(7)$	15.67(47)	20-19(53)	0.40(1)	0.00(0)		99.57	46/12/42	0.372
	pl	3	51.05(44)	$0 \cdot 13(11)$	29.09(1.60)	1.51(49)	0.02(3)	0.72(64)	14.33(14)	3.01(30)	0.03(1)		99.90	$72 \cdot 3$	$2 \cdot 70$
	mt	1	0.20	4.35	5.58	54.98/24.94	0.31	6.31	0.34	0.00	0.00		97.00	$13 \cdot 18$	
	opx	2	54.63(62)	0.34(8)	3-17(60)	9.99(3)	0.33(1)	29.32(54)	2.00(40)	0.05(1)	0.00(0)		99.84	80/16/4	

[^4]Table 4b: Electron microprobe analyses of run products for composition $\mathrm{B2}\left(\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}\right.$ buffer conditions)

Run	Phase	n	SiO_{2}	TiO_{2}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathrm{FeO}^{*}{ }^{\text {a }}$	MnO	MgO	CaO	$\mathrm{Na}_{2} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{O}$	$\mathrm{P}_{2} \mathrm{O}_{5}$	Total	$x_{\text {Ph }}{ }^{\text {b }}$	$K_{\text {d }}{ }^{\text {c }}$
86	gl	10	51-17(23)	1.43(6)	15.93(16)	10.72(26)	$0.21(7)$	6.49(7)	10.57(13)	3.13(11)	$0 \cdot 15(4)$	$0.19(7)$	94.89(38)	$71 \cdot 11$	
87	gl	3	50.91(61)	1.51(5)	15.68(24)	11.46(47)	$0.31(13)$	6.40(18)	10.39(13)	3.15(13)	$0.06(2)$	0.12(3)	97.85(75)	64.49	
88	gl	4	51-43(27)	1.49(13)	15.80(29)	10.47(43)	0.29(20)	6.38(21)	10.60(15)	3.36(16)	$0 \cdot 09(2)$	0.08(4)	98.09	63.78	
89	gl	8	51.71(29)	1.41(8)	15.90(24)	10.45(72)	0.23(8)	6.39(12)	10.54(17)	2.96(29)	$0 \cdot 14(6)$	$0.26(14)$	99.20(46)	60.91	
90	gl	2	52.24(74)	1.41 (3)	16.14(44)	9.22(50)	$0 \cdot 31(13)$	6.19(30)	11.07(4)	3.12(12)	$0 \cdot 16(4)$	$0.13(6)$	94.19(60)	73.98	
	mt	3	$0 \cdot 13(2)$	$1.54(3)$	$4.85(1)$	63.02/19.84	$0.35(1)$	$7.91(7)$	0.366)	$0.01(1)$	$0.01(2)$		98.02	4.08	
91	gl	4	52.00(62)	1.61 (2)	15.80(40)	10.26(54)	$0.34(7)$	6.22(28)	10.36(44)	3.21(26)	$0.09(3)$	0.12(4)	97.85(50)	66.62	
	cpx	2	48.42(94)	1.0664	5.61(68)	8.98 (1)	$0 \cdot 27(1)$	14.65(59)	20.12(64)	$0.45(3)$	$0.02(1)$		99.58	43/15/42	$0 \cdot 348$
	mt	2	$0 \cdot 22(4)$	2.83(8)	$7.35(5)$	56.95/22.97	0.25(6)	$7.01(12)$	$0 \cdot 3711)$	$0.0311)$	$0.01(1)$		97.99	8.62	
92	gl	4	52.85(7)	1.70 (8)	15.35(32)	10.73(21)	0.33(12)	5.91(14)	9.13(18)	3.66(13)	$0.18(5)$	0.15 (3)	98.04(1.03)	63.71	
	cpx	2	51-11(20)	0.73 (4)	3.87(62)	8.21(6)	$0.30(5)$	17.01(87)	17.78(56)	$0.42(5)$	$0.02(2)$		99.45	49/14/37	0.369
	pl	2	52.75(93)	$0.11(2)$	28.49(28)	1.43(9)	$0.03(3)$	0.28(6)	12.87(35)	4.05(11)	0.04(3)		100.04	63.5	1.27
	mt	2	0.96(75)	4.46(8)	6.59(11)	52.36/26.23	$0.24(0)$	6.19(13)	$0.76(37)$	$0 \cdot 0000$	0.000)		97.80	14.17	
93	gl	3	53.08(30)	2.02(11)	14.74(26)	11.94(21)	0.28(13)	5.32(24)	8.85(24)	3.43(28)	$0.22(2)$	0.14(1)	97.84(31)	56.86	
	cpx	2	51.21(54)	$0.82(3)$	3.82(9)	9.78(5)	$0.35(3)$	16.98(7)	16.66(63)	0.42(2)	$0.01(2)$		$100 \cdot 05$	49/16/35	0.348
	pl	2	53.79(29)	$0 \cdot 24(20)$	27.04(1.13)	1.70(55)	$0.01(2)$	0.50(40)	11.80(32)	4.62(6)	$0.05(1)$		99.75	58.3	0.99
	mt	3	0.27(7)	5.49(44)	6.21(27)	51.67/27.25	0.28(4)	5.59(8)	$0.40(5)$	$0.01(1)$	$0.02(1)$		97.20	$17 \cdot 10$	
94	gl	3	54.32(64)	1.49(14)	16.36(52)	$7.46(46)$	0.15(6)	5.88(15)	10.74(21)	3.31(20)	$0.17(4)$	$0.13(6)$	93.81(90)	$77 \cdot 43$	
	cpx	2	47.92(97)	1-12(7)	5-54(29)	$8 \cdot 20(7)$	0.18(7)	14.07(7)	22.64(7)	$0.37(6)$	$0.01(1)$		100.05	40/13/47	0.311
	mt	2	$0 \cdot 1811)$	1.966)	4.85(14)	62.55/19.27	$0.41(2)$	8.53(20)	$0 \cdot 32(7)$	$0.02(3)$	$0.02(1)$		$98 \cdot 10$	$5 \cdot 24$	
95	gl	3	56.85(73)	1.38(13)	17.85(2.19)	5.99(41)	0.30(12)	4.17(36)	9.16(1)	3.94(3)	$0.28(16)$	0.09(4)	97.25(75)	71.59	
	cpx	4	48.34(48)	1.25(25)	5-39(27)	7.78(47)	$0.28(3)$	15.21(29)	$20.48(19)$	0.466)	0.00 (0)		99.19	44/13/43	$0 \cdot 291$
	mt	3	0.73(35)	3.93(21)	5.88(32)	56.10/24.01	$0.43(5)$	7.08(4)	0.55(18)	$0.06(7)$	$0.02(1)$		98.80	11.61	
96	gl	5	59.03(71)	1-19(26)	17.96(2.23)	$5.74(74)$	0.23(22)	3.70(32)	7.72(77)	4.05(11)	0.27(11)	0.09(9)	97.18(1.08)	69.08	
	cpx	5	49.91(48)	$0.99(10)$	$4.75(2 \cdot 17)$	8.06 (15)	$0.41(3)$	15.16(1.35)	19.93(55)	0.59(18)	$0.02(3)$		99.82	44/14/42	0.398
	opx	3	53.56(6)	$0.49(3)$	4.02(1.60)	10.92(49)	$0.44(7)$	27.35(1.50)	2.29(62)	0.24(15)	$0.01(1)$		99.34	77/18/5	
	pl	3	53.66(38)	$0.42(10)$	24.51(92)	2.01(69)	$0.03(3)$	1.65(51)	11.57(77)	4.05(37)	$0.08(4)$		97.99	$60 \cdot 9$	1.50
	mt	2	$0.4311)$	$5.85(0)$	4.34(17)	53.87/27.36	0.46 (4)	5.67(5)	$0.45(7)$	$0.05(7)$	$0.01(1)$		98.48	17.18	
	ilm	1	$0 \cdot 69$	22.51	1.32	53.87/13.50	0.25	3.67	0.48	0.03	0.00		96.32	37.21	
98	gl	4	59.73(1.23)	0.90(23)	17.92(1.08)	5.56(53)	0.09(2)	3.19(31)	7.58(42)	4.54(57)	$0.34(21)$	$0.15(0)$	97.60(1.49)	66.15	
	cpx	3	49.83(47)	$0.87(13)$	3.73(81)	7.42(49)	0.47 (1)	15.75(22)	19.43(78)	$0.41(20)$	$0.03(0)$		97.94	46/13/41	0.342
	opx	2	55.62(77)	0.46 (8)	1.98(43)	12.37(57)	$0.62(13)$	26.97(8)	2-70(17)	$0 \cdot 16$ (1)	0.011)		$100 \cdot 89$	75/20/5	
	pl	3	54.17(30)	0.10(12)	24.44(1.83)	2.60(59)	$0.07(2)$	1.83(92)	11.22(69)	4.40(13)	0.10(2)		98.93	58.1	1.53
	mt	3	$0 \cdot 12(1)$	6.57(16)	3.87(3)	52.37/28.73	0.46 (1)	4.89(3)	$0 \cdot 304$)	$0.01(0)$	$0.0110)$		97.34	19.41	
	ilm	1	0.48	24.90	1.08	50.83/16.10	0.22	$3 \cdot 33$	0.52	0.01	0.00		97.47	42.72	

Run	Phase	n	SiO_{2}	TiO_{2}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	FeO^{*}	MnO	MgO	CaO	$\mathrm{Na}_{2} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{O}$	$\mathrm{P}_{2} \mathrm{O}_{5}$	Total	$X_{\text {Ph }}{ }^{\text {b }}$	$K_{\text {d }}{ }^{\text {c }}$
99	gl	3	56.70(20)	1-42(8)	18.42(64)	5.82(89)	$0 \cdot 14(5)$	4.21(7)	9.30(15)	3.67(41)	0.24(6)	0.08(3)	93.71(34)	75.99	
	cpx	4	48.22(65)	1.43(11)	6.76(20)	6.59(74)	0.26(4)	14.26(28)	22.71(38)	0.41(4)	0.01(3)		$100 \cdot 63$	41/11/48	0.283
	mt	2	0.22(4)	2.44(4)	5.91(2)	59.71/19.63	0.56(11)	8.46(6)	0.43(2)	0.02(1)	0.01(1)		97.38	6.64	
100	gl	3	60.57(91)	1-12(4)	17.96(57)	5.94(22)	0.39(8)	2.30(27)	6.84(49)	4.32(53)	0.36(5)	0.21(6)	95-28(77)	62.38	
	cpx	4	49.66(47)	1.36(19)	4.68(1.04)	8.26(73)	0.41(2)	16.27(1-25)	17.95(98)	$0.51(13)$	0.01(0)		99.13	48/14/38	0.332
	opx	2	54.89(18)	0.39(3)	2.99(5)	8.69(17)	0.55(7)	30.31(8)	1.75(16)	0.06(1)	0.00(0)		99.64	82/14/4	
	pl	3	53.45(71)	0.29(9)	26.24(2.07)	1.84(46)	0.01(1)	$0.98(60)$	12.08(80)	3.71(6)	0.08(2)		98.68	$64 \cdot 0$	2.06
	mt	2	0.21(11)	3.44(7)	4.50(4)	58.97/24.06	0.52(4)	6.30(6)	$0.35(10)$	0.02(2)	0.01(0)		98.38	9.64	
	ilm	2	$0 \cdot 18$	18.63	1.26	61.89/10.15	0.25	$3 \cdot 27$	$0 \cdot 43$	0.04	0.01		96.09	29.51	
101	gl	4	62.17(69)	1-23(4)	17.94(1.02)	5.32(56)	0.25(29)	1.93(4)	5.67(19)	4.89(68)	0.32(8)	0.28(1)	94.41(1.03)	60.85	
	cpx	4	51.03(34)	$0.87(14)$	3-28(19)	8.30(52)	0.54(7)	16.37(2)	18.96(55)	0.47 (1)	0.01(1)		99.82	47/14/39	0.298
	opx	2	54.33(13)	0.31(0)	3.34(74)	10.25(33)	0.56(3)	27.98(1.47)	2-10(69)	0.21(22)	0.01(2)		99.10	79/17/4	
	pl	2	54.60(1.76)	0.21(2)	26.19(95)	2.33(38)	0.02(2)	$0 \cdot 48(22)$	10.90(46)	4.44(35)	0.09(6)		99.25	$57 \cdot 3$	$2 \cdot 12$
	mt	3	0.18(12)	3.72(9)	3.56(2)	58.85/26.16	0.53(5)	4.94(8)	0.36(5)	0.03(2)	0.00(0)		98.34	10.41	
	ilm	1	0.96	19.41	1.32	58.50/12.49	0.18	2.87	0.54	0.02	0.02		96.30	33.07	
102	gl	5	63.13(96)	1.05(8)	16.18(56)	5.43(42)	0.08(6)	1.70 (25)	5.59(55)	5.42(22)	0.46(1)	0.95(14)	95.39(1-21)	56.71	
	cpx	3	52.46(1.64)	1-13(11)	5.90(31)	6.04(1.21)	0.46(2)	15.37(42)	15.53(1.60)	$0.77(18)$	0.06(3)		97.72	51/12/37	0.289
	opx	2	54.32(52)	0.31(3)	5.14(82)	11.28(43)	0.53(12)	23.98(1.55)	4.30(1.81)	0.47(2)	0.02(2)		$100 \cdot 35$	71/20/9	
	pl	3	54.34(35)	$0.43(34)$	25.19(1.08)	2.25(96)	0.02(2)	1-25(1-10)	10.70(25)	4.56(7)	0.10(1)		98.84	$56 \cdot 1$	2.28
	mt	1	0.14	3.97	3.37	57.36/26.90	0.40	4.29	0.36	0.04	0.01		96.84	11.54	
	ilm	2	0.13	20.92	1.59	61.01/12.11	0.20	$2 \cdot 79$	0.73	0.15	0.02		99.65	$35 \cdot 61$	
103	gl	3	64.87(13)	0.82(23)	17.18(25)	3.92(26)	0.20(0)	2.61(10)	6.00(14)	3.87(8)	0.24(4)	0.29(0)	93.19(1.66)	74.34	
	cpx	2	48.80(45)	0.94(4)	5.83(44)	7.02(8)	0.29(0)	14.22(31)	21.49(26)	0.56(0)	0.01(1)		99.16	42/12/46	0.390
	pl	2	49.54(90)	0.15(3)	29.56(62)	2.87(7)	0.03(3)	0.47(4)	13.38(66)	3.08(32)	0.04(1)		99.12	$70 \cdot 4$	2.80
	mt	2	$0.39(21)$	2.20(3)	4.56(9)	59.74/22.71	$0.72(4)$	6.14(5)	0.29(38)	0.03(0)	0.02(1)		96.79	$5 \cdot 66$	
	ilm	2	0.14	14.72	1.27	69.18/8.29	0.14	2.44	$0 \cdot 30$	0.03	0.03		96.54	23.78	
	am	4	43.16(1.43)	2.13(17)	11.95(52)	9.15(56)	0.24(6)	16.17(56)	11.70(60)	2.33(8)	0.06(2)		97.34	79.8	
104	gl	5	65.88(85)	0.84(9)	15.94(42)	4•11(16)	0.07(7)	1.81(26)	5.85(25)	4.67(26)	0.30(2)	0.52(6)	93.62(1.67)	66.45	
	cpx	3	48.70(67)	1.08(17)	5.44(3)	7.08(45)	0.39(3)	14.36(20)	20.87(32)	0.48(5)	0.02(2)		98.44	43/12/45	0.323
	opx	3	54.04(28)	$0.35(13)$	4.68(94)	8.79(60)	0.54(6)	28.93(2.70)	1.94(8)	0.22(15)	0.00(1)		99.50	81/15/4	
	pl	4	56.26(3.24)	0.29(47)	24.44(51)	1.85(89)	0.06(13)	1.03(9)	9.78(74)	3.11(12)	$0.13(7)$		96.95	$62 \cdot 9$	2.52
	mt	2	2.38(61)	2.54(6)	4.17(1.07)	55.91/27.25	0.55(2)	5.35(5)	$0.73(47)$	0.01(16)	0.00(0)		98.89	$7 \cdot 38$	
	ilm	2	0.17	17.31	$1 \cdot 10$	63.01/10.02	0.23	2.79	0.39	0.01	0.00		95.03	28.32	

