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ABSTRACT 

An Experimental Investigation of the Near Surface Flow Structure 

over Wind-Sheared Water Surface 

Nasiruddin Shaikh, Ph. D. 

Concordia University, 2008 

The study of airside flow structure and its interaction with water at the air-water 

interface is important in order to understand the exchange of momentum, heat and mass 

fluxes between the two mediums. The present dissertation deals with the quantitative 

investigation of the near-surface flow above wind-sheared water surface through a series 

of laboratory experiments conducted over a wind speed range of 1.5 m s"1 to 4.4 m s"1 and 

at a fetch of 2.1 m. The two-dimensional velocity fields were measured using particle 

image velocimetry (PIV). To compare the airflow structure over the water surface with 

that over solid wall, the measurements were also made over the smooth and wavy walls at 

the same location, under identical conditions. 

The results show a reduction in the mean velocity magnitudes and the tangential 

stresses when gravity waves appear on the water surface. An enhanced vorticity layer was 

observed immediately above the water surface that extended to a height of approximately 

two times of the significant wave height. A novel approach is used to separate the wave-

induced component from the instantaneous velocity fields. The flow structure was 

analyzed as a function of wave phase. The phase-averaged profiles of wave-induced 
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velocity, vorticity and Reynolds stress showed different behaviour on the windward and 

leeward sides of the wave in the near-surface region. The results also show that the 

turbulent Reynolds stress mainly supports downward momentum transfer whereas the 

wave-induced Reynolds stress is responsible for the upward momentum transfer from 

wave to wind. 

This dissertation also provides first quantitative comparison of the mean, wave-

induced and turbulent properties for the separated and non-separated flows over wind 

generated water waves. The maximum difference between the flow characteristics of the 

separated and non-separated flows is observed on the leeward side, within core of the 

separation region, where, higher magnitudes of the vorticity and turbulent properties were 

observed, indicating that the turbulence is significantly enhanced within the separation 

region. 

The comparison of the flow over smooth and wavy water and solid surfaces 

showed that although the trends in profiles over water and solid surfaces are mostly 

similar, the relative magnitudes of turbulent properties and their level of enhancement 

towards the surface are different over water and solid surfaces. Thus, the models for the 

flow over solid surfaces may not accurately predict the flow properties over the water 

surface especially in the near-surface region. 
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CHAPTER 1 

Introduction 

The study of airside flow structure and its interaction with water at the air-water 

interface is important in order to understand the exchange of momentum, heat and mass 

fluxes between the two mediums. The physical interaction between air and water involves 

a number of complex phenomena, occurring on both air and water sides, in the close 

vicinity of the interface. The momentum transfer from air drifts the water current and 

produces surface waves and underwater turbulence. The wind-generated water waves are 

the distinctive feature at the air-water interface. The oscillatory motion of the waves 

generates wave field and turbulence in the near surface region on both sides of the 

interface which influence the wind and water fields. The modified near surface turbulence 

plays a significant role in transferring momentum, heat and mass across the air-water 

interface. 

Understanding and proper parameterization of the exchange processes across the 

air-water interface are of obvious relevance for wave prediction models, climate 

modeling, weather forecasting, environmental impact studies, storm-surge modeling and 

many other important applications (Grachev and Fairall 2000, Janssen 1989). To-date, in 

the environmental applications, oceanographers and meteorologists often ignore the near 

surface turbulence and considered this region as a black box (Edson et al. 1999). They 

estimate the air-sea energy exchange from the airside properties measured at a reference 

height of 10 m above the mean water level and assume that there is no significant 
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variation in the air properties within this height (Qiu and Hacker 2004). This assumption 

is not realistic. Some of the studies focused on the near surface waterside flow, showed 

that the turbulence and other flow parameters change significantly within a region 

adjacent to the interface whose depth is of the order of 1 cm (Siddiqui et al. 2001). 

Furthermore, the variation of these flow parameters in this region is non-linear (Siddiqui 

and Loewen 2007). If the same analogy is applied on airside, then it can be argued that 

understanding of the influence of surface waves on the airflow structure immediately 

above the water surface is necessary to obtain reliable estimates of air-water fluxes 

(Chambers and Antonia 1980). This will also lead to the improvement of existing models 

for accurate forecasting of global climate. 

The mechanism of momentum transfer within the boundary layer over the water 

surface is somewhat different from that over the solid wall (Hare et al. 1997). One of the 

major differences is the hydrodynamic boundary condition which is non-zero at the air-

water interface and zero at the solid wall. Another difference is the dynamic wave field at 

the air-water interface. The surface waves create dynamic roughness over the water 

surface. It is obvious that the modified airflow structure over the fluctuating water surface 

is mainly due to the roughness created by the waves, but it has been difficult to relate the 

water surface roughness to the roughness of the solid wall. Does the blowing air behave 

the same over the water surface of variable roughness as it does over the solid surface of 

constant roughness? Our current knowledge is not sufficient enough to answer this 

question. 
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A substantial amount of experimental data exists for the turbulent flow over solid 

walls and has resulted in well developed empirical relations describing different turbulent 

characteristics in the near wall region. These relationships are often used to estimate the 

desired turbulent quantities over the water surface where direct measurement is very 

difficult. However the use of these empirical relations for the flow over the water surface 

is questionable (Perry et al. 1987). Csanady (1984) argued that the wall layer analogy can 

only be used outside the wave boundary layer where, the wave-induced effects are 

negligible. 

Obukhov (1946) and Monin and Obukhov (1954) were the first to describe a 

similarity hypothesis. The similarity hypothesis states that various turbulent statistics, 

when normalized by the scaling parameters are universal function of the stability 

parameter. The application of Monin-Obukhov similarity theory to the water surface 

requires caution because the scaling parameters derived for the flow over solid surface, 

only accounts shear-driven and buoyancy-driven turbulence. As stated above, the 

fluctuating water surface creates oscillatory movement in the air. This vertical oscillation 

causes stretching and changes the direction of the turbulent velocity (Mete et al. 2002). 

Therefore, additional scaling parameters are required to describe turbulence over the 

water surface (Hidy and Plate 1966). 

The study of the flow structure immediately above the wavy water surface is very 

challenging. One of the key issues is the accurate description of the waveform of 

individual waves that vary spatially as well as temporally. Although the study of the 

airflow structure over the water surface has been a subject for the last 50 years but the 

process of mass, heat and momentum exchange across the air-water interface is still not 
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well quantified. This is attributed to the measurement difficulties, especially in the near 

surface region between the wave crest and trough, where any particular spatial location 

lies sometimes in water and sometimes in air. 

1.1. Background 

Several laboratory studies have been conducted to study airside velocity fields 

above water waves. Majority of these studies used point measurement techniques which 

did not allow measurements within the fluctuating region of the air-water interface i.e. the 

region bounded between the crest and trough and thus, put limitations on capturing the 

near-surface dynamics. For example Banner and Melville (1976) and Mete et al. (2002) 

measured wind speed in laboratory experiments, at a height of 10 cm above the mean 

water surface, using a Pitot-static tube and hot-film anemometer respectively. Hidy and 

Plate (1966) measured the air velocity above wind waves at the height of 20 cm above the 

mean water level at wind speeds ranging from 6 m s"1 to 14 m s"1 and at various fetches 

ranging from 2.15 to 11.9 m. When the measurement probe is placed at a fix position, it 

measures the parameter (typically velocity, pressure and temperature) at a certain height 

from the mean water level. The surface values are typically obtained through linear 

extrapolation. However, due to the nonlinear behaviour of the waves, the airflow structure 

immediately above the interface exhibits high level of fluctuations as a result the 

measured parameters vary nonlinearly in this region. Therefore, the linear extrapolation 

could result in over or underestimation of the surface characteristics. This indicates that 
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the measurements taken far from the interface cannot provide accurate estimation of the 

near surface flow behaviour above the waves. 

To avoid the uncertainty incorporated in the data extrapolated to the surface, some 

researchers had used wave-follower system and took the measurements at a constant 

height from the fluctuating water surface. The wave-follower typically consists of an over 

hanged platform that moves up and down with a water level sensor, installed at the lower 

end of the platform. The measuring probe is mounted on the platform. An electric motor 

gets the signals from the water level sensor and drives the platform such that it maintains 

a constant distance between the probe and the fluctuating water surface. The wave-

follower system could provide quantitative measurements at a point within the crest-

trough region at the fluctuating air-water interface. However when the instrumentation 

follows the surface other problems arise, which includes, mechanical vibration and 

acoustic waves. In addition, their point measurement nature makes full field velocity 

mapping very cumbersome. Kawamura and Toba (1988) reported that the wave follower 

could not perfectly follow waves especially at the forward face of the wave crest. 

Papadimitrakis et al. (1986b) observed that the wave follower generates acoustic waves 

that travel in both upstream and downstream directions, which contaminate the measured 

data. They concluded that neglecting the acoustic contamination leads to errors in the 

momentum and energy exchange between 18-32%. 

Researchers have used flow visualization techniques to qualitatively describe the 

instantaneous spatial structure of the airflow field within and above the crest-trough 

region. The visual inspections showed that the airflow structure within the near-surface 
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region is different from the flow structure at greater heights. The dynamical processes in 

the near-surface region include airflow separation immediately adjacent to the water 

surface (Kawai 1981), coherent structures (Komori et al. 1993), a high shear layer and 

active bursting and sweeping phenomena (Kawamura and Toba 1988). However the 

evidence of the existence of these dynamical processes is mainly based on the qualitative 

observations. 

With the availability of the state-of-the-art particle image velocimetry (PIV) 

technique, most of the difficulties associated with point measurement devices have been 

overcome. PIV is a non-intrusive, optical measurement technique capable of measuring 

velocities in a plane simultaneously at thousands of points in the flow field. Some 

researchers have used PIV technique to measure the instantaneous flow field within the 

crest-trough region of the wind-generated water waves. For example Peirson (1997), 

Peirson and Banner (2003), Siddiqui et al. (2001), and Siddiqui and Loewen (2007) 

described the waterside flow structure beneath wind waves. Whereas Reul et al. (1999), 

Veron et al. (2007), Reul et al. (2008) reported airside flow field immediately above the 

waves using PIV. A common observation in all of the above PIV studies is that the near 

surface flow dynamics are complex and significantly different from that observed at 

greater heights. The PIV studies above the waves discussed the dynamics of 

instantaneous velocity and vorticity structures in the near surface flow however they did 

not present the detailed mean and turbulent flow structure above the waves particularly in 

the near-surface region. 

The present study is focused on conducting a detailed quantitative analysis of the 

airside flow structure above the wind-sheared water surface, especially within the crest-

6 



trough region, to improve our knowledge of the flow dynamics in this region. PIV 

technique was used to measure the airside velocity field. To the best of our knowledge 

this is the first study, reporting the quantitative analysis of the airflow structure in the 

immediate vicinity of the air-water interface, which will lead to a better understanding of 

the air-water mass, heat and momentum exchange. 

1.2. Literature Review 

One of the challenging tasks in the field of fluid mechanics is the understanding of 

the flow dynamics above and below the fluctuating air-water interface especially in the 

presence of surface waves. Due to the challenging nature, not enough work has been done 

in the near surface region on both sides of the interface, especially on the airside. As a 

result no accurate model for the momentum, mass and heat transfer has been developed 

yet. Furthermore, the limited analytical and experimental work reported in the literature 

describing the airside processes shows large discrepancy in the results. In this section, the 

relevant literature on the different aspects studied in this dissertation is reviewed. The 

previous studies on the analytical, and experimental studies carried out in the field and 

laboratory are presented. 

1.2.1. Theoretical investigations 

Miles (1957) and Phillips (1957) were the pioneers in the field of wind-wave 

interaction. They presented physical models explaining the momentum and energy 
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exchange between waves and airflow. Miles (1957) proposed a quasi-laminar model that 

describes the process of momentum transfer from wind to waves. In his model, the 

turbulence in the air stream was neglected except in maintaining a prescribed parallel 

shear flow with the logarithmic velocity distribution. The model was tested through field 

and laboratory experiments and it was concluded that the momentum exchange process 

between the air and wind waves is somewhat different from Miles' (1957) model 

(Ichikawa and Imasato 1976). Phillips (1957) in his theoretical model described that the 

airside velocity and pressure fluctuations at the air-water interface are associated with the 

atmospheric turbulence and independent of the wave generation. However, this 

hypothesis failed for large amplitude waves (Lai and Shemdin 1971). Makin et al. (1994) 

introduced an analytical model that includes both the impact of waves and wind speed on 

the momentum flux, and covered the entire range from developing sea to fully developed 

wave. They used mixing length model to parameterize the turbulent stress whereas wave-

induced stress was model by considering all undulations of the interface as waves. They 

concluded that gravity capillary waves have minor contribution to the momentum 

exchange and most of the momentum is transferred to the long waves. In continuation of 

Miles' theory, Janssen (1989) considered the effect of gravity waves and modeled the 

effect of air turbulence using mixing length model. He argued that young waves (c < 5u», 

where, c is the wave-phase speed and u, is the friction velocity) have strong coupling 

with wind, while old waves (c > 5w») have no such coupling. 

Theoretical models available in the literature show substantial disagreement. To 

date none of them are proved to be the true representative of the actual process of 
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momentum and energy exchange between the two mediums. For improved modeling of 

wind-wave interactions, additional experimental data especially in the near surface region 

is necessary. 

1.2.2. Field Experiments 

Benilov et al. (1974) simultaneously measured the fluctuations of wind velocity 

and wave-elevation using acoustic anemometer and resistance-wire wave gauge, 

respectively. The experiments were conducted in the Caspian Sea and the data was 

recorded at the mean wind speeds of 6 and 13 ms"1. They analyzed the spectra of velocity 

fluctuations at a height of 2.45 m from the mean sea level and for different stages of the 

wave development. They observed 15% reduction in the downward momentum flux for 

the developed waves compared to the developing waves, and attributed this change to the 

wave-induced stress.Antonia and Chambers (1980) analyzed the spectra and co-spectra of 

streamwise and vertical velocity fluctuations that were measured in the Bass Strait, at a 

height of 5 m from the mean sea level. The measurements were performed at wind speeds 

ranging from 5.31 to 9.38 m s"1. Hot-wire anemometer and an array of Gill propellers 

were used to measure streamwise and vertical velocity fluctuations respectively, whereas 

the instantaneous sea surface displacement was recorded using the resistance-wire gauge. 

When c/u* > 40, they observed negative spikes in the cross-spectrum of streamwise and 

vertical velocity fluctuations and consider these spikes as upward momentum transfer 

from wave to wind. Wetzel (1996) reported wind velocity and wave height data that was 

measured in the North Pacific Ocean. The measurements were made at heights 8.7 m and 
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above the mean sea level at the mean wind speed of 15 m s"1 and mean waves height of 

6 m. He observed a strong correlation between the horizontal component of the 

instantaneous wind velocity and the wave height. He also observed significant upward 

momentum transfer from decaying waves and downward momentum transfer to 

developing waves and concluded that the upward momentum transfer from waves to wind 

is only associated with fully developed waves. He also argued that the direction of 

momentum flux strongly depends on the wave age. Some other field observations also 

indicated an upward transport of momentum for the developed waves based on the spike 

in the co-spectra of horizontal and vertical velocity fluctuations observed around the peak 

frequency (e.g. Volkov 1970 and Davidson and Frank 1973). 

1.2.3. Laboratory Experiments 

The oscillatory motion of the waves modulates the structure of the airflow field 

above them and therefore, it is different from that over a solid surface. (Grachev and 

Fairall 2000). The wave-induced velocity quantifies the contribution of the wave motion 

to the flow field and provides fundamental understanding about the flow pattern induced 

in the near surface region, immediately above the waves. Wave-induced motion has been 

studied in several laboratory experiments. Harris (1966) was the first who reported that 

surface waves induce airflow in the region close the interface. He photographed the 

movement of smoke over mechanically-generated water waves in the absence of wind for 

three different tank sizes. The visualization through individual puffs of smoke showed 

that for all cases, the smoke puffs drifted slowly over the troughs and jumped quickly 
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over the crests. He also observed that the rate of dissipation of the individual puff was 

increased with the wave steepness and wave height. He concluded that the wave-driven 

wind is not the result of the viscous drag, and the underlying physical mechanism could 

be studied without considering the molecular viscosity. Kawamura and Toba (1988) 

visualized the airflow structure in the turbulent boundary layer over wind-generated 

waves using liquid paraffin mist that was introduced near the water surface. They 

observed large-scale ordered motion in the outer part of the boundary layer. They also 

observed the bursting phenomena and separation bubbles on windward and leeward sides 

of the wave crest. They attributed the airflow separation and large-scale motions of air 

bulges as the fundamental mechanisms for the bursting process. Komori et al. (1993) 

investigated the flow structure on both sides of the interface in a laboratory wind wave 

flume. To visualize the airflow, paraffin mist was fed over the waves. For the waterside 

flow visualization, fluorescent sodium dye was used. They observed organized motions in 

the airflow that appeared intermittently in front of the wave crest which generated an 

upward accelerated bulge of smoke. On the waterside, the surface renewal eddies were 

observed at the same location where the organized motion occurred in the air. 

Point measurement devices such as hot-wire, hot-film, pitot tube, are used to 

measure the flow field above waves. Takeuchi et al. (1977) measured horizontal and 

vertical components of the airflow over mechanically-generated water waves at a fetch of 

13 m, using a hot-film anemometer. Data were recorded at the heights ranging from 3.2 to 

5 cm above the mean water level at wind speeds ranging from 1.5 to 5 m s~\ They 

observed that the magnitude of the streamwise wave-induced velocity ( u ) at the lower 

wind speed was larger than that at the higher wind speed however the decay rate were 
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found to be equal. They also reported that the maximum magnitude of u occurred at the 

wave crest and the minimum magnitude at the wave trough. Lai and Shemdin (1971) 

investigated the effect of wave propagation on the wind field over mechanically-

generated water waves. The experiments were conducted at heights of 10.2 cm and above 

the mean water level using hot-film anemometer. The measurements were taken at 

various fetches ranging from 9.15 to 24.36 m and at wind speeds ranging from 1.95 to 

10.66 m s"1. They observed that the wave-induced velocity decays faster with height at 

higher wind speeds. They observed that at different fetches, the wave-induced velocity 

has same order of magnitude as the wave height and argued that the wave-induced 

velocity is independent of the fetch. 

1.2.4. Measurements within crest-trough region 

The literature shows that most of the measurements were taken at heights greater 

than the wave amplitude. Thus, it is difficult to capture the dynamics within the 

fluctuating region i.e. bounded between the crest and trough of a wave. To capture the 

flow dynamics within the crest-trough region, some researchers had used wave-follower 

system and conducted measurements at a constant height from the fluctuating water 

surface. Kawamura and Toba (1988) mounted hot-wire anemometer over the wave 

follower system and measured the airside velocity fluctuations at a height of 6.9 mm 

above the wind waves. The experiments were performed at a fetch of 6 m and at a wind 

speed of 5.75 m s"1. They intermittently observed a sudden increase in the magnitudes of 

velocity fluctuations on the leeward side of the crest and attributed this change to the 
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existence of the separation bubble. They reported high shear region on the leeward side of 

the crest that was extended to the wave crest. Papadimitrakis et al. (1986a) investigated 

airside velocity field above mechanically-generated water waves of amplitude 2.54 cm. 

The measurements were taken at heights of 7.5 mm and above the fluctuating water 

surface using hot-film anemometer that was mounted on the wave follower system. The 

experiments were performed at a fetch of 13 m and at wind speeds ranging from 1.4 to 4 

m s"1. They observed a constant layer of turbulent Reynolds stress in the near surface 

region, whereas a decreasing trend was reported in the magnitudes of wave-induced 

Reynolds stress with height. They also observed positive and negative wave-induced 

Reynolds stress within the boundary layer and attributed this sign change to the upward 

and downward transfer of momentum. Hsu and Hsu (1983) mounted hot-film probe on a 

wave-follower to measure air velocities above mechanically-generated water waves in the 

presence of wind. They measured velocities at heights greater than or equal to 1.6 cm 

above the fluctuating water surface in the presence of 2.67 cm amplitude waves at wind 

speeds ranging from 1.37 to 2.92 m s'1. They observed that the structure of wave-induced 

velocity field strongly depends on the parameter UJc, where £/«, is the wind speed. They 

argued that in the near surface region, the wave-induced Reynolds stress is produced from 

the stretching and vertical oscillation of the turbulent velocity with the waves. The wave 

follower system could provide quantitative measurements at a location within the crest-

trough region. 
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1.3. PIV measurements 

Reul et al. (1999) conducted experiments at a fetch of 5 m at a wind speed of 6 m 

s~V They observed separated flow region that started at a point close to the crest and 

reattached on the windward face of the following wave. They concluded that the 

dynamics of the separation region is similar to that of the flow over a backward facing 

step. Veron et al. (2007) presented a snap shot of the instantaneous airside velocity field, 

which shows the flow separation over a wind generated water wave. The experiments 

were performed at a fetch of 21.1 m and at a wind speed of 5.7 m s'1. They computed the 

tangential stress at a height of 0.154 mm from the fluctuating water surface and reported 

that the maximum tangential stress occurred at the crest which approached zero within the 

separation region and then gradually increased to its maximum value at the next crest. 

