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ABSTRACT 
The application of shotgun sequencing to environmental samples has revealed a new universe of microbial 

community genomes (metagenomes) involving  previously uncultured organisms. Metagenome analysis, 

which is expected to provide a comprehensive picture of the gene functions and metabolic capacity of 

microbial community, needs to be conducted in the context of a comprehensive data management and 

analysis system. We present in this paper IMG/M, an experimental metagenome data management and 

analysis system that is based on the Integrated Microbial Genomes (IMG) system. IMG/M provides tools 

and viewers for analyzing both metagenomes and isolate genomes individually or in a comparative context.  

1. INTRODUCTION 

Environmental microbial community (microbiome) genome analysis (also known as metagenome analysis 

[17]) is expected to lead to advances in environmental cleanup, agriculture, industrial processes, and 

alternative energy production.  Similarly, human metagenome analysis could provide new insights into the 

variation of microbial populations associated with the human body, ascribe qualitative and quantitative 

changes in human microbiota as risk/causative factors of disease and develop new treatment strategies [9].  

The application of shotgun sequencing to microbiome samples has enabled the study of metagenomes 

involving  previously uncultured and unculturable organisms. Comparative analysis of the metagenomes in 

the context of available reference isolate genomes could potentially reveal large-scale patterns of 

biochemical interactions and habitat-specific correlations in the host environment that might otherwise be 

missed [6]. Studies of environmental microbiomes, such as acid mine drainage biofilms [21] and Sargasso 

Sea samples[22], as well as studies of human microbiomes, such as the human gut microbiome [9], are 

examples of a rapidly expanding area of metagenome analysis applications. 

Unlike microbial genome data from isolate organisms, the generation and interpretation of metagenome 

data is in early stages of development. Metagenomes sequenced by organizations such as the Joint Genome 

Institute (JGI), TIGR, and the Venter Institute, follow an assembly and annotation process that is specific to 

each sequencing center. Although traditional assembly and annotation algorithms do not perform as well on 

metagenome sequences as they do on isolate microbial genomes (see [4] for an overview of microbiome 

sequence assembly and gene prediction problems), they yield data  that are amenable to valuable 

comparative analysis and interpretation as illustrated by the studies published in [20] and [21]. Thus, the 

metagenomes of simple microbiomes can be assembled into sizable scaffolds and for highly abundant 

organisms the quality of the assembly and annotation may approach that of draft isolate genomes. For such 

metagenomes, it is possible to infer the metabolic capabilities of dominant organisms and identify the key 

member organisms that perform community-essential tasks.  

Although metagenomic sequence data processing poses numerous challenges due to the complex nature 

and inherent incompleteness of the data, and the lack of methods designed specifically for processing such 

data, successful analysis can be carried out on existing metagenomic data. As initial methods are improved 

or new methods emerge, metagenome data sets will be revised, thus leading to better quality data and 

annotations. However, metagenome data analysis needs to be conducted in the context of a comprehensive 

data management and analysis system that provides support for data review and revision. We have 

addressed this need by developing an experimental metagenome data management and analysis system, 

IMG/M, based on the Integrated Microbial Genomes (IMG) system [12].  

Like IMG, IMG/M is based on the principle that integration of available genomic data is essential for 

understanding the biology of newly sequenced genomes, as the efficiency of genome analysis increases 

substantially when it is conducted in a comparative context. Such an integrated context is even more critical 

for analyzing the inherently incomplete metagenome data. IMG/M has been successfully used for the study 

of  biological phosphorus removing (EBPR) sludge communities [13], and is currently used for analyzing 

several metagenomes sequenced at JGI. 

In the following sections, we first discuss the main metagenome data processing challenges. Next, we 



briefly review metagenome data modeling and analysis. Finally, we present  the IMG/M metagenome data 

analysis tools and discuss our plans to extend these tools. 

2. METAGENOME  DATA PROCESSING 

There are two general sequencing strategies to obtain genome sequence data from microbiome samples: 

directed sequencing and shotgun sequencing of random clones. Directed sequencing is either (i) function-

driven, whereby clone libraries from a microbiome sample are sequenced after being screened for a desired 

function; or (ii) driven by phylogenetic markers, whereby the DNA flanking taxonomic anchors, such as 

16S rDNA, is sequenced in large-insert libraries. Conversely, shotgun sequencing of microbiome sample 

clone libraries follows a relatively unbiased approach, which provides a broad survey of the gene content 

and metabolic capabilities of a microbiome. A combination of shotgun and directed sequence approaches 

may emerge in the future and thus combine the advantages of the broad coverage provided by shotgun 

sequencing with the ability of sampling specific genome areas in low abundance organisms without over-

sequencing more abundant members of the microbiome. The discussion below pertains to metagenomic 

data generated using shotgun sequencing.  