Table 4b: Continued

Run	Phase	n	SiO_{2}	TiO_{2}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	FeO^{*}	MnO	MgO	CaO	$\mathrm{Na}_{2} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{O}$	$\mathrm{P}_{2} \mathrm{O}_{5}$	Total	$X_{\text {Ph }}{ }^{\text {b }}$	$K_{\text {d }}{ }^{\text {c }}$
105	gl	2	65.98(1-18)	0.78(9)	16.79(6)	$3 \cdot 70$ (25)	0.13(13)	1.50(9)	5-42(10)	4.94(20)	0.34(11)	0.42(7)	93.99(75)	$64 \cdot 52$	
	cpx	2	51.09(1.05)	1.08(15)	4.84(29)	6.94(49)	0.39(4)	14.76(56)	19.47(68)	1.36(21)	0.04(2)		99.97	45/13/42	$0 \cdot 274$
	opx	1	56.20	0.33	$3 \cdot 15$	11.32	0.48	26.52	$2 \cdot 98$	$0 \cdot 26$	0.02		$101 \cdot 25$	75/19/6	
	pl	1	54.25	0.80	25.88	$3 \cdot 28$	0.02	0.93	$10 \cdot 44$	4.58	0.10		$100 \cdot 29$	$55 \cdot 4$	2.07
	mt	3	0.21(11)	2.74(8)	3.13(55)	59.66/26.07	0.56(11)	4.05(9)	0.38(46)	0.02(4)	$0.0010)$		96.83	7.51	
	ilm	2	0.42	17.81	1.82	65.51/8.40	0.17	3.06	1.42	0.14	0.01		98.76	29.07	
106	gl	3	70.02(1-13)	0.65(9)	13.08(1.05)	3.70(2)	0.05(6)	1.21(14)	4-13(36)	5.60(92)	0.82(2)	0.75 (11)	93.59(1.42)	$60 \cdot 48$	
	cpx	2	51.00(91)	1.08(17)	6.86(36)	5.01(21)	$0.43(11)$	17.01(1.01)	18.20(74)	0.69(25)	0.05(2)		$100 \cdot 34$	51/9/40	0.228
	opx	1	54.69	0.33	5.72	10.98	0.44	22.88	$5 \cdot 58$	0.49	0.03		$101 \cdot 15$	69/19/12	
	pl	3	55.99(89)	$0 \cdot 21$ (3)	24.77(91)	$0.84(45)$	0.01(0)	0.75 (22)	9.85(83)	4.61(22)	$0.12(5)$		97.15	53.7	2.90
	mt	1	0.97	3.21	3.93	56.74/28.54	0.39	3.33	0.95	0.04	0.01		98.13	9.53	
	ilm	2	0.34	18.59	2.31	62.40/9.55	0.17	2.78	1.22	0.19	0.00		97.55	32.82	
111	gl	4	65.36(1.21)	$0.91(12)$	16.32(94)	4.22(65)	0.18(5)	1.73(23)	6.03(45)	4.49(64)	0.33(8)	0.43(12)	96.46(1.42)	64.74	
	cpx	2	$50.32(1.04)$	1.03(15)	4.70(25)	6.93(11)	0.41(6)	15.19(30)	20.91(55)	0.53(9)	0.00(1)		100.03	44/12/44	0.293
	opx	1	55.03	0.35	$5 \cdot 40$	9.63	0.51	26.70	2.31	0.31	0.03		$100 \cdot 28$	79/17/4	
	pl	1	55.80	0.33	24.53	$2 \cdot 16$	0.01	$2 \cdot 31$	$11 \cdot 28$	3.39	0.09		99.89	$64 \cdot 4$	2.48
	mt	2	0.87(32)	2.87(7)	4.39(25)	58.11/24.93	0.84(6)	5.22(2)	$0.72(16)$	0.05(3)	0.04(0)		98.05	$7 \cdot 62$	
	ilm	2	0.86	18.62	$1 \cdot 14$	61.92/10.61	0.35	$3 \cdot 25$	0.69	0.02	0.02		97.48	29.03	

[^5]Table 4c: Electron microprobe analyses of run products for composition B1 (QFM buffer conditions)

Run	Phase	n	SiO_{2}	TiO_{2}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	FeO^{+3}	MnO	MgO	CaO	$\mathrm{Na}_{2} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{O}$	$\mathrm{P}_{2} \mathrm{O}_{5}$	Total	$X_{\text {Ph }}{ }^{\text {b }}$	$K_{\text {d }}{ }^{\text {c }}$
130	gl	16	$50.04(18)$	0.80(5)	16.03(23)	8.24(23)	$0.11(6)$	$9.82(10)$	12.62(14)	2.20(12)	$0.07(2)$	$0.08(5)$	95.71(39)	71.65	
129	gl	3	50.60(6)	$0.84(0)$	16.70(18)	7.84(11)	$0.14(2)$	8.71 (7)	12.84(14)	2.22(6)	$0.05(5)$	$0.05(5)$	97.97(37)	69.23	
	ol	4	41.37(61)	0.02(2)	$0.05(5)$	11.28(89)	$0.17(4)$	47.34(95)	0.34(4)	0.02(2)	0.00 (0)		100.58	88.21	0.301
128	gl	3	50.60(7)	0.87(5)	16.76(14)	7.95(14)	$0.13(3)$	7.74(13)	13.45(10)	2.34(12)	$0.09(4)$	0.09(4)	98.63(15)	$65 \cdot 32$	
	ol	3	41-20(8)	0.0331	$0.09(4)$	11.43(17)	$0 \cdot 20(6)$	46.93(35)	$0 \cdot 35(1)$	$0.01(1)$	0.00 (0)		$100 \cdot 23$	87.98	0.257
127	gl	5	$50.91(36)$	$0.92(8)$	16.79(40)	8.04(20)	0.15(4)	7.73(12)	12.78(23)	2.47(9)	$0 \cdot 10(2)$	0.10(2)	99.08(48)	64.09	
	ol	5	40.42(21)	0.022)	$0.12(9)$	13.79(25)	0.22(6)	45.92(27)	$0.32(4)$	$0.02(2)$	0.00 (0)		100.83	85.58	0.295
	cpx	5	51.50(1.36)	0.51(5)	4.90(88)	6.33(33)	0.14(5)	16.31(74)	$20.63(53)$	$0.33(13)$	$0.01(1)$		$100 \cdot 67$	47/10/43	0.296
	pl	2	50.09(51)	0.11(2)	30.07(22)	1.19(6)	$0.00(0)$	0.75 (5)	15.74(50)	2.65(14)	$0.02(1)$		$100 \cdot 62$	76.6	$1 \cdot 15$
134	gl	6	50.32(25)	$0.80(3)$	16.90(12)	$8.07(24)$	$0.19(7)$	8.11(14)	13.23(18)	2.15(9)	$0.09(3)$	0.13(9)	94.69(79)	68.39	
	ol	3	39.92(9)	0.044)	$0.05(7)$	13.48(1.01)	$0.21(2)$	45.40(95)	$0 \cdot 37(5)$	$0.01(2)$	$0.01(1)$		99.51	85.72	0.360
132	gl	5	50.75(40)	$0.87(2)$	17.62(33)	8.62(42)	$0.17(5)$	$6.78(17)$	12.60(18)	2.38(10)	$0.08(2)$	0.11(8)	97.59(22)	$61 \cdot 41$	
	ol	4	39.78(17)	0.04(1)	$0.08(3)$	14.73(66)	0.26(10)	43.25(76)	$0.34(4)$	$0 \cdot 03(2)$	0.00 (0)		98.52	83.69	0.304
	cpx	5	51.27(85)	0.499(2)	4.85(62)	6.36(79)	$0.18(7)$	14.99(41)	20.80 (72)	$0 \cdot 22(3)$	$0.01(1)$		99.16	45/11/44	0.379
	pl	5	47.14(43)	0.05(5)	32.42(31)	$0 \cdot 95(8)$	$0.01(2)$	0.44(11)	17.48(16)	1.64(8)	$0.03(1)$		100.16	85.4	2.02
133	gl	9	51.70(68)	1.049)	16.53(82)	8.77(31)	$0.12(4)$	7.30(67)	11.72(61)	2.68(22)	$0.08(3)$	$0.07(6)$	98.15(68)	$62 \cdot 14$	
	ol	9	40.14(30)	0.02(1)	0.11(5)	16.81(86)	0.25(9)	43.10(63)	$0 \cdot 35(4)$	0.02(2)	$0.01(1)$		100.81	82.05	0.359
	cpx	4	52.47(81)	0.59(10)	4.88(1.36)	6.94(68)	0.16(2)	15.60(90)	20.49(1.13)	0.31(9)	$0.01(2)$		101.45	45/12/43	0.410
	pl	4	49.78(57)	0.12(6)	30-29(1.33)	1.31(33)	$0.02(2)$	1.22(69)	16.18(17)	2.13(19)	$0.03(1)$		101.08	$80 \cdot 6$	1.73
131	gl	6	51-26(27)	1-19(14)	17.52(1.25)	9.20(59)	0.19(10)	$5.63(33)$	12.04(29)	2.70(19)	$0.11(2)$	0.16(4)	98.89(75)	53.87	
	ol	5	$39.01(10)$	0.03(1)	0.18(18)	19.71(63)	$0.29(7)$	39.47(64)	$0.33(8)$	0.02(2)	$0.01(1)$		99.06	78.11	0.327
	cpx	3	50.54(66)	0.67(8)	4.86(46)	8.42(46)	$0.24(3)$	15.22(38)	19.18(42)	0.33(3)	$0.02(1)$		99.47	45/14/41	0.322
	pl	6	51.15(1.04)	$0.18(10)$	28.44(1.70)	1.32(50)	$0.04(2)$	0.95 (62)	14.56(63)	3.04(38)	$0.04(2)$		99.70	72.4	1.07
142	gl	13	50.54(66)	0.90(5)	18.78(25)	8.54(43)	$0.11(6)$	$5.94(18)$	12.30(35)	2.73(41)	$0.08(5)$	0.10(6)	93.48(79)	59.77	
	ol	8	39.63(33)	$0.03(2)$	$0.05(2)$	17.33(58)	0.24(6)	42.11(77)	0.3664	0.01(1)	$0.01(1)$		99.77	$81 \cdot 25$	0.343
	cpx	7	50.97(1.00)	0.65 (12)	6.02(1.65)	6.48(66)	$0.12(3)$	15.00(1.58)	20.39(82)	0.28(15)	$0.02(1)$		99.93	45/11/44	0.360
141	gl	11	51.3476)	1.07(10)	17.95(93)	9.45(45)	$0.17(7)$	5.93(58)	10.8467)	2.98(26)	$0 \cdot 10(4)$	0.16(6)	96.44(36)	56.50	
	ol	8	39.47(36)	0.02(2)	0.06(6)	19.78(56)	$0.32(5)$	39.43(1-30)	0.32(5)	0.09(23)	$0.01(1)$		99.50	78.04	0.365
	cpx	3	49.67(1.86)	0.75(15)	5.50(1.43)	7-77(79)	$0.18(7)$	15.12(79)	21.05(77)	0.21(6)	$0.01(1)$		$100 \cdot 27$	44/12/44	0.238
	pl	3	47.58(88)	0.07(3)	32.54(47)	$0.97(24)$	$0.04(4)$	$0 \cdot 41(10)$	17.14(43)	1.73(24)	$0.03(1)$		100.51	84.4	2.72
140	gl	4	53.06(49)	1.58(2)	18.05(59)	$9.66(60)$	$0.14(11)$	3.95(66)	9.79(34)	3.49(48)	0.19(6)	0.11(5)	96.73(2.21)	45.62	
	ol	4	38.43(14)	0.04(2)	$0.08(3)$	23.51(28)	$0.34(9)$	38.16(17)	$0.37(3)$	$0.02(4)$	0.00(0)		$100 \cdot 94$	74.56	0.290
	cpx	5	50.55(91)	0.74(6)	4.81(91)	8.41(99)	0.19(3)	15.46(33)	19.82(73)	0.29(21)	$0.01(1)$		$100 \cdot 29$	45/14/41	0.201
	pl	6	50.10(56)	0.33(13)	27.78(2.71)	2.38(78)	$0.04(4)$	1.56(77)	14.54(10)	2.65(34)	$0.04(2)$		99.42	75.1	1.96

Table 4c: Continued

Run	Phase	n	SiO_{2}	TiO_{2}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathrm{FeO}^{*}{ }^{\text {a }}$	MnO	MgO	CaO	$\mathrm{Na}_{2} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{O}$	$\mathrm{P}_{2} \mathrm{O}_{5}$	Total	$X_{\text {Ph }}{ }^{\text {b }}$	$K_{\text {d }}{ }^{\text {c }}$
143	gl	7	53.07(57)	2.01(23)	17.65(1-12)	10.95(87)	0.23(4)	4.06(33)	9-34(56)	2-23(27)	0.22(3)	0.25(6)	97.82(1-35)	42.40	
	ol	4	37.86(21)	0.05(2)	0.10(8)	24.90(1.02)	0.39(4)	36.51(52)	$0.43(2)$	0.03(3)	0.01(1)		$100 \cdot 27$	72.55	0.282
	cpx	4	50.37(60)	0.84(2)	4.95(1.01)	8.94(76)	0.23(7)	14.91(85)	19.39(62)	0.34(8)	0.01(1)		99.97	44/15/41	0.215
	pl	5	50.95(43)	0.14(7)	29.69(86)	1-10(15)	0.02(3)	0.49(16)	14.37(31)	3.04(29)	0.03(2)		99.83	$72 \cdot 2$	$1 \cdot 13$
148	gl	7	53.26(62)	1.25(4)	19.25(32)	8.55(30)	0.17(10)	3.78(24)	9.54(26)	3.93(34)	0.16(4)	0.12(6)	92.99(1.46)	$48 \cdot 67$	
	ol	4	38.26(31)	0.03(1)	$0.02(1)$	23.60(58)	0.36(4)	38.51(22)	0.35(5)	0.02(2)	0.02(1)		$101 \cdot 16$	$75 \cdot 31$	$0 \cdot 326$
	cpx	3	48.90(1.36)	1-17(42)	6.52(1.82)	7-10(72)	$0.13(4)$	14.26(1.07)	21.78(73)	0.21(8)	0.00(0)		$100 \cdot 08$	42/12/46	$0 \cdot 190$
	pl	4	48.20(38)	0.03(2)	32.97(47)	$0 \cdot 70$ (14)	0.03(3)	0.15(19)	16.17(40)	2.30(21)	0.02(1)		100.57	79.4	2.89
147	gl	6	53.50(29)	1.49(3)	18.94(23)	8.89(41)	0.24(16)	3.80(41)	8.75(14)	4.05(25)	0.17(2)	0.16(8)	93.23(83)	47.77	
	ol	6	37.88(25)	0.04(2)	0.06(3)	25.40(38)	0.40(3)	37.16(33)	$0.38(4)$	0.09(5)	0.00(0)		101.41	73.52	0.351
	cpx	4	50.43(39)	0.89(7)	4.75(31)	8.25(62)	0.25(4)	14.92(54)	20.21(92)	0.25(18)	0.01(1)		99.97	44/14/42	$0 \cdot 246$
	pl	2	48.57(22)	0.14(7)	31.82(70)	0.99(15)	0.03(4)	0.46 (4)	15.82(36)	2.32(1)	0.03(1)		$100 \cdot 18$	78.9	3.15
146	gl	3	53.77(1.65)	1-80(17)	18.56(1-33)	9-40(32)	0.14(10)	3.23(33)	8.27(63)	4.55(21)	0.17(3)	0-11(11)	94.69(1.97)	42.42	
	ol	5	37.52(54)	0.05(1)	0.29(26)	26.61(61)	0.41(5)	35.64(93)	$0.47(15)$	0.00 (0)	0.00(1)		101.00	71.08	0.308
	cpx	10	49.73(79)	1.23(13)	6.49(1.40)	9.07(60)	0.20(5)	13.60(22)	18.02(60)	0.22(21)	0.02(2)		98.59	43/16/41	0.276
	pl	3	50.88(1-15)	0.41(23)	27.37(1.55)	2.25(94)	0.06(4)	1-39(60)	13.25(86)	2.77(53)	0.04(2)		98.43	72.4	$2 \cdot 63$
145	gl	6	56.14(68)	1.90(10)	17.23(65)	9.30(46)	0.12(11)	2.91(35)	7.39(35)	4.67(26)	0.17(3)	0.17(8)	95.57(1.05)	39.49	
	ol	10	38.18(47)	0.06(2)	0.27(31)	25.73(82)	0.41 (4)	34.58(76)	0.43 (13)	$0.03(5)$	0.00(0)		99.70	70.56	0.272
	cpx	6	51.01(86)	1-17(15)	5.67(1.89)	8.48(40)	0.20(5)	13.44(1.23)	18.88(1-20)	$0 \cdot 40(10)$	0.03(2)		99.27	42/15/43	0.231
	pl	5	$50.41(51)$	0.25(8)	28.53(1.06)	1.73(31)	0.04(04)	1.09(57)	13.61(60)	3.09(25)	0.03(1)		98.78	$70 \cdot 8$	2.79
153	gl	3	58.46(33)	1-18(3)	17.59(16)	8.97(12)	0.09(4)	2.52(48)	6.60(12)	4.15(54)	0.23(3)	0.21(14)	92.75(10)	37.62	
	ol	3	37-19(3)	0.01(1)	0.04(0)	30.33(30)	0.39(2)	32.56(12)	$0 \cdot 26(3)$	0.00 (1)	0.01(2)		$100 \cdot 79$	65.77	0.315
	cpx	3	51-10(29)	0.62(6)	3.60 (49)	10.60(52)	0.29(8)	15.49(15)	17.84(67)	$0.13(11)$	0.02(1)		99.68	45/18/37	0.224
	pl	3	49.21(33)	0.14(3)	30.84(64)	1-40(8)	0.06(4)	0.33(30)	15.07(26)	2.52(5)	0.03(2)		99.59	76.6	3.76
	am	3	43.02(51)	1.97(45)	13.24(73)	$11.62(13)$	0.16(5)	14.51(43)	10.64(22)	2.52(18)	0.07(3)		97.74	74.4	
152	gl	2	60.06(44)	1-13(36)	16.77(49)	8.93(1-35)	0.11(8)	2.31(66)	$5.81(33)$	4.36(74)	0.27(3)	0.25(11)	93.56(1.89)	35.71	
	ol	3	36.80(10)	0.05(1)	0.10(8)	30.73(46)	0.45 (5)	32-14(65)	0.32(11)	$0 \cdot 00$ (1)	0.01(2)		$100 \cdot 60$	65.56	0.298
	cpx	3	51.59(19)	0.70(3)	3.37(6)	10.03(51)	0.31(6)	15.17(16)	19.10(62)	0.19(12)	0.01(1)		$100 \cdot 47$	44/16/40	$0 \cdot 197$
	pl	4	50.37(58)	0.12(5)	29.68(1.02)	1.36(37)	0.02(2)	1.01(66)	14.24(49)	2.96(27)	0.03(1)		99.80	72.5	3.61
	am	6	43.08(98)	2.82(1.01)	12.08(17)	11.83(34)	$0 \cdot 14(4)$	14.63(22)	11.37(38)	2.37(41)	0.07(1)		98.40	$72 \cdot 9$	
151	gl	2	61.33(88)	1-17(16)	17.98(1.71)	7.49(98)	0.10(5)	1.84(27)	4.98(90)	4.67(70)	0.18(2)	0.26(9)	92.89(2.64)	34.53	
	ol	3	37.19(38)	0.06(2)	0.34(6)	30.44(29)	0.40(8)	32.57(91)	0.27(18)	0.01(1)	0.01(1)		101.28	65.77	0.276
	cpx	3	50.38(73)	1.02(11)	5.27(98)	10.38(68)	0.21(1)	14.90(25)	18.07(1.09)	$0.48(8)$	$0.02(0)$		100.73	44/18/38	0.178
	pl	2	51.82(8)	0.15(9)	29.37(1-19)	1.34(46)	0.06(6)	0.51(45)	13.19(22)	3.79(25)	0.04(1)		$100 \cdot 28$	$65 \cdot 5$	3.26
	am	6	43.12(31)	2.73(63)	12.44(99)	12-11(27)	0.14(4)	14.21(16)	11-14(46)	2.57(27)	0.09(1)		98.55	$85 \cdot 2$	
	ilm	3	3.94(1.67)	46.61(1.79)	1.65(1.25)	5.23/34.28	0.43(3)	$5 \cdot 78(17)$	1.04(48)	0.06(3)	0.01(0)		99.04	71.6	

Notes and abbreviations are given below Table 4a.