They argued that at wave crest the tangential stress is the dominant component of the total 

wind stress. Reul et al. (2008) conducted experiments at a fetch of 4.5 m and at wind 

speeds ranging from 3.5 to 10 m s"1. They presented instantaneous snapshots of velocity, 

vorticity, and streamline patterns at different stages of the wave-breaking process and 

observed airflow separation downwind of unsteady breaking crests and argued that the 

dynamics of the separated flow is correlated with the instantaneous geometry of the wave 

crest. They also observed strong patches of clockwise vorticity, dominant within the 

separated flow region downwind of the crest. They further argued that the vorticity field 

within the separated airflow region demonstrates the mechanism of re-entrainment of 

stress bearing fluid from the outer part of the shear layer to the interface. Reul et al. 

(1999) also evaluated the tangential stress, within a distance of 1.2 mm above the 
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mechanically-generated water waves. They compared the tangential stress of two 

instantaneous PIV velocity fields, for separated and non-separated flows. They reported 

that the tangential stress over the non-separated flow grows progressively on the 

windward side from its minimum value at the trough to the maximum value at the crest. 

Whereas, over the separated flow, they observed that the tangential stress decreased 

significantly within the separation region and then increased progressively to its 

maximum value at the next crest. It should be noted that Reul et al. (2008) and Veron et 

al. (2007) estimated the tangential stress from single instantaneous velocity field for the 

separated or non-separated condition. In addition, none of these studies were focused on 

the investigation of the wave-induced motions and their influence on the air-water 

transport processes which is mainly attributed to the challenges in extracting the wave-

induced velocity component from the instantaneous velocity. Furthermore, the previous 

studies that measured the wave-induced velocity component using point measurement 

techniques were not able to fully capture the wave-induced motions over the spatial 

extent of the wave and thus, the influence of waves on the transport of momentum and 

energy is not well explored. 

1.4. Motivation and Objectives 

1.4.1. Problem Identification (Motivation) 

Based on the literature review in the previous section, the shortcomings of the 

previous studies can be summarized as: 
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• Not enough experimental work was conducted to investigate the effect of airside 

turbulence on the complex mechanism of the surface wave generation. 

• Climate models (that are used to calculate the global heat and mass transfer) are 

based on the bulk formulae in which air properties are measured at a height of 

10 m above the water surface. The assumption that the air properties at 10 m 

height are good representative of the properties at the surface is questionable and 

leads to inaccurate flux estimates. 

• As a result of the experimental difficulties, the majority of the laboratory 

experiments were conducted at a height ranging from 1 cm to 20 cm above the 

fluctuating water surface. Due to the coupling between wind and waves, the 

region immediately above the water surface plays a crucial role in controlling the 

fluxes of momentum, heat and mass. A detailed investigation of the flow structure 

in this region is vital in order to obtain the understanding of the fundamental 

transport processes. 

• The empirical relations developed to estimate the turbulent characteristics in the 

near wall region are often used to estimate the desired turbulent quantities over the 

water surface. Whereas, qualitative visual investigations and some of the recent 

airside studies conducted within few millimeters from the interface show that the 

airflow adjacent to the water surface is significantly different from that over a 

solid wall. 

• Due to the unavailability of the accurate measurements close to the surface the 

theoretical models available in the literature show substantial disagreement. For 
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improved modeling of wind-wave interactions, additional experimental data 

especially in the near surface region is necessary. 

Most of the researchers have used point measurement techniques in their 

measurements. Point measurement techniques can provide a time history of the 

flow but it is not capable of providing instantaneous spatial structure of the flow. 

In addition, this technique cannot be used for measurements in the region between 

the wave crest and trough. 

To-date no study reported the mean and turbulent properties within the crest-

trough region, specifically in the separation zone, and the influence of airflow 

separation on the process of momentum transfer across the air-water interface. 

Some of the field measurements speculated that the upward momentum transfer 

occurs from wave to the wind. They attributed that the upward momentum transfer 

is associated with fully developed waves. None of the laboratory or field studies 

reported direct measurement of the upward momentum transfer. 

1.4.2. Objectives 

As highlighted in the previous section, due to the complexity of the flow field, the 

mechanism of momentum, heat and mass exchange between air and water in the presence 

of wind is not well understood. Without deep insight into the turbulent structure of the 

flow, better understanding of the momentum transfer mechanism is difficult to achieve. 

With the availability of the state-of-art PIV measurement system, most of the difficulties 

associated with previous experimental studies will be overcome. This research is a step 
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towards the improved understanding of this complex flow field. Especially the 

investigation of the airflow structure into the region immediately above the fluctuating 

water surface which to the best of our knowledge, is the first attempt to study the detailed 

flow characteristics in this region. The specific objectives of the research are: 

• Quantitative determination of the instantaneous and mean flow characteristics 

over wind generated water waves, especially within the crest-trough region. 

• Detailed investigation of various turbulent and wave-induce properties in the close 

vicinity of the wave and their variation with respect to the phase and height. 

• To investigate the impact of flow separation on the near-surface flow behaviour. 

• Quantitative comparison of mean and turbulent characteristics over wind-sheared 

water surface with that over smooth and wavy walls. 

1.5. Thesis Layout 

In this dissertation, the research was focused on the study of the airflow structure 

over wind generated water waves, especially within the crest-trough region. In Chapter 1, 

a general introduction was provided, followed by the literature review and the 

motivations for this research. A complete description of the experimental setup and 

various data processing techniques were provided in Chapter 2. In Chapter 3, the 

instantaneous, mean and turbulent flow characteristics were described immediately above 

the wind-sheared water surface in the presence and absence of the surface water waves. In 

Chapter 4, various turbulent and wave-induced properties were described as a function of 

phase and height in the immediate vicinity of the waves. In Chapter 5, quantitative 
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comparison of different flow properties for the separated and non-separated flows over 

wind generated water waves was presented. In Chapter 6, detailed quantitative 

comparison was presented between the airflow structure immediately over the water and 

solid surfaces. In Chapter 7, the main results of the present research are summarized 

along with recommendations for future work. 
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CHAPTER 2 

Experimental setup and methods 

The experiments were conducted in a wind-wave flume 0.45 m wide, 0.9 m high 

and 3 m long. The sidewalls and the bottom of the flume were made of % in. and 1/2 in. 

thick glass sheets, respectively. The top was covered by a removable
 lA in. thick Plexiglas 

sheet. Since, the present study includes the comparison of airflow structure over the water 

surface with that over the smooth and wavy walls. Therefore, the experiments were 

carried out in the same wind wave flume for three different configurations. In the first 

configuration, the tank was filled with clean tap water, and the mean water depth was 

maintained at 0.45 m (see figure 2.1a). In the second configuration, the lower half of the 

flume (i.e. 0.45 m from the bottom floor) was covered with a 5 mm thick hardboard 

panel, which was considered as a smooth wall (see figure 2.1b). In the third configuration, 

a corrugated plastic sheet with wave height of 1.5 cm was place on the hardboard panel, 

which was considered as the wavy solid wall. At the wind speed of 4.4 m s"1, the 

significant wave height of water waves was about 1 cm with the maximum wave height 

of about 1.6 cm. Thus, the wave heights at the solid and water surfaces are quite 

comparable. For all three configurations, the measurements were made at same wind 

speeds ranging from 1.5 m s"1 to 4.4 m s"1, and at the same measurement location (2.1 m 

from the inlet of the test section). The air was introduced in the upper half portion by an 

axial fan installed at the upstream end of the flume. 
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The fan was driven by a 1.5 hp electric motor equipped with a variable frequency 

drive to vary the air speed from 0 to 5 m s'1. A honeycomb of fine square tubes is installed 

downstream of the fan and upstream of the flume to allow uniform air flow into the 

flume. The flume is completely sealed and the air was re-circulated via an aluminum duct 

(see figure 2.1). The diameter of the recirculation duct is 30 cm, which is sufficiently 

large to maintain zero pressure drift at the suction of the fan. For the first configuration, a 

horsehair beach was placed at the downstream end of the flume to absorb wave energy. 

Particle image velocimetry (PIV) was used to measure two-dimensional 

instantaneous airside velocity fields in a plane parallel to the airflow along the centerline 

of the flume. The PIV setup is shown in figure 2.2. A 25 mJ Nd:YAG laser was used as 

the light source, a four-channel digital delay generator (555-4C, Berkeley Nucleonics 

Corporation, San Rafael CA) was used to control the timing of the laser light pulses, and 

a CCD camera with the resolution of 1600 x 1200 pixels was used to image the flow 

field. The camera was mounted in the vertical position to allow measurements to a greater 

height. That is, the images were acquired with the dimensions of 1200 pixels in horizontal 

and 1600 pixels in vertical, with respect to the flow field. The fields of view of the 

camera for the three configurations are presented in Table 2.1. For the first configuration, 

the vertical position of the camera was set in a way that the lower edge of the image was 

located 1.8 cm below the interface to ensure that in all configurations the interface was 

clearly visible in all PIV images, at all wind speeds. For the third configuration, the field 

of view of the camera was set in a way to capture two complete wave profiles of the solid 

wall. 
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Figure 2.2: Schematic of the experimental setup and instrumentation 

The camera was connected to a PC equipped with a frame grabber (DVR Express, 

10 Industries, London, ON, Canada) that acquires 8-bit images at a rate of 30 Hz. For the 

first configuration, the air was seeded with olive oil mist of mean diameter of 1 um, 

whereas for the second and third configurations the air was seeded with BIS (2-

ETHYLHEXYL) SEBACATE mist with the mean diameter of 0.5 um. The reason for 

switching to SEBACATE was due to its better performance in wind tunnel PIV 

measurements. An Aerosol generator (Lavison GmbH) was used to produce the mist. The 

mist was introduced into the flow upstream of the fan to allow effective mixing into the 

air. For each experimental run the fan was started at the given rpm. Approximately 20 
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minutes later the seed particles were injected into the air stream. The data acquisition was 

started approximately 10 minutes after injecting the seed to ensure homogenous seed 

distribution throughout the air loop. The sequence of experiments was according to the 

configuration. That is, the first set of experiments was conducted with the first 

configuration i.e. above air-water interface, the second set of experiments with the second 

configuration i.e. above the smooth wall, and the third set of experiments with the third 

configuration i.e. the wavy solid wall. For each experimental run (i.e. each configuration 

at a given wind speed), 9000 images were acquired at a rate of 30 Hz. The reference wind 

speeds used in the present study were based on the average free-stream velocities at a 

distance of 33 cm above the undisturbed water or solid surface. For this purpose, the 

camera was moved vertically up in the free-stream region and PIV images were acquired 

at all given wind speeds. In order to keep reasonable particle shifts, the time separation 

between the two images of an image pair was varied from 0.5 ms at the lowest wind 

speed to 0.05 ms at the highest wind speed. The velocity fields were obtained by cross-

correlating the interrogation region in the first image with the corresponding search 

region in the second image of an image pair. The size of the interrogation region was set 

equal to 32 x 32 pixels and the size of the search region was set equal to 64 x 64 pixels. A 

50% window overlap was used in order to increase the resolution of the velocity field to 

16 x 16 pixels. The spatial resolution of the velocity field was different for each 

configuration due to the difference in the camera's field of view. The spatial resolution of 

the velocity field of each configuration is given in Table 2.1. 
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TABLE 2.1: Camera field of view, spatial resolution of the velocity field and uncertainty 
in velocity measurements for the three configurations 

Configuration Camera field of view 

„ .̂ , , ,.. _ Uncertainty in 
Spatial resolution of , . J 

the velocity field 
velocity 

measurements 

Flow over water surface 10.7 cm x 8 cm 1.06 mm x 1.06 mm 7% 

Flow over smooth wall 10.4 cm x 7.8 cm 1.03 mm x 1.03 mm 5% 

Flow over wavy wall 16 cm x 12.2 cm 1.63 mm x 1.63 mm 6% 

2.1. Interface detection 

As mentioned in the previous section, for the measurements in the near-surface 

region, the camera position was set in a way that for all three configurations, the interface 

was visible in all PIV images. To obtain reliable estimates of the near surface velocity, it 

was necessary to locate the interface position accurately. For the airflow over the water 

surface, the contrast between the air and water was improved by dissolving dark blue 

food color in the water prior to the experiments. This resulted in the uniform gray-scale 

value in the waterside regions of the PIV images, which facilitated the implementation of 

an image processing technique to locate the air-water interface. A raw PIV image taken at 

a wind speed of 3.7 m s"1 is shown in figure 2.3a. The dark waterside region with almost 

uniform gray-scale values is also visible in the image. 
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For the airflow over the water surface, at wind speeds of 1.5, 2.1 and 3.0 m s"1, the 

amplitude of water ripples was so small that the air-water interface appeared as a smooth 

horizontal surface in the PIV images and the location of the interface was a relatively 

easy task. To locate the interface position in each of these datasets, 10 images were 

selected from the beginning and end of the dataset. In each of the selected images, the 

interface position was recorded in the right, left and central regions of the image by visual 

detection. The interface positions recorded in each image were then compared. It was 

found that the vertical variation in the interface position from the beginning to the end of 

the data acquisition (i.e. over five minute duration) and from left to right was on average 

within 2 pixels (130 um). As a conservative estimate, the highest position of the interface 

from the sample images was taken as the interface location for all images in the given 

dataset. As the solid smooth wall was fixed, the same process was repeated to detect the 

interface location for the second configuration as well. 

For the airflow over the water surface, waves were observed in the PIV images 

acquired at wind speeds of 3.7 and 4.4 m s"'(see figure 2.3a). In order to obtain accurate 

estimates of the near surface velocity fields, it was necessary to detect the exact locations 

of the fluctuating water surface in the PIV images. A threshold-based image processing 

scheme similar to that reported by Siddiqui et al. (2001) was developed to detect and 

locate the fluctuating water surface in PIV images. This technique was based on the 

difference in the gray-scale values in the air and water sides, where the former has higher 

gray-scale values due to the presence of illuminating seed particles. Due to the Gaussian 

distribution of the light sheet intensity, the gray-scale values near the right and left edges 

in all images were relatively lower, which resulted in a low contrast between the airside 
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and waterside gray-scale values. The contrast was adjusted in these regions prior to the 

implementation of the detection scheme. In the detection scheme, a threshold was applied 

to segment the image. The mean gray-scale value on the waterside was selected as the 

threshold. All pixels with gray-scale values greater than the threshold were assigned l's 

(i.e. white) and all pixels less than or equal to the threshold were assigned O's (i.e. black). 

A series of morphological operations were performed next on the binary image. The 

sequence of these operations is as follows. A dilation operation with a mask of 2 x 2 

pixels was performed, which was followed by a flood-fill operation, to remove tiny black 

objects appeared on the airside of the binary image. Finally, a dilation operation followed 

by an erosion operation was performed with a mask of 6 x 6 pixels. Figure 2.3b shows the 

binary image obtained after applying the detection scheme to the image shown in figure 

2.3a. Once the binary image was obtained, the air-water interface was detected based on 

the jump in the binary values at the interface. The horizontal and vertical coordinates at 

all interface locations in each image were recorded. To check the accuracy of the 

detection scheme, each detected surface profile was plotted over the corresponding 

original PIV image for visual inspection (i.e. 9000 profiles at each wind speed were 

checked visually). It was found that in 90% of the images, the detected profile accurately 

followed the actual interface throughout the image. In 10% of the images, small 

deviations were observed sporadically at one or two locations in an image, which was 

corrected by manual editing. To quantify the accuracy of the detection scheme, the 

surface profile was plotted over the PIV image. The image was magnified and the 

maximum deviation between the actual and computed water surface was recorded. This 

process was repeated on 50 images taking from the beginning and end of each dataset. 
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The uncertainty in locating the water surface was estimated to be within + 250 um. The 

surface profile computed from figure 2.3b is shown plotted over the PIV image in 

figure 2.3c. 

The surface profile data were used to compute wave properties. For this purpose, 

time series were extracted at 72 spatial locations along the profile. Dominant wave 

frequency, significant wave height (i.e. the average height of the highest one-third waves) 

and the RMS wave height were computed from each time series and then averaged. These 

values at 3.7 and 4.4 m s"1 wind speeds are presented in Table 2.2. As mentioned earlier, 

mist was used as the tracer particles. Although the volumetric concentration of the mist 

was very low, but a small fraction of the mist was deposited on the water surface during 

the experiments, which acted as a surfactant and modified the hydrodynamic boundary 

condition. This would tend to reduce the wave amplitude and dampen the small-scale 

capillary waves. 

TABLE 2.2: Summary of wave characteristics computed from the wave profile data at the 
two highest wind speeds. 

„.. , RMS Significant Dominant ^ 
Wind Dominant 

, wave wave wave , , 
speed , . , , . , „ wavelength 

i. height height frequency 
(ms ) ° ; (cm) 

(cm) (cm) (Hz) 

3.7 0.27 0.59 5 5.9 

4.4 0.46 0.974 4.2 9.0 
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For the third configuration, the wavy wall was detected in one of the raw PIV 

image, taken at wind speed of 4.4 m s'1, using the scheme similar to the one used to detect 

the fluctuating air-water interface. As the solid wavy wall was fixed, the same surface 

profile was used for the entire dataset. 

2.2. Velocity field computation 

For the two data sets recorded over the wavy water surface at wind speeds of 3.7 

and 4.4 m s"1, the procedure for the computation of the velocity fields is as follows. First 

the velocity field was computed by cross-correlating the raw PIV image pairs. Since there 

were no seed particles on the waterside, in the interrogations windows that contain 

waterside region, false velocity vectors were computed. In the next step, the 

corresponding surface profile data was imported in each velocity field and all velocity 

vectors below the water surface were removed. 

For the third configuration, first the raw images were preprocessed before velocity 

computation. In the preprocessing step, the surface profile was imported in each of the 

image and the portion of the images below the solid wave was assigned a constant gray 

scale value equal to the mean gray-scale value of the background. In the present study, 

this value was set equal to 100. The reason for this was to increase the accuracy of the 

velocity vectors computed in the region immediately above the solid surface. The velocity 

fields were computed by cross correlating these preprocessed image pairs. The computed 

velocity fields over the solid wave also contain false velocity vectors below the interface. 

Therefore, the computed surface profile was imported in each of the velocity field and all 
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of the velocity vectors below the solid wave were removed. For the flow over the smooth 

air-water and air-solid interfaces, the raw PIV images were also preprocessed before 

velocity computation. In the preprocessing step, the computed co-ordinates of interface 

were imported in each of the raw PIV image and the portion of the images below the 

interface was chopped off, leaving only the airside portion in each image. The velocity 

fields were obtained by cross correlating these preprocessed image pairs. 

The grid points nearest to the interface were located between 0 and 1 mm from the 

water waves and between 0 and 1.6 from the solid waves, in the vertical directions. Thus, 

on average, the nearest velocity vectors were located at a height of 0.5 and 0.8 mm from 

the water and solid waves, respectively. Whereas, for the flow over the smooth solid or 

water surface, the nearest grid point was located at a height of 2 mm from the interface. 

Finally, for all three configurations, the spurious velocity vectors within the airside 

velocity field were identified and replaced with the local median value (i.e. the median of 

the eight neighboring values) using the technique described in Siddiqui et al. (2001). 

Typically, less than 0.5% of the velocity vectors were found spurious in the velocity field. 

Figure 2.3d shows the corrected instantaneous airside velocity field obtained from the 

image pair in figure 2.3a. The detected surface profile is also plotted in the figure. 

The total error in the PIV velocity measurements is the sum of errors due to velocity 

gradients, particle density, particle diameter, out-of-plane motion, dynamic range, peak 

locking and AGW interpolation (Cowen and Monismith 1997). For the present conditions 

these errors were computed by using results from Cowen and Monismith (1997) and 

Prasad et al. (1992). 
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.(b) 

Wind 

8 cm 

(d) 

3.7 m / s 

8 cm 

10.7 cm 

Figure 2.3: (a) A raw PIV image of dimensions 8.0 x 10.7 cm at a wind speed 3.7 m s~'; 
(b) Binary image obtained after applying the detection scheme to the PIV image in (a); 

(c) PIV image with the computed surface wave profile; (d) Instantaneous airside velocity 
field obtained from the corresponding PIV image pair 
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The uncertainty in velocity measurements based on these errors is presented in 

Table 2.1 for all three configurations. The complete error analysis is provided in 

Appendix I. 

In order to compute the mean velocity, the measured instantaneous PIV velocity 

fields were transformed from fixed Eulerian coordinate system to a wave-following 

Eulerian system using the technique described in Hsu et al. (1981). In this transformation, 

the velocity vectors were arranged with reference to the water surface using a new 

vertical coordinate £, such that t, = 0 at the instantaneous water surface and the positive 

^-axis pointing upward. Note that the horizontal coordinate remains the same. This 

coordinate transformation scheme was also applied to the instantaneous velocity fields 

measured above the solid waves. The mean velocity field was computed by averaging the 

velocity data temporally at each grid point. 

PIV measurements provide instantaneous velocity fields. Conventionally, the 

instantaneous velocity comprised of two components; mean and turbulent. However, in 

the presence of waves, a third component is also induced which is known as the wave-

induced velocity (Hussain and Reynolds 1970). Thus, the instantaneous velocity over the 

waves can be decomposed as, 

u(x,y,t) = u(x,y) + u(x,y,t) + u'(x,y,t) (2.1) 

where, u is the instantaneous velocity, u is the time-averaged velocity, u is the wave-

induced velocity, and w'is the turbulent velocity. As described in the introduction section, 

for the flow over the water waves, the wave induced component of the instantaneous 
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velocity plays significant role in the momentum exchange across the air-water interface. 