Metagenome sequence data processing follows assembly and annotation procedures that are specific to 

each sequencing center. Assemblers, such as the Celera Genome Assembler, PHRAP, and JAZZ [1] have 

been used with mixed results [4]. Assembly of shotgun-sequenced microbiome samples poses a serious 

challenge to traditional assembly methods, due to a fundamental difference between the sequences derived 

from cultivated microbes and microbial communities. While the genome sequence of a cultivated microbe 

is derived from a clonal isolate, where all cells are descendants of one cell and therefore genetically 

identical or nearly identical, the aggregated genome sequence of a microbiome is derived from a 

heterogeneous pool of cells, some of which are genetically related and probably correspond to different 

strains of the same species, while others are genetically distinct. Although co-assembly of the sequences 

derived from different species does not seem to be a problem, traditional methods are not consistent in 

assembling the sequence reads belonging to different strains of the same species: depending on the 

assembly algorithm and sequencing read depth they can be resolved into strain-specific scaffolds or co-

assembled into a composite species population scaffold. In the later case the strain-specific variations 

appear as single nucleotide polymorphisms (SNPs) in the sequence.  

Annotation of the assembled metagenomes is also currently carried out using traditional approaches 

developed for isolate genomes. For instance, protein-coding genes (CDSs) are predicted on scaffolds and/or 

so called shrapnel sequences (single reads that are not incorporated into scaffolds) using microbial gene 

finders, such as Glimmer [5] or Fgenesb (http://www.softberry.com/). Performance of traditional gene 

prediction methods is affected by the inevitable fragmentation of metagenomic sequences, which in turn 

leads to fragmentation of the genes, and therefore sometimes gene prediction is limited to BLASTp of all 

open reading frames against protein sequence databases. Functional annotation of predicted CDSs is 

generally carried out using COG, Pfam, InterPro, PRIAM and KEGG pathway database; functional 

annotations can be also marred by gene fragmentation in the metagenomic datasets.  

Sometimes an additional stage of scaffold binning is included in order to assign scaffolds and shrapnel 

sequences to organism types (phylotypes) that could range from coarse-level groupings such as domain 

(Bacteria, Archaea) down to fine-level groupings such as individual strains of a given species. It is highly 

desirable that all sequence fragments are assigned to a particular strain in the community; however, it is 

usually not feasible due to the different abundance of the strains and variation of sequence coverage. 

Consequently, the highest resolution grouping for metagenome data can be achieved at the species level, 

that is, grouping together genomic fragments that are likely derived from members of a given species 

population, whereby each bin represents a snapshot of a composite genome of a species population. Some 

regions of such composite genome are represented by sequences originating from only one strain (usually, 

the most abundant one), while others are covered by the sequences from multiple strains. These latter 

regions may exhibit different types of strain-level heterogeneity, from SNPs to extensive genome 

rearrangements. Binning algorithms rely on measuring the oligonucleotide frequency in different scaffolds, 

depth of sequence coverage or phylogeny of conserved protein markers; thus, binning accuracy depends on 

the sequence coverage, quality of the assembly, scaffold size, complexity of the microbiome, and available 

reference isolate microbial genomes [4]. While it is expected that binning will be difficult in the case of 

highly fragmented metagenomes of complex microbiomes, such as those from soil samples [20], for 

simpler microbiomes with sufficient sequence coverage it is possible to reconstruct more than 95% of the 

individual genomes of the dominant community members [21]. 



Despite the metagenome data processing challenges mentioned above, analysis of metagenomes does not 

need to wait for the development of optimal data generation and annotation methods: such analysis can be 

carried out with existing methods with the results of these analyses serving as a basis for improving the 

methods in an iterative process.  

3. METAGENOME DATA MODEL AND ANALYSIS 

Similar to isolate microbial genome data, metagenome data captures information about DNA sequence, 

along with genes that can be further characterized in terms of functional roles. A gene represents an 

ordered sequence of nucleotides located on a particular chromosome that encodes a specific product (i.e., a 

protein or RNA molecule); its protein product can be characterized in terms of sequence similarity to other 

protein products, presence or absence of conserved motifs and domains. Functional roles of genes