Fig. 2. Comparison of melt water contents for B 1 and B 2 calculated by mass balance $\left(a_{\mathrm{H}_{2} \mathrm{O}}<1 ; \bigcirc, \mathrm{B} 1 ; \square, \mathrm{B} 2\right)$ and by using the 'Burnham model $^{\prime}\left(a_{\mathrm{H}_{2} \mathrm{O}}=1 ; \boldsymbol{\Delta}, \mathrm{B} 1 ; \triangle, \mathrm{B} 2\right)$ with the $\mathrm{H}_{2} \mathrm{O}$ contents obtained with the 'by-difference' method (Devine et al., 1995; Koepke, 1997). Error bars correspond to the average errors obtained for values using the 'bydifference' method ($\pm 1.23 \mathrm{wt} \%$) and mass balance calculations $(\pm 0.74 \mathrm{wt} \%)$ assuming an error of 20% relative for phases with 1-10 wt \% abundances.
and stability of experimental phases. For example, in B1 experiments at $1000^{\circ} \mathrm{C}$, orthopyroxene is stable only at low bulk water contents (0.89 and $1.49 \mathrm{wt} \% \mathrm{H}_{2} \mathrm{O}$) and the stability of amphibole is reached only at the highest bulk water content of $4.70 \mathrm{wt} \%$ (Fig. 4a).

A further point is that a change in the water content of the melt (and thus $a_{\mathrm{H}_{2} \mathrm{O}}$), while holding all other parameters constant, results in a change of $f_{\mathrm{O}_{2}}$ (see above). Oxygen fugacity is identical in all runs with $a_{\mathrm{H}_{2} \mathrm{O}}=1$ at isothermal conditions. In this case the $f_{\mathrm{O}_{2}}$ corresponds to the adjusted $f_{\mathrm{O}_{2}}$ conditions of the IHPV. In contrast, at higher temperatures, when $\mathrm{H}_{2} \mathrm{O}$ saturation has not been reached, $f_{\mathrm{O}_{2}}$ depends also on the prevailing $a_{\mathrm{H}_{2} \mathrm{O}}$ (Scaillet et al., 1995; Table 3). Hence, it is difficult to discriminate between the individual effects of $a_{\mathrm{H}_{2} \mathrm{O}}$ and $f_{\mathrm{O}_{2}}$, especially in the discussion on the evolution of iron-bearing phases.

Achievement of equilibrium

Crystallization experiments are known to be the best method to approach equilibrium conditions (Pichavant, 1987) when compared with melting experiments in which non-equilibrated residual minerals can remain for long run durations in the surrounding melt. The following observations are taken as evidence for near-equilibrium conditions. (1) All phases are typically homogeneous and their compositions change with the experimental conditions, following systematic compositional trends. (2) The crystal distribution is homogeneous in all experiments (Fig. 3a-c). (3) Phase relations and compositions were identical in runs performed at identical conditions and for different run duration (24 h and up to 96 h), at high
and at low temperatures (for B1 compare runs 62 and 61 with 45 and 42 , respectively, and for B2 compare run 111 with 104; Table 3a and b). (4) Mineral-melt and mineralmineral partitioning coefficients (for olivine, plagioclase, amphibole and $\mathrm{Fe}-\mathrm{Ti}$ oxides) are in good agreement with published data from other studies (see below). (5) The formation of quench crystals was avoided (Fig. 3a-c) so that there is no need to distinguish between quench and stable phases or to perform integrative measurements of glass and quench crystals, as has been done in previous studies (e.g. Helz, 1976).

RESULTS

Phase relations

Experimental results and phase proportions are listed in Table 3. Phase relations for compositions B1 and B2 are shown in $T-\mathrm{H}_{2} \mathrm{O}$ diagrams (Fig. 4). The influence of water on phase relations is presented in terms of both bulk water content and contours of equal $a_{\mathrm{H}_{2} \mathrm{O}}$ in the melt. The relation between $a_{\mathrm{H}_{2} \mathrm{O}}$ and water content of the melt is given in Table 3.

Primitive MORB system (B1) at $\mathbf{M n O}-\mathrm{Mn}_{3} \mathrm{O}_{4}$ buffer conditions

Olivine is the liquidus phase for all bulk water contents (Fig. 4a). At $a_{\mathrm{H}_{2} \mathrm{O}}=1$ and $a_{\mathrm{H}_{2} \mathrm{O}}=0.6$ the saturation boundary is at about $1125^{\circ} \mathrm{C}$ and $1150^{\circ} \mathrm{C}$, respectively. In runs below $1000^{\circ} \mathrm{C}$ olivine is no longer stable. This is in agreement with the decreasing calculated modal abundance of olivine at $1000^{\circ} \mathrm{C}$ compared with $1050^{\circ} \mathrm{C}$ (Table 3a) and with changes from euhedral to rounded olivine crystals at $1050^{\circ} \mathrm{C}$ and $1000^{\circ} \mathrm{C}$. Plagioclase and clinopyroxene saturation curves are almost identical and the relative order of crystallization is unknown. Plagioclase and clinopyroxene start to crystallize between $1100^{\circ} \mathrm{C}$ and $1050^{\circ} \mathrm{C}$ at $a_{\mathrm{H}_{2} \mathrm{O}}=1$ and at about $1150^{\circ} \mathrm{C}$ at $a_{\mathrm{H}_{2} \mathrm{O}}=0 \cdot 2$. Magnetite was found below $1050^{\circ} \mathrm{C}$. Amphibole is stable under nearly water-saturated conditions only. It is present in all runs at $950^{\circ} \mathrm{C}$ and at $1000^{\circ} \mathrm{C}$ with 4.70 wt $\%$ bulk $\mathrm{H}_{2} \mathrm{O}$ content. Orthopyroxene is stable in runs with 0.89 and $1.49 \mathrm{wt} \%$ bulk $\mathrm{H}_{2} \mathrm{O}$ content at $1000^{\circ} \mathrm{C}$ and in all runs at $950^{\circ} \mathrm{C}$. The ilmenite stability field is restricted to $950^{\circ} \mathrm{C}$ in charges with 0.89 and

Differentiated MORB system (B2) at $\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}$ buffer conditions

In contrast to B 1 , olivine was not observed in experiments using the B2 starting composition. Magnetite crystallizes as the liquidus phase for all bulk water contents (Fig. 4b) and its liquidus temperature is below $1150^{\circ} \mathrm{C}$ for a bulk water content of $4.50 \mathrm{wt} \%$. Clinopyroxene is observed

Fig. 3. Back-scattered electron (BSE) images of run products obtained at $1100^{\circ} \mathrm{C}$ at $\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}$ buffer conditions ($\mathrm{a}, \mathrm{B} 1$; b, B 2) and QFM buffer conditions (c, Bl). gl, glass; ol, olivine; pl, plagioclase; cpx, clinopyroxene; mt, magnetite. Images show variation in modal proportion and phase stability in experiments with varying bulk water content and thus $a_{\mathrm{H}_{2} \mathrm{O}}$ of the charge for a constant temperature. The absence of quench crystals should be noted.
between $1100^{\circ} \mathrm{C}$ and $1050^{\circ} \mathrm{C}$ at $a_{\mathrm{H}_{2} \mathrm{O}}=1$ and $1150^{\circ} \mathrm{C}$ and $1100^{\circ} \mathrm{C}$ for $a_{\mathrm{H}_{2} \mathrm{O}}<0 \cdot 3$. The plagioclase saturation curve depends strongly on $a_{\mathrm{H}_{2} \mathrm{O}}$. At water-saturated conditions plagioclase is stable only below $1000^{\circ} \mathrm{C}$. At lower water activities the saturation temperature of plagioclase rises to $1100^{\circ} \mathrm{C}\left(a_{\mathrm{H}_{2} \mathrm{O}}=0 \cdot 25\right)$. The ilmenite saturation curve depends also on $a_{\mathrm{H}_{2} \mathrm{O}}$ and is approximately $50^{\circ} \mathrm{C}$ below that of plagioclase. In contrast to B1, orthopyroxene is observed in B2 at higher temperature for low bulk
water contents. It crystallizes at $1050^{\circ} \mathrm{C}$ for an $a_{\mathrm{H}_{2} \mathrm{O}}$ of 0.38 (run 96 ; Table 3b) but is not stable at $950^{\circ} \mathrm{C}$ and $4.5 \mathrm{wt} \%$ bulk $\mathrm{H}_{2} \mathrm{O}$.

Primitive MORB system (B1) at QFM buffer conditions

Olivine is the liquidus phase for all bulk water contents and starts to crystallize between $1125^{\circ} \mathrm{C}$ and $1150^{\circ} \mathrm{C}$ at

Fig. 4. Phase relations of B 1 (a) and B 2 (b) compositions at $\mathrm{MnO}-$ $\mathrm{Mn}_{3} \mathrm{O}_{4}$ buffer conditions and Bl (c) at QFM buffer conditions as a function of temperature and bulk water content contoured for $a_{\mathrm{H}_{2} \mathrm{O}}$ (dashed lines) at 200 MPa . gl, glass; ol, olivine; pl, plagioclase; cpx, clinopyroxene; mt, magnetite; ilm, ilmenite; am, amphibole. Continuous lines indicate beginning of crystallization of a phase. Dotted lines mark phase-out boundary. Contours of $a_{\mathrm{H}_{2} \mathrm{O}}$ are based on $a_{\mathrm{H}_{2} \mathrm{O}}$ calculated after Burnham (1979; Tables 2 and 3) and extrapolated between different runs.
water-saturated conditions (Table 3c; Fig. 4c). At $a_{\mathrm{H}_{2} \mathrm{O}}<$ 0.4 olivine crystallizes at temperatures higher than $1150^{\circ} \mathrm{C}$. The plagioclase and clinopyroxene saturation temperature is about $50^{\circ} \mathrm{C}$ below that of olivine. Amphibole is stable only in experiments at $950^{\circ} \mathrm{C}$ in which water-saturated conditions have been reached even for low bulk water contents. Ilmenite crystallizes in runs 151 and 150 at $950^{\circ} \mathrm{C}(1 \cdot 12$ and $0.55 \mathrm{wt} \%$ bulk water content, respectively).

The solidus temperature was reached in run 150 and crystals were too small to be analysed correctly. Thus, ilmenite as well as all other phases were identified only qualitatively in this experiment by back-scattered electron images.
At a given temperature, the phase diagrams at both low and high $f_{\mathrm{O}_{2}}$ (Fig. 4) show variations in the phase assemblages within the fluid-saturated field. This is attributed to the effect of the dilution of the fluid phase by air (see discussion above), resulting in a slight decrease of $a_{\mathrm{H}_{2} \mathrm{O}}$ in capsules with low bulk water content (higher $\mathrm{N}_{2}^{2} / \mathrm{Ar}$ ratio).

Phase chemistry
 Olivine

X_{Fo} of olivines obtained at $\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}$ buffer conditions are generally higher (X_{Fo} between 92 and 83; Fig. 5a) than at QFM buffer conditions (X_{Fo} between 88 and 66; Fig. 5b). At constant temperature, X_{Fo} varies as a function of bulk water content (e.g. at $1100^{\circ} \mathrm{C}$ from $X_{\text {Fo92 }}$ to $X_{\text {Fo84 }}$ for a bulk water content of 4.7 and 0.89 , respectively; Fig. 5a). At high $f_{\mathrm{O}_{2}} X_{\mathrm{Fo}}$ falls with falling temperature from 1150 to $1050^{\circ} \mathrm{C}$ to minimum values of $X_{\mathrm{Fo} 89}$ (4.70 wt $\%$ bulk $\mathrm{H}_{2} \mathrm{O}$ content) and $X_{\mathrm{Fo} 83}$ (0.89 wt $\%$ bulk $\mathrm{H}_{2} \mathrm{O}$ content), but rises again at temperatures $<1050^{\circ} \mathrm{C}$. This is a consequence of increasing magnetite crystallization leading to slightly higher MgO and lower FeO^{*} (total iron) concentrations in the melt (Figs 5 and 9; Table 4a). At low $f_{\mathrm{O}_{2}}$, the minimum X_{Fo} is observed in olivine crystallizing at $950^{\circ} \mathrm{C}$ and is identical, independent of bulk water content (X_{Fo} of 66). This is related to melt Mg-number, which is almost identical in all $950^{\circ} \mathrm{C}$ experiments (ranging from 38 to 35 for all bulk water contents).

One of the most significant minor elements in olivine is calcium (Libourel, 1999), with concentrations depending on X_{Fo} ranging between $0.19 \mathrm{wt} \%$ and $0.47 \mathrm{wt} \% \mathrm{CaO}$ (Table 4 a and c). It is generally accepted that neither oxygen fugacity, nor temperature or pressure, directly influence Ca partitioning (Roeder, 1974; Longhi et al., 1978; Watson, 1979; Jurewicz \& Watson, 1988; Libourel, 1999). As demonstrated by Libourel (1999), Ca concentration in olivine depends on the olivine composition as well as on the alkali and alumina content of the melt. Generally, the partition coefficient $D_{\mathrm{CaO}}^{\mathrm{Ol}-\mathrm{Melt}}$

Fig. 5. Olivine composition in B 1 as a function of temperature and bulk water content at $\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}$ buffer conditions (a) and QFM (b). Error bars correspond to the standard deviation of average olivine compositions. For bulk water contents of 4.70 and $0.89 \mathrm{wt} \%$ numbers indicate the proportion of magnetite ($\mathrm{wt} \% \mathrm{mt}$).
$\left(\mathrm{CaO}_{\text {Olivine }} / \mathrm{CaO}_{\text {Melt }}\right.$, in wt $\left.\%\right)$ increases with decreasing X_{Fo} and increasing melt alkali and CaO content. Figure 6 shows $D_{\mathrm{CaO}}^{\mathrm{Ol}-\mathrm{Melt}}$ vs X_{Fo} obtained in this study. As expected from the generally high X_{Fo} and low melt alkali content, Ca concentration in olivine is typically low in our system. Comparison with other data from experimental studies on more iron-rich, tholeiitic and other basaltic systems confirms $D_{\mathrm{CaO}}^{\mathrm{Ol}-\mathrm{Melt}}{ }^{\text {values obtained in this study, suggest- }}$ ing equilibrium conditions with respect to Ca partitioning between olivine and melt.