Whereas, for the flow over the solid waves, the influence of wave induced variation to 

turbulent velocity fluctuations is negligible (Frederick and Hanratty 1988). Furthermore 

spatial averaging of different turbulent properties nullified the wave induced effects of 

stationary waves (Perry et al. 1987). As stated above, in the first configuration waves 

were observed only at wind speeds of 3.7 and 4.4 m s"1, therefore for these two wind 

speeds, both the wave-induced and turbulent velocities were computed at each grid point, 

using a novel technique described below. However, for the flow over smooth water 

surface and for the second and third configurations, the turbulent velocity was computed 

by subtracting the mean velocity from the instantaneous velocity. The following section 

describes the technique used to compute the wave-induced and turbulent velocity fields, 

using the instantaneous velocity fields and surface profiles. 

2.3. Phase Computation 

As mentioned above, the velocity vectors in the computed velocity fields are 1.06 

mm (16 pixels) apart, in the horizontal and vertical directions. Phase averaging of the 

velocity data will only be meaningful if there is sufficient number of data points along a 

given wave. Therefore, prior to phase averaging, the wave profile data was spatially low-

pass filtered with a cutoff wavelength of 8.5 mm to eliminate small waves that have less 

than eight velocity vectors along the wavelength. That is, at least one velocity vector for 

every 45 degree phase change. In order to compute the phase at each pixel along the 

measured surface wave profiles, a given wave is divided into four segments, 
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A — Ll + L2 + L2 + L4 (2.2) 

Where, X is the wave length and!,, L2, L2, L4 represent different segments of the wave 

(see figure 2.4). The local maxima were defined as the wave crests with a phase of zero 

degree and the local minima were defined as the wave troughs with a phase of 180 

degree. Zero crossings were defined as locations where the wave profile crosses the mean 

water level. Zero crossings were assigned either a phase of -90 degree or +90 degree 

depending on whether they were located on the windward or leeward face of the wave, 

respectively. 

-90 

L L- > 
^ ^ ^ r 

Wind 
3 

k 

0 90 
Phase (deg.) 

180 270 

Figure 2.4: Schematic showing four segments L/, L?, L3 and L4 of a wave that are used for 
the phase-averaging scheme 
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As mentioned earlier, the field of view of the PIV images were set 8 cm horizontal 

and 10.7 cm vertical, therefore the waves with wavelength greater than 8 cm were only 

partially visible within the image. In the images where the entire wave was visible, phase 

computation along the wave was straightforward. The images in which partial wave was 

visible, computation of the phase was quite challenging. An algorithm was developed to 

compute the phase at each pixel using the surface wave profile data. It should be noted 

that in the PIV technique, two successive images (an image pair) were used to compute a 

velocity field. Since the time delay between the two images of an image pair was very 

small (less than 75 us), there was no significant difference in the position and shape of the 

surface profiles in both images of the image pair. Thus, the mean profile of each image 

pair was used for the phase computation. 

In the first step of this algorithm, all surface wave profiles were categorized based 

on the number of zero-crossing. The number of zero crossings appeared in a wave profile 

depend on the wavelength and the position of the given wave with respect to the camera 

field of view (FOV). Wave profiles with more than three zero crossings in an image were 

excluded from the phase computation, because these profiles typically comprised of 

waves with wavelengths significantly smaller than the dominant wave. At wind speeds of 

3.7 and 4.4 m s"1, the wave profiles having more than three zero crossing were found less 

than 8% and 2%, respectively. 

In each profile, the locations of all zero crossings and the locations of wave crest 

or trough that appear in the profile were recorded. Next the phase change per pixel for 

any of the four segments fully visible in the profile was computed by dividing 90 degree 

35 



by the length (in pixels) of the corresponding segment. This value of phase change per 

pixel was then used to compute the phase corresponding to each pixel of the segment. The 

crest or trough location, and the zero crossing were used as the reference points for 

computing the phase. The segments that were partially visible in the profiles were sub-

divided into two categories. The first category comprised of the profiles in which the 

segments were chopped off by the edge(s) of the image before reaching their respective 

zero crossing (see segment Li in figure 2.5a). The second category comprised of the 

profiles in which the segments were chopped off by the edge(s) of the image before 

reaching their respective crest or trough (see segment LA in figure 2.5a). For the first 

category, the angle (0) at the end of the segment was computed using the right-angle 

triangle as shown in figure 2.5a, and the phase change per pixel was computed by 

dividing (90-#) degrees with the length of the partially visible portion of the 

corresponding segment. The segments that fell under the second category were excluded 

from the further analysis. These excluded segments were only 4% and 7% of the total 

segments at the wind speeds of 3.7 and 4.4 m s"1, respectively. 

The technique is explained based on the three cases discussed below. The first 

case is the one in which a given profile has one zero crossing. Only one zero crossing in a 

profile indicates that either the leeward or the windward face of the wave is prominent 

within the image. Figure 2.5a shows a wave profile with one zero crossing, in which the 

windward face of the wave is prominent. The zero crossing is assigned a phase of -90 

degree. The segment Li is fully visible in the figure therefore the phase change per pixel 

for this segment is computed by dividing 90 degree by the length Li. The phase at each 

pixel in this segment is varied from -90 to 0. The segments L2 and L4 are partially visible. 
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The segment L2 falls under the first category and the phase per pixel for this segment is 

computed using the method described above. The segment L4 falls under the second 

category and therefore excluded from the further analysis. 

The wave profile with two zero crossings shows either a complete wave crest or 

trough in the image. Figure 2.5b shows a wave with two zero crossings. The segments Li 

and L2 are fully visible in the plot therefore, the phase change per pixel and subsequent 

phase at each pixel is computed in both segments. The segments L3 and L4 are partially 

visible and fall under the second category therefore, excluded from the further analysis. 

Profiles with three zero crossings contain complete wave crest and wave trough 

regions. Figure 2.5c shows a wave profile with three zero crossings, which contain all 

four segments fully visible. The phase change per pixel was computed for each of these 

segments. Figure 2.5c also shows partially visible segments Li and L4 that fall under the 

second category. There were some profiles with no zero crossings. These profiles have 

either the crest or trough region of a wave within the FOV. These waves have wavelength 

greater than 16 cm. These profiles fall under the first category and the phase per pixel was 

computed using the method described above. At wind speeds of 3.7 and 4.4 m s"1, the 

wave profiles with no zero crossing were found to be 0.6% and 1.5%, respectively. 

The number of profiles in which the phase was computed (fully or partially) is 

presented in Table 2.3. The values indicate that at wind speeds of 3.7 and 4.4 m s"1, the 

phase was computed in 88% and 96% of the total wave profiles, respectively. 
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Figure 2.5: Surface wave profiles at 

a wind speed of 4.4 m s" showing 

different categories; (a) One zero 

crossing, (b) Two zero crossings, (c) 
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TABLE 2.3. Summary of number of wave profiles (JV, total number of wave profiles, 

Nzc_x number of wave profiles having one zero crossing, Nzc_2 number of wave profiles 

having two zero crossing, Nzc__3 number of wave profiles having three zero crossing, 

Nzc_m number of wave profiles having more than three zero crossing, Nzc_0 number of 

wave profiles having no zero crossing N h number of wave profiles used to compute the 

phase averaged properties. 

Ux(ms]) 3.7 4.4 

N, 

* * - > 

N z c „ 2 

#«-3 

N 
zc~-m 

Nzc.0 

Nph 

4500 

573 

2483 

861 

362 

27 

3942 

4500 

2142 

1924 

183 

84 

67 

4314 

At wind speeds of 3.7 and 4.4 m s" , most of the wave profiles contain one or two 

zero crossing with the wavelength of about 6.7 cm and 9.5 cm, respectively, which is 

close to the dominant wave length (see Table 2.2). In order to show that the conditionally 

sampled profiles provide accurate representation of the measured wave fields, the 

probability density functions (PDF) of the surface displacement (n) for the conditionally 

sampled profiles and all profiles were computed. The results are shown in figure 2.6. 
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Figure 2.6: Probability density function (PDF) of conditionally sampled wave profiles 

(dashed line) and all wave profiles (solid lines), (a) at wind speed of 3.7 m s~', (b) at wind 

speed of 4.4 ms' 
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The plots show that at both wind speeds, the PDF of the conditionally sampled 

data is almost identical to the PDF of the entire data except in a narrow band around n, = 

0, which is due to the low-pass filtering of the conditionally sampled data. These results 

demonstrate that at a given wind speed, the profiles used for the phase analysis represent 

the wave population at that wind speed. 

2.4. Phase Averaging and Velocity Decomposition 

As described earlier, in PIV velocity fields, the velocity vectors were computed at 

fixed grid points which were 1.06 mm (16 pixels) apart, in the horizontal and vertical 

directions. For each wave profile, the phase at each grid point was computed and then the 

velocity data and wave amplitudes were binned according to the phase and height. The 

bin size was set equal to 5°. The phase-averaged values are then obtained by averaging 

the data in each bin at each height. The phase-averaged velocity field at a wind speed of 

4.4 m s"1 is presented in figure 2.7 along with the phase-averaged wave amplitude. The 

plot shows that the magnitude of the phase-averaged velocity (u) at any given phase 

increased with the distance from the water surface. The plot also shows that in the near 

surface region, at a given distance from the water surface, (u) is maximum at the wave 

crest which decreased towards the trough. It is also observed that in the near surface 

region, the magnitude of (u) is higher on the windward face compared to the leeward 

face. This issue will be discussed later. 

41 



Figure 2.8 shows a spatial series of the instantaneous velocity data along with the 

mean velocity and phase-averaged velocity profile at a height of 5 mm above the water 

surface. The plot clearly shows the decomposition scheme used to separate the turbulent 

and wave-induced velocity components from the instantaneous velocity. As shown in the 

figure, the turbulent velocity is computed at each grid point, as the difference between the 

instantaneous velocity and the corresponding phase averaged velocity (Hsu and Hsu 

1983, Mastenbroek et al. 1996). That is, 

u' (x, y, t) = u(x, y, t)- < u(x, y) > (2.3) 

The wave-induced velocity is computed at each grid point in a two dimensional spatial 

plane as: 

u(x, y, t) - u(x, y, t) - u(x, y) -u\x, y, t) (2.4) 

An instantaneous wave-induced velocity fields at a wind speed of 4.4 m s"1 is plotted in 

figure 2.9. 
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Figure 2.7: Phase-averaged velocity field at a wind speed of 4.4 m s~ . The phase-
averaged wave amplitude at 4.4 m s~ is also plotted, y is the distance from the mean 

water level 
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Figure 2.8: Schematic diagram illustrating the procedure to compute wave induced 
velocity 
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-1 

Figure 2.9: An instantaneous wave induced velocity field at a wind speed of 4.4 m s~ 
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CHAPTER 3 

Flow characteristics over wind-sheared water surface 

In this chapter the instantaneous, mean and turbulent flow characteristics are 

described immediately above the wind-sheared water surface in the presence and absence 

of surface water waves. 

3.1. Instantaneous Velocity and vorticity Fields 

The high resolution PIV data in the present study is capable of capturing small-

scale structures within and above the crest-trough region, which is very crucial to improve 

our understanding of the dynamical processes in this region. Figure 3.1 shows a series of 

three consecutive instantaneous velocity fields at a wind speed of 4.4 m s"1. The time 

interval between the successive velocity fields is 1/15 s, and the total time spanned by 

these three velocity fields is equal to 1/5 s. During this time period, two consecutives 

wave crests appeared in the field of view of the camera. A wave crest within the camera 

field of view is shown in figure 3.1a. On the windward face of the wave, a burst is 

observed that is ejected from the surface. The bursting process is a characteristic feature 

of wall bounded flows. Willmarth and Lu (1972) studied the bursting process above a 

solid wall and described it as follows. The bursting process begins with a lifting motion of 

a streak of low speed fluid from a region near the solid wall. The burst rises upward until 

the streamwise velocity component starts to increase and eventually the burst merges into 

the free stream flow. During breakup of the burst, significant chaotic motion occurs in the 

fluid. The region occupied by the burst is long and narrow, and appears to grow as it 
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proceeds downstream. The burst observed in figure 3.1a is qualitatively similar to that 

described over a solid wall, indicating that the bursting process similar to that over a solid 

wall occurs above the air-water interface in the presence of wind. Komori et al. (1993) 

proposed bursting process on the windward side of the wave. They argued that the 

bursting process above the wind-sheared air-water interface would be different from that 

observed near the solid wall as the intermittent bursts are always observed on the 

windward side of the wave. Reul et al. (2008) reported low speed burst only at the 

reattachment point of the separation bubble. In the present study, however, the bursting is 

observed mostly on the windward side of the wave crest. Figure 3.1a also shows the flow 

separation on the leeward side of the wave. 

In figure 3.1b, the crest is propagated downwind and the successive wave trough 

is within the field of view. The flow separation due to the wave crest upwind of the given 

wave trough (i.e. outside the camera field of view on the left side) is visible in the plot. 

This separated flow is attached downwind of the wave trough. The wave crest upwind of 

the camera field of view in figure 3.1b is propagated into the camera field of view in 

figure 3.1c. The flow separation is clearly visible in the plot. Reul et al. (2008) also 

reported that the flow separation systematically occurs downwind of the wave. They 

argued that the flow separation is a strongly unsteady phenomenon and requires a 

maximum local wave slope of 35° which is in agreement with the critical slope for the 

airflow separation of 0.6 reported by Kawai (1982). Another interesting feature observed 

in the plot is the sweeping process in the region where the flow re-attaches. This 

sweeping process is also a characteristic feature of wall bounded flows (Willmarth and 

Lu, 1972). When bursts are ejected from the wall, the sweeping process replenishes the 

mass of fluid. 

46 



, . •> I 1
 I 

[ i , . 

1
 

. 

• 

1
 

1
 

, 

• 1 1
 

1
 

, 

1
 I \ 

. . , 

1
 

. 
I 

. 
• 

. 
• 1
 

• 

1
 

1
 • 

E
 

u
 

o
 

i 
\ t 

t 
t 

t 
t 

t 

ill! 
t 

t 
\ 

t 
t 

\ 
t 

t 
t 

\ \ \ 
\
\
\ 

\ \ \ \ 
I 

I 
\ 

\ 
. 

\ \ \ \ \ \ 
M

 
\ 

\ 
\ 

\ 
\ 

1
 

\ 
\ 

\ 
\ 

\ 
\ 

1
 

I 
M

 
\ 

\ 
\ 

1
 

I 
t 

t 
I \ 

\ 
I 

t 
I 

I 
i 

x
 

\ 

E
 

u
 

0
0

 

\ 
\ 

1
 w

 

\ 
\ \ \ \ \ 

U
M

I
I 

t 

t 
I 

t 
t 

t 
t 

t 
I 

t 
t 

t 
t 

t 
t 

t 
t 

t 
t 

t 
t 

t 
t 

t 
t 

1
 

t 
t 

t 
t 

t t 

t 
t 

\ 
t 

t 
I 

t 
t 

1
 

t 
1

 
1
 

\ \ \ 
\ \ \ 
1
 

t 
X

 
t 

1
 

t 
t 

t 
t 

t 
t 

t 
t 

I 
t 

t 
t 

t 
t 

t 
j 

t 
t 

1
 

t 
1
 

t 
t 

1
 

t 
I 

t 

C
3
 

x
>

 



(c) 

Figure 3.1 (a-c): A sequence of instantaneous velocity fields at a wind speed of 4.4 m s'1 

The present results indicate the occurrence of a similar process above the air-water 

interface. That is, the bursting process (figure 3.1a) is followed by a sweeping process 

(figure 3.1c). Kawamura et al. (1981) found spikes of large negative values in the time 

series of the product of the horizontal and vertical velocity fluctuations (i.e.u(t)xv(t)). 

They attributed these spikes as the ejection and sweep phases of the bursting phenomenon 

which is consistent with the present study. Reul et al. (2008) observed rising burst of low 

speed fluid from the reattachment point of the separation bubble but they did not report 

the sweeping phenomena over the wave. The bursting and sweeping processes similar to 

the present study are also observed in the field. Donelan et al. (2006) reported the 

detachment of airflow over the crests and its reattachement on the windward face under 
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strong wind forcing. The sequence in figure 3.1 provided good qualitative and 

quantitative insight into the flow dynamics in the crest-trough region. The plots show that 

the flow separates off the wave crest creating a separated zone on the leeward side of the 

wave. On the windward side, the flow re-attaches. The bursting and sweeping processes 

were also observed on the windward and leeward sides of the wave. 

The vorticity was computed using the central difference scheme at each grid point 

in the PIV velocity field, except the grid points adjacent to the boundaries, where the 

vorticity was computed using the difference between the two adjacent grid points. Figure 

3.2 shows the contour plots of the vorticity field computed from the corresponding 

velocity fields shown in figure 3.1. The vorticity plots illustrate the kinematics of the flow 

structures observed above the wind waves. Figure 3.2a shows the difference between the 

vorticity structures observed within the attached and the separated flow regions. The 

attached flow contains a thin layer of strong clockwise vortices (thick contours) that can 

be seen along the windward side of the wave crest. The thickness of this vorticity layer is 

approximately 4.5 mm. The maximum magnitude of vorticity is approximately 560 s"1 

close to the water surface that has decreased to 105 s"1 at the upper edge of the layer. This 

vorticity layer indicates the presence of strong shear flow over the water surface. At the 

downwind side of the crest i.e. within the separated flow region, a thick vorticity layer 

was observed. The average magnitude of the vorticity in this layer is approximately 200 s" 

. The plot also shows the ejecting bursts from the windward face of the wave, as was 

observed in figure 3.1a. The plot indicates that the bursts eject in the form of a series of 

counter-rotating vortices. Figure 3.2b shows the vorticity structure over the wave trough. 

As described in figure 3.1b, a prominent separated flow was observed over this wave 

trough. The plot shows that the thickness of the separated layer is comparable to the wave 
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height. The plot also shows that strong localized counter clockwise vortices (thin 

contours) are generated within the separation region that are bounded from the top and 

bottom by the layers of clockwise vortices. The maximum magnitude of the counter-

clockwise vortices within the separated flow is approximately 500 s"1 while, the 

maximum magnitude of clockwise vortices within the top and bottom layers of clockwise 

vortices is approximately 900 s"1 and 400 s"1, respectively. The flow separation process is 

more clearly visible in figure 3.2c where the upwind crest is moved within the camera 

field of view. The plot shows that the vortices are shed from the apex of the crest creating 

a separation region. As expected, the vortices shed from the wave crest are clockwise. 

The vortex dynamics associated with the sweeping process is also visible in the plot. The 

plot shows that the sweeping vortices are predominantly clockwise. The plot also 

indicates that the interaction of sweeping and separated vortices results in the vortex 

breakdown. 

< > 

8 cm 
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(b) 

(c) 

Figure 3.2(a-c): Contour plots of the instantaneous vorticity corresponding to the velocity 
fields shown in figure 3.1. Clockwise vorticity (thick), counterclockwise vorticity (thin) 
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Kawamura and Toba (1988) observed that the air bulges over the waves have a 

horizontal length scale corresponding to the wavelength of the waves. They also 

described the vertical evolution of the low speed air bulges while moving ahead with the 

free stream flow and argued that the source of these low speed air bulges could be the 

separated flow observed downwind of the wave crest. Reul et al. (1999) also observed 

airflow separation immediately downwind of the crest of a mechanically-generated 

breaking wave. They found that the separated flow was bounded by a high shear layer 

dominated by strong patches of clockwise vorticity. They argue that the vorticity field 

within the separated airflow region demonstrates the mechanism of re-entrainment of 

stress bearing fluid from the outer part of the shear layer to the interface. 

Previous studies using point measurement techniques above the crest indicated the 

bursting and sweeping processes based on the spikes in the turbulent velocity data. These 

measurements however, cannot capture the dynamics of these processes. As shown in 

figure 3.1 and 3.2, the PIV technique due to high spatial resolution captures the bursting 

and sweeping motions spatially and temporally. This allows a good perception and deeper 

insight into these processes, which leads to a better understanding of the bursting and 

sweeping mechanisms and their overall impact on the flow field. In addition, the PIV 

measurements also provide a deep insight into the separation process observed very often 

above the wave field. 

3.2. Mean Velocity and vorticity 

The mean streamwise velocity was computed by time-averaging five minutes of 

the velocity data at each grid point and then by spatially averaging the time-averaged 
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velocity at each height. Figure 3.3a shows the vertical profiles of the mean streamwise 

velocity at different wind speeds. The plot shows that the magnitude of the streamwise 

velocity increased with wind speed and decreased monotonically towards the interface, as 

expected. As mentioned earlier, waves were observed only at wind speeds of 3.7 m s"1 

and 4.4 m s"1. At the lower wind speeds, very small ripples appear on the surface that 

could not be resolved within the given PIV measurements. Thus, we can consider the 

velocity fields at the two higher wind speeds as the flow over wavy surface and for the 

remaining lower wind speeds as the flow over relatively smooth surface. The plot in 

figure 3.3a shows differences between the velocity profiles over two different types of 

water surfaces. For wavy water surface the shearing effects are observed up to a greater 

distance from the interface. However, for the smooth water surface, these effects are 

restricted to a relatively shorter distance. For the wind speeds range from 1.5 m s"1 to 

3 ms"1, the magnitudes of mean streamwise velocities are higher near the water surface. 