Pyroxene

Clinopyroxene and orthopyroxene obtained in runs with B 1 at high $f_{\mathrm{O}_{2}}$ vary only moderately with changing experimental conditions and have an average composition of $\mathrm{En}_{45} \mathrm{Fs}_{12} \mathrm{Wo}_{43}\left(\pm 1.3 \mathrm{~mol} \%\right.$) and $\mathrm{En}_{82} \mathrm{Fs}_{1} \mathrm{Wo}_{3}$ ($\pm 0.9 \mathrm{~mol} \%$), respectively (Table 4a). Clinopyroxene

Fig. 6. $D_{\mathrm{CaO}}^{\mathrm{Ol}-\mathrm{Melt}}$ vs the forsterite content of olivine. Additional data for various natural basaltic compositions from other studies as in Fig. 12. Error for $D_{\mathrm{CaO}}^{\mathrm{Ol}-\mathrm{Melt}}$ is typically ± 0.004 and has been obtained by error propagation calculating $D_{\mathrm{CaO}}^{\mathrm{Ol}-\text { Melt }}$ from the standard deviation of CaO concentrations in olivine and melt. Errors in olivine compositions are given in Fig. 5.
synthesized in experiments with composition B2 is characterized by a larger compositional variation (Table 4b). At water-saturated conditions clinopyroxene has an average composition of $\mathrm{En}_{42} \mathrm{Fs}_{12} \mathrm{Wo}_{46}$ ($\pm 2 \cdot 3 \mathrm{~mol} \%$; $4.50 \mathrm{wt} \%$ bulk water content), which changes continuously with decreasing bulk water content to $\mathrm{En}_{48} \mathrm{Fs}_{13} \mathrm{Wo}_{39}(\pm 1.4 \mathrm{~mol} \%$; 0.74 wt \% bulk water content). B2 orthopyroxene in equilibrium with the most En-rich clinopyroxene crystallized at $0.74 \mathrm{wt} \%$ bulk water content has the highest Wo content $\left(\mathrm{En}_{71} \mathrm{Fs}_{20} \mathrm{Wo}_{9} \pm 2 \cdot 2 \mathrm{~mol} \%\right)$. All other orthopyroxenes vary only little in their mole proportions $\left(\mathrm{En}_{79} \mathrm{Fs}_{16} \mathrm{Wo}_{5} \pm\right.$ $2 \mathrm{~mol} \%$), showing slight decreases in Fs and Wo contents with increasing bulk water content. At QFM buffer conditions clinopyroxene has an average composition of $\mathrm{En}_{44} \mathrm{Fs}_{14} \mathrm{Wo}_{42} \pm 2 \mathrm{~mol} \%$. The average $K_{\mathrm{D}_{\mathrm{Fe}-\mathrm{Mg}}}^{\mathrm{Cpx}-\mathrm{Mett}}$ of clinopyroxene [defined as $\left(X_{\mathrm{Cpx}-\mathrm{FeO}} / X_{\mathrm{Cpx}-\mathrm{MgO}}\right) \times$ $\left.\left(X_{\mathrm{Melt-MgO}} / X_{\mathrm{Melt-FeO}}\right)\right]$ is 0.26 but generally increases with melt Mg-number. As reported by Hoover \& Irvine (1977) and Toplis \& Carroll (1995), $K_{\mathrm{D}_{\mathrm{Fe}}-\mathrm{Mg}}^{\mathrm{Cpp}-\mathrm{Melt}}$ values increase independently of $f_{\mathrm{O}_{2}}$ with increasing melt Mg number up to $0 \cdot 26$ (for melt Mg -number of about 40). At QFM buffer conditions for relatively low melt Mg-number, the obtained $K_{\mathrm{D}_{\mathrm{Fe}-\mathrm{Mg}}}^{\mathrm{Cpx} \text { Met }}$ values are in good agreement with published data (Table 4). For melt Mg-number above 50, the $K_{\mathrm{D}_{\mathrm{Fc}}-\mathrm{Mo}}^{\mathrm{Cpx}} \mathrm{Mec}$ deviates from the linear trend with values up to $0 \cdot 41$. The same observation has been made for partitioning of Mg and Fe^{2+} between clinopyroxene and melt under $\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}$ buffer conditions, which confirms that there is no dependence of $K_{\mathrm{D}_{\mathrm{Fe}-\mathrm{Mg}}}^{\mathrm{CPx}} \mathrm{Melt}$ on $f_{\mathrm{O}_{2}}$ (Toplis \& Carroll, 1995). It is noteworthy that the bulk water content has no influence on $K_{\mathrm{D}_{\mathrm{Fc}-\mathrm{Mg}}}^{\mathrm{Cpx}-\mathrm{Metr}}$.

Plagioclase

The composition of plagioclase as a function of temperature and $\mathrm{H}_{2} \mathrm{O}$ is shown in Fig. 7. The anorthite (An) content decreases continuously by $\sim 0.05 \mathrm{~mol} \%$ per ${ }^{\circ} \mathrm{C}$ with falling temperature for all bulk water contents. Plagioclase synthesized at high $f_{\mathrm{O}_{2}}$ is slightly more An-rich than that crystallized at similar $T-\mathrm{H}_{2} \mathrm{O}$ conditions and low $f_{\mathrm{O}_{2}}$. Consequently, the highest An contents $\left(\mathrm{An}_{88}\right.$, $1050^{\circ} \mathrm{C} ; \mathrm{An}_{79}, 950^{\circ} \mathrm{C}$) are obtained for B 1 in runs with $4.70 \mathrm{wt} \%$ bulk $\mathrm{H}_{2} \mathrm{O}$ content (Fig. 7a). The most Ab-rich plagioclase for $\mathrm{Bl}\left(\mathrm{An}_{66}\right.$; Fig. 7b) is stable at $950^{\circ} \mathrm{C}$ with $1 \cdot 12 \mathrm{wt} \%$ bulk water content. In agreement with previous studies (e.g. Turner \& Verhoogen, 1960; Carmichael et al., 1974; Panjasawatwong et al., 1995; Martel et al., 1998; Scaillet \& Evans, 1999; Berndt et al., 2001), at a given temperature the An content of plagioclase increases with increasing melt water content and therefore increasing $a_{\mathrm{H}_{2} \mathrm{O}}$. However, at fluid-saturated conditions, the plagioclase compositions are also systematically more Ca rich with increasing bulk water content, although the same melt water content ($a_{\mathrm{H}_{2} \mathrm{O}}=1$) apparently has been reached in runs at lower temperatures. This is attributed to the presence of N_{2} in the capsules (as already discussed), resulting in a slight decrease of water activity with decreasing bulk water content and higher $\mathrm{N}_{2} / \mathrm{H}_{2} \mathrm{O}$ ratio.

The direct influence of $\mathrm{H}_{2} \mathrm{O}$ on plagioclase-liquid equilibrium compositions is shown in Fig. 8. For a constant $\mathrm{Ca} / \mathrm{Na}$ ratio in the melt, the An content of plagioclase obtained at nearly water-saturated conditions (4.55-5.25 wt $\% \mathrm{H}_{2} \mathrm{O}$ in melt) is noticeably higher when compared with An contents in plagioclases in equilibrium with melts containing about $2 \mathrm{wt} \% \mathrm{H}_{2} \mathrm{O}$. Consequently, $K_{\mathrm{D}_{\mathrm{Ca}-\mathrm{Na}}}^{\mathrm{Pl}-\mathrm{Net}}$ [defined as molar $(\mathrm{Ca} / \mathrm{Na})_{\text {Plag }} /$ $\left.(\mathrm{Ca} / \mathrm{Na})_{\mathrm{Liq}}\right]$ increases with increasing $a_{\mathrm{H}_{2} \mathrm{O}}$ of the melt. Continuous lines in Fig. 8 indicate $K_{\mathrm{D}_{\mathrm{Ca}-\mathrm{Na}}}^{\mathrm{P}_{\mathrm{M}}-\mathrm{Met}}$ values given by Sisson \& Grove (1993a) for plagioclase-melt pairs obtained in high-alumina basalts with 4 wt $\% \mathrm{H}_{2} \mathrm{O}$ in the melt at $100 \mathrm{MPa}\left(K_{\mathrm{D}}^{\mathrm{P}-\text { Mett }} \sim 3 \cdot 4\right.$; Sisson \& Grove, 1993b) and 2 wt $\% \mathrm{H}_{2} \mathrm{O}$ in the melt at 200 and $500 \mathrm{MPa}\left(K_{\mathrm{D}_{\mathrm{Ca}-\mathrm{Na}}}^{\text {Pl-Melt }} \sim 1 \cdot 7\right.$; Baker \& Eggler, 1987). This indicates that the effect of pressure variations between 100 and 500 MPa on $K_{\mathrm{D}_{\mathrm{Ca}-\mathrm{Na}}}^{\mathrm{Pl}-\mathrm{Met}}$ is negligible. As emphasized by Sisson \& Grove (1993a,) the pressure dependence of $K_{\mathrm{D}_{\mathrm{Ca}-\mathrm{Na}}}^{\mathrm{Pl}-\mathrm{Net}}$ in dry systems in the range 1 atm to 20 kbar is always significantly lower than the influence of water. $K_{\mathrm{D}_{\mathrm{Ca}} \mathrm{Ne} \mathrm{Na}}^{\mathrm{Pl} \text { Met }}$ values obtained in this study for given melt water contents in primitive and differentiated MORB compositions agree well with the data of Sisson \& Grove (1993a, 1993b) and Baker \& Eggler (1987) for high-alumina basalts. This confirms that plagioclase composition mainly depends on $a_{\mathrm{H}_{2} \mathrm{O}}$ and melt $\mathrm{Ca} / \mathrm{Na}$.
Compared with experimental studies in dry systems (e.g. Toplis \& Carroll, 1995), the An content of plagioclase obtained in our study decreases only by about $0.05 \mathrm{~mol} \%$ per ${ }^{\circ} \mathrm{C}$ [compared with $0.5 \mathrm{~mol} \%$ per ${ }^{\circ} \mathrm{C}$ in

Fig. 7. Plagioclase composition in B 1 as a function of temperature and bulk water content at $\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}$ buffer conditions (a) and QFM (b). Errors bars correspond to the standard deviation of average plagioclase compositions. Water contents are given as bulk water contents. Numbers indicate $a_{\mathrm{H}_{2} \mathrm{O}}$ of the melt.

Fig. 8. $\mathrm{Ca} / \mathrm{Na}$ ratios for plagioclase-melt pairs in B 1 obtained at watersaturated conditions $\left[a_{\mathrm{H}_{2} \mathrm{O}}=1\right.$; melt water contents calculated after Burnham (1979); Table 3] and $c .2$ wt $\% \mathrm{H}_{2} \mathrm{O}$ in the melt. Continuous lines show $K_{\mathrm{D}_{\mathrm{G}} \mathrm{M}-\mathrm{Na}_{\mathrm{a}}}^{\mathrm{P} 1 \mathrm{Met}}$, after Sisson \& Grove (1993a) for plagioclase-melt pairs in high-alumina basalt (Sisson \& Grove, 1993b) at 100 MPa and about $4 \mathrm{wt} \% \mathrm{H}_{2} \mathrm{O}$ in melt $\left(K_{\mathrm{D}_{\mathrm{Ca}-\mathrm{Na}}^{\mathrm{Pl}-\mathrm{Cet}}} \sim 3 \cdot 4\right)$, and about $2 \mathrm{wt} \% \mathrm{H}_{2} \mathrm{O}$ in melt at 200 and 500 MPa (Baker \& Eggler, 1987; $K_{\mathrm{D}} \sim 1.7$).
the study of Toplis \& Carroll (1995) for a given bulk water content with falling temperature (Fig. 7)]. As discussed above, in water-bearing systems, for a given bulk water content, increasing crystal fraction (as a result of falling temperature) results in an increase of melt water content. Thus, the effect of decreasing $\mathrm{Ca} / \mathrm{Na}$ in the melt with progressive crystallization, resulting in a strong decrease of An content in dry systems, is compensated by increasing melt water content.

Amphibole

According to the classification of Leake et al. (1997) the synthesized amphibole is pargasite. The Mg-number of amphibole (calculated with all iron as FeO^{*}) increases with increasing bulk water content (Table 4). The number of Si atoms in the tetrahedral position of the amphibole synthesized at $1000^{\circ} \mathrm{C}$ is lower than that of amphibole obtained at $950^{\circ} \mathrm{C}$, whereas $\mathrm{Al}^{\mathrm{IV}}$ increases with rising temperature. This is in agreement with previous experimental studies (Helz, 1981; Sisson \& Grove, 1993a). At $950^{\circ} \mathrm{C}, \mathrm{Si}$ and Al remain constant for all bulk water contents. Sisson \& Grove (1993a) showed that the tetrahedral $\mathrm{Al} / \mathrm{Si}$ ratio of amphibole is linearly related to the $\mathrm{Al} / \mathrm{Si}$ ratio of the melt and can be described as $K_{\mathrm{D}_{\mathrm{Al} 1}-\mathrm{Si}}^{\mathrm{Am}-\text { elt }}=\left(X_{\mathrm{Al}} / X_{\mathrm{Si}}\right)_{\mathrm{Am}} /\left(X_{\mathrm{Al}} / X_{\mathrm{Si}}\right)_{\mathrm{Melt}}$. An average $K_{\mathrm{D}_{\mathrm{Al} 1-\text { sei }}^{\mathrm{Am}-\mathrm{Celt}}}^{\mathrm{Al}}$ of $1.01(\pm 0.08)$ from coexisting liquid-amphibole pairs obtained in B1 and B2 agrees well with the value of 0.94 (± 0.06) given by Sisson \& Grove (1993a) for liquidamphibole couples in compositions ranging from highalumina basalt to high-silica rhyolite.

The occurrence of amphibole in natural systems is often used to argue whether magmas were 'dry' or hydrous in a broadly qualitative sense. Our results support previous experimental findings in hydrous basaltic and calc-alkaline systems (e.g. Holloway \& Burnham, 1972; Helz, 1973; Spulber \& Rutherford, 1983; Sisson \& Grove, 1993a; Johnson et al., 1994) showing that a relatively high amount of $\mathrm{H}_{2} \mathrm{O}$ in the melt is necessary to stabilize amphibole ($\sim 5 \mathrm{wt} \%$ in our study). In our study the stability field of amphibole is always restricted to runs under nearly water-saturated conditions (Fig. 4); however, not all experiments containing a free fluid phase contain amphibole, probably because of higher $\mathrm{N}_{2} / \mathrm{H}_{2} \mathrm{O}$ ratio in charges with low bulk water contents and thus slightly lower $a_{\mathrm{H}_{2} \mathrm{O}}$ (see above). This indicates that very small variations in $a_{\mathrm{H}_{2} \mathrm{O}}$ may influence amphibole stability. However, the absence of amphibole is clearly not evidence for 'dry' conditions.

$F e-T i$ oxides

Owing to the small size of magnetite and ilmenite crystals, analyses of these phases are often contaminated by the surrounding glass as indicated by variable SiO_{2}
contents (Table 4a and b). However, no attempt was made to correct the analyses.

Magnetite in B1 and B2, which is stable only at high $f_{\mathrm{O}_{2}}$, is characterized by relatively low ulvöspinel contents [$X_{\text {Usp }}$; calculated after Andersen et al. (1993)] ranging from 5 to $19 \mathrm{~mol} \%$, depending mainly on the bulk water content and, to a lesser extent, on temperature. $X_{\text {Usp }}$ systematically increases with decreasing bulk water content for all temperatures (Table 4a and b).

For a given temperature, X_{Usp} in B 1 experiments with different bulk water contents remains relatively constant (e.g. 8 and $9.5 \mathrm{~mol} \%$ at $1050^{\circ} \mathrm{C}$ and $950^{\circ} \mathrm{C}$, respectively, in runs with between 4.70 and 0.89 wt $\%$ bulk $\mathrm{H}_{2} \mathrm{O}$ content). In contrast to B 1 , magnetite from B 2 shows a stronger $X_{\text {Usp }}$ variation as a function of temperature. At $1050^{\circ} \mathrm{C}$ and $950^{\circ} \mathrm{C}$, the difference in $X_{\text {Usp }}$ between experiments with 4.50 and $0.74 \mathrm{wt} \%$ bulk water content is 14 and $4 \mathrm{~mol} \%$, respectively. MgO contents of Bl and B2 magnetite decrease with falling temperature for constant bulk water contents and with decreasing bulk water content for a given temperature. This evolution of MgO content in magnetite is related to the Mg -number of the melt. $\mathrm{Al}_{2} \mathrm{O}_{3}$ content also decreases with falling temperature for a constant bulk water content.

The ilmenite content [$X_{\text {IIm }}$; calculated after Andersen et al. (1993)] of rhombohedral oxides synthesized in B2 decreases regularly with falling temperature (from $X_{\text {Im }}=$ $43 \mathrm{~mol} \%$ at $1050^{\circ} \mathrm{C}$ to $X_{\mathrm{Ilm}}=33 \mathrm{~mol} \%$ at $950^{\circ} \mathrm{C}$ for $0.74 \mathrm{wt} \%$ bulk water content; Table 4b) and increases systematically at constant temperature with decreasing bulk water content. The same effect of water is observed for B1 ilmenite crystallized in runs with 0.89 and 1.49 wt \% bulk water content at $950^{\circ} \mathrm{C}$, which have generally higher $X_{\text {Ilm }}$ than those obtained at similar conditions in B 2 . Compared with magnetite, $\mathrm{MgO}, \mathrm{Al}_{2} \mathrm{O}_{3}$, and MnO contents in ilmenite are generally lower. As for magnetite, MgO content falls with decreasing bulk water content and falling temperature.

The results of Bacon \& Hirschmann (1988) can be used as a test for coexisting $\mathrm{Fe}-\mathrm{Ti}$ oxide equilibrium using $\mathrm{Mg} / \mathrm{Mn}$ partitioning between magnetite and ilmenite. $\mathrm{Fe}-\mathrm{Ti}$ oxide pairs from B 1 and B 2 experiments (Table 4 a and b) satisfy the $\mathrm{Mg} / \mathrm{Mn}$ partitioning criterion of Bacon \& Hirschmann (1988), having an average magnetite $\log (\mathrm{Mg} / \mathrm{Mn})$ of $1 \cdot 26(\pm 0 \cdot 13)$ and ilmenite $\log (\mathrm{Mg} / \mathrm{Mn})$ of $1.40(\pm 0.08)$.

Glass composition at $\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}$ buffer conditions

Compositions of glasses obtained in B1 and B2 experiments are given in Table 4a and b and the concentrations of SiO_{2} and $\mathrm{FeO}{ }^{*}$ are plotted against temperature in Figs 9 and 10. Depending on experimental conditions, glass compositions range from basaltic through dacitic to rhyolitic (run 106; classification using

Fig. 9. $\mathrm{B} 1\left(\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}\right.$ buffer) melt oxide concentrations of SiO_{2} (a) and FeO^{*} (b) (normalized to 100 wt \%) as a function of bulk water content and temperature. Errors bars correspond to the standard deviation of multiple electron microprobe analyses (Table 4). All analyses are normalized to $100 \mathrm{wt} \%$. Dashed lines indicate calculated melt compositions of experiments 47 and 46 (see comments in 'Analytical techniques' section).
the total alkalis-silica (TAS) diagram after, for example, Le Bas et al. (1986)] and follow a calc-alkaline differentiation trend. $\mathrm{SiO}_{2}, \mathrm{Na}_{2} \mathrm{O}$, and $\mathrm{K}_{2} \mathrm{O}$ concentrations continuously increase for B 1 and B 2 with falling temperature and decreasing bulk water content. However, compared with $\mathrm{B} 2, \mathrm{SiO}_{2}$ contents of B 1 vary only slightly for a given temperature with changing bulk water content (Figs 9a and 10a). The maximum SiO_{2} concentration is about $64 \mathrm{wt} \%$ in B1 and $70 \mathrm{wt} \%$ in B2. Despite different initial $\mathrm{Na}_{2} \mathrm{O}$ contents of B 1 and B 2 the same maximum $\mathrm{Na}_{2} \mathrm{O}$ concentration of about $5.5 \mathrm{wt} \%$ to $4 \mathrm{wt} \%$ is reached in both systems for the lowest and highest bulk water contents, respectively (at $950^{\circ} \mathrm{C}$).
The MgO and CaO concentrations in glasses from B 1 and B 2 decrease with falling temperature. In runs with high bulk water contents (4.70 and 4.50 wt $\% \mathrm{H}_{2} \mathrm{O}$ in B 1 and B 2 , respectively), the CaO remains constant (B 1) or

Fig. 10. $\mathrm{B} 2\left(\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}\right.$ buffer $)$ melt oxide concentrations of SiO_{2} (a) and $\mathrm{FeO}^{*}(\mathrm{~b})$ (normalized to $100 \mathrm{wt} \%$) as a function of bulk water content and temperature. Further details are given in the caption of Fig. 9.
rises slightly (B2), but decreases once clinopyroxene begins to crystallize. At constant temperature, MgO and CaO contents fall with decreasing bulk water content, in contrast to $\mathrm{SiO}_{2}, \mathrm{Na}_{2} \mathrm{O}$ and $\mathrm{K}_{2} \mathrm{O} . \mathrm{MgO}$ contents decrease from their initial values of 9.77 wt $\% ~(\mathrm{~B} 1)$ and $6.49 \mathrm{wt} \%(\mathrm{~B} 2)$ to a minimum of approximately $2.5 \mathrm{wt} \%$ (highest bulk water contents) and $1.2 \mathrm{wt} \%$ (lowest bulk water content).

The TiO_{2} concentrations in B 1 glasses decrease with increasing bulk water contents, which can be correlated with the increasing $X_{\text {Usp }}$ in magnetite with increasing bulk water content (see above). For a given bulk water content TiO_{2} concentrations first increase and then decrease with falling temperature. The maximum value is reached at $1100^{\circ} \mathrm{C}$ for 0.89 and $1.49 \mathrm{wt} \%$ bulk water content and at $1000^{\circ} \mathrm{C}$ for 2.53 and $4.70 \mathrm{wt} \%$ bulk water content. In $\mathrm{B} 2, \mathrm{TiO}_{2}$ concentrations at low temperatures are mainly controlled by the crystallization of ilmenite. In

Fig. 11. B 1 (QFM buffer) melt oxide concentrations of SiO_{2} (a) and FeO^{*} (b) (normalized to $100 \mathrm{wt} \%$) as a function of bulk water content and temperature. Further details are given in the caption of Fig. 9.
all experiments containing ilmenite, the TiO_{2} concentration in the glass is below $1.3 \mathrm{wt} \%$. In addition, TiO_{2} contents show a general decrease with falling bulk water content and temperature.
The evolution of FeO^{*} content in B 1 and B 2 glasses is similar to that of TiO_{2}. In B 1 , the maximum FeO^{*} values are observed at $1100^{\circ} \mathrm{C}(10.19 \mathrm{wt} \%$ for $1.49 \mathrm{wt} \%$ bulk water content; $10.98 \mathrm{wt} \%$ for $0.89 \mathrm{wt} \%$ bulk water content; Fig. 9b). The FeO^{*} concentration in melts from experiments with 2.05 and $4.70 \mathrm{wt} \%$ bulk water content show only little variation down to $1050^{\circ} \mathrm{C}$ (about $8.9 \mathrm{wt} \%)$. In $\mathrm{B} 2, \mathrm{FeO}^{*}$ contents of all glasses in experiments containing ilmenite are below $5 \cdot 8 \mathrm{wt} \%$ (Fig. 10b). In addition to the effect of ilmenite, FeO * also decreases with falling temperature (for $a_{\mathrm{H}_{2} \mathrm{O}}=1,4.5 \mathrm{wt} \%$ bulk water) and with increasing water content of the melt (compare runs at $1100^{\circ} \mathrm{C}$; Fig. 10b).

Glass composition at QFM buffer conditions

Experimental melt compositions are given in Table 4c. The evolutions of melt SiO_{2} and $\mathrm{FeO}{ }^{*}$ with temperature
as a function of bulk water content are shown in Fig. 11. In contrast to oxidizing conditions, melts follow a tholeiitic differentiation trend (see Figs 14 and 15; Irvine \& Baragar, 1971; Miyashiro, 1974), ranging from basaltic to andesitic compositions. SiO_{2} content of the melt (Fig. 11a) increases with falling temperature and bulk water content up to 61 wt \% (run 151). FeO^{*} concentration generally increases with falling temperature, but shows significant variations with changing bulk water content (Fig. 11b). For water-saturated melts, FeO^{*} content increases slightly from $1150^{\circ} \mathrm{C}$ to $950^{\circ} \mathrm{C}$ ($8.24 \mathrm{wt} \%$ at $1150^{\circ} \mathrm{C}$ and $8.97 \mathrm{wt} \%$ at $950^{\circ} \mathrm{C}$). For lower bulk water contents, FeO^{*} first increases with falling temperature and decreases at temperatures below $1050^{\circ} \mathrm{C}$. The highest FeO^{*} is observed for about $0.5 \mathrm{wt} \%$ bulk water content with $10.95 \mathrm{wt} \% \mathrm{FeO}^{*}$ at $1050^{\circ} \mathrm{C}$ (run 143). The FeO^{*} content in water-saturated melts at $950^{\circ} \mathrm{C}$ is identical in runs 153 and 152 (no ilmenite present). However, the melt FeO^{*} content is significantly lower in run 151 containing ilmenite. With falling temperature and decreasing bulk water content, the melt MgO and CaO concentrations also decrease. In contrast, $\mathrm{Na}_{2} \mathrm{O}$ and $\mathrm{K}_{2} \mathrm{O}$ rise in concentration with falling temperature and bulk water content. A maximum TiO_{2} content is reached at $1000^{\circ} \mathrm{C}$ and decreases generally in all experiments at $950^{\circ} \mathrm{C}$.

DISCUSSION

Comparison of phase relations at high and low $f_{\mathrm{O}_{2}}$

Phase relations obtained for the B1 starting composition at oxidizing and reducing oxygen fugacities can be compared to estimate the effect of $f_{\mathrm{O}_{2}}$, as all other parameters are equal (pressure, temperature, bulk water content). For both high and low oxygen fugacities olivine is the liquidus phase crystallizing at similar temperatures between $1150^{\circ} \mathrm{C}$ and $1100^{\circ} \mathrm{C}$, depending on bulk water content. In contrast to B 1 phase relations at oxidizing conditions, orthopyroxene is not stable at low $f_{\mathrm{O}_{2}}$. This is in agreement with previous studies (e.g. Grove \& Juster, 1989), which show that decreasing melt Mg-number (as a result of decreasing $f_{\mathrm{O}_{2}}$) strongly confines the low-Ca pyroxene stability. Because orthopyroxene is not stable at reducing conditions (melt Mg-number of about 35 at $950^{\circ} \mathrm{C}$; Table 4c), olivine is present in the low-temperature runs at $950^{\circ} \mathrm{C}$, in contrast to oxidizing conditions (melt Mg-number of 61-68). Magnetite did not crystallize at low $f_{\mathrm{O}_{2}}$ because of the lower melt $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ ratio. Ilmenite stability is known to be less dependent on the oxidation state of the melt (e.g. Toplis \& Carroll, 1995), and this mineral is observed at the same temperature and bulk water contents in both reducing and oxidizing conditions. The clinopyroxene and plagioclase saturation
is also widely independent of $f_{\mathrm{O}_{2}}$, as both phases crystallize between $1150^{\circ} \mathrm{C}$ and $1050^{\circ} \mathrm{C}$.

$\mathrm{Mg} / \mathrm{Fe}$ partitioning between olivine and melt

Partitioning of Fe and Mg between olivine and melt, expressed as $K_{\mathrm{D}_{\mathrm{Fe}-\mathrm{Ms}} \mathrm{Ol}-\mathrm{Met}}^{\mathrm{Ol}}$ (Roeder \& Emslie, 1970) is known to show only a small dependence on melt composition, temperature and $f_{\mathrm{O}_{2}}$, with a value of about $0.3(\pm 0.02)$. The $K_{\mathrm{D}_{\mathrm{Fc}}-\mathrm{Mg}}^{\mathrm{Ol-Mett}}$ determined in this study is slightly higher with an average value of $0.33(\pm 0.01)$. This higher value is in agreement with the results of Ulmer (1989), who showed a slight positive pressure dependence of $K_{\mathrm{D}_{\mathrm{Fe}-\mathrm{Mg}}^{\mathrm{O}} \mathrm{O} \mathrm{Met}}^{\mathrm{O}}$, thus suggesting that equilibrium conditions between olivine and melt have been reached in our experiments. Although $K_{\mathrm{D}_{\mathrm{Fc}-\mathrm{Mg}}}^{\mathrm{Ol}-\mathrm{Met}}$ is generally assumed to be constant, implying a linear relationship between X_{Fo} and melt Mg-number, it is emphasized that small but significant deviations occur as a function of the melt Mg -number. This is illustrated in Fig. 12, which shows that X_{Fo} decreases with the melt Mg -number over a wide range of bulk compositions, temperatures and oxygen fugacities. Toplis \& Carroll (1995) observed, in agreement with the data of Longhi \& Pan (1988) and Shi (1993), that $K_{\mathrm{D}_{\mathrm{Fe}-\mathrm{Mo}}^{\mathrm{Ol}-\mathrm{Melt}}}^{\mathrm{O}}$ values increase up to 0.4 for melt Mg-number <30. This has been interpreted as due to the non-ideality of $\mathrm{Fe}^{2+}-\mathrm{Mg}$ mixing either in the olivine (Wiser \& Wood, 1991; Toplis \& Carroll, 1995) or in the melt (Hoover \& Irvine, 1977), which leads to relatively lower $\mathrm{Mg} / \mathrm{Fe}^{2+}$ in olivine than in the coexisting melt (Fig. 12). Our data extend the available database towards high melt Mgnumber. Using this database (obtained at various P, T, $a_{\mathrm{H}_{2} \mathrm{O}}, f_{\mathrm{O}_{2}}$ and bulk compositions), we show that the equilibrium composition of olivine-liquid pairs can be described as a logarithmic function of the melt Mg-number in the pressure range $0 \cdot 1-200 \mathrm{MPa}$ for both dry and hydrous systems at various $f_{\mathrm{O}_{2}}$:

$$
\begin{equation*}
\text { Mg-number }=\exp \left(\frac{X_{\mathrm{Fo}}+71 \cdot 8}{37 \cdot 54}\right) \tag{1}
\end{equation*}
$$

The curve in Fig. 12 represents the calculated X_{Fo} as a function of the liquid Mg -number using equation (1).

Effect of $\mathrm{H}_{2} \mathrm{O}$ and fO_{2} on olivine and orthopyroxene stability

$\mathrm{H}_{2} \mathrm{O}$ is known to depolymerize melts and thus enhance the stability field of depolymerized phases such as olivine (e.g. Kushiro, 1975; Ulmer, 1989). The highest proportion of olivine in B 1 at high $f_{\mathrm{O}_{2}}$, calculated by mass balance, is reached at $1050^{\circ} \mathrm{C}$ for all bulk water contents (Table 4a). This is confirmed by the shape of the olivines. At this temperature and below, olivine textures change from euhedral to rounded crystals, indicating a partial

Fig. 12. Variation of forsterite content ($\mathrm{mol} \% \mathrm{Fo}$) as a function of melt Mg-number ($\mathrm{Mg} \#$). Olivine compositions and corresponding melt Mg number from the following studies have been added: Toplis \& Carroll (1995): $1 \mathrm{~atm}, \mathrm{QFM}+1$ to $\mathrm{QFM}-2,1170-1050^{\circ} \mathrm{C}$, ferrobasaltic composition representing the parental liquid of the Skaergard intrusion; Tormey et al. (1987): only 1 atm experiments were considered, QFM, $1240-1152^{\circ} \mathrm{C}, \mathrm{MORB}$ composition dredged near the Kane Fracture Zone; Yang et al. (1996): 1 atm, QFM, $1251-1110^{\circ} \mathrm{C}$, six MORB glasses; Sisson \& Grove (1993a): $200 \mathrm{MPa}, \mathrm{NNO}, \mathrm{H}_{2} \mathrm{O}$ saturated, $1050-925^{\circ} \mathrm{C}$, high-alumina basalts; Snyder et al. (1993): 1 atm , QFM to $0.5 \log$ units above iron-wüstite (IW), $1192-1061^{\circ} \mathrm{C}$, ferrobasaltic compositions representing parental liquids, Newark Island layered intrusion, Kiglapait intrusion, Skaergard intrusion and a tholeiitic composition from Langjökull, Iceland; Grove \& Bryan (1983): 1 atm, QFM, $1245-1131^{\circ} \mathrm{C}$, four basaltic compositions (primitive basalts from the FAMOUS area, one primitive basalt characterized by 'plume-type' geochemistry and one basalt with typical parental composition near the Kane Fracture Zone). The curve is a logarithmic fit to the data for anhydrous to water-saturated basaltic systems crystallizing under low pressure ($1 \mathrm{~atm}-200 \mathrm{MPa}$).
resorption during the experiment (partial resorption of olivine is probably the result of a rapid growth of this mineral in the first minutes of the experiment when compared with the other mineral phases). Toplis \& Carroll (1995) made similar observations for olivine in a dry ferrobasaltic system at slightly higher temperatures (1070$1130^{\circ} \mathrm{C}$) for $f_{\mathrm{O}_{2}}$ in the range $\mathrm{QFM}+1$ to $\mathrm{QFM}-2$. Toplis \& Carroll (1995) observed a falling onset temperature of olivine resorption with decreasing $f_{\mathrm{O}_{2}}$. However, the onset of olivine resorption in our study is observed at lower temperatures despite the fact that $f_{\mathrm{O}_{2}}$, is higher in B 1 runs at $\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}$ buffer conditions than in the study of Toplis \& Carroll (1995). A possible explanation is that the higher depolymerization of our hydrous melts leads to increasing stability and activity of olivine (e.g. Kushiro, 1975). This is supported by the study of Spulber \& Rutherford (1983) showing that olivine is stable in a MORB composition until the solidus is reached at low $f_{\mathrm{O}_{2}}$ (graphite-methane buffer) and hydrous conditions $\left(a_{\mathrm{H}_{2} \mathrm{O}} \sim 0 \cdot 6\right)$, suggesting that the olivine stability field is extended to lower temperatures with decreasing $f_{\mathrm{O}_{2}}$ and increasing $a_{\mathrm{H}_{2} \mathrm{O}}$ in basaltic systems. This is also confirmed
by the experiments from this study at low $f_{\mathrm{O}_{2}}$ in which olivine is always a stable phase (Fig. 4c).
As emphasized by Juster et al. (1989) and Toplis \& Carroll (1995), high silica activities of the melt promote resorption of olivine involving a reaction of the type $\mathrm{Mg}_{2} \mathrm{SiO}_{4}{ }^{\text {ol }}+\mathrm{SiO}_{2}{ }^{\text {glass }}=2 \mathrm{MgSiO}_{3}{ }^{\text {pig }}$. At high $f_{\mathrm{O}_{2}}$, in B 1 the orthopyroxene saturation curve (opx-in curve; Fig. 4a) and olivine-out curve are not identical, but overlap at $1000^{\circ} \mathrm{C}$ and 0.89 and $1.49 \mathrm{wt} \%$ bulk water content. Because the resorption of olivine roughly parallels the crystallization of orthopyroxene, we suggest that the occurrence of orthopyroxene is related to the reaction described above. Furthermore, orthopyroxene crystallizes first in runs with lower bulk water contents and thus higher crystal fraction and higher silica activity of the melts. In the fractionated B 2 composition, olivine is absent. Therefore, the generally higher melt SiO_{2} contents of the B 2 compositions expand the stability field of orthopyroxene, particularly at low $a_{\mathrm{H}_{2} \mathrm{O}}$ up to $1050^{\circ} \mathrm{C}$.