For this wind speed range, the wind stress is almost entirely consisted of the tangential 

stress. As the wind speed further increased to 3.7 m s"1, waves appeared on the water 

surface and the mean streamwise velocity near the interface was reduced by 15% 

compared to that at 3.0 m s"1. When waves form on the water surface, the wind stress is 

partitioned into tangential and wave components. The reduction in the mean velocity at 

3.7 m s"1 is due to the reason that the magnitude of the tangential stress is decreased 

because of the wave formation at this wind speed. The mean streamwise velocity again 

started to increase with an increase in the wind speed. At 4.4 m s"\ the mean velocity is 

increased by 10% compared to that at 3.7 m s'1, however, it is still lower than that at 3.0 

m s"1. Banner and Peirson (1998) measured the total and tangential stresses beneath the 

water surface. They found that at short fetches and lower wind speeds, the tangential 
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stress constitutes almost 50% of the total stress. They further observed that this fraction 

decreases with an increase in fetch and wind speed. Kudryavtsev and Makin (2001) 

investigated the impact of airflow separation on the drag of the sea surface and argued 

that at low wind speeds, the tangential stress dominates the surface drag while the role of 

the waveform drag is negligible. With an increase in the wind speed, the role of the 

waveform drag becomes pronounced. At wind speed Uio > 10 ms"1, the surface drag is 

mainly supported by the wave induced and turbulent stresses. This fact is due to enhanced 

surface roughness which creates turbulence and decreases the relative speed of the air 

flow within few centimeters above the waves. The mean velocity profiles on the semilog 

scale are shown in figure 3.3b. The profiles show the logarithmic behaviour in the near 

surface region which is consistent with the previous studies (e.g. Wu 1975). 

The mean vorticity was computed by averaging the vorticity data at each height 

temporally and spatially. The vertical profiles of the mean vorticity are plotted in figure 

3.4a as a function of height. The plot shows that the magnitude of vorticity is largest near 

the water surface which decreased with height and became almost negligible 3-4 cm 

above the water surface. From a height of 2 cm to the water surface, the vorticity was 

enhanced by approximately an order of magnitude at all wind speeds. This indicates that 

the enhanced vorticity layer is confined to a small region immediately adjacent to the 

water surface. The plot also shows that the enhancement of vorticity in the presence of 

waves is significant compared to that over relatively smooth surfaces. 
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Figure 3.3: Vertical profiles of the mean horizontal velocity at different wind speeds, (a) 

normal scale (b) semi-logarithmic scale (symbols: A, =4.4 m s'1; •, =3.7 m s'!; o, =3 m 
s~ ; 0, =2.1 m s' ; u, =1.5 m s'1). The values are averaged over 5 minutes of data 
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For the smooth surface, as the wind speed increased from 1.5 m s"1 to 3 m s"1, the 

mean vorticity immediately above the interface increased by 86.5 s"1 whereas, in the 

presence of waves when the wind speed increased from 3 m s"1 to 4.4 m s"1, the mean 

vorticity at the interface was increased by 215 s_1.The enhanced vorticity in the presence 

of waves could be due to the increase in the surface roughness and flow separation. The 

higher vorticity magnitude near the interface indicates the presence of strong vortices, 

which implies the presence of strong turbulence in the near surface region. These vortices 

also disrupt the concentration and thermal boundary layers thus enhancing the transfer of 

mass and heat across the interface. The plot also shows that at all wind speeds clockwise 

vorticity is dominant. 

The vertical profiles of mean vorticity on the logarithmic scale are plotted in 

figure 3.4b. All profiles (with and without waves) show similar height dependency within 

the height from approximately 3 mm to 30 mm, where the mean vorticity decays as % ' . 

However, at lower heights, the mean vorticity found to be almost constant in the presence 

of waves. For no wave cases this trend cannot be described in this region due to the 

unavailability of the data. 

As described in the introduction section, most of the previous studies used point 

measurement techniques to measure airside velocity field. They typically installed 

measuring probes at heights ranging from 4 cm to 20 cm above the fluctuating water 

surface. At this height, the vorticity magnitude is expected to be very small. This could be 

the reason why previous airside studies did not observe enhanced vorticity layer in the 

measured velocity fields in the near surface region above the air-water interface. The 

studies using flow visualization techniques to investigate the flow structure in the near-

surface region, however, indicated the presence of high vorticity layer. 
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FigureS, 4: Profiles of the mean vorticity at different wind speeds, (a) normal scale 
(b) logarithmic scale (symbols: • , =4.4 m s'1; •, =3.7 m s~'; o, =5 m s'1; 0, =2.1 m s~'; 

D, =1.5 m s~). The values are averaged over 5 minutes of data 
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Kawamura and Toba (1988) and Komori et al. (1993) qualitatively described the 

layer of high vorticity as organized flow patterns immediately above the waves. Through 

the snapshots of the instantaneous fields, Reul et al. (2008) also showed the presence of 

high vorticity layer in the near-surface region. They observed that the vorticity layer 

departs from the interface at a point slightly downwind of the crest and reattached around 

the wave trough. To the best of our knowledge, the present study is the first to quantify 

the high shear layer immediately above the wind-sheared water surface. The results 

presented in figure 3.4 show the significance of near surface dynamics. 

3.3. Turbulent Flow Characteristics 

PIV measurements provide instantaneous velocity fields. Conventionally, the 

instantaneous velocity comprised of two components; mean and turbulent. However, in 

the presence of waves, a third component is also induced which is known as the wave-

induced velocity. Therefore, instantaneous velocity over the wavy water surface is the 

sum of mean, wave-induced and turbulent velocities. The computation of the wave-

induced velocity component is a challenging task, which is obtained by subtracting the 

time-averaged mean velocity from the phase-averaged mean velocity (Hussain and 

Reynolds 1970). In the studies of airflow over wavy water surfaces, one group of 

researchers have computed all three velocity components (e.g. Hussain and Reynolds 

1970, Hsu and Hsu 1983, Mastenbroek et al. 1996, Mate et al. 2001), while the other 

group of researchers used the conventional method and computed the so-called 

fluctuating velocity component by subtracting the time-averaged mean velocity from the 

instantaneous velocity (e.g. Kawamura et al. 1981, Kawai 1982, Kawamura and Toba 
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1988). As the present work is more focused on the demonstration of the suitability of the 

PIV technique for near-surface velocity measurements in the presence of waves, we used 

the simpler approach and presented different properties of the total fluctuating velocity 

component, which is comprised of wave-induced and turbulent velocity components 

(Kato and Sano 1971). That is, for all wind speeds, with and without waves, the total 

fluctuating horizontal and vertical velocities uf and vf were computed by subtracting the 

mean velocities from their respective instantaneous velocities. The Reynolds stress is 

computed as -ufvf and is presented in figure 3.5 versus the height at different wind 

speeds. Since uf and vf include both the wave-induced and turbulent velocities 

therefore, the computed term - ufvf represents the total Reynolds stress (Kato and Sano 

1971). The plot shows that for the wind speeds range of 1.5 to 3 m s"1 where the flow is 

over smooth water surface, the Reynolds stress increased gradually with the distance from 

the fluctuating water surface to a certain height and then decreased towards the outer 

region where it almost vanished. However, at wind speeds of 3.7 m s"1 and 4.4 m s"1 i.e. 

the flow over wavy water surface, the Reynolds stress increased sharply up to a vertical 

distance of 1.12 cm and then decreased with height which indicates that the waves 

produced strong turbulence in the near surface region. The Reynolds stress distribution 

over the wavy water surface also indicates that the effect of this turbulence is not 

restricted to the inner surface region but has also extended to the outer region. Figure 3.5 

shows that the increase in Reynolds stress is significant within the vertical distance of 1.5 

cm from the fluctuating air-water interface. 

59 



9 

8 

7 

6 

? 5 

uj> 4 

3 

2 

1 

0 
-200 0 200 400 600 800 

Reynolds stress (cm2 / s2) 

Figure 3.5: Reynolds stress versus height (symbols: A, =4.4 m s'1; •, =3.7 m s~'; o, =3 
m s'1; 0, =2.1 m s'1; a, =1.5 m s'1). The values are averaged over 5 minutes of data. <', = 

4.18 m s'1; &, = 5.90 m s'1 from Kawamura et al. (1981) 

Kawamura et al. (1981) investigated the turbulent structure of airflow over wind 

generated water waves using Pitot static tube and hotwire anemometry. The 

measurements were taken at a fetch of 3 m and at wind speeds of 4.18 and 5.90 m s"1. At 

the wind speed of 4.18 m s"1 they observed small ripples of negligible wave height (i.e. 

smooth surface) whereas, at a wind speed of 5.90 m s"1, they observed waves with 

significant wave height of 0.28 cm (i.e. wavy surface). The Reynolds stress data from 

Kawamura et al. (1981) is also plotted in figure 3.5 for comparison. Figure 3.5 shows that 
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for both surface conditions, a good agreement is observed between the present data and 

that of Kawamura et al. (1981). Their data shows that in the presence of waves at the 

wind speed of 5.9 m s"1, the Reynolds stress increased with decreasing height except at 

the lowest measurement point where it decreased. The peak value is observed at a height 

of 1.35 cm from the water surface which is about 20% higher than the location of the 

maximum Reynolds stress reported in the present study. This difference could be due to 

the higher free stream velocity. Kato and Sano (1971) investigated the turbulent structure 

of airflow over coexisted mechanically generated waves and wind waves using hot wire 

anemometer. The wave heights were 6 and 7 cm at wind speeds of 6.3 and 9.5 m s"1, 

respectively. The measurements were taken at a fetch of 18.75 m and at a height of 4 cm 

and above, the wave crest. They reported that the Reynolds stress increased with 

decreasing height and have attained maximum value at 5 cm and 8 cm above the wave 

crest for the wind speed of 6.3 m s"1 and 9.5 m s"1 respectively. However, below this 

height the Reynolds stress decreased towards the water surface to the lowest measurement 

point. This trend is also consistent with the presented results. 

The comparison of the Reynolds stress profiles of figure 3.5 also shows that for 

the flow over smooth water surface, near the interface the Reynolds stress is positive and 

increased with wind speed. Whereas for the case of flow over the water waves an 

opposite trend is observed, that is the Reynolds stress close to the interface is negative 

and the magnitude of the negative Reynolds stress increased with an increase in the wind 

speed. Kato and Sano (1971) and Kawamura et al. (1981) also reported a decreasing trend 

in the Reynolds stress from its peak as approaching the water surface. However, due to 

the limitations of their measurement techniques, they were not able to conduct 

measurements in the close vicinity of the fluctuating water surface. This could be the 
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reason why they did not observe negative Reynolds stress at the interface. The 

observation of the negative Reynolds stress immediately above the water surface in the 

presence of waves is a unique featured observed in the present study. In general, the 

positive Reynolds stress indicates the transport of the turbulent part of the momentum 

flux towards the surface (Friebel 2005). Using the same analogy, the negative Reynolds 

stress could correspond to the momentum flux transported from the fluctuating water 

surface to the wind. Hristov et al. (1998) segregated the fluctuations of velocity induced 

by the waves from that due to the shear driven turbulence and observed positive and 

negative wave-coherent momentum fluxes. They attributed the positive wave-coherent 

flux to the momentum transferred from wind to waves and vice versa. This issue is related 

to the separation of wave-induced component from the fluctuating velocity field. This 

issue is beyond the scope of the present chapter and is a part of next chapter. The present 

study demonstrates that the PIV technique enable us capturing the fluctuations in the 

velocity components accurately in the crest-trough region immediately above the wave. 

The rate of energy production is computed using the relation, 

',.' -u v 
dU 

dy 
(3.1) 

where, -w'v'is the Reynolds stress and is the mean streamwise velocity gradient 
dy 

(Pope 2000). Vertical profiles of the energy production are plotted in figure 3.6 at 

different wind speeds. The plot shows that for the wind speeds ranging from 1.5 m s"1 to 3 

m s"1 the energy production is large near the water surface. It increased within the height 

of 3 mm from the interface and then approached zero at heights 4 cm and above. This is 

due to very small magnitudes of Reynolds stress and mean-velocity gradients in the outer 
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region. In the presence of waves at wind speeds of 3.7 m s"1 and 4.4 m s"\ negative values 

of the energy production are observed in the region immediately above the wavy water 

surface. The energy production increased sharply to a maximum positive value at a height 

of approximately 5 mm and then decreased to zero at the height of approximately 7 cm. 

The negative value of the energy production at the interface is primarily due to negative 

Reynolds stress at the interface. The term energy production quantifies the exchange of 

kinetic energy between the mean flow and the turbulence. Positive energy production 

represents the energy lost by the mean flow to the turbulence, whereas, the negative 

energy production indicates the energy lost by the turbulence to the mean flow. A 

sustainable inverse energy transfer is possible only if any external force acts on both the 

field of fluctuating velocity and on the velocity derivative (Liberzon et al. 2005). 

Therefore, the region of negative energy production may be governed by different 

physical mechanisms, which could be attributed due to the wave-turbulence interaction in 

the near surface region. The present chapter is mainly focused on the measurement 

technique used to capture the flow dynamics within crest-trough region above the wave 

therefore the authors restricted themselves to the basic results. 

Figure 3.5 and 3.6 clearly demonstrate that the airflow structure immediately 

above the crest-trough region of the wave is different from that observed at a certain 

height above the wave crest. The production profiles in figure 3.6 show that in the 

presence of waves, the peak energy production lies within a distance less than the 

significant wave height. This implies that the maximum energy production occurs within 

the crest-trough region. Thus, any measurement taken above the wave crest may not 

capture the maximum production. 
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Figure 3.6: Energy Production versus height (symbols: A, =4.4 m s'1; m, =3.7 m s'J; o, 

=3 m s~ ; 0, =2. lms'; u, =1.5 m s~). The values are averaged over 5 minutes of data 

Doron et al. (2001) compared different methods of estimating the rate of energy 

dissipation (e) using PIV and showed that the method that uses the velocity gradients 

from the two-dimensional PIV turbulent velocity fields is the most accurate. According to 

that method, s can be computed as, 

£ = 3v\ 
v dx + 

' d v ^ 2 

\tyj 
+ 

fdu'^2 

\ty j 
+ dx 

+ 2 
dy dx 

2 
+ — 

3 

rdu' dv'^ 

dx dy 
(3.2) 
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where — i s the streamwise velocity gradient in the horizontal direction, — i s the 
dx dy 

dv' 
streamwise velocity gradient in the vertical direction, —is the transverse velocity 

dx 

dv' 
gradient in the horizontal direction and — is the transverse velocity gradient in the 

dy 

vertical direction. The over bar denotes time averaging (Doron et al. 2001). The profiles 

of energy dissipation rate are plotted in figure 3.7a, at different wind speeds. The plot 

shows that the rate of energy dissipation increases with wind speed. At all wind speeds 

the rate of energy dissipation is maximum near the water surface, decreases with height 

and become almost constant at heights 1-3 cm above the fluctuating water surface. For 

the case of flow over smooth water surface at wind speed range of 1.5 m s"1 to 3 m s"1, the 

dissipation rate immediately adjacent to the interface is on average a factor of 4.5 higher 

than that at heights greater than 2 cm. However in the presence of wave at wind speeds of 

3.7 m s"1 and 4.4 m s"\ the dissipation rate immediately adjacent to the interface is 

approximately a factor of 7 higher than that at heights greater than 2 cm. This indicates a 

significant enhancement in the dissipation rate in the presence of waves in the near-

surface region. The data in figure 3.7a also indicates that the influence of near surface 

turbulence over wavy water surface is extended to greater heights as compare to the 

smooth water surfaces. 

The profiles of the dissipation rate are plotted on the logarithmic scale in figure 

3.7b. The plot shows that within the height from approximately 2 mm to 10 mm, all 

profiles (with and without waves) show similar height dependency where the dissipation 

rate decays as £"4/5. Within 2 mm from the surface the dissipation profiles in the presence 

of waves show a different height dependency where the dissipation rate decays as £ 
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Figure 3.7: Energy dissipation versus height, (a) normal scale (b) logarithmic scale 
(symbols: A, =4.4 m s'1; •, =3.7 m s'1; o, =3 m s'1; 0, =2.1 m s'1; u, =1.5 m s'1). The 

values are averaged over 5 minutes of data 
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The behaviour at lower wind speeds (no wave cases) cannot be described in this 

region due to the unavailability of the data. 

As discussed earlier, literature review shows that due to the measurement 

difficulties, in most of the previous studies, researchers measured velocity at a fixed point 

located above the wave crest therefore they were not able to quantify significantly 

enhanced magnitudes of fluctuating velocity gradients and the rate of energy dissipation 

immediately above the fluctuating air-water interface. The present results show that the 

dissipation rates are significantly enhanced within the crest-trough region that could not 

be estimated from the measurements above the wave crest. 

The presented results clearly indicate that the waves significantly enhance near 

surface turbulence. This enhanced turbulence rapidly transfer air to and from the 

interface, through bursting and sweeping processes (as was observed in figure 3.1). 

Previous studies provide qualitative evidence that the wind generated waves enhanced 

airside turbulence in the immediate vicinity of the water surface. However, due to 

measurement difficulties, the quantitative analysis of turbulence within the crest-trough 

region above the water surface is not well reported. The present results demonstrate that 

the non-intrusive PIV technique could accurately measure the velocity field within and 

above the crest-trough region. The above results also demonstrate that the measurements 

taken in the far field above the water surface cannot capture the near-surface turbulence 

dynamics that is responsible for controlling the transport of mass, momentum and heat 

fluxes between the two fluids. 
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CHAPTER 4 

Wave-induced flow structure over wind-generated water waves 

In this chapter various mean, turbulent and wave-induced properties are described 

in the close vicinity of the wave and their variation is discussed as a function of the phase 

and height. 

4.1. Instantaneous and wave induced velocity fields 

The oscillatory motion of the waves modulates the structure of the airflow field 

above them and therefore, it is different from that over a solid surface. (Grachev and 

Fairall 2000). The wave-induced velocity quantifies the contribution of the wave motion 

to the flow field and provides fundamental understanding about the flow pattern induced 

in the near surface region, immediately above the waves. The phase-averaged wave-

induced velocity field at a wind speed of 4.4 m s"1 is presented in figure 4.1, as a function 

of phase. The figure shows that the magnitude of phase-averaged wave-induced velocity 

is significant in the near surface region, as expected. At a distance of approximately three 

times the significant wave height from the fluctuating water surface, the wave-induced 

velocity magnitude becomes negligible. Figure 4.1 shows two distinct flow structures in 

the near-surface region. The wave-induced velocity vectors over the crest (phase angle 

from -90° to 90°) are in the direction of the wave propagation whereas the wave-induced 

velocity vectors over the trough (phase angle from 90° to 270°) are in the direction 

opposite to the wave propagation. 
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Figure 4.1: Phase-averaged wave induced velocity field at a wind speed of 4.4 m s'1 

The PIV data with high spatial resolution in the present study enabled us to 

capture small-scale structures within and above the crest-trough region, which is very 

crucial to improve fundamental understanding of the dynamical processes in this region. 

Figure 4.2a shows an instantaneous velocity field with a wave crest within the field of 

view, measured at a wind speed of 4.4 m s"1. The plot also shows a burst on the windward 

side of the crest that is merging into the free stream flow. The flow separation on the 

leeward side of the wave crest is also visible in the plot, which is attached further 

downwind of the wave. The sweeping process is also observed in the region where the 

separated flow re-attaches to the air-water interface (lower right hand side of the plot). 
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Figure 4.2: (a) An instantaneous velocity field at a wind speed of 4.4 m s~; (b) 
corresponding wave induced velocity field. 

Shaikh and Siddiqui (2008) presented and discussed the bursting, sweeping and 

airflow separation processes. They reported that on the windward face of the wave, the 

70 



bursts eject as a series of counter rotating vortices. The region occupied by the burst is 

long and narrow, and appears to grow as it proceeds downstream. A thick layer of strong 

clockwise vortices was also reported within the separation zone. They observed sweeping 

process in the region where the separated flow attaches to the water surface and argued 

that the bursting and sweeping processes over the moving water surface are qualitatively 

similar to that over the solid wall. 

The 2D wave-induced velocity field corresponding to the instantaneous velocity 

field in figure 4.2a is plotted in figure 4.2b. The plot shows the instantaneous behaviour 

of the wave-induced velocity field. The behaviour is similar to that observed in figure 4.1 

and shows the two distinct flow regimes immediately above the interface. 

Figures 4.1 and 4.2b qualitatively describe the spatial structure of the wave-

induced velocity fields within and above the crest-trough region. To obtain a better 

insight into the flow dynamics above the waves, different flow characteristics are 

analyzed as a function of wave phase. The results are plotted at eight different phases 45° 

apart that covers the entire waveform. The profile of phase-averaged surface displacement 

at 4.4 m s" is also plotted in the figures. This allowed a better perception of the variation 

in the flow behaviour with respect to the waveform. 

4.2. Phase-averaged wave-induced velocity 

The vertical profiles of the streamwise component of the normalized phase-

averaged wave-induced velocity are presented in figure 4.3, at the two wind speeds. The 

figure shows that the magnitude of wave-induced velocity is significant only within a 

distance of one to two wave heights from the surface. At both wind speeds its magnitude 
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approaches zero at a height equal to or greater than three times the significant wave 

height above the mean water level. This indicates that in the outer region, the waves have 

no effect on the flow field. 

I i i i i i i i i i i 

-90 -45 0 45 90 135 180 225 270 

Phase (deg.) 

Figure 4.3: Vertical profiles of the normalized phase-averaged wave-induced velocity 
versus the phase, (Symbols: o, =4.4 m s'1; 0, =3.7 m s'1). Uoo is the free stream velocity. 
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The figure shows two distinct trends of the wave-induced velocity profiles as 

shown earlier in figure 4.1. In the near-surface region over the wave crest, the wave-

induced velocity is positive whereas, over the wave trough, the wave-induced velocity is 

negative. The profiles at both wind speeds follow the same trends. The maximum velocity 

magnitude at each phase occurred within a distance of RMS wave height. At all heights, 

the largest magnitude of the positive wave-induced velocity is observed at the wave crest 

and the largest magnitude of the negative velocity is observed at the phase 90° which is 

the core of the separated flow region. Over the entire waveform, the velocity magnitude is 

largest at the wave crest at all heights. 