Effect of $\mathrm{H}_{2} \mathrm{O}$ and $f_{\mathrm{O}_{2}}$ on $\mathrm{Fe}-\mathrm{Ti}$ oxide stability

The stability of $\mathrm{Fe}-\mathrm{Ti}$ oxides in basaltic systems has been widely investigated because of its important influence on differentiation paths. Generally, it is difficult to discriminate between the individual effects of $\mathrm{H}_{2} \mathrm{O}, f_{\mathrm{O}_{2}}$ and melt composition (and thus activities of critical components) on the stability of ilmenite and magnetite, because $a_{\mathrm{H}_{2} \mathrm{O}}$ also influences the prevailing $f_{\mathrm{O}_{2}}$, which in turns controls the $\mathrm{Fe}_{2} \mathrm{O}_{3}$ content in the melt. As shown by, for example, Snyder et al. (1993) and Toplis \& Carroll (1995), for dry basaltic systems the magnetite stability field expands to high temperature with increasing $f_{\mathrm{O}_{2}}$ (as a result of the increasing ferric iron content of the melt). In contrast, ilmenite is stable at lower $f_{\mathrm{O}_{2}}$ and is rather a function of melt TiO_{2} content than of melt oxidation state (Thy \& Lofgren, 1994; Toplis \& Carroll, 1995). In this study, for B1 the stability field of ilmenite is identical for reducing and oxidizing conditions (Fig. 4a and c). This supports the hypothesis of Toplis \& Carroll (1995) that ilmenite is nearly independent of melt oxidation state but depends mainly on melt TiO_{2} content. As mentioned above, runs with low bulk water content at low temperatures have water activities less than unity despite fluid saturation having been reached in these experiments. Thus, melt fraction decreases with decreasing bulk water contents, resulting in higher TiO_{2} concentrations. Therefore, at a given temperature, ilmenite stability is enhanced with decreasing bulk water content, independently of $f_{\mathrm{O}_{2}}$. This is illustrated in Fig. 4a and c, showing that ilmenite is stable at $950^{\circ} \mathrm{C}$ in samples with bulk water contents between 0.55 and $1.5 \mathrm{wt} \%$, but not at higher bulk water contents.
Magnetite is stable in B 1 runs performed at high $f_{\mathrm{O}_{2}}$, but not in the experiments conducted at the QFM buffer.

Fig. 13. $\mathrm{Ln} \mathrm{Fe}_{2} \mathrm{O}_{3}$ content of melts as a function of the inverse temperature. Only experiments with the highest (between 4.7 and $4.5 \mathrm{wt} \%$) and lowest (between ~ 0.5 and $0.89 \mathrm{wt} \%$) bulk water contents are considered. Continuous line indicate experiments conducted at high $f_{\mathrm{O}_{2}}$ $\left(\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}\right.$ buffer) in which magnetite was a stable phase. Dashed line shows in $\mathrm{Fe}_{2} \mathrm{O}_{3}$ contents of magnetite-saturated dry melts from Toplis \& Carroll (1995) for various compositions.

At high $f_{\mathrm{O}_{2}}$, magnetite crystallizes between $1100^{\circ} \mathrm{C}$ and $1050^{\circ} \mathrm{C}$, but is not the liquidus phase as olivine, plagioclase and clinopyroxene are stable at higher temperatures (Fig. 4a). This is in contrast to studies performed under dry conditions in basaltic systems at high $f_{\mathrm{O}_{2}}$, in which magnetite is usually the liquidus phase, or at least a near-liquidus phase (Roeder, 1974; Grove \& Juster, 1989; Juster et al., 1989) with a crystallization temperature of about $1100^{\circ} \mathrm{C}$ (e.g. Thy \& Lofgren 1994), independent of bulk composition. A possible explanation for the lower saturation temperature in hydrous MORB systems is that the solubility of magnetite is higher in hydrous melts than in dry systems. Toplis \& Carroll (1995) showed [with additional data of Juster et al. (1989), Snyder \& Carmichael (1992) and Thy \& Lofgren (1994)] that the ferric iron content of magnetite-saturated liquids is a linear function of the inverse temperature for a variety of dry basaltic compositions, independently of $f_{\mathrm{O}_{2}}$ (Fig. 13). The results at high $f_{\mathrm{O}_{2}}$ show that magnetite saturation is reached at lower temperatures for a given melt $\mathrm{Fe}_{2} \mathrm{O}_{3}$ content compared with dry systems. This suggests that the activity of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ in the melt is probably lowered by $\mathrm{H}_{2} \mathrm{O}$ compared with dry systems. The absence of magnetite in Bl at the QFM buffer can be explained by the lower melt $\mathrm{Fe}_{2} \mathrm{O}_{3}$ concentration (because of the low $f_{\mathrm{O}_{2}}$) in combination with the effect of dissolved water (Fig. 13; note that the FeO * contents are
generally higher in B 1 melts obtained at low $f_{\mathrm{O}_{2}}$ than those from experiments performed under oxidizing conditions).

Differentiation trend at high and low oxygen fugacities

Residual melt compositions obtained in runs at high and low $f_{\mathrm{O}_{2}}$ allow us to estimate the influence of $\mathrm{H}_{2} \mathrm{O}$ and $f_{\mathrm{O}_{2}}$ on the liquid line of descent, as all other parameters (bulk composition, bulk water content, temperature and pressure) were similar. The residual liquids obtained at $f_{\mathrm{O}_{2}}$ conditions corresponding to the QFM buffer show a general increase in melt $\mathrm{FeO}^{*} / \mathrm{MgO}$ ratio with falling temperature as a result of the absence of magnetite among the crystallizing phases. These melts follow, independently of bulk water content, a tholeiitic differentiation trend [Figs 14 and 15; classification after Irvine \& Baragar (1971) and Miyashiro (1974)]. This is in agreement with previous studies performed in basaltic systems at lower $f_{\mathrm{O}_{2}}$, in which $\mathrm{Fe}-\mathrm{Ti}$ oxides are not stable until a significant amount of silicates crystallized and the melt is enriched in FeO^{*} (Spulber \& Rutherford, 1983; Juster et al., 1989; Snyder et al., 1993) following a tholeiitic differentiation trend. Residual B1 melts from experiments at high $f_{\mathrm{O}_{2}}$ coexist widely with magnetite and are consequently depleted in FeO^{*} following a calc-alkaline differentiation trend (Figs 14 and 15). At high $f_{\mathrm{O}_{2}}$, for the lowest bulk water contents in B 1 , magnetite appears $100^{\circ} \mathrm{C}$ or more below the liquidus (Fig. 4a). With increasing bulk water content, the magnetite appearance temperature is unaffected, but the liquidus, defined by silicates, is depressed by about $50^{\circ} \mathrm{C}$ (highest bulk water content). Thus, higher water contents cause magnetite to appear closer to the liquidus, as described by Sisson \& Grove (1993a). Consequently, at $\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}$ buffer conditions the liquid line of descent enters the calc-alkaline field at an earlier stage of differentiation for high bulk water contents compared with low bulk water contents (Fig. 15). At these high $f_{\mathrm{O}_{2}}$ values the potential for changing the differentiation trend with water is low, as magnetite crystallizes early and in relatively high proportions for all bulk water contents, preventing a change from a calc-alkaline to a tholeiitic trend in primitive MORBs. However, it could be expected that for oxygen fugacities corresponding to the $\mathrm{Ni}-\mathrm{NiO}$ buffer, the addition of only water can change MORB differentiation path from tholeiitic (dry conditions) to calc-alkalic (water-saturated) by the early stabilization of $\mathrm{Fe}-\mathrm{Ti}$ oxides under hydrous conditions, as observed for calc-alkaline systems by Sisson \& Grove (1993a).

Mechanisms of melt FeO^{*} enrichment during early stages of differentiation

At low as well as at high $f_{\mathrm{O}_{2}}$, the melt FeO^{*} content increases with falling temperature in the initial differentiation stages (Figs 9b, 10b and 11b). When comparing

Fig. 14. $\mathrm{FeO}^{*} / \mathrm{MgO}$ ratio of residual melts vs melt SiO_{2} content. TH (tholeiitic)-CA (calc-alkaline) dividing line is from Miyashiro (1974). Water contents are given as bulk water contents.

Fig. 15. Experimental residual liquids projected into the AFM, total alkali $\left(\mathrm{Na}_{2} \mathrm{O}+\mathrm{K}_{2} \mathrm{O}\right)$-total iron $\left(\mathrm{FeO}^{*}\right)-\mathrm{MgO}$ ternary diagram (calculated from melt composition in wt \%). Only experiments with the highest (between 4.7 and $4.5 \mathrm{wt} \%$) and lowest (between ~ 0.5 and $0.89 \mathrm{wt} \%$) bulk water contents are shown. TH (tholeiitic)-CA (calcalkaline) dividing line is from Irvine \& Baragar (1971).
the melt $\mathrm{Fe} \mathrm{O}^{*}$ content at a given temperature as a function of the bulk water content, the greatest differences can be observed at $1050^{\circ} \mathrm{C}$ at reducing conditions. At these temperatures the highest melt FeO^{*} is obtained for the lowest bulk water content. This cannot be an effect of enhanced $\mathrm{Fe}-\mathrm{Ti}$ oxide stability at high melt water contents, as magnetite is not stable under these conditions (Fig. 4c).

Fig. 16. Plagioclase/mafic phase ratios in B1 vs melt fraction (in wt \%; both calculated by mass balance). Only experiments with the highest (between 4.7 and $4.5 \mathrm{wt} \%$) and lowest (between ~ 0.5 and $0.89 \mathrm{wt} \%$) bulk water contents are plotted.

An important factor that may control the melt FeO * enrichment during initial differentiation stages is the proportion of plagioclase and $\mathrm{Fe}-\mathrm{Mg}$ silicates. As shown by, for example, Yoder (1965), Gaetani et al. (1993) and Sisson \& Grove (1993a), $\mathrm{H}_{2} \mathrm{O}$ suppresses the proportion of plagioclase as a highly polymerized phase relative to mafic $\mathrm{Fe}-\mathrm{Mg}$ silicates (e.g. olivine, pyroxene, amphibole). Thus, crystallization of higher proportions of $\mathrm{Fe}-\mathrm{Mg}$ silicates and destabilization of plagioclase at high water contents depletes the melt in Fe and Mg . The plagioclase $/ \mathrm{Fe}-\mathrm{Mg}$-silicate ratio is shown in Fig. 16 for the highest and lowest bulk water contents at oxidizing and reducing conditions, respectively. As expected, the plagioclase $/ \mathrm{Fe}-\mathrm{Mg}$-silicate ratio is significantly higher in runs with low bulk water content and independent of the $f_{\mathrm{O}_{2}}$. Consequently, residual melts obtained from experiments performed at low water contents should show systematically higher melt FeO^{*} concentrations than more hydrous liquids. However, this is the case only for those runs conducted at high temperatures; it is not observed for the low-temperature runs, as melt FeO^{*} concentrations are almost similar at a temperature of $1000^{\circ} \mathrm{C}$ (Figs 9b, 10b and 11b). It should be noted that the composition of the melt, and thus its FeO^{*} content, is not only dependent on the ratio of plagioclase/mafic minerals in combination with $\mathrm{Fe}-\mathrm{Ti}$-oxide crystallization, as magnetite is not stable in the low- $f_{\mathrm{O}_{2}}$ runs (Fig. 4c), but is also a complex function of the proportion and composition of clinopyroxene and olivine, which vary with water content. At $950^{\circ} \mathrm{C}$ the FeO^{*} enrichment process is even reversed compared with the hightemperature situation: the residual melt obtained from experiments performed at low bulk water content (1 wt $\% \mathrm{H}_{2} \mathrm{O}$) shows the lowest FeO^{*} concentration. This is obviously due to the presence of ilmenite in
combination with a very low melt fraction ($7.9 \mathrm{wt} \%$) in this run driving the FeO^{*} content in the melt to lower values (Table 3c, Fig. 11b).

Fractionation effects

A perfect fractional crystallization path requires a continuous removal of solids from the system. In our study we have investigated two compositions at high $f_{\mathrm{O}_{2}}, \mathrm{Bl}$ and B2, where B2 corresponds to the composition of the residual melt of a run in the B1 system after $50 \mathrm{wt} \%$ crystallization and a bulk water content of $0.89 \mathrm{wt} \%$ (run 42, Table 3a). Thus, only one fractionation step has been carried out. This fractionation event is far from being representative of natural fractionation steps but illustrates the influence of fractionation on liquid line of descent and phase relations.

Experimental results from the evolved B2 composition show that phase relations are different from B1 (Fig. 4a and b). Magnetite is the liquidus phase in B 2 because of the high $f_{\mathrm{O}_{2}}$ and the melt $\mathrm{Fe}_{2} \mathrm{O}_{3}$ content, which is higher than in B1. Stability fields of both orthopyroxene and ilmenite are enhanced as a result of the higher $a_{\mathrm{SiO}_{2}}$ and of generally higher melt TiO_{2} concentration, respectively. The curves of equal $a_{\mathrm{H}_{2} \mathrm{O}}$ are shifted to lower temperatures because of the generally lower crystal fraction in B2 (Fig. 4b). Mineral and melt compositions produced in B2 are different from those in B1 and are consistent with equilibrium compositions in more evolved systems. Our results also show that starting with a primitive MORB, a quartz andesitic melt can be obtained without any fractionation step (e.g. B1, $12 \cdot 6 \%$ melt, run 48), and a rhyolitic-trondhjemitic melt can already be obtained after one fractionation step (B2, 14% melt, run 106).

Implications for the origin of SiO_{2}-rich residual melts in MORB systems

Always included in the MORB-derived gabbroic section of the oceanic crust are small, but ubiquitous, amounts of felsic, evolved rocks, the so-called oceanic plagiogranites (e.g. Dick et al., 1991). Such rocks are commonly found in ophiolites (e.g. Coleman \& Peterman, 1975; Malpas, 1979; Jenner et al., 1991). The processes discussed to generate these SiO_{2}-rich melts are: (1) crystal-liquid differentiation from a basaltic magma (e.g. Arth et al., 1978; Pedersen \& Malpas, 1984; Martin, 1987; Niu et al., 2002); (2) partial melting of gabbro, basalt, or amphibolite (e.g. Flagler \& Spray, 1991; Springer \& Seck, 1997); (3) immiscibility between an Fe-enriched and a silicic residual liquid (Dixon \& Rutherford, 1979). There is, however, no evidence in the experiments that residual melts become immiscible at later stages of differentiation. SiO_{2}-rich residual melts containing more than $60 \mathrm{wt} \%$

Fig. 17. Liquid lines of descent in $\log \mathrm{K}_{2} \mathrm{O}$ vs SiO_{2} (wt \%) (normalized to a total of $100 \mathrm{wt} \%$; all bulk water contents are included) for B 1 and B2 at QFM and $\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}$ buffer conditions. + , natural plagiogranites from different tectonic settings (see Koepke et al. 2004, table 4). Included is the field for oceanic plagiogranites after Coleman \& Donato (1979).
SiO_{2} are produced in the B 1 crystallization experiments under oxidizing and reducing $f_{\mathrm{O}_{2}}$ conditions at $950^{\circ} \mathrm{C}$ (Fig. 14). As expected, the B 1 residual liquids obtained under high $f_{\mathrm{O}_{2}}$ are more SiO_{2} rich than those at reducing conditions, as a result of the crystallization of magnetite at high $f_{\mathrm{O}_{2}}$, which causes a stronger SiO_{2} enrichment of the melt (e.g. Toplis \& Carroll, 1995; about 64 wt $\% \mathrm{SiO}_{2}$ in residual melts at the $\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}$ buffer and about $60 \mathrm{wt} \% \mathrm{SiO}_{2}$ in melts at the QFM buffer at $950^{\circ} \mathrm{C}$). Thus, residual melts at $950^{\circ} \mathrm{C}$ are plagiogranitic in terms of SiO_{2} and $\mathrm{K}_{2} \mathrm{O}$, as natural plagiogranites have bulk SiO_{2} contents between 60 and 75 wt \% (e.g. Coleman \& Peterman, 1975; Fig. 17). Compared with natural plagiogranite compositions (see Koepke et al., 2004, table 4) the Ca-numbers $\left[100 \times X_{\mathrm{CaO}} /\left(X_{\mathrm{CaO}}+X_{\mathrm{NaO} 0.5}\right)\right]$ of the experimental melts of primitive B1 are very high, implying that potential plagioclase crystallizing in these liquids would be too An rich. The Ca-number values of the plagiogranitic melts of the more fractionated B2 starting composition match those found in natural plagiogranite compositions, indicating that fractionation processes need to be involved to reach the typical Ab-rich plagioclases of natural plagiogranites and also the high bulk SiO_{2} contents ($>70 \mathrm{wt} \%$) of some natural rocks.
However, typical bulk FeO * contents in plagiogranites are in the range of $1-7 \mathrm{wt} \%$, which does not match values for the liquids obtained under QFM buffer conditions as a result of the tholeiitic differentiation trend caused by the absence of magnetite (with about $9 \mathrm{wt} \%$ melt $\mathrm{Fe} \mathrm{O}^{*}$ content in the most evolved melts of B 1 ; Fig. 11b). In contrast, residual liquids produced under oxidizing conditions show melt FeO^{*} contents of about
$5 \mathrm{wt} \%$, corresponding to common bulk iron contents found in natural plagiogranites. This does, however, not mean that generation of plagiogranites takes place at such high $f_{\mathrm{O}_{2}}$. Fractionation of B 1 at the QFM buffer would also result in FeO^{*} depletion and SiO_{2} enrichment of the melt as soon as the crystallization temperature of magnetite is reached. It can be noted that this temperature is significantly lower at QFM than at $\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}$ buffer conditions. As reported by Dick et al. (2000) and Desmurs et al. (2002), there is indeed evidence for $\mathrm{Fe}-\mathrm{Ti}$-oxide fractionation in natural MORB systems, which is apparently required to produce plagiogranites with typical FeO^{*} contents of about $5 \mathrm{wt} \%$.