4.3. Phase-averaged streamwise velocity 

Figure 4.4 shows the phase-averaged streamwise velocity as a function of wave 

phase and height, at wind speeds of 3.7 and 4.4 m s"1. The plot shows that the magnitude 

of phase-averaged streamwise velocity decreased monotonically towards the interface, as 

expected. The maximum streamwise velocity was observed at a phase angle of 0°, 

immediately above the crest, which is 45% of the free stream velocity, whereas the 

minimum streamwise velocity was observed at a phase angle of 180°, immediately above 

the trough which is 20% of the free stream velocity. The figure also shows that within a 

1 cm thick layer immediately above to the water surface, the streamwise velocity 

decreases with the phase on the leeward side (0° to 180°) and increases with the phase on 

the windward side (180° to 0°). 
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Figure 4.4: Vertical profiles of the normalizedphase-averaged streamwise velocity as a 
function of phase, (Symbols: o, =4.4 m s~'; 0, =3.7 m s'1) 

4.4. Phase-averaged vorticity 

The vertical profiles of the phase-averaged vorticity are plotted in figure 4.5 at 

wind speeds of 3.7 and 4.4 m s"1 at different phases. The plot shows that the vorticity 

profiles at both wind speeds collapsed well, indicating that the vorticity structure is 

similar at both wind speeds. The magnitude of vorticity is largest near the water surface 

which decreased with height and became almost negligible 2 cm above the mean water 

level. This indicates that the enhanced vorticity layer is confined to a small region 

immediately adjacent to the water surface. The magnitude of vorticity is positive over the 

entire wavelength indicating that at both wind speeds clockwise vorticity is dominant. 
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Figure 4.5: Vertical profiles of the phase-averaged vorticity as a function of phase, 
(Symbols: o, -4.4 m s~ ; 0, =3.7ms') 

The plot also shows that the vorticity variation with height is different at different 

phases. The thickness of the enhanced vorticity layer is minimum above the crest and 

maximum above the trough. The results also indicate that the vorticity magnitude is 

largest in the separation zone. The higher vorticity magnitude near the interface indicates 

the presence of strong vortices, which implies the presence of strong turbulence in the 

near surface region. These vortices disrupt the concentration and thermal boundary layers 

thus, enhancing the transfer of mass and heat across the interface. Reul et al. (1999) 

presented instantaneous snap shots of the PIV velocity and vorticity fields, computed 

within the crest-trough region above mechanically-generated breaking waves. They also 

observed strong patches of clockwise vorticity, dominant within the separated flow region 

downwind of the crest, which is consistent with the results presented in figure 4.5. They 
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argued that the vorticity field within the separated airflow region demonstrates the 

mechanism of re-entrainment of stress bearing fluid from the outer part of the shear layer 

to the interface. 

4.5. Phase-averaged wave-induced vorticity 

The vertical profiles of the phase-averaged wave-induced vorticity are presented 

in figure 4.6. The plot shows that at both wind speeds, the wave-induced vorticity is 

significant only in the near surface region. The plot also shows that at a given phase, the 

vorticity magnitude increased with height in the region immediately adjacent to the water 

surface, and then decreased towards zero magnitude at greater heights. 
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Figure 4.6: Vertical profiles of the phase-averaged wave-induced vorticity as a function 
of phase, (Symbols; o, =4.4ms~';<>, =3.7 ms'1). 
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The peak vorticity occurred at a height approximately equal to 5 mm. It is also 

observed that the phase-averaged wave-induced vorticity changes its sign systematically 

with height. The distribution of wave-induced vorticity over the windward face of the 

wave is different from that observed over the leeward face. As discussed in figures 4.2 

and 4.3, it is due to the change in the direction of the wave-induced velocity on the 

windward and leeward sides of the wave. The figure also indicates similar trends at both 

wind speeds. 

The momentum flux, (or wind stress) is the main focus in many previous 

laboratory and field studies. For the flow over a solid surface, tangential and turbulent 

Reynolds stresses describe the transport of momentum from the core to the surface. 

However, for the flow over a wavy water surface, wave-induced motion gives an 

additional stress component known as the wave-induced Reynolds stress. In the studies of 

airflow over wavy water surfaces, one group of researchers have computed both turbulent 

and wave-induced components of the Reynolds stress (e.g. Hussain and Reynolds 1970, 

Hsu and Hsu 1983, Mastenbroek et al. 1996, Mate et al. 2002), while the other group of 

researchers used the conventional method and computed the total Reynolds stress from 

the so-called fluctuating velocity components, that is, the difference between the 

instantaneous velocity and the time-averaged mean velocity (e.g. Kawamura et al. 1981, 

Kawai 1982, Kawamura and Toba 1988). In order to understand the individual 

contributions of the turbulent and wave-induced components of the Reynolds stress over 

different phases of the wave, we have analyzed the total Reynolds stress as well as the 

turbulent and wave-induced components of the total Reynolds stress. The total Reynolds 
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stress is defined as -ufvf where the subscript / indicates the fluctuating component 

obtained by subtracting the mean velocity from the corresponding instantaneous velocity. 

4.6. Phase-averaged total Reynolds stress 

Figure 4.7 shows the vertical profiles of the phase-averaged total Reynolds 

stress. Two distinct groups of total Reynolds stress distribution are also observed in figure 

4.7 that correspond to the Reynolds stress distribution on the windward and leeward 

faces. On the leeward face, the total Reynolds stress profiles show the classical trend. 

That is, the Reynolds stress increased with height within the near-surface (inner) region 

and then decreased to zero towards the free stream region. On the windward face, the 

total Reynolds stress is negative within a thin layer, immediately above the interface. The 

magnitude of the negative Reynolds stress decreases with height and the Reynolds stress 

becomes positive at heights approximately equal to 5 mm. At greater heights, the 

Reynolds stress profiles show the classical trend. The positive Reynolds stress indicates 

the transfer of momentum flux towards the surface, and vice versa (Friebel 2005). The 

negative Reynolds stress observed along the windward face of the crest indicates that in 

this portion of the wave, the net transfer of momentum is in the upward direction that is 

from wave to wind whereas along the leeward face of the crest, the plot indicates 

downward momentum transfer that is from wind to the wave. Another interesting 

observation is that in the near surface region, the increase in the magnitude of Reynolds 

stress with wind speed is more significant between 0° and 135°. This is the region where 

the flow separation occurs. 

78 



,r-500 900 -400 800 0 1200 0 800 

J I I I L 

-90 -45 0 45 90 135 180 225 270 

Phase (deg.) 

Figure 4.7: Vertical profiles of the phase-averaged total Reynolds stress as a function of 
phase, (Symbols: o, =4.4 m s~; 0, =3.7ms") 

We have identified the separated and non-separated flow through a visual 

inspection of all velocity fields at both wind speeds. It was found that the flow was 

separated in approximately 45% and 28% of the velocity fields at 4.4 m s"1 and 3.7 m s"1 

wind speeds, respectively. Thus, the significant increase in the Reynolds stress in this 

region at the higher wind speed is due to a substantial increase in the waves with flow 

separation. Therefore, it can be argue that the momentum transfer from wind to wave 

enhances downstream of the crest and it is influenced by the separated flow. Further 

investigations are needed to understand the physical interaction between the separated 

flow and the downward momentum transfer. 
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4.7. Phase-averaged wave-induced Reynolds 

The phase-averaged wave-induced Reynolds stress < - u v > is plotted in figure 

4.8 versus height at wind speeds of 3.7 and 4.4 m s"1. The plot shows that at both wind 

speeds the influence of wave-induced Reynolds stress is limited to a height less than or 

equal to three times the significant wave height. At both wind speeds and at all phases, 

the wave-induced Reynolds stress is mainly negative in the near-surface region, 

indicating that the wave-induced component of the airflow contributes to the upward 

momentum transfer along the entire waveform. 

45 90 135 180 225 270 

Phase (deg.) 

Figure 4.8: Vertical profiles of the phase-averaged wave-induced Reynolds stress as a 
function of phase, (Symbols: o, -4.4 m s'1; 0, =3.7 m s~'). 
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Hsu and Hsu (1983) computed the wave-induced Reynolds stress above 

mechanically-generated water waves in the presence of wind at wind speeds ranging from 

1.37 to 2.92 m s"1. At most of the wind speeds, they observed negative wave-induced 

Reynolds stress in the near-surface region whose magnitude decreased towards the 

surface and became positive in some cases. They argued that the wave-induced Reynolds 

stress is produced by the stretching and compression of the near surface flow field and 

therefore the maximum intensity is expected to occur above the wave crest. The present 

results show that the maximum wave-induced Reynolds stress occurs just upwind of the 

wave crest. 

4.8. Phase-averaged turbulent Reynolds stress 

Figure 4.9 shows the vertical profiles of the phase-averaged turbulent Reynolds 

stress <-u'v'> at wind speeds of 3.7 and 4.4 m s"1. The plot shows different behaviour of 

turbulent Reynolds stress on the windward and leeward faces of the wave. On the leeward 

face, the profiles of the turbulent Reynolds stress show the classical behaviour i.e. the 

Reynolds stress magnitude is zero at the interface which increased sharply to a maximum 

value within a height approximately equal to half of the significant wave height and then 

decreased gradually to zero towards the free stream region. On the windward face, the 

Reynolds stress behaviour in the near-surface region is significantly different. That is, the 

turbulent Reynolds stress is negative in a thin layer immediately above the water surface 

whose thickness is about 2 mm. With an increase in height, the turbulent Reynolds stress 

becomes positive attains a certain magnitude which remains almost unchanged to a 

certain distance, and then gradually decreases to zero towards the free stream region. 
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Figure 4.9: Vertical profiles of the phase-averaged turbulent Reynolds stress as a 
function of phase, (Symbols: o, =4.4 m s~ ; 0, =3.7ms') 

It is observed that on the windward side of the wave crest (-45° to 0°), the 

turbulent Reynolds stress maintains a constant maximum magnitude over a distance of 

about 3.8 cm that correspond to the distance from one significant wave height to three 

significant wave heights. Kato and Sano (1971) investigated the turbulent structure of 

airflow over coexisted mechanically-generated waves and wind waves using hot-wire 

anemometry. They reported that the time-averaged turbulent Reynolds stress increased 

with distance from the mean water surface to a certain height and then decreased towards 

the free stream region. They also stated that the turbulent Reynolds stress distribution 

over the wavy water surface is comparable to that measured within the boundary layer 

over a solid wall. However they did not present any comparison. 
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Shaikh and Siddiqui (2008) computed the fluctuating horizontal and vertical 

velocities uj- and vf by subtracting the mean velocities from their respective 

instantaneous velocities. They compared the vertical profiles of total Reynolds stress 

(-ufvf) averaged over all phases, in the presence and absence of the waves. They 

reported that in the absence of waves (1.5 to 3 m s"1 wind speeds), the Reynolds stress is 

positive both near and far from the interface and shows the classical behaviour, whereas, 

in the presence of surface waves (3.7 and 4.4 m s"1 wind speeds), the Reynolds stress 

close to the interface is negative and the magnitude of the negative Reynolds stress 

increased with wind speed. The Reynolds stress became positive with an increase in 

height and showed the classical behaviour. 

The present study clearly shows that the total Reynolds stress has two components 

which are the turbulent and wave-induced Reynolds stresses. The decomposition of these 

two components in the present study enabled us to investigate the individual contributions 

of the turbulent and wave-induced components of the Reynolds stress to the momentum 

exchange between the air and water, particularly in the near surface region. The near 

surface turbulence enhances the turbulent Reynolds stress causing an increase in the 

downward momentum transfer whereas the fluctuating nature of water waves create an 

additional flow pattern in the near surface region which is responsible for the upward 

momentum transfer from waves to wind. 
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4.9. Distribution of tangential, wave-induced and turbulent stresses 

The tangential stress (rv) is computed at each phase angle within the layer 

immediately above the water surface using the relation, 

where,//is the dynamic viscosity of air and _ is the phase-averaged streamwise 

velocity gradient computed between the two heights at 0.5 mm and 1.5 mm from the 

interface. The distribution of the tangential stress, wave-induced stress and turbulent 

stress at a height of 0.5 mm above the water surface is plotted in figure 4.10 as a function 

of wave phase. The figure shows that the magnitude of tangential stress (rv)is positive 

over the entire waveform. However, its distribution is different on the windward and 

leeward faces. On the windward face (i.e. 180° to 0°), the magnitudes of tangential stress 

increased gradually with the phase, whereas on the leeward face, the tangential stress 

increased sharply from 0° to 30° and then decreased gradually to a minimum value at the 

trough (180°). The sharp increase in rv occurred in the flow separation region. The trends 

of the wave-induced and turbulent stresses in the near-surface region have already been 

discussed in figures 4.8 and 4.9. The comparison of the magnitudes of all three stress 

components immediately above the water surface shows that on the windward face of the 

wave crest (-90° to 0°), the wave and turbulent stresses are negative and significantly 

larger in magnitude compared to the tangential stress which is positive in the region. 

Comparison of wave and turbulent stresses shows that in this region, the magnitude of 
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wave stress is almost twice the magnitude of turbulent stress at both wind speeds and that 

the distribution of stresses is almost identical. 
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Figure 4.10: Tangential stress(rv) , wave-induced stress (rw)and turbulent stress (r,) at 

a height of 0.5 mm from the water surface versus the phase (Symbols: o, =4.4 m s'1; 0, 
=3.7 m s-1) 

The results indicate that the wave-induced stress is the dominant stress component 

on the windward face of the wave crest and thus, the overall effect is the upward 

momentum flux in this region. On the leeward face of the wave crest (i.e. 0° to 90°), the 

tangential and turbulent stresses are positive and wave-induced stress is negative. The 

85 



plot shows that on the leeward face of the wave crest, turbulent stress is dominant. The 

overall effect is the positive stress along the leeward face and thus, a downward 

momentum flux. In the trough region, the magnitudes of all three stress components are 

small which indicates that the trough region does not contribute significantly to the 

momentum exchange. 

Figure 4.10 shows the distribution of stress components at a height of 0.5 mm 

from the surface. At this height, small magnitudes of the tangential stress over the entire 

waveform indicate that the tangential stress does not provide a major contribution to the 

total wind stress. However, as approaching towards the interface, the tangential stress is 

expected to increase significantly. The profiles in figure 4.9 show that the turbulent 

Reynolds stress approaches zero towards the interface. The wave-induced Reynolds stress 

(figure 4.8) also shows a decreasing trend as it approaches the interface. Thus, the 

contribution of the tangential stress would be significant at the surface and for the given 

experimental conditions, it is expected to be around 50% of the total wind stress (Banner 

and Peirson 1998). 

Kudryavtsev and Makin (2001) investigated the impact of airflow separation on 

the drag of the sea surface and argued that at low wind speeds, the tangential stress 

dominates the surface drag while the role of the form drag is negligible. With an increase 

in the wind speed, the role of the form drag becomes pronounced. At wind speed Uio > 10 

m s"1, the surface drag is mainly supported by the wave form drag. This fact could be due 

to enhanced surface roughness which generates turbulence and reduces the relative speed 

of the airflow within few centimeters above the waves. Veron et al. (2007) presented the 

surface tangential stress (rs) of an instantaneous velocity field computed at a height of 
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0.15 mm from the fluctuating water surface. They observed large surface tangential 

stresses on the windward side of the wave with its maximum magnitude at the wave crest 

and argued that at wave crest the tangential stress is the dominant component of the total 

wind stress. As shown in figure 4.10, the magnitudes of wave-induced and turbulent 

Reynolds stresses at the wave crest are very small. A quantitative comparison showed that 

at the crest, the tangential stress is three times larger in magnitude than the wave-induced 

and turbulent stresses. Therefore, the present results somehow validate the observations 

of Veron et al. (2007). However, we observed peak tangential stress at a phase of 30° that 

is 40% larger than the tangential stress observed at the crest. Reul et al. (2008) evaluated 

the tangential stress, within a distance of 1.2 mm above the mechanically-generated water 

waves. They compared the tangential stress of two instantaneous PIV velocity fields, for 

separated and non-separated flows. They reported that the tangential stress over the non-

separated flow grows progressively on the windward side from its minimum value at the 

trough to the maximum value at the crest. Whereas, over the separated flow, they 

observed that the tangential stress decreased significantly within the separation region and 

then increased progressively to its maximum value at the next crest. The phase-averaged 

tangential stress profiles plotted in figure 4.10 are qualitatively in agreement with that 

reported by Reul et al. (2008). However, we did not observe sudden decrease in the 

tangential stress profile downwind of the crest. It should be noted that Reul et al. (2008) 

and Veron et al. (2007) estimated the tangential stress from single instantaneous velocity 

field for the separated or non-separated condition, whereas, our results are based on the 

average of 4500 velocity fields at each wind speed that comprised of both separated and 

non-separated flow conditions. 
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4.10. Discussion 

The phase-averaged properties presented in the preceding section provided a 

better insight into the airflow structure over the waveform of wind-generated waves. The 

phase-averaged wave-induced velocity field clearly shows significant magnitudes in the 

near surface region. At heights greater than three times the significant wave height from 

the water surface, the magnitude of wave-induced velocity is negligible. This indicates 

that in the outer region, the waves have no effect on the flow field. Typically, the vertical 

distance within which the waves influence the flow structure is termed as wave boundary 

layer (WBL). The present results indicate that at small fetch and low wind speeds, the 

WBL is limited to a height of approximately three times the significant wave height 

above the fluctuating water surface. However, to validate the thickness of WBL, more 

experimental evidences are necessary, especially at higher wind speeds and longer 

fetches. The results presented in figures 4.land 4.3 also show that within the WBL, the 

magnitude and direction of wave-induced velocity is different at different phases. The 

wave-induced velocity over the crest is in the direction of the wave propagation whereas 

the wave-induced velocity over the trough is in the direction opposite to the wave 

propagation. At all heights, the largest positive magnitude of the wave-induced velocity is 

observed at the 0° phase which is the wave crest whereas, the largest negative magnitude 

is observed at the 90° phase which is the core of the separated flow region. 

The phase-averaged vorticity (figure 4.5) shows that most intense vorticity 

occurs on the leeward face which is 1.5 to two times larger in magnitude than that on the 

windward face. The flow separation contributes to the enhancement of vorticity on the 

leeward side. The results also show that the thickness of the enhanced vorticity layer is 
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minimum above the crest and maximum above the trough. Reul et al. (2008) investigated 

the snap shots of the instantaneous velocity and vorticity fields and observed sudden 

augmentation in the vorticity layer immediately above the separated flow downwind of 

the breaking crest. They reported that the shear layer of clockwise vorticity departed from 

the crest and reattached to the interface downwind of the trough. They argued that the 

strength of the shear layer of clockwise and counterclockwise vorticity is controlled by 

the crest dynamics and wind forcing intensity. As described in the introduction section, 

most of the previous studies used point measurement techniques to measure airside 

velocity field. They typically installed measuring probes at heights ranging from 4 cm to 

10 cm above the fluctuating water surface. At this height, the vorticity magnitude is 

expected to be very small. This could be the reason why previous airside studies did not 

observe enhanced vorticity layer in the measured velocity fields in the near surface region 

above the air-water interface. The studies using flow visualization techniques to 

investigate the flow structure in the near-surface region, however, indicated the presence 

of high vorticity layer. Kawamura and Toba (1988) and Komori et al. (1993) have 

qualitatively described the layer of high vorticity as an organized flow patterns 

immediately above the waves. Shaikh and Siddiqui (2008) compared the vorticity in the 

presence and absence of the waves and found a significant enhancement in vorticity in the 

near-surface region in the presence of waves. 

Very few studies have reported the total Reynolds stress distribution over the 

water waves. Shaikh and Siddiqui (2008) have presented the spatially-averaged Reynolds 

stress profiles from the same dataset and found good agreement with that of Kawamura et 

al. (1981) who measured the velocity data using point measurement devices. Kato and 

Sano (1971) computed the total Reynolds stress from the streamwise and vertical 
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components of the fluctuating velocity and reported an increasing trend with decreasing 

height that have attained maximum values 5 cm and 8 cm above the wave crest at wind 

speeds of 6.3 m s"1 and 9.5 m s"1, respectively. Below this height, the Reynolds stress 

decreased towards the water surface. This trend is also consistent with the present dataset. 

Anisimova et al. (1982) computed the Reynolds stress by integrating the momentum flux 

spectrum of streamwise and vertical velocity fluctuations, within the frequency range of 

the dominant waves. They observed negative Reynolds stress at their lowest measurement 

level that was located 2 cm above the wave crest. They found that the Reynolds stress 

became positive at greater heights and argued that in the early stages of the wave 

development, the momentum flux could be upward from water to air in the near-surface 

region, which is consistent with the present results. 

As stated in the introduction section, upward momentum transfer from water to air 

has been reported in some laboratory (for example; Lai and Shemdin 1971, Kato and 

Sano 1971) and field studies (for example; Benilov et al. 1974, Antonia and Chambers 

1980, Wetzel 1996). They reported that young short gravity waves extract momentum 

from the wind and the upward momentum transfer is only associated with developed 

waves. Their conclusion is mainly based on the spike observed around the dominant wave 

frequency in the co-spectra of the horizontal and vertical velocity fluctuations. The 

momentum transfer by young short waves is expected to be significantly smaller than the 

developed waves. Therefore, the spectral energy for young waves is expected to be 

significantly lower in magnitude than the developed waves in the co-spectrum. However, 

it does not imply that young waves do not contribute to the upward momentum transfer. 

The present results clearly show that the momentum exchange between the wind and 

waves is a two-way process and that young, short gravity waves also transfer momentum 
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to the air. Furthermore, the present velocity, vorticity and Reynolds stress profiles shows 

two distinct flow structures over the windward and leeward faces of the wave and also 

show that the upward momentum transfer occurs on the windward face and downward 

momentum transfer occurs on the leeward face. 

As shown in the snap shot of the instantaneous velocity in figure 4.2a, the 

bursting, sweeping and airflow separation are intermittently observed immediately above 

the waves. A burst is defined as a streak of low speed fluid, that rises upward from the 

interface and eventually merges into the free stream flow (Willmarth and Lu 1972). 

During the breakup of a burst, significant chaotic motion occurs in the flow. Shaikh and 

Siddiqui (2008) have shown bursting and sweeping process above the wind waves. It was 

observed that the bursts originates from the windward side of the wave crest and merge 

into the free stream flow within a distance of three to four times the significant wave 

height from the mean water level. Other researchers such as, Komori et al. (1993) and 

Kawamura and Toba (1988) have also observed the bursting process on the windward 

side through flow visualization. As observed in figure 4.9, the height over which the 

magnitude of turbulent Reynolds stress remained large and constant on the windward side 

coincides with the bursting region and thus, this large magnitude is attributed to the bursts 

generated over the wind waves. The profiles in figure 4.9 also show that the largest 

magnitude of turbulent Reynolds stress over the entire waveform occurs in the near-

surface region on the leeward face of the wave. This region corresponds to the separated 

flow region. As mentioned earlier, the flow separation was observed more frequently at 

the higher wind speed. Thus, the magnitude of the turbulent Reynolds stress in this region 

at the higher wind speed is significantly large compared to the lower wind speed. The 

results in figure 4.9 indicate that the most intense turbulence is generated on the leeward 
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side of the wave within a distance of one significant wave height from the water surface. 

As mentioned above, on the windward face, negative turbulent Reynolds stress is 

observed in a very thin layer adjacent to the water surface which is changed to positive 

stress as the distance increases. This indicates that within the thin layer on the windward 

side, the mean flow extracts energy from the turbulence. 

Mete et al. (2002) reported significantly large magnitudes of wind stress over 

wavy water surface than that over the smooth water surface. They argued that the 

enhanced wind stress is a consequence of surface waves on the wind field close to the 

interface. They anticipated that the increase of wind stress is due to the wave-induced 

stress. Lai and Shemdin (1971) reported strong turbulence over the wavy water surface 

and concluded that the enhanced wind stress over the waves is due to the enhanced near 

surface turbulence and the wave-induced stress. The present study provides the 

quantitative assessment of the contributions of different components of the stress as a 

function of wave phase. The results show that in the near-surface region over the entire 

waveform, the magnitude of wave-induced Reynolds stress is on average a factor of 4 and 

2 higher than the tangential stress at wind speeds of 4.4 and 3.7 m s"1, respectively. 

Whereas, the magnitude of turbulent Reynolds stress is on average a factor of 2 and 0.9 of 

the tangential stress at wind speeds of 4.4 and 3.7 m s"1, respectively. Therefore, it can be 

argued that the wave-induced Reynolds stress is the main contributor to the total wind 

stress in the near-surface region. However, its magnitude decreases towards the surface 

where the contribution of tangential stress also becomes significant. 
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CHAPTER 5 

Flow characteristics over separated and non-separated flow fields 

5.1. Introduction 

When air flows over steep water waves, it detaches from the interface on the 

leeward side of the crest and reattaches on the windward side of the following crest. 

Researchers have used flow visualization techniques and qualitatively described flow 

separation as a vortex trapped within the crest-trough region immediately above the water 

surface. Flow visualization only provides qualitative observations of the instantaneous 

behaviour of the flow separation. Kawai (1982) examined the dependability of the 

separated and non-separated airflow structures on the steepness of the wave. He 

computed the maximum wave surface gradient for a sample of 79 wave profiles, using the 

photographs of the airflow field over water waves. He suggested that the flow separation 

occurs over the wave crest if the maximum wave slope, Snax > 0.6. Reul et al. (2008) also 

reported that the flow separation systematically occurs downwind of the wave. They 

argued that the flow separation requires a maximum local wave slope of 35° which is also 

in agreement with the critical slope for the airflow separation of 0.6 reported by Kawai 

(1982). Reul et al. (2008) and Kawai (1982) reported the relation between the wave 

steepness and the air-flow separation. However, to date, the quantitative contribution of 

the airflow separation to the near surface turbulence is not reported in the literature. The 

short coming is attributed to the measurement difficulties within the crest-trough region 

as well as the techniques employed in the analysis. 
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This chapter focuses on the quantitative comparison of the flow characteristics 

over separated and non-separated velocity fields over wind-generated water waves. We 

have developed a scheme to automatically detect separated and non-separated velocity 

fields within the dataset. This scheme was applied to the datasets at 3.7 and 4.4 m s"1 wind 

speeds as the waves were observed only at these two wind speeds. 

5.2. Separation Scheme 

As mentioned in chapter 2, at each wind speed, 4500 velocity fields were 

obtained. A threshold-based algorithm was developed to segregate the velocity fields with 

flow separation downwind of the steep water waves. As mentioned earlier, the flow 

separation occurs over the steep water waves. The steepness of the waves is based on the 

wave slope along the leeward face of the wave. In the present technique, all the wave-

profiles in which the phase between 0° and 180° i.e. the crest-to-trough region (leeward 

face) was visible were segregated from the rest of the wave profiles at a given wind 

speed. As shown in Table 5.1, at wind speeds of 3.7 and 4.4 m s"1 the crest-to-trough 

region was identified in 47% and 52% of the total wave profiles, respectively. For each of 

the segregated wave profile, the local wave slopes were computed as the gradient of the 

wave surface displacement (dn/dx) over a horizontal distance of 0.3 mm (5 pixels) at 

equally spaced points along the leeward face (from the crest to the trough). The maximum 

wave slope (5max) was then computed based on the local wave slopes for each wave. The 

wave slope of 0.6 was selected as the threshold, which is based on the observations of the 

previous studies (Reul et al. 2007, Kawai 1982). All the waves with Smgx >0.6 were 
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considered as the waves over which the flow separation occurred and the corresponding 

velocity fields were assigned as the separated velocity fields. The total number of 

separated velocity fields identified by the algorithm is presented in Table 5.1 at both wind 

speeds. The values indicate that at wind speeds of 3.7 and 4.4 m s"1, the flow separation 

occurs in 18% and 47% of the wave profiles having crest-to trough region (0° to 180° 

phase) visible in the image, respectively. 

TABLE 5.1. Summary of number of wave profiles (Nt total number of velocity fields, 

N number of wave profiles contain crest-to-trough region, JV06 number of separated 

velocity fields having wave slope greater than or equal to 0.6, NQA_06 total number of 

velocity fields having wave slope greater than 0.4 and less than 0.6, JV04 number of 

velocity fields having wave slope less than or equal to 0.4, «04_06 number of separated 

velocity fields having wave slope greater than 0.4 and less than 0.6, excluded from the 
calculation. 
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The separated flow detection scheme was validated based on the visual inspection 

of the instantaneous velocity fields at the wind speeds of 3.7 and 4.4 m s"1. In visual 

inspection, 4500 velocity fields were visually inspected at each of the two wind speeds. 

When flow separation was observed in any velocity field, the corresponding frame 

number and the maximum of the local wave slope downwind of the crest were recorded. 

The visual inspection shows that flow separation starts at Smax ~ 0.4 and the percentage of 

wave with separated flow increased with an increase in the wave slope. The results also 

shows 98 % of the waves with Smax > 0.6 caused the flow separation. Therefore, the visual 

inspection somehow validates the scheme used to identify the separated velocity fields. 

The inspection of the velocity fields also indicated that at both wind speed, the 

instantaneous velocity within the separation zone is as small as 10% of the free stream 

velocity. It was also observed that the separation region contains counter-clockwise 

vortices that were bounded from the top and bottom by the layers of clockwise vortices. 

However, the size, shape and magnitude of counter-clockwise vortices varied from field 

to field. This variation could be related to the variation of the profile of individual wave 

crests. 

As stated above, some of the velocity fields having Smm greater than or equal to 

0.4 and less than 0.6 contain flow separation, that was identified in a smaller region 

compared to the flow separation observed in the velocity fields having 5raax >0.6. The 

flow separation over the waves having Smax greater than or equal to 0.4 and less than 0.6 

could be the residues of the flow separation associated with previous velocity fields. 

These fields could neither be considered as the active flow separation region nor they be 
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classified as non-separation regions. Therefore, in order to make a true comparison 

between the separated and non separated velocity fields it was necessary to identify and 

exclude these velocity fields from further analysis. A scheme was developed, to segregate 

these velocity fields. In this scheme, as a first step, the frame numbers of the velocity 

fields were binned according to the maximum wave slope computed within the crest to 

trough region (Smax). As shown in Table 5.1, at wind speeds of 3.7 and 4.4 m s"1, the 

velocity fields with 0.4 < 5max < 0.6 were identified in 20% and 27% of the of the wave 

profiles, whereas, the wave profiles with SmiX < 0.4 were identified in 60% and 25% of 

the of the wave profiles having crest-to trough region visible in the image, respectively. 

As stated above, the flow separation contains counter clockwise vortices (negative 

vorticity) therefore, to identify the separated flow within the velocity fields with 

0.4 < Smm < 0.6, the presence of negative vorticity was considered as the criterion. That 

is, the negative vorticity was searched at each grid point from crest to the trough within a 

layer equal to the significant wave height from the surface. When the negative vorticity 

was observed at any of the grid point, the streamwise component of the instantaneous 

velocity at that point and at four neighbouring points was examined. If the streamwise 

velocity was found to be less than or equal to the 10% of the free stream velocity at five 

or less grid points (depending on the location of the given point with reference to the 

water surface), then that velocity field was recorded. The total number of separated 

velocity fields with 0.4 < Smax < 0.6 is presented in Table 5.1. The values indicate that at 

wind speeds of 3.7 and 4.4 m s"1, these velocity fields correspond to 6% and 15% of the 

wave profiles having crest-to trough region visible in the image, respectively. 
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5.3. Results 

To obtain a better insight into the flow dynamics, different flow characteristics 

are analyzed as a function of wave phase. The procedure to compute flow properties as a 

function of phase are already described in Chapter 4. The results are plotted at eight 

different phases 45° apart that covers the entire waveform. The profiles of phase-averaged 

surface displacement for the separated and non-separated fields are presented in figure 

5.1a and 5.1b, at wind speeds of 4.4 and 3.7 ms"1, respectively. The plots show that at 

both wind speeds, the phase-averaged profiles of surface displacement for the separated 

and non-separated fields are not exactly sinusoidal. However, the profiles of the non-

separated waves are more close to the sinusoidal behaviour than the profiles of separated 

waves. This indicates that the nonlinear behaviour of the waves also contributes to the 

flow separation. For both type of flows and at both wind speeds, the vertical distance 

from mean position to the crest is greater than the vertical distance from mean position to 

the trough. The plots also show that for both wind speeds, the height of the waves with 

flow separation is greater than the height of the waves with no flow separation. 

Quantitatively, at wind speeds of 4.4 and 3.7 m s"1, the height of the waves with flow 

separation is 40% and 15% higher than that for the non-separated flow respectively. This 

shows that the flow separation occurs over the waves with larger amplitude and slope. 

Kawai (1982) compared the maximum wave heights of the 79 samples of the 

instantaneous photographs of separated and non-separated flows and reported that the 

flow separation occurs over the higher and steeper waves. However he didn't suggest any 
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quantitative value of the maximum wave height and argued that the wave height is not the 

sufficient condition for the flow separation. 
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Figure 5.1: Phase-averaged wave amplitude for the separated and non-separated velocity 
fields, at wind speeds of (a) 4.4 m s~', (b) 3.7 m s'J. (Symbols: solid, ^separated; dash, 

=non-separated) 

99 



Figure 5.2a and 5.2b compare the normalized phase-averaged streamwise 

velocities for the separated and non-separated fields, as a function of height and wave 

phase at wind speeds of 4.4 and 3.7 m s"1, respectively. Both plots show that the flow 

separation influences the mean streamwise velocity only along the leeward side of the 

crest. At the windward side of the crest, the magnitudes of mean streamwise velocities are 

approximately the same for separated and non-separated types of flows. The figures also 

show that along the leeward face, the magnitude of streamwise velocity is significantly 

lower for the separated flow than that for the non-separated flow. The difference between 

the magnitudes of streamwise velocities for separated and non-separated flows increased 

from 0° to 135° and decreased from 135° to 270°. This is due to the reason that when the 

flow gets separated off the wave crest, clockwise separation vortex is generated on the 

leeward side. This causes a flow reversal which results in a lower mean streamwise 

velocity. Comparison of figures 5.2a and 5.2b shows that the decrease in the magnitude of 

mean streamwise velocity for the separated flow is large at the higher wind speed. This is 

due to the generation of stronger separation vortex at the higher wind speed. It was also 

observed that at both wind speeds, the maximum deviation in the streamwise velocity 

occurred at the phase of 135°, where the maximum reduction of the streamwise velocity is 

72% and 65% at 4.4 and 3.7 m s"1, respectively. This indicates that the core of the 

separated region is at a phase of 135°. The figures also show that the thickness of the fluid 

layer influenced by the flow separation increased with the phase angle which reached a 

thickness equal to two times the significant wave height in the trough. 
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Figure 5.2: Vertical profiles of the normalized phase-averaged velocity as a function of 

phase at wind speeds of (a) =4,4 m s'1, (b) =3.7 m s'1 (Symbols: o, =separated; 0, =non-

separated) 
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The vertical profiles of the phase-averaged vorticity for the separated and non-

separated flows are shown plotted in figure 5.3a and 5.3b at wind speeds of 4.4 and 3.7 m 

s"1, respectively. The results show that similar to the phase-averaged streamwise velocity, 

the influence of flow separation on the average vorticity is mainly restricted to the 

leeward side of the wave. The vorticity profiles in the non-separation zone shows that the 

vorticity magnitude increased towards the water surface which is due to the increase in 

the mean velocity gradients towards the water surface. However, in the separation zone, 

the peak vorticity magnitude is observed at a height close to the significant wave height, 

which then decreased towards the surface. This indicates that the core of the separation 

vortex lies at a distance approximately equal to the significant wave height from the 

surface. Comparison of separated and non-separated flows also shows that for the non-

separated flow, the thickness of the enhanced vorticity layer immediately above the water 

surface remains almost the same along the entire waveform, except at the crest where it is 

decreased. Whereas, for the separated flow, the thickness of the enhanced vorticity layer 

is increased in the separation zone. 

The vertical profiles of the normalized phase-averaged wave-induced streamwise 

velocity for separated and non-separated flows are plotted in figure 5.4a and 5.4b, at wind 

speeds of 4.4 and 3.7 m s"1, respectively. The plots show that unlike the phase-averaged 

velocity, the flow separation significantly influenced the wave-induced component of the 

streamwise velocity over the entire waveform. The results in Chapter 4 show that the 

wave-induced velocity for the fields (i.e. combined separated and non-separated fields) is 

positive in the crest region and negative in the trough region. 
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Figure 5.3: Vertical profiles of the phase-averaged vorticity as a function of phase at 

wind speeds of (a) =4.4 m s'1, (b) =3.7 m s'1 (Symbols: o, =separated; 0, =non-
separated) 
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Figure 5.4: Vertical profiles of the normalized phase-averaged wave-induced velocity as 
a function of phase at wind speeds of (a) =4.4 m s~, (b) —3.7 ms' (Symbols: o, 

^separated; 0, =non-separated) 
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The results in figure 5.4 show that the separated and non-separated flows also 

show the similar trend, however, the magnitude of the wave-induced velocity 

significantly enhanced for the separated flows at both wind speeds. The enhancement was 

found to be of the same order of magnitude over the entire waveform, with the largest 

enhancement above the wave crest. On average over the waveform, the wave-induced 

component was enhanced by factor of 5.2 and 4.8 at 4.4 and 3.7 m s"1 wind speeds, 

respectively. The results also show that the thickness of the layer influenced by the wave-

induced velocity is also increased for the separated flow. The thickness of this layer 

increased on the downwind side with the maximum thickness of three times the 

significant wave height at the phase of 225°. 

The vertical profiles of the phase-averaged wave-induced vorticity for the 

separated and non-separated flows are presented in figures 5.5a and 5.5b, at wind speeds 

of 4.4 and 3.7 m s"1, respectively. The plots show that for separated flow, the magnitude 

of the wave-induced vorticity increased with height in the region immediately adjacent to 

the water surface, reached a maximum value and then decreased towards zero magnitude 

at greater heights. Whereas, for non-separated flow, the magnitude of the wave-induced 

vorticity is significantly lower than that for the separated flow although the trends are 

similar. The plots also show that the location of the peak vorticity is higher for the 

separated flow compared to the non-separated flow. The peak magnitude of the near 

surface vorticity is observed at the phase of 0°, which is a factor of approximately 30 and 

10 larger for the separated flow compared to the non-separated flow, at wind speeds of 
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4.4 and 3.7 m s"1, respectively. Whereas, in the core of the separation region, the peak 

vorticity is observed at a phase of 90°, which is a factor of approximately 20 and 10 larger 

for the separated flow compared to the non-separated flow, at wind speeds of 4.4 and 3.7 

m s"1 respectively. It is also observed that the thickness of the wave-induced vorticity 

layer is approximately 1.5 times the significant wave height when the flow is separated 

which is significantly larger than that for the non-separated flow. 

The vertical profiles of phase-averaged wave-induced Reynolds stress < - uv > for 

the separated and non-separated flows are plotted in figures 5.6a and 5.6b, at wind speeds 

of 4.4 and 3.7 m s"1, respectively. The plots show that for both types of flow, at all phases, 

the wave-induced Reynolds stress is mainly negative in the near surface region, which 

become negligible at heights greater or equal to three times the significant wave height. 

As discussed earlier in Chapter 4, this negative Reynolds stress indicates the upward 

momentum transfer from waves to wind. The comparison of < - u v > for separated and 

non-separated flows shows that at all phases, the magnitude of wave-induced Reynolds 

stress for the separated flow is significantly larger and extended to greater heights than 

that for the non-separated flow. For separated flow, the maximum wave-induced 

Reynolds stress is observed on the windward side (-45° phase angle) which is a factor of 

10 and 4 higher than that for the non-separated flow at wind speeds of 4.4 and 3.7 m s~\ 

respectively. Whereas, within the core of the separation region (at the phase of 90°), the 

maximum wave-induced Reynolds stress for the separated flow is a factor of 17 and 3 

higher than that for the non-separated flow at wind speeds of 4.4 and 3.7 m s"1, 

respectively. 
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Figure 5.5: Vertical profiles of the normalized phase-averaged wave-induced vorticity as 

a function of phase at wind speeds of (a) =4.4 m s'1, (b) =3.7 m s'1 (Symbols: o, 

=separated; 0, =non-separated) 
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Figure 5.6: Vertical profiles of the normalized phase-averaged wave-induced Reynolds 

stress as a function of phase at wind speeds of (a) -4.4 m s", (b) =3.7 ms' (Symbols: o, 

^separated; 0, -non-separated) 
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Figure 5.7a and 5.7b show the phase-averaged turbulent Reynolds stress <-wV> 

for the separated and non-separated flows, at wind speeds of 4.4 and 3.7 m s" , 

respectively. Both plots show that over the entire waveform, the turbulent Reynolds stress 

is following the same trend for the separated and non-separated types of flow. That is the 

turbulent Reynolds stress has minimum magnitude at the closest point from the interface, 

increased with height to a certain distance and then decreased towards the free stream 

region. The plots also show that on the windward face of the wave, the magnitudes of the 

turbulent Reynolds stress for the separated and non-separated flows are approximately the 

same in both the near surface region and above in the free stream region. Whereas, on the 

leeward face of the wave, the magnitude of turbulent Reynolds stress in the near-surface 

region is significantly larger for the separated flow than that for the non-separated flow. 

For the separated flow, the turbulent Reynolds stress increased sharply to a maximum 

value within a height approximately equal to half of the significant wave height and then 

decreased towards the free stream region. Both plots also show that at a height of two 

times the significant wave height from the mean water surface, the magnitudes of the 

turbulent Reynolds stress for the separated and non-separated flows are approximately the 

same, indicating that the effect of flow separation to the near surface turbulence is limited 

to distance within two significant wave heights. The figures also show that at both wind 

speeds, the maximum turbulent Reynolds stress is observed at a phase of 135° and at a 

height of approximately 1 cm from the mean water surface, that is a factor of 4.5 and 2.5 

higher for the separated flow than that for the non-separated flow. 
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Figure 5.7: Vertical profiles of the normalized phase-averaged turbulent Reynolds stress 

as a function of phase at wind speeds of (a) =4.4 m s'1, (b) =3.7 m s'1 (Symbols: o, 

-separated; 0, =non-separated) 
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The vertical profiles of the rate of turbulent kinetic energy production for 

separated and non-separated flows are plotted in figure 5.8a and 5.8b at 4.4 and 3.7 m s"1 

wind speeds, respectively. The plots show that the rate of energy production is 

significantly higher for the separated flow on the leeward side and in the wave trough. 