CONGLUSIONS

$\mathrm{H}_{2} \mathrm{O}$ and $f_{\mathrm{O}_{2}}$ are found to be important factors in controlling solid phase compositions and stability in a MORB system. It has been demonstrated that changing $a_{\mathrm{H}_{2} \mathrm{O}}$ influences significantly the $\mathrm{Mg} / \mathrm{Fe}$ ratio in ironbearing phases such as olivine as a result of changing $f_{\mathrm{O}_{2}}$. Furthermore, increasing $a_{\mathrm{H}_{2} \mathrm{O}}$ influences $\mathrm{Fe}-\mathrm{Ti}$ oxide compositions by raising the $f_{\mathrm{O}_{2}}$ of the charge. $K_{\mathrm{D}_{\mathrm{Ca}-\mathrm{Na}}}^{\mathrm{Pl}-\mathrm{Melt}}$ values for plagioclase obtained in this study for a given melt water content agree well with previous studies (e.g. Sisson \& Grove, 1993a), confirming that plagioclase composition mainly depends on the melt water content and the $\mathrm{Ca} / \mathrm{Na}$ ratio of the system.

At QFM buffer conditions the residual melt $\mathrm{Fe} \mathrm{O}^{* /}$ MgO ratio generally increases with falling temperature following a tholeiitic differentiation trend. A calc-alkaline differentiation trend is observed at high $f_{\mathrm{O}_{2}}(\mathrm{MnO}-$ $\mathrm{Mn}_{3} \mathrm{O}_{4}$ buffer), as magnetite crystallizes between $1100^{\circ} \mathrm{C}$ and $1050^{\circ} \mathrm{C}$, independently of bulk water content. However, the crystallization temperature of silicates is depressed with increasing bulk water content. Thus, residual melts of runs with high bulk water contents show a more distinct calc-alkaline differentiation trend, even though the effect is small at these high oxygen fugacities and no change from calc-alkaline to tholeiitic trend can be produced by lowering the water content. This is probably the case in the investigated MORB system at oxygen fugacities relevant to arc magmas $(\mathrm{Ni}-\mathrm{NiO})$, as proposed by Sisson \& Grove (1993a) for calc-alkaline systems, in which the addition of $\mathrm{H}_{2} \mathrm{O}$ favours a calc-alkaline differentiation trend by early stabilization of $\mathrm{Fe}-\mathrm{Ti}$ oxides. In addition to $f_{\mathrm{O}_{2}}$ and $\mathrm{H}_{2} \mathrm{O}$, which influence melt FeO^{*} evolution by stabilization of $\mathrm{Fe}-\mathrm{Ti}$ oxides, water controls melt iron content also by the plagioclase $/ \mathrm{Fe}-\mathrm{Mg}$-silicate ratio in the main crystallization interval.

Phase relations, crystallization sequence and mineral compositions obtained from evolved melt compositions of MORB systems after $50 \mathrm{wt} \%$ crystallization are different from the primitive MORB composition. In detail, the
liquid lines of descent differ slightly (higher SiO_{2} contents of melts are reached at identical P, T and $a_{\mathrm{H}, \mathrm{O}}$). However, the general compositional trends of residual melts obtained in both compositions are very similar. SiO_{2}-rich residual melts can be obtained under both oxidizing and reducing conditions but at least one fractionation step is required to reach plagiogranitic residual melt compositions.

AGKNOWLEDGEMENTS

We thank Otto Dietrich for preparing the samples, and Bettina Aichinger and Willi Hurkuck for technical assistance. Harald Behrens and Marcus Nowak are thanked for many helpful discussions. Reviews by Othmar Müntener, Fidel Costa, Tom Sisson and Leonid Danyushevsky have significantly improved the manuscript. The authors also thank Colin W. Devey for editorial handling. This study was supported by Deutsche Forschungsgemeinschaft grant (project no. KO 1723/1).

REFERENGES

Andersen, D. J., Lindsley, D. H. \& Davidson, P. M. (1993). QUILF: a PASCAL program to assess equilibria among $\mathrm{Fe}-\mathrm{Mg}$-Ti-oxides, pyroxenes, olivine and quartz. Computational Geosciences 19, 13331350.

Arth, J. G., Barker, F., Peterman, Z. E. \& Friedman, I. (1978). Geochemistry of the gabbro-diorite-tonalite-trondhjemite suite of tonalite and trondhjemite magmas. Journal of Petrology 19, 289-316.
Bacon, C. R. \& Hirschmann, M. M. (1988). Mg/Mn partitioning as a test for equilibrium between coexisting $\mathrm{Fe}-\mathrm{Ti}$ oxides. American Mineralogist 73, 57-61.
Baker, D. R. \& Eggler, D. H. (1987). Compositions of anhydrous and hydrous melts coexisting with plagioclase, augite, and olivine or lowCa pyroxene from 1 atm to 8 kbar: application to the Aleutian volcanic center of Atka. American Mineralogist 72, 12-28.
Baker, L. L. \& Rutherford, M. J. (1996). The effect of dissolved water on the oxidation state of silicic melts. Geochimica et Cosmochimica Acta 60, 2179-2187.
Behrens, H. (1995). Determination of water solubilities in high-viscosity melts-an experimental study on $\mathrm{NaAlSi}_{3} \mathrm{O}_{8}$ and $\mathrm{KAlSi}_{3} \mathrm{O}_{8}$ melts. European Fournal of Mineralogy 7, 905-920.
Berndt, J., Holtz, F. \& Koepke, J. (2001). Experimental constraints on storage conditions in the chemically zoned phonolitic magma chamber of the Laacher See volcano. Contributions to Mineralogy and Petrology 140, 469-486.
Berndt, J., Liebske, C., Holtz, F., Freise, M., Nowak, M., Ziegenbein, D., Hurkuck, W. \& Koepke, J. (2002). A combined rapid-quench and H_{2}-membrane setup for internally heated pressure vessels: description and application for water solubility in basaltic melts. American Mineralogist 87, 1717-1726.
Brooks, C. K., Larsen, L. M. \& Nielsen, T. F. D. (1991). Importance of iron-rich tholeiitic magmas at divergent plate margins: a reappraisal. Geology 19, 269-272.
Bryan, W. B. \& Moore, J. G. (1977). Compositional variations of young basalts in the Mid Atlantic Ridge rift valley near lat. $36^{\circ} 49^{\prime} \mathrm{N}$. Geological Society of America Bulletin 88, 556-570.

Burnham, C. W. (1979). The importance of volatile constituents. In: Yoder, H. D. (ed.) Evolution of Igneous Rocks. Princeton, NJ: Princeton University Press, pp. 439-482.
Carmichael, I. S. E. \& Ghiorso, M. S. (1986). Oxidation-reduction relations in basic magma: a case for homogeneous equilibria. Earth and Planetary Science Letters 78, 200-210.
Carmichael, I. S. E., Turner, F. J. \& Verhoogen, J. (1974). Igneous Petrology. Berkeley, CA: University of California.
Chou, I.-M. (1978). Calibration of oxygen buffers at elevated P and T using the hydrogen fugacity sensor. American Mineralogist 63, 690-703.
Christie, D. M. \& Sinton, J. M. (1986). Major elements constraints on melting, differentiation and mixing of magmas from the Galapagos $95 \cdot 5^{\circ} \mathrm{W}$ propagating rift system. Contributions to Mineralogy and Petrology 94, 274-288.
Christie, D. M., Carmichael, I. S. E. \& Langmuir, C. H. (1986). Oxidation state of mid-ocean ridge basalt glasses. Earth and Planetary Science Letters 79, 397-411.
Coleman, R. G. \& Donato, M. M. (1979). Oceanic plagiogranite revisited. In: Barker, F. (ed.) Trondhjemites, Dacites and Related Rocks. Amsterdam: Elsevier, pp. 149-167.
Coleman, R. G. \& Peterman, Z. E. (1975). Oceanic plagiogranite. Journal of Geophysical Research 80, 1099-1108.
Coogan, L. A., Wilson, R. N., Gillis, K. M. \& MacLeod, C. J. (2001). Near-solidus evolution of oceanic gabbros: insights from amphibole geochemistry. Geochimica et Cosmochimica Acta 65(23), 4339-4357.
Danyushevsky, L. V., Eggins, S. M., Falloon, T. J. \& Christie, D. M. (2000). $\mathrm{H}_{2} \mathrm{O}$ abundance in depleted to moderately enriched midocean ridge magmas; Part I: Incompatible behaviour, implications for mantle storage, and origin of regional variations. Journal of Petrology 41, 1329-1364.
Desmurs, L., Müntener, O. \& Manatschal, G. (2002). Onset of magmatic accretion within a magma-poor rifted margin; a case study from the Platta ocean-continent transition, eastern Switzerland. Contributions to Mineralogy and Petrology 144, 365-382.
Devine, J. D., Gardner, J. E., Brack, H. P., Layne, G. D. \& Rutherford, M. J. (1995). Comparison of microanalytical methods for estimating $\mathrm{H}_{2} \mathrm{O}$ contents of silicic volcanic glasses. American Mineralogist 80, 319-328.
Dick, H. J. B., Meyer, P. S., Bloomer, S., Kirby, S., Stakes, D. \& Mawer, C. (1991). Lithostratigraphic evolution of an in-situ section of oceanic layer 3^{1}. In: Von Herzen, R. P., Robinson, P. T., Fox, J. \& Palmer-Julson, A. (eds) Proceedings of the Ocean Drilling Program: Scientific Results, 118. College Station, TX: Ocean Drilling Program, pp. 439-538.
Dick, H. J. B., Natland, J. H., Alt, J. C., et al. (2000). A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth and Planetary Science Letters 179, 31-51.
Dixon, S. \& Rutherford, M. J. (1979). Plagiogranites as late-stage immiscible liquids in ophiolite and mid-ocean ridge suites: an experimental study. Earth and Planetary Science Letters 45, 45-60.
Elthon, D. (1991). Experimental phase petrology of mid-ocean ridge basalts. In: Floyd, P. A. (ed.) Oceanic Basalts. Glasgow: Blackie, pp. 94-115.
Fisk, M. R. (1984). Depths and temperatures of mid-ocean-ridge magma chambers and the composition of their source magmas. In: Gass, I. G., Lippard, S. J. \& Shelton, A. W. (eds) Ophiolites and Oceanic Lithosphere. Geological Society, London, Special Publications 13, 17-23.
Flagler, P. A. \& Spray, J. G. (1991). Generation of plagiogranite by amphibolite anatexis in oceanic shear zones. Geology 19, 70-73.
Ford, C. E. (1978). Platinum-iron alloy sample containers for melting experiments on iron-bearing rocks, minerals, and related systems. Mineralogical Magazine 42, 271-275.

Frey, F. A., Bryan, W. B. \& Thompson, G. (1974). Atlantic Ocean floor, geochemistry and petrology of basalts from leg 2 and 3 of the Deep Sea Drilling Project. Journal of Geophysical Research 79, 55075527.

Gaetani, G. A. \& Grove, T. L. (1998). The influence of water on melting of mantle peridotite. Contributions to Mineralogy and Petrology 131, 323-346.
Gaetani, G. A., Grove, T. L. \& Bryan, W. B. (1993). The influence of water on the petrogenesis of subduction-related igneous rocks. Nature 365, 332-335.
Gaillard, F., Scaillet, B., Pichavant, M. \& Beny, J. L. (2001). The effect of water and $f_{\mathrm{O}_{2}}$ on the ferric-ferrous ratio of silicic melts. Chemical Geology 174, 255-273.
Gardien, V., Thompson, A. B., Grujic, G. \& Ulmer, P. (1995). Experimental melting of biotite + plagioclase + quartz \pm muscovite assemblages and implications for crustal melting. Fournal of Geophysical Research 100, 15581-15591.
Gillis, K. M. (1996). Rare earth element constraints on the origin of amphibole in gabbroic rocks from site 894, Hess Deep. In: Mével, C., Gillis, K. M., Allan, J. F. \& Meyer, P. S. (eds) Proceedings of the Ocean Drilling Program, Scientific Results, 147. College Station, TX: Ocean Drilling Program, pp. 21-58.
Grove, T. L. \& Baker, M. B. (1984). Phase equilibrium controls on the tholeiitic versus calc-alkaline differentiation trends. Fournal of Geophysical Research 89, 3253-3274.
Grove, T. L. \& Bryan, W. B. (1983). Fractionation of pyroxene-phyric MORB at low pressure: an experimental study. Contributions to Mineralogy and Petrology 84, 293-309.
Grove, T. L. \& Juster, T. C. (1989). Experimental investigations of low-Ca pyroxene stability and olivine-pyroxene-liquid equilibria at $1-\mathrm{atm}$ in natural basaltic and andesitic liquids. Contributions to Mineralogy and Petrology 103, 287-305.
Hamilton, D. L., Burnham, C. W. \& Osborn, E. F. (1964). The solubility of water and effects of oxygen fugacity and water content on crystallization in mafic magmas. Fournal of Petrology 5, 21-39.
Helz, R. T. (1973). Phase relations of basalts in their melting range at $\mathrm{PH}_{2} \mathrm{O}=5 \mathrm{~kb}$ as a function of oxygen fugacity. Part I. Mafic phases. Fournal of Petrology 14, 249-302.
Helz, R. T. (1976). Phase relations of basalts in their melting range at $\mathrm{PH}_{2} \mathrm{O}=5 \mathrm{~kb}$. Part II. Melt compositions. Fournal of Petrology 17, 139-193.
Helz, R. T. (1981). Phase relations and compositions of amphiboles produced in studies of the melting behavior of rocks. In: Ribbe, P. H. \& Veblen, D. R. (eds) Amphiboles: Petrology and Experimental Phase Relations. Mineralogical Society of America, Reviews in Mineralogy 9B, 279-353.
Holloway, J. R. \& Burnham, C. W. (1972). Melting relations of basalt with equilibrium water pressure less than total pressure. Fournal of Petrology 13, 1-29.
Holloway, J. R., Dixon, J. E. \& Pawley, A. R. (1992). An internally heated, rapid-quench, high-pressure vessel. American Mineralogist 77, 643-646.
Holtz, F., Behrens, H., Dingwell, D. B. \& Johannes, W. (1995). H2O solubility in haplogranitic melts-compositional, pressure, and temperature-dependence. American Mineralogist 80, 94-108.
Hoover, J. D. \& Irvine, T. N. (1977). Liquidus relations and $\mathrm{Mg}-\mathrm{Fe}$ partitioning on part of the system $\mathrm{Mg}_{2} \mathrm{SiO}_{4}-\mathrm{Fe}_{2} \mathrm{SiO}_{4}-\mathrm{CaMgSi}_{2} \mathrm{O}_{6}-$ $\mathrm{CaFeSi}_{2} \mathrm{O}_{6}-\mathrm{KAlSi}_{3} \mathrm{O}_{8}-\mathrm{SiO}_{2}$. Carnegie Institution of Washington Yearbook 77, 774-784.
Irvine, T. N. \& Baragar, W. R. A. (1971). A guide to chemical classification of the common volcanic rocks. Canadian Fournal of Earth Science 8, 523-548.