The most significant increase in the energy production is observed at phases of 90° and 

135°, where the peak energy production was enhanced by a factor of 15 and 5 at 4.4 and 

3.7 m s"1 wind speeds, respectively. Another interesting observation is that on the leeward 

side, the location of the peak energy production is moved to a greater height for the 

separated flow which is approximately equal to the significant wave height. This shows 

that the flow separation enhances turbulence and also increases the thickness of the 

enhanced turbulence layer. The results also show that on the windward side near the wave 

crest, the turbulence production is not significantly influenced by the flow separation. 

The vertical profiles of the rate of turbulent kinetic energy dissipation (e) for 

separated and non-separated flows are plotted in figure 5.9a and 5.9b at 4.4 and 3.7 m s"1 

wind speeds, respectively. The energy dissipation profiles show the classical behaviour 

for the non-separated flow over the entire waveform and for the separated flow on the 

windward side. That is, the dissipation rate increased with the decrease in the distance 

from the water surface, with the largest dissipation rate closest to the water surface. 

However, the dissipation profiles for the separated flow on the leeward side show peak 

dissipation at a distance of approximately one significant wave height from the surface. 

That is, the maximum dissipation occurs in the core of the separation zone, although the 

magnitude of peak dissipation remains almost the same for separated and non-separated 

flows. Comparison of the dissipation magnitude for separated and non-separated flows 
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shows that the separated flows influence the energy dissipation rate only on the leeward 

side, where the thickness of the enhanced dissipation layer is significantly increased. 
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Figure 5.8: Vertical profiles of the normalized phase-averaged turbulent kinetic energy 
production as a function of phase at wind speeds of (a) =4.4 m s'1, (b) =3.7 m s'1 

(Symbols: o, =separated; 0, =non-separated) 
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Figure 5.9: Vertical profiles of the normalized phase-averaged turbulent kinetic energy 

dissipation as a function of phase at wind speeds of (a) =4.4 m s~' ,(b) =3.7 m s~' 

(Symbols: o, =separated; 0, =non-separated) 
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5.4. Discussion 

The results presented in this Chapter provided the first quantitative comparison of 

the mean, wave-induced and turbulent properties for the separated and non-separated 

flows over wind generated water waves at two different wind speeds. The results show 

that the waves over which the flow separation occurs are steeper and larger in amplitude 

than the waves with no flow separation. The results also show that the influence of flow 

separation is mainly restricted on the crest-to-trough region, i.e. leeward side of the wave 

and the wave trough (0° to 270° phase angles). The difference between the flow 

characteristics of the separated and non-separated flows typically increased with the 

phase angle from 0° to 135° and, decreased with the phase angle from 135° to 270° (-90°). 

The maximum difference between the flow characteristics of the two types of flow is 

observed within the phase angles from 90° to 135° that is the core of the separation 

region. Within the separation region lower magnitudes of the streamwise velocity and 

higher magnitudes of the vorticity were observed for the separated flow. The results also 

show that within the separation zone, the turbulence is significantly enhanced and its 

effect is also extended to greater heights. However, the flow separation did not influence 

the turbulence behaviour and magnitude on the windward side of the wave. The profiles 

of the turbulent Reynolds stress show significant enhancement on the leeward side and in 

the wave trough. The enhanced Reynolds stress is positive in this region, which indicates 

that the separated flow enhances the downward momentum transfer on the leeward side 

and in the trough and its magnitude increases with the wind speed. 
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The profiles of the wave-induced velocity and Reynolds stress show that the flow 

separation influences the wave-induced characteristics over the entire waveform. The 

trends remain almost the same for the separated and non-separated flows but the flow 

separation enhances the magnitudes of the wave-induced properties within the distance of 

one to two significant wave heights from the water surface. The enhanced wave-induced 

Reynolds stress is negative, which shows that the waves with flow separation contribute 

significantly to the upward momentum transfer and this contribution increases with the 

wind speed. 
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CHAPTER 6 

Near surface flow over air-liquid and air-solid interfaces 

In this chapter the mean and turbulent characteristics over smooth and wavy water 

surfaces are compared with that over smooth and wavy walls. 

6.1. Instantaneous velocity fields 

The instantaneous velocity fields for the three configurations are shown in figure 

6.1 to illustrate the overall flow dynamics. Figure 6.1a shows the instantaneous velocity 

field over a smooth wall (second configuration) at a wind speed of 4.4 m s"1. The plot 

shows fairly uniform flow as expected. The velocity field over the wavy solid wall is 

shown in figure 6.1b at a wind speed of 4.4 m s"1. The plot shows the flow separation and 

the separation vortex in the trough region. The velocity field over a water wave at a wind 

speed of 4.4 m s"1 is shown in figure 6.1c. The plot shows the flow separation off the 

wave crest and the separation zone within the trough. A burst is also observed on the 

windward face of the wave near the upstream end of the plot. 
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Figure 6.1. A snap short of 
instantaneous velocity fields at a wind 
speed of 4.4 m s~, (a) over the smooth 
wall, (b) over the wavy solid wall, (c) 

over the water wave 
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6.2. Mean streamwise velocity 

The mean streamwise velocities were computed by time-averaging five minutes of 

the velocity data at each grid point and then by spatially averaging the time-averaged 

velocities at each height. The vertical profiles of the normalized mean streamwise 

velocity over the water and solid surfaces are shown in figure 6.2a, at different wind 

speeds. For all configurations, the plot shows that the magnitude of the streamwise 

velocity decreased monotonically towards the interface, as expected. For the flow over 

smooth and wavy walls at all wind speeds, the normalized profiles of mean streamwise 

velocity merged into their respective groups. However, for the flow over the water 

surface, the velocity profiles distribute into two distinct groups. One group corresponds to 

the wind speeds at which waves were not observed i.e. wind speeds ranging from 1.5 to 

3 ms"1. The other group corresponds to the wind speeds of 3.7 and 4.4 m s"1, where 

surface waves were observed. The results show that the magnitude of the normalized 

velocity in the absence of waves is almost identical to that over the smooth wall. 

However, in the presence of water waves, the normalized velocity magnitudes are lower 

than that over the smooth wall and higher than that over the wavy wall. Quantitatively at 

wind speeds of 3.7 and 4.4 m s"1, the magnitudes of mean streamwise velocity over the 

water waves are 6% and 13% lower than that over the smooth wall whereas, 25% and 

85% higher than that over the wavy wall, respectively. The similarity in the normalized 

velocity profiles over the smooth wall and over the smooth water surface could be 

attributed to the similar nature of the shearing mechanism in the near-surface region. In 

both cases, the total stress in the near-surface region is the tangential or shear stress. 
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Whereas, when the waves appear on the water surface, a part of the stress is utilized as 

the waveform drag, which results in the reduction of the mean velocity than that over the 

smooth wall (Stewart 1970). 

Banner and Peirson (1998) measured viscous stresses beneath the water surface. 

They found that at short fetches and lower wind speeds, the viscous stress constitutes 

almost 50% of the total stress. They further observed that this fraction decreases with an 

increase in fetch and wind speed. Kudryavtsev and Makin (2001) investigated the drag on 

the sea surface and argued that at low wind speeds, the viscous stress dominates the 

surface drag while the role of the form drag is negligible. With the increase of the wind 

speed the role of the form drag becomes pronounced. At wind speed Uio > 10 m s"1, the 

surface drag is mainly supported by the wave induced and turbulent stresses. This fact is 

due to enhanced surface roughness which creates turbulence and decreases the relative 

speed of the airflow within few centimeters above the water-waves. The profiles in figure 

6.2a show that the drag over the wavy wall is larger than that over the water surface. 

The profiles of the mean streamwise velocity were used to estimate the friction 

velocity (ut) by using the logarithmic law (Wu 1975). The values of w.for all cases are 

presented in Table 6.1. Kawamura et al. (1981) computed the friction velocity by fitting 

the logarithmic law to the mean velocity profile. At a wind speed of 4.18 m s"1, they 

reported the values of the friction velocity equal to 18.9 cm s"1. Their friction velocity 

estimate was comparable to the present study (see Table 1). Stewart (1970) estimated the 

friction velocity equal to 10.10 cm s" at a fetch of 3.96 m and wind speed of 2.27 m s"', 

which is also consistent with the present study. 
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TABLE 6.1. Friction velocity at five different wind speeds 

Mean 

Wind 

velocity 

(m/s) 

Friction Velocity (cm/s) 

Flow over Flow over 

smooth wall wavy wall 

Flow over 

water 

surface 

1.5 

2.1 

3.7 

4.4 

8.63 

12.43 

16.98 

20.53 

24.32 

15.75 

23.75 

32.29 

39.38 

47.68 

6.39 

9.03 

12.22 

14.94 

17.48 

The non-dimensional wall coordinates vt and y+ were computed using the 

relations, 

111 -11 \ 

(6.1) u.JHzM 
u. 

V „ 
(6.2) 

where, Us is the surface velocity and va is the kinematic viscosity of air. For the flow 

over the water surface the values of Us were estimated by using the relation 

Us =0.55xut (Wu 1975), whereas for the flow over the solid surface due to no-slip 

condition the value of Us was taken as zero. Figure 6.2b shows the mean velocity profiles 

in wall coordinates for all configurations. 
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(Smooth Flow) 

V 
/ u+ = 2.5ln(y+)-2.1 
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Figure 6.2: Normalized profiles of (a) mean streamwise velocities,(b) mean streamwise 
velocity in wall co-ordinates, averaged over 5 minutes of data, open symbols show flow 

over water surface and close (black) symbols show flow over solid wall, close (gray) 
symbols show flow over solid waves (symbols: a, =1.5 m s'1; <, =2.1 m s'1; >, =3 m s'1; 

o, =3.7 m s'1; 0 =4.4 m s'1) 
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The theoretical lines representing the hydraulically smooth and rough flow 

regimes are also plotted for comparison. The plot shows that the flow over smooth wall 

falls in the smooth regime, while the flow over wavy solid wall was in the rough regime 

as expected. Another interesting observation is that unlike the profiles over solid wall 

which collapsed for each of the two configurations, the mean profiles over the water 

surface did not collapse but rather show a varying trend. The velocity profiles tend to 

move towards the rough regime with the increase in the wind speed. At the wind speed of 

4.4 m s"1, the mean velocity profile over water waves was in the transition regime. These 

results indicate that the hydrodynamic behaviour of the air velocity field over the water 

surface changes with the wind speed. Siddiqui and Loewen (2007) also observed a 

varying trend of the mean velocity profiles beneath water waves. 

Several previous studies have also investigated the similarity between the airflow 

over wavy water surface and that over solid surface by comparing their mean velocity 

profiles. Stewart (1970) reported that the velocity profile over water waves is 

quantitatively similar to the profile over a rough plate. Hsu et al. (1981) argued that the 

mean airflow follows the waveform so in the wave-following system, the water waves 

could not be regarded as the surface roughness. They concluded that the mean velocity 

profile over the water surface is similar to that over a smooth wall. Dattari et al. (1977) 

stated that the airflow over the water surface corresponds to the turbulent flow over rough 

walls. One common feature observed in all of these studies is the logarithmic behaviour 

of the mean velocity profiles which led to the argument about the similarity between the 

flow above water waves and that over a solid wall. However, the presence of logarithmic 

velocity distribution in the boundary layer can be described based on the dimensional 
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arguments (Kundu 1990) and it does not necessarily imply the similarity between the 

flow adjacent to the water and solid surfaces (Siddiqui and Loewen 2007). Krogstad et al. 

1992 and Krogstad and Antonia (1999) reported the influence of wall roughness on the 

mean velocity profiles within the boundary layer over a solid wall. They compared the 

flow properties for two surface conditions. The roughness of the surfaces was designed to 

produce the same effect on the mean velocity profiles. They reported that the surface 

geometry significantly affects the turbulent transport characteristics (Reynolds stress 

distribution, turbulent energy production and turbulent diffusion) of the flow, even when 

the two different roughness geometries have the same effect on the mean velocity. 

Therefore, it is reasonable to argue that the similarity between the mean velocity profiles 

is inadequate to relate the flow over undulating water surface to that over the solid wall. 

A comprehensive turbulent analysis is vital to understand if similarity exists between the 

flows over two different types of interfaces. 

Various turbulent characteristics were computed from the turbulent velocity fields 

and a comparison is made for the flow over smooth and wavy water surfaces with the 

flow over smooth and wavy walls at different wind speeds. Note that the procedure of 

computing the turbulent velocity fields for all three configurations is already described in 

chapter 2. 

6.3. Root-mean-square turbulent velocities 

The profiles of normalized streamwise root-mean-square (RMS) turbulent 

velocities for all configurations are presented in figure 6.3a versus height, at different 
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wind speeds. The plots show that the data for each configuration falls into a distinct group 

indicating that the magnitude of horizontal turbulent velocity with respect to their 

respective velocity scale is influenced by the surface condition. The results show that with 

respect to their velocity scale («,), the horizontal turbulent velocity over the wavy solid 

wall has the lowest magnitude, while the flow over water surface has the largest 

horizontal turbulent velocity magnitude which is twice of that over the wavy solid wall. 

The magnitude of the horizontal turbulent velocity over the smooth wall is in between the 

two. The plot in figure 6.3a also shows that the trends of horizontal turbulent velocity in 

the near-surface region are different over the water and solid surfaces. Above the wavy 

solid wall, the horizontal turbulent velocity increased sharply over a height of 1,5 cm (i.e. 

the wave height of the solid wall) and then gradually decreased towards the free stream 

region. The profiles above the smooth solid wall also shows similar overall trend. As 

expected, the sharp increase in the horizontal turbulent velocity was not present which 

was attributed to the wavy solid wall. Over the water surface in the presence of waves, the 

horizontal turbulent velocity increased sharply immediately above the interface followed 

by a relatively sharp decrease within a height of less than 1 cm. Small variations were 

observed at greater heights. The profiles in the absence of water waves show a decreasing 

trend within a height of 1 cm from the surface followed by a gradual increase and then 

decrease in the velocity magnitude. Note that, the sharp increasing trend immediately 

above the water surface as observed in the presence of water waves was not found in the 

absence of waves which could be due to the unavailability of data in the immediate 

vicinity of the interface for the no wave cases. As mentioned earlier, the closest velocity 

vector was located at a height of 0.5 mm and 0.8 mm from the water and solid waves 
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respectively, while for the flow over smooth water (no waves) and smooth solid surfaces, 

the nearest velocity vector was located on average at a height of 2 mm from the surface. 

The difference in trends over water and solid surfaces indicates that the structure of 

horizontal turbulent velocity in the near-surface region is different for two surface 

configurations. One plausible reason for this behaviour is the difference in the 

hydrodynamic boundary condition for the horizontal velocity component. At the solid 

wall, the horizontal velocity should reach zero, while a non-zero horizontal velocity 

magnitude exists at the air-water interface. 

The profiles of the RMS vertical turbulent velocity are plotted in figure 6.3b for 

all three configurations. The profiles for each configuration collapsed well into distinct 

groups. The profiles show a similar trend for all configurations however, in the presence 

of water waves, enhancement in vertical turbulent velocity is observed in the near-surface 

region. This indicates that water waves modify the vertical turbulent velocity structure in 

the near-surface region. Comparison of the magnitudes shows a trend similar to the 

horizontal turbulent velocity. That is, with respect to their velocity scale («„), the vertical 

turbulent velocity over the wavy solid wall has the lowest magnitude, while the flow over 

water surface has the largest vertical turbulent velocity magnitude. The magnitude of the 

vertical turbulent velocity over the smooth wall is in between the two. 
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Figure 6.3: Normalized profiles of (a) Root-mean-square streamwise turbulent velocities, 
(b) Root-mean-square vertical turbulent velocity, averaged over 5 minutes of data, open 

symbols show flow over water surface and close (black) symbols show flow over solid 

wall, close (gray) symbols show flow over solid waves (symbols: a, =1.5 m s'1; <, =2.1 

m s >,=3 ms'!; o, =3.7 ms'1; 0 ,=4.4 ms'1) 
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The comparison of profiles in figure 6.3a and 6.3b shows that for all 

configurations, the magnitude of streamwise turbulent velocity is much larger than the 

vertical turbulent velocity. The profiles of horizontal and vertical turbulent velocities 

over the wave and smooth solid walls did not collapse into a single group. This is likely 

due to the reason that the roughness height for the wavy solid surface (1.5 cm) is several 

orders of magnitude larger than the roughness height of the smooth wall (of the order of 

microns). Furthermore, the height of the measurement region is about five times the 

roughness height. Thus, the effect of roughness is expected to be significant in this region 

for the wavy wall even if Townsend's (1976) similarity hypothesis is in effect. 

6.4. Turbulent Reynolds stress 

The vertical profiles of normalized Reynolds stress (-wV) are presented in figure 

6.4 for all configurations. All profiles show the classical behaviour i.e. a rapid increase in 

the Reynolds stress in the near-surface region (up to a height of approximately 1 cm from 

the surface) and then a gradual decrease towards zero in the free stream region. The 

profiles over the wavy and smooth solid walls collapsed into their respective groups, 

whereas, the profiles over the water surface formed two distinct groups that correspond to 

the presence and absence of water waves. The magnitudes of the normalized Reynolds 

stress for the flow over wavy and smooth solid walls are comparable but lower than that 

over the water surface. Over the water surface, the magnitude of Reynolds stress is higher 

in the presence of waves. On average, the peak values of the normalized Reynolds stress 
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over the smooth and wavy water surfaces are 75% and 135% greater than that over the 

smooth or wavy wall, respectively, which indicates strong turbulence over the water 

surface than that over the smooth and wavy walls. The Reynolds stress distribution over 

the water surface also indicates that the effect of this turbulence is not restricted to the 

inner surface region but has also extended to the outer region. 
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Figure 6.4: Normalized profiles of turbulent Reynolds stress for all three configurations, 
averaged over 5 minutes of data, open symbols show flow over water surface and close 
(black) symbols show flow over solid wall, close (gray) symbols show flow over solid 

waves (symbols: •, =1.5 m s~ ; <, =2.1ms'; >, =3 m s~; o, =3.7 m s~ ; 0 , =4.4 m s~) 

Reynolds stress is a quantitative measure of the turbulent part of the momentum 

flux towards the surface. Higher magnitudes of Reynolds stress over the water surface 

also indicate enhanced momentum flux from air to the water as compared to air to solid 
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wall. The results in figure 6.4 also suggest that the dynamic roughness (water waves) has 

a significant influence on the Reynolds stress in the near-surface region and it contributes 

to the enhancement of the momentum transfer. No such effect was observed over the 

solid wall. Based on the above results it can be argued that the Reynolds stress behaviour 

over the water surface is different from that over the solid surface under identical free-

stream conditions. 

6.5. Turbulent energy production 

The turbulent kinetic energy production is computed using the equation 3.1. The 

data is normalized with the fetch and the corresponding friction velocities. The 

normalized profiles of turbulent kinetic energy production are plotted in figure 6.5 at 

different wind speeds. The profiles show similar grouping as for the Reynolds stress, i.e., 

each configuration over the solid wall has a distinct group, while over the water surface 

the grouping is based on the presence and absence of water waves. Profiles for all 

configurations show the classical behaviour i.e. peak production magnitude in the near 

surface region that decreased to zero in the free stream region. Significantly higher 

production magnitudes are observed over the water surface compared to the solid surface. 

The energy production over the water surface was found to be further enhanced in the 

presence of water waves. The enhanced energy production over water surface especially 

in the presence of water waves is likely due to the enhancement of the Reynolds stress. 
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Figure 6.5: Normalized profiles of turbulent energy production, averaged over 5 minutes 
of data, open symbols show flow over water surface and close (black) symbols show flow 
over solid wall, close (gray) symbols show flow over solid waves (symbols: a, =1.5 m s' ; 

<, =2.1 m s'!; >, =3 m s'1; o, =3.7 m s'1; 0 =4.4 m s'1) 

6.6. Turbulent Energy Dissipation 

The rate of turbulent kinetic energy dissipation was computed using the equation 

3.2. The profiles of the turbulent energy dissipation normalized by the fetch and the 

friction velocity are plotted in figure 6.6 as a function of height. The figure shows that for 

each configuration, the dissipation profiles collapsed into distinct groups. In all 

configurations, the maximum energy dissipation is observed adjacent to the surface which 

decreased rapidly in the near-surface region and then become almost constant. The 
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comparison shows that the higher magnitudes of normalized dissipation above the water 

surface, while the lower magnitudes over the wavy solid wall and the smooth solid wall in 

between the two. The results also show that the enhancement of dissipation magnitude 

from the outer region towards the surface is larger over the water surface as compared to 

that over both solid surfaces. The dissipation rate immediately adjacent to the smooth and 

wavy water surface is approximately a factor five higher than that at heights greater than 

3 cm. 
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Figure 6.6: Normalized profiles of turbulent energy dissipation, averaged over 5 minutes 
of data, open symbols show flow over water surface and close (black) symbols show flow 
over solid wall, close (gray) symbols show flow over solid waves (symbols: a, -1.5 m s~ ; 

<, =2.1 m s~'; >, =3 m s ; o, =3.7 m s~'; 0 , =4.4 m s~')) 
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The results in figure 6.6 also indicate that the influence of enhanced dissipation 

over air-water interface is extended to a height twice of that over air-solid interfaces. The 

profiles of dissipation over the water surface did not show distinct grouping for wavy and 

smooth water surfaces. Larger magnitudes of dissipation and a layer of enhanced 

dissipation immediately adjacent to the interface show that the dissipation behaviour over 

the water surface is different from that over the solid surface under identical free-stream 

conditions. 