Jenner, G. A., Dunning, G. R., Malpas, J., Brown, M. \& Brace, T. (1991). Bay of Islands and Little Port complexes, revisited: age, geochemical and isotopic evidence confirm suprasubduction-zone origin. Canadian Fournal of Earth Science 28, 1635-1652.
Johannes, W. \& Bode, B. (1978). Loss of iron to the Pt-container in melting experiments with basalts and a method to reduce it. Contributions to Mineralogy and Petrology 67, 221-225.
Johnson, M. C., Andersen, A. T. J. \& Rutherford, M. J. (1994). Preeruptive volatile contents of magmas. In: Carroll, M. R. \& Holloway, J. R. (eds) Volatiles in Magmas. Mineralogical Society of America, Reviews in Mineralogy 30, 281-330.
Jurewicz, A. J. G. \& Watson, E. B. (1988). Cations in olivine, Part 1: Calcium partitioning and calcium-magnesium distribution between olivines and coexisting melts, with petrologic applications. Contributions to Mineralogy and Petrology 99, 176-185.
Juster, T. G., Grove, T. L. \& Perfit, M. R. (1989). Experimental constraints on the generation of FeTi basalts, andesites, and rhyodacites at the Galapagos Spreading Center, $85^{\circ} \mathrm{W}$ and $95^{\circ} \mathrm{W}$. Journal of Geophysical Research 94, 9251-9274.
Kawamoto, T. (1996). Experimental constraints on differentiation and $\mathrm{H}_{2} \mathrm{O}$ abundance of calc-alkaline magmas. Earth and Planetary Science Letters 144, 577-589.
Kawamoto, T. \& Hirose, K. (1994). Au-Pd sample containers for melting experiments on iron and water bearing systems. European Journal of Mineralogy 6, 381-385.
Koepke, J. (1997). Analyse von wasserhaltigen silikatischen Gläsern mit der Mikrosonde: Wassergehalte und Alkalienverluste. Berichte der Deutschen Mineralogischen Gesellschaft, Beiheft in European Fournal of Mineralogy 9, 200.
Koepke, J., Johannes, W. \& Becker, A. (1996). Determination of crystal/melt fractions with the help of BSE-pictures and image analysis. Terra Nova, Abstract Supplement 8, 36.
Koepke, J., Feig, S. T., Snow, J. \& Freise, M. (2004). Petrogenesis of oceanic plagiogranites by partial melting of gabbros: an experimental study. Contributions to Mineralogy and Petrology 146, 414-432.
Kovalenko, V. I., Naumov, V. B., Yarmolyuk, V. V. \& Dorofeeva, V. A. (2000). Volatile components $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}, \mathrm{Cl}, \mathrm{F}\right.$, and S$)$ in magmas of intermediate and acid compositions from distinct geodynamic settings: evidence from melt inclusions and chill glasses. Petrology 8, 525-556.
Kress, V. G. \& Carmichael, I. S. E. (1991). The compressibility of silicate liquids containing $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contributions to Mineralogy and Petrology 108, 82-92.
Kushiro, I. (1975). On the nature of silicate melts and its significance in magma genesis: regularities in the shift of liquidus boundaries involving olivine, pyroxene, and silica materials. American Fournal of Science 275, 411-432.
Lange, R. A. (1997). A revised model for the density and thermal expansivity of $\mathrm{K}_{2} \mathrm{O}-\mathrm{Na}_{2} \mathrm{O}-\mathrm{CaO}-\mathrm{MgO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$ liquids from 700 to 1900 K : extension to crustal magmatic temperatures. Contributions to Mineralogy and Petrology 130, 1-11.
Lange, R. A. \& Carmichael, I. S. E. (1990). Thermodynamic properties silicate liquids with emphasis on density, thermal expansion and compressibility. In: Ribbe, P. H. (ed.) Modern Methods of Igneous Petrology: Understanding Magmatic Processes. Mineralogical Society of America, Reviews in Mineralogy 24, 25-64.
Langmuir, G. H., Bender, J. F., Bence, A. E. \& Hanson, G. N. (1977). Petrogenesis of basalt from the FAMOUS area, Mid-Atlantic Ridge. Earth and Planetary Science Letters, 36, 133-156.
Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. \& Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkalisilica diagram. Fournal of Petrology 27, 745-750.

Leake, B. E., Woolley, A. R., Birch, W. D., et al. (1997). Nomenclature of amphiboles-Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Fournal of Mineralogy 9, 623-651.
Libourel, G. (1999). Systematics of calcium partitioning between olivine and silicate melt: implications for melt structure and calcium content of magmatic olivines. Contributions to Mineralogy and Petrology 136, 63-80.
Longhi, J. \& Pan, V. (1988). A reconnaisance study of phase boundaries in low-alkali basaltic liquids. Fournal of Petrology 29, 115-147.
Longhi, J., Walker, D. \& Hays, J. F. (1978). The distribution of Fe and Mg between olivine and lunar basaltic liquids. Geochimica et Cosmochimica Acta 42, 1545-1558.
Malpas, J. (1979). Two contrasting trondhjemite associations from transported ophiolites in western Newfoundland: initial report. In: Barker, F. (ed.) Trondhjemites, Dacites, and Related Rocks. Amsterdam: Elsevier, pp. 465-484.
Martel, C., Pichavant, M., Bourdier, J.-L., Traineau, H., Holtz, F. \& Scaillet, B. (1998). Magma storage conditions and control of eruption regime in silicic volcanoes: experimental evidence from Mt. Pelee. Earth and Planetary Science Letters 156, 89-99.
Martin, H. (1987). Petrogenesis of Archean trondhjemites, tonalites, and granodiorites from Eastern Finland: major and trace element geochemistry. Fournal of Petrology 28, 921-953.
McKenzie, D. P. \& Bickle, M. J. (1988). The volume and composition of melt generated by extension of the lithosphere. Fournal of Petrology 29, 625-679.
Miyashiro, A. (1974). Volcanic rock series in island arcs and active continental margins. American Fournal of Science 274, 321-355.
Müntener, O., Kelemen, P. B. \& Grove, T. L. (2001). The role of $\mathrm{H}_{2} \mathrm{O}$ during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contributions to Mineralogy and Petrology 141, 643-658.
Natland, J. H. \& Melson, W. G. (1980). Compositions of basaltic glasses from the East Pacific Rise and the Siqueiros Fracture Zone, near 9°. In: Rosendahl, B. R. (ed.) Initial Reports of the Deep Sea Drilling Project, Vol. 54. Washington, DC: US Government Printing Office, pp. 705-723.
Nicolas, A. (1989). Structures of Ophiolites and Dynamics of Oceanic Lithosphere. Dordrecht: Kluwer Academic.
Niu, Y., Gilmore, T., Mackie, S., Greig, A. \& Bach, W., 2002. Mineral chemistry, whole-rock compositions, and petrogenesis of Leg 176 gabbros: data and discussion. In: Natland, J. H., Dick, H. J. B., Miller, D. J. \& Von Herzen, R. P. (eds) Proceedings of the Ocean Drilling Program, Scientific Results, 176. College Station, TX: Ocean Drilling Program, pp. 1-60 [Online]. Available at http://www-odp.tamu. edu/publications/176_SR/VOLUME/CHAPTERS/SR176_08. PDF. Accessed 3 November 2003.
Ochs, F. A., III \& Lange, R. A. (1999). The density of hydrous magmatic liquids. Science 283, 1314-1317.
Osborn, E. F. (1959). Role of oxygen pressure in the crystallization and differentiation of basaltic magma. American Fournal of Science 257, 609-647.
Panjasawatwong, Y., Danyushevsky, L. V., Crawford, A. J. \& Harris, K. L. (1995). An experimental study of the effects of melt composition on plagioclase-melt equilibria at 5 and 10 kbar: implications for the origin of magmatic high-An plagioclase. Contributions to Mineralogy and Petrology 118, 420-432.
Pedersen, R. B. \& Malpas, J. (1984). The origin of oceanic plagiogranites from the Karmoy ophiolite, Western Norway. Contributions to Mineralogy and Petrology 88, 36-52.

Pichavant, M. (1987). Effects of B and $\mathrm{H}_{2} \mathrm{O}$ on liquidus phase relations in the haplogranite system at 1 kbar. American Mineralogist 72, 11-12.
Roeder, P. L. (1974). Activity of iron and olivine solubility in basaltic liquids. Earth and Planetary Science Letters 23, 397-410.
Roeder, P. L. \& Emslie, R. F. (1970). Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology 29, 275-289.
Roux, J. \& Lefevre, A. (1992). A fast-quench device for internally heated pressure vessels. European Fournal of Mineralogy 4, 279-281.
Scaillet, B. \& Evans, B. W. (1999). The 15 June 1991 eruption of Mount Pinatubo. I. Phase equilibria and pre-eruption $P-T-f \mathrm{O}_{2}-$ $\mathrm{fH}_{2} \mathrm{O}$ conditions of the dacite magma. Fournal of Petrology 40, 381-411.
Scaillet, B., Pichavant, M. \& Roux, J. (1995). Experimental crystallization of leucogranite magmas. Journal of Petrology 36, 663-705.
Schwab, R. G. \& Küstner, D. (1981). The equilibrium fugacities of important oxygen buffers in technology and petrology. Neues Jahrbuch fur Mineralogie 140, 112-142.
Shi, P. (1993). Low-pressure phase relationships in the system $\mathrm{Na}_{2} \mathrm{O}-\mathrm{CaO}-\mathrm{FeO}-\mathrm{MgO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$ at $1100^{\circ} \mathrm{C}$, with implications for the differentiation of basaltic magmas. Fournal of Petrology 34, 743-762.
Sisson, T. W. \& Grove, T. L. (1993a). Experimental investigations of the role of $\mathrm{H}_{2} \mathrm{O}$ in calc-alkaline differentiation and subduction zone magmatism. Contributions to Mineralogy and Petrology 113, 143-166.
Sisson, T. W. \& Grove, T. L. (1993b). Temperatures and $\mathrm{H}_{2} \mathrm{O}$ contents of low-MgO high-alumina basalts. Contributions to Mineralogy and Petrology 113, 167-184.
Snyder, D. A. \& Carmichael, I. S. E. (1992). Olivine-liquid equilibria and the chemical activities of $\mathrm{FeO}, \mathrm{NiO}, \mathrm{Fe}_{2} \mathrm{O}_{3}$, and MgO in natural basic melts. Geochimica et Cosmochimica Acta 56, 303-318.
Snyder, D., Carmichael, M. J. \& Wiebe, R. A. (1993). Experimental study of liquid evolution in an Fe-rich, layered mafic intrusion: constraints of $\mathrm{Fe}-\mathrm{Ti}$ oxide precipitation on the $T-f_{\mathrm{O}_{2}}$ and T DELTA paths of tholeiitic magmas. Contributions to Mineralogy and Petrology 113, 73-86.
Sobolev, A. V. \& Chaussidon, M. (1996). $\mathrm{H}_{2} \mathrm{O}$ concentrations in primary melts from supra-subduction zones and mid-ocean ridges: implications for $\mathrm{H}_{2} \mathrm{O}$ storage and recycling in the mantle. Earth and Planetary Science Letters 137, 45-55.
Springer, W. \& Seck, H. A. (1997). Partial fusion of basic granulites at 5 to 15 kbar: implications for the origin of TTG magmas. Contributions to Mineralogy and Petrology 127, 30-45.
Spulber, S. D. \& Rutherford, M. J. (1983). The origin of rhyolite and plagiogranite in oceanic crust: an experimental study. Fournal of Petrology 24, 1-25.
Taylor, J. R., Wall, V. J. \& Pownceby, M. I. (1992). The calibration and application of accurate redox sensors. American Mineralogist 77, 284-295.
Thy, P. \& Lofgren, G. E. (1994). Experimental constraints on the lowpressure evolution of transitional and mildly alkalic basalts: the effect of $\mathrm{Fe}-\mathrm{Ti}$ oxide minerals and the origin of basaltic andesites. Contributions to Mineralogy and Petrology 116, 340-351.
Toplis, M. J. \& Carroll, M. R. (1995). An experimental study of the influence of oxygen fugacity on $\mathrm{Fe}-\mathrm{Ti}$ oxide stability, phase relations, and mineral-melt equilibria in ferro-basaltic systems. Fournal of Petrology 36, 1137-1170.
Toplis, M. J. \& Carroll, M. R. (1996). Differentiation of ferro-basaltic magmas under conditions open and closed to oxygen: implications
for the Skaergaard Intrusion and other natural systems. Fournal of Petrology 37, 837-858.
Tormey, D. R., Grove, T. L. \& Bryan, W. B. (1987). Experimental petrology of normal MORB near the Kane Fracture Zone: $22^{\circ}-25^{\circ} \mathrm{N}$, Mid-Atlantic Ridge. Contributions to Mineralogy and Petrology 96, 121-139.
Turner, F. J. \& Verhoogen, J. (1960). Igneous and Metamorphic Petrology. New York: McGraw-Hill.
Ulmer, P. (1989). The dependence of the $\mathrm{Fe}^{2+}-\mathrm{Mg}$ cation-partitioning between olivine and basaltic liquid on pressure, temperature and composition. Contributions to Mineralogy and Petrology 101, 261-273.
Watson, E. B. (1979). Calcium content of forsterite coexisting with silicate liquid in the system $\mathrm{Na}_{2} \mathrm{O}-\mathrm{CaO}-\mathrm{MgO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$. American Mineralogist 64, 824-829.

Wiser, N. M. \& Wood, B. J. (1991). Experimental determination of activities in $\mathrm{Fe}-\mathrm{Mg}$ olivine at 1400 K . Contributions to Mineralogy and Petrology 108, 146-153.
Yang, H.-J., Kinzler, R. J. \& Grove, T. L. (1996). Experiments and models of anhydrous, basaltic olivine-plagioclase-augite saturated melts from 0.001 to 10 kbar . Contributions to Mineralogy and Petrology 124, 1-18.
Yoder, H. S. (1965). Diopside-anorthite-water at five and ten kilobars and its bearing on explosive volcanism. Carnegie Institution of Washington Yearbook 64, 82-89.
Yoder, H. S. \& Tilley, C. E. (1962). Origin of basalt magmas: an experimental study of natural and synthetic rock systems. Fournal of Petrology 3, 342-532.

[^0]: Fournal of Petrology vol. 46 issue 1 (C) Oxford University Press 2004;

[^1]: *Corresponding author. Present address: Institut für Mineralogie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 24, D-48149 Münster, Germany. Telephone: +49 (0)251 8333049. Fax: +49 (0)25183 38397. E-mail: jberndt@uni-muenster.de

[^2]: ${ }^{a} \mathrm{H}_{2} \mathrm{O}$ content in pre-hydrated glasses measured by Karl-Fischer titration.
 Water content of the residual glass estimated by mass balance calculations (see text).
 ${ }^{c} \log f_{\mathrm{O}_{2}}$ based on equation for $\mathrm{MnO}-\mathrm{Mn}_{3} \mathrm{O}_{4}$ buffer curve (Chou, 1978) assuming intrinsic buffering capacity of IHPV corresponding to the $\mathrm{MnO}-\mathrm{Mn} \mathrm{O}_{3} \mathrm{O}_{4}$ buffer (see text). ${ }^{\mathrm{d}} \mathrm{QFM}$ indicates log $f_{\mathrm{O}_{2}}$ (experiment)-log $f_{\mathrm{O}_{2}}$ (QFM buffer) as estimated by Schwab \& Kustner (1981).
 gl, glass; ol, olivine; cpx, clinopyroxene; opx, orthopyroxene; pl, plagioclase; mt, magnetite; ilm, ilmenite; am, amphibole; fl, fluid ($\mathrm{H}_{2} \mathrm{O}$).
 ${ }^{\mathrm{g}}$ Runs with $a_{\mathrm{H}_{2} \mathrm{O}}=1$ where water content was calculated using the Burnham model (Burnham, 1979).
 'Log $f_{\mathrm{O}_{2}}$ values in parentheses are calculated using experimentally crystallized coexisting ilm—mt pairs (Andersen et al., 1993).
 $\mathrm{H}_{2} \mathrm{O}$ added to dry glass powder.
 ${ }^{k}$ Phases have been identified qualitatively.

[^3]: Notes and abbreviations are given below Table 3a.

[^4]: ${ }^{1} \mathrm{Fe}$ concentrations are given as FeO^{*} (total iron), except for magnetite and ilmenite, where Fe is given as $\mathrm{Fe}_{2} \mathrm{O}_{3} / \mathrm{FeO}$ contents.
 Numbers represent: Mg-number for glass defined as $\mathrm{MgO} /(\mathrm{MgO}+\mathrm{FeO}) \times 100$ and FeO and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ content calculated after Kress \& Carmichael (1991); $X_{\mathrm{Fo}} \times 100$ for
 olivine; En/ $\mathrm{Fs} / \mathrm{Wo}$ content for pyroxene; An content for plagioclase; $X_{\mathrm{Mt}} \times 100$ for magnetite and $X_{\text {llm }} \times 100$ for ilmenite; Mg-number for amphibole defined as $X_{\mathrm{Mg}} /$ $\left(X_{\mathrm{Mg}}+X_{\mathrm{Fe}^{2+}}\right) \times 100$.
 ${ }^{\text {C Numbers }}$ represent partition coefficients, defined as $\left(X_{\text {FeO-OI }} / X_{\text {FeO-Liq }} \times X_{\text {MgO-Liq }} / X_{\text {MgO-OI }}\right)$ for olivine, $\left(X_{\text {FeO-Cpx }} / X_{\text {MgO-Cpx }} \times X_{\text {MgO-Liq }} / X_{\text {FeO-Liq }}\right)$ for clinopyroxene, and ${ }^{\text {d }}$ Numbers in parentheses are one standard deviation of replicate analyses in terms of least units cited.

[^5]: Notes and abbreviations are given below Table 4a.