6.7. Root-mean-square turbulent vorticity 

The turbulent vorticity was computed by using a central difference scheme at each 

grid point in the turbulent velocity field. The RMS turbulent vorticity (o>rms) was 

computed at each height. The normalized RMS turbulent vorticity is plotted in figure 6.7 

as a function of height. Kinematic viscosity and the friction velocity were used as 

normalizing parameters. The plot shows that the turbulent vorticity profiles are collapsed 

into distinct groups correspond to each configuration. Similar trends are observed in all 

cases i.e. the larger magnitudes of ©rms close the surface which decreased rapidly in the 

near-surface region and then remained almost constant at greater heights. Similar to other 

turbulent characteristics, the results in figure 6.7 also show that the magnitudes of 

normalized corms are larger above the water surface and lower above the wavy solid wall. 

Similar to the dissipation rate, the enhancement of the vorticity magnitude from the outer 

region towards the interface is larger over the water surface, particularly in the presence 

of waves. This indicates that the near-surface vortices over the water surface especially in 
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the presence of waves are much stronger than that in the outer region compared to that 

over the solid surfaces. The results also show that the maximum RMS vorticity observed 

near the wavy water surface is more than a factor of two larger than the one observed 

close to the solid wall. The vortices are the characteristic features of the turbulent flows 

and they play a significant role in the transport processes. The results in figure 6.7 

suggests higher interfacial transport rate (e.g. interfacial heat transfer rate) over the water 

surface compared to the solid wall under the identical free stream conditions. 

7 

6 

5 

t 4 

** 3 

2 

1 

0 — - • 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 

(o v/uf 
rms * 

Figure 6.7: Normalized profiles of root-mean-square turbulent vorticity, averaged over 5 
minutes of data, open symbols show flow over water surface and close (black) symbols 

show flow over solid wall, close (gray) symbols show flow over solid waves (symbols: •, 
=1.5 m s'J; <, =2.1 m s'1; >, =3 m s'1; o, =3.7 m s'!; 0 ,=4.4 m s'1) 
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6.8. Discussion 

The results presented in the preceding section described the flow structure over 

water and solid surface for smooth and wavy conditions under identical free stream 

velocities. The mean velocity profiles for all surface configurations show the logarithmic 

behaviour. The profiles over the smooth solid wall collapsed in a narrow band and 

showed hydrodynamically smooth flow whereas, the profiles over wavy solid wall 

showed hydrodynamically rough condition and also collapsed in a narrow band. The flow 

over the water surface showed variation in the hydrodynamic behaviour with the change 

in wind speed. The flow in the absence of water waves (i.e. smooth water surface) were in 

the smooth regime, which shifts towards the rough regime with an increase in wind speed. 

These results show that the hydrodynamic behaviour over the water surface changes with 

wind speed due to the change in the surface condition. Thus, at a given free stream 

velocity, the hydrodynamic behaviour over the fixed roughness (solid wall) and dynamic 

roughness (water surface) is not necessarily similar. 

The influence of surface condition on the flow behaviour was clearly visible in the 

profiles of various turbulent properties. The results show distinct groups that correspond 

to different surface conditions. The flow over the wavy and smooth solid walls formed 

distinct groups and did not collapse into a single group and as mentioned earlier, it is 

likely due to the reason that within the measurement height, the roughness height for the 

wavy solid wall (1.5 cm) is expected to have an influence, while for the smooth wall, the 

roughness effects are expected to be restricted within a very thin layer whose height is 

less than the nearest velocity grid point located at a distance of 2 mm from the surface. 
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The plots show that the normalized magnitudes of turbulent properties are largest over the 

water surface and smallest over the wavy solid wall, while the smooth solid wall is in 

between. Although in the absolute terms for a given wind speed, the magnitudes of 

turbulent properties over the wavy solid wall are larger in both inner and outer regions 

compared to that over smooth solid wall and water surface. The absolute magnitudes of 

turbulent properties are comparable over the smooth solid wall and water surface in the 

outer region and larger over the water surface in the near-surface region. 

The normalized plots represent the relative magnitude of the given property with 

respect to the magnitude of a characteristic scale. For the turbulent characteristics in 

boundary layer flows, friction velocity (w„) is considered as the characteristic velocity 

scale (Pope 2000). The results in Table 1 shows that the friction velocity magnitudes 

above the wavy solid wall are largest, followed by that over the smooth wall and then that 

over the water surface. The friction velocity is a measure of the shear stress at the 

interface or in other words, the force exerted by the fluid on the surface. The above results 

show that under identical free-stream velocities, the stresses exerted by the fluid on the 

surface are largest over the wavy solid wall and lowest over the water surface. From the 

turbulence perspective, the present results show that with respect to the surface stresses, 

the magnitude of the turbulent properties over the water surface is largest followed by the 

smooth wall and then the wavy solid wall. The results also show that over the water 

surface, the magnitude of turbulent properties increases significantly in the near-surface 

region when waves appear on the water surface. Thus, it can be argued that with respect 

to the surface stresses, the turbulence is enhanced over the wavy water surface while its 

magnitude is reduced over the wavy solid surface. Another feature that distinct the flow 
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behaviour over the solid and water surfaces is the level of turbulence enhancement in the 

near-surface region. The above results show that the level of enhancement of the 

dissipation rate and RMS turbulent vorticity from the outer region to the near-surface 

region is higher over the water surface especially in the presence of waves as compared to 

that over the solid surface. 

The above results and discussion showed that there are similarities and 

dissimilarities in the structure of flow above water and solid interfaces. Although the 

trends in profiles over water and solid surfaces are mostly similar, the relative magnitudes 

of turbulent properties and their level of enhancement towards the surface are different 

over water and solid surfaces. In particular, due to the significant difference in the 

turbulence magnitudes with respect to the surface stresses, the models for the flow over 

solid surfaces may not accurately predict the flow properties over the water surface 

especially the near-surface transport processes. 
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CHAPTER 7 

Conclusions and future recommendations 

7.1. Summary 

The interaction of waves and wind is a two-way process. Due to the coupling 

between wind and waves, the region immediately above the water surface plays a crucial 

role in controlling the fluxes of momentum, heat and mass. The visual inspections 

showed that the airflow structure within the near-surface region is very complex and 

different from the flow structure at greater heights. The dynamical processes in the near-

surface region include airflow separation immediately adjacent to the water surface 

(Kawai 1981), coherent structures (Komori et al. 1993), a high shear layer and active 

bursting and sweeping phenomena (Kawamura and Toba 1988). However the evidence of 

the existence of these dynamical processes is mainly based on qualitative observations. 

Several laboratory studies have been conducted to study the flow structure above the 

waves. Majority of these studies used point measurement techniques and measured airside 

velocity at a fixed height from the wave crest. Point measurement techniques can provide 

a time history of the flow but it is not capable of providing instantaneous spatial structure 

of the flow. In addition, this technique cannot be used for measurements in the region 

between the wave crest and trough, where any particular spatial location lies sometimes in 

water and sometimes in air. 
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Due to the unavailability of the accurate measurements close to the surface, the 

theoretical models available in the literature show substantial disagreement. The 

oceanographers and meteorologists ignore the near surface turbulence and consider this 

region as a black box (Edson et al. 1999). Furthermore, the climate models (that are used 

to calculate the global heat and mass transfer) are based on the bulk formulae in which air 

properties are measured at a height of 10 m above the water surface. However, the 

assumption that the air properties at 10 m height are good representative of the properties 

at the surface is questionable and leads to inaccurate flux estimates. The empirical 

relation developed to estimate the turbulent characteristics in the near wall region are 

often used to estimate the desired turbulent quantities over the water surface where direct 

measurement is very difficult. However the use of these empirical relations for the flow 

over the water surface is questionable (Perry et al. 1987). 

Due to the challenging nature, not enough work has been done in the near surface 

region above the wave. Recently, few researchers (Reul et al. 1999, Veron et al. 2007, 

Reul et al. 2008) used PIV technique and reported quantitatively, the instantaneous 

structure of velocity and vorticity fields in the crest trough region. However, none of 

these studies reported the mean and turbulent properties within the crest-trough region, 

specifically in the separation zone, and the influence of airflow separation on the process 

of momentum transfer across the air-water interface. A detailed investigation of the flow 

structure in this region is vital in order to obtain the understanding of the fundamental 

transport processes. 
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This thesis has reported on a series of laboratory experiments to investigate the 

airflow structures above wind waves especially within the crest-trough region. Detailed 

quantitative comparison is also made between the flow structure immediately over air-

water and air-solid interfaces. PIV technique was used to measure the instantaneous two-

dimensional velocity field over different types of interfaces at the same location, under 

identical flow conditions. A novel approach is used to separate the wave-induced 

component from the instantaneous velocity fields. In addition, the mean, turbulent and 

wave-induced properties were presented as a function of wave phase. The results 

provided the first direct evidence of the downward and upward momentum transfer from 

wind to waves and vice-versa. To the best of our knowledge this is the first study, 

reporting the quantitative analysis of the airflow structure in the immediate vicinity of the 

air-water interface, specifically within the crest-trough region. This research is aimed to 

improve the fundamental understanding of the physical processes that influence the air-

water mass, heat and momentum exchange. 

The experimental setup, measurement technique and the procedure used to 

compute the surface wave profiles were described in Chapter 2. The experiments were 

conducted in the same wind wave flume for three different configurations. In the first 

configuration, the lower half of the flume was filled with clean tap water. In the second 

configuration, the lower half of the flume was covered with a 5 mm thick hardboard 

panel, which was considered as a smooth wall. In the third configuration, a corrugated 

sheet with wave height of 1.5 cm is place on the hardboard panel, which was considered 
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as the wavy solid wall. For all three configurations, the velocity fields were measured at 

the same wind speeds ranging from 1.5 m s"1 to 4.4 m s"1 and at a fetch of 2.1 m. 

In Chapter 3, the instantaneous, mean and turbulent flow characteristics were 

described immediately above the wind-sheared water surface in the presence and absence 

of surface water waves. The results show that the surface waves significantly influence 

the near-surface airside velocity fields. The mean velocity magnitudes and the tangential 

stresses are decreased when waves appeared on the water surface. The results also show 

that the flow dynamics within the region bounded between the wave crest and trough are 

significantly different from that at greater heights. Within a 2 cm layer adjacent to the 

water surface, the vorticity was enhanced by approximately an order of magnitude and the 

energy dissipation rate was enhanced by a factor of seven at all wind speeds. The 

maximum energy production was also observed within a distance equal to the significant 

wave height from the surface. These results also provide the quantitative evidence of the 

enhanced vorticity layer immediately adjacent to the water surface which was speculated 

in the previous study through qualitative visualizations. The busting and sweeping 

processes similar to that over the solid wall were also observed above the surface waves. 

The present results demonstrate that the flow characteristics and the associated physical 

processes occurring within the layer immediately adjacent to the water surface whose 

thickness is of the order of the significant wave height, cannot be predicted from 

measurements taken at greater heights. 
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In Chapter 4 various turbulent and wave-induced properties were described as a 

function of phase and height in the immediate vicinity of the waves. The results show that 

the flow behaviour varies significantly over the waveform in the near-surface region. At 

heights greater than three times the significant wave height from the water surface, the 

wave-induced effects become negligible. The phase-averaged velocity, vorticity and 

Reynolds stress profiles indicate different types of flow structures on the windward and 

leeward faces of the wave. Along the windward side of the crest, the wave-induced 

velocity is in the direction of wave propagation whereas, along the leeward side of the 

crest, the wave-induced velocity is in the direction opposite to the wave propagation. The 

thickness of the vorticity layer is minimum above the crest and maximum above the 

trough. The largest magnitudes of vorticity are observed within the separation zone on the 

leeward side. The results also show that the wave-induced Reynolds stress contributes to 

the upward momentum transfer along the entire waveform whereas the turbulent 

Reynolds stress mainly supports the downward momentum transfer. On the windward 

face of the crest, a layer of constant turbulent Reynolds stress is observed within the 

bursting region whereas on the leeward face of the crest, significantly high magnitudes of 

turbulent Reynolds stress is observed within the separated flow region. In the immediate 

vicinity of the air-water interface, the momentum is transferred from waves to wind along 

the windward side, whereas, the momentum transfer is from wind to waves along the 

leeward side. 

The results presented in Chapter 5, provided the first quantitative comparison of 

the mean, wave-induced and turbulent properties for the separated and non-separated 
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flows over wind-generated water waves at two different wind speeds. A threshold-based 

algorithm was developed to identify the velocity fields with flow separation. The results 

show that the waves over which the flow separation occurs are steeper and larger in 

amplitude than the waves with no flow separation. The results also show that the 

influence of flow separation is mainly restricted on the crest-to-trough region. The 

turbulence is significantly enhanced within the separation zone. However, the flow 

separation did not influence the turbulence behaviour and magnitude on the windward 

side of the wave. The results also show that the separated flow enhances the downward 

momentum transfer on the leeward side and in the trough. The flow separation influences 

the wave-induced characteristics over the entire waveform. The trends remain almost the 

same for the separated and non-separated flows but the flow separation enhances the 

magnitudes of the wave-induced properties within the distance of one to two significant 

wave heights from the water surface. The enhanced wave-induced Reynolds stress is 

negative, which shows that the waves with flow separation contribute significantly to the 

upward momentum transfer and this contribution increases with the wind speed. 

Chapter 6 is focused on a detailed quantitative comparison between the airflow 

structures over smooth and wavy water and solid surfaces. The mean velocity profiles for 

all surface configurations show the logarithmic behaviour. The results show that the flow 

over smooth wall falls in the smooth regime and the flow over wavy wall was in the 

rough regime as expected, whereas the flow over the water surface shows variable trend. 

The flow in the absence of water waves were in the smooth regime, which shifts towards 

the rough regime with an increase in wind speed. Thus, at a given free stream velocity, 
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the hydrodynamic behaviour over the fixed roughness and dynamic roughness is not 

necessarily similar. The influence of surface condition on the flow behaviour was clearly 

visible in the profiles of various turbulent properties. The magnitude of turbulent 

properties increases significantly in the near-surface region when waves appear on the 

water surface. Thus, it can be argued that the turbulence is enhanced over the wavy water 

surface compared to that over the wavy solid surface. The results also show that the level 

of enhancement of the dissipation rate and RMS turbulent vorticity from the outer region 

to the near-surface region is higher over the water surface especially in the presence of 

waves as compared to that over the solid surface. These results showed that there are 

similarities and dissimilarities in the structure of flow above water and solid interfaces. 

Although the trends in profiles over water and solid surfaces are mostly similar, the 

relative magnitudes of turbulent properties and their level of enhancement towards the 

surface are different over water and solid surfaces. In particular, due to the significant 

difference in the turbulence magnitudes with respect to the surface stresses, the models 

for the flow over solid surfaces may not accurately predict the flow properties over the 

water surface especially the near-surface transport processes. 
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7.2. Research contributions 

The main contributions of this research to the scientific knowledge and techniques 

can be listed as follows: 

• Measurement of the two-dimensional velocity field within the crest-trough region 

over wind-generated water waves. 

• Development of the scheme to compute the location of the fluctuating air-water 

interface in both time and space. 

• Provided the first quantitative evidence of the enhanced vorticity layer 

immediately adjacent to the water surface which was speculated in the previous 

study through qualitative visualizations. 

• Provided the first direct evidence of the upward momentum transfer from young 

wind waves to the atmosphere. 

• Developed a novel technique to separate the wave-induced component from the 

instantaneous two-dimensional velocity fields. 

• Quantified the contribution of the near surface turbulence and wave-induced 

motion to the process of momentum transfer across the air-water interface. 

• Developed an algorithm to segregate the separated and non-separated velocity 

fields. 

• Provided the first quantitative comparison of the mean, wave-induced and 

turbulent properties for the separated and non-separated flows over wind-

generated water waves. 
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• Provided the first detailed quantitative comparison between the airflow structures 

immediately over smooth and wavy water and solid surfaces. 

7.3. Recommendations for future work 

The results presented in this research are unique and a step towards improving our 

fundamental understanding of the airside turbulent structure over wind-sheared water 

surfaces. However, there are many issues which still need further consideration. 

Following are some recommendations for future work. 

1. Low wind speeds and short fetch were the limitations of this study. Therefore PIV 

measurements at higher wind speeds and longer fetch are recommended for 

future work. 

2. The surface waves develop with fetch. The present measurements were conducted 

at a fixed fetch. To investigate the fetch dependency on the turbulent flow 

characteristics over wind-sheared water surface, the measurements at different 

fetches are recommended. 

3. The present measurements were conducted under neutral condition. That is, the air 

and water were at the room temperature. In order to investigate the influence of 

the temperature gradient on the process of momentum transfer, it is recommended 

that the airside velocity measurement should be taken in the presence of 

temperature gradient between the two fluids. 

4. Simultaneous air and water side measurements are also recommended that will 

help in a better understanding of the interfacial transport phenomenon. 
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Appendix I 

Error estimate for the PIV measurements 

The total error in the PIV measurements is the sum of the errors due to gradients, 

particle density, particle diameter, out-of-plane motion, dynamic range, peak locking and 

AGW interpolation (Cowen and Monismith 1997). The non-dimensional particle 

diameters in the present study were 0.015, 0.008 and 0.005 pixels/pixel for first second 

and third configurations respectively. Particles smaller than one pixel always occupy one 

pixel area in a PIV image. Therefore, the true position of the particle within a pixel cannot 

be resolved. Furthermore the particle diameters less than one pixel also increases the peak 

locking errors. Peak locking refers to the bias that occurs when the estimated location of 

the correlation peak is shifted towards the nearest integer value. According to Fincham 

and Spedding (1997) peak locking occurs in any type of Image Velocimetry technique 

where sub-pixel determination of the correlation peak is attempted. However, it can be 

minimized by using a suitable peak-fitting scheme. Cowen and Monismith (1997) tested 

several different sub-pixel peak fitting schemes including the three-point Guassian, 

parabolic and center-of-mass estimators and found that the three-point Guassian estimator 

performed the best. 

The largest errors are expected to occur in the top 2 cm layer of air at the highest 

wind speeds since the velocity gradients are largest here. We used the results of Cowen 

and Monismith (1997) and Prasad et al. (1992) to estimate the error in the PIV data. The 

errors were estimated for all three configurations separately, using the raw displacement 
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data in the top 2 cm layer of air at the wind speed of 4.4 m s"1. A detailed step-by-step 

procedure to estimate errors in the PIV data in the first configuration is given below. 

1. The mean values of the largest velocity gradients in the stream wise and vertical 

direction were computed from the raw PIV data. For all three configurations, the 

3u 
largest mean velocity gradient was — with the value of 0.307%. Thus this 

dy 

gradient was used to estimate the errors in the streamwise velocities of each 

configuration. 

2. The errors due to velocity gradient were estimated using figure 5(e) in Cowen and 

Monismith (1997). This figure gives the approximate error due to velocity 

gradients and is based on a particle size of 2.0 pixels. The total error due to 

velocity gradients is the sum of the mean and RMS errors. The errors due to 

velocity gradient were estimated to be, 

eu =0.06 pixels (A.l) 

where Su is the error associated with the streamwise velocity. 

3. As mentioned earlier, for the first configuration, the particle diameter in the 

present study was 0.0154 pixels therefore the error due to smaller particle 

diameter should be accounted for. We used figure 5(a) in Cowen and Monismith 

(1997), which is the plot of the errors as a function of the particle size. The errors 

due to the particle diameter of 1.0 pixel were estimated, since this was the smallest 

particle diameter that Cowen and Monismith (1997) was considered. The errors 

for a particle diameter of 1.0 pixel and the same velocity gradients were, 
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su = Q.lpixels (A.2) 

4. The errors corresponding to the particle diameter of 0.015 pixels were estimated 

using figure 13 in Prasad et al. (1992), which shows the variation in the bias (peak 

locking error) and RMS errors as a function of particle diameter. Using this figure, 

we estimated that the errors associated with a particle diameter of 0.015 pixels 

would be 20% larger than the errors associated with a particle diameter of 1.0 

pixel. The estimates of Prasad et al. (1992) were based on a center of mass peak-

fitting scheme, which is the scheme most susceptible to peak-locking errors 

(Fincham and Spedding 1997). The errors in the present case would be smaller 

since we used a three-point Gaussian estimator, which is much less susceptible to 

peak locking than the center of mass scheme (Cowen and Monismith 1997). 

Therefore, a more realistic estimate of the increase in the error is 20% due to the 

small particle size, hence, the final error estimate based on a 20% increase in 

errors was, 

su =0.0713 pixels (A.3) 

5. The in-plane vertical displacement based on the mean and standard deviation of 

the vertical displacement was estimated to be, 

v = v + av = 0.232pixels (A.4) 

The out-of-plane motion was expected to be less than or equal to the vertical 

displacement. Since the thickness of the laser light sheet was approximately 200 

um, the out-of-plane motion in the present case was assumed to be negligible. 

159 



6. The error due to AGW interpolation was estimated from figure 5(f) in Cowen and 

Monismith (1997) and it was 0.08 pixels. 

Thus the total error in the streamwise velocity was estimated to be, 

su =0.0713 + 0.08 = 0.15125 pixels (A.5) 

We assumed that the errors in the vertical velocity (v) were the same as the error in the 

streamwise velocity (u). Since the larger gradients in the vertical direction (x.Q.duldy) 

will produce errors in both u and v. Therefore, the error in V, where V = ^u2 +v2 is, 

sv = 2.38 pixels (A. 6) 

Hence, the average RMS error in the velocity estimates is +2.38 pixels. The uncertainty in 

the velocity measurements was calculated by dividing the RMS error with the resultant 

(V) of the mean velocity components u and v in the measurement region and found to be 

7%. The same procedure was addopted for the second and third configurations and the 

uncertainty in the velocity measurement was found to be 5% and 6% respectively. 
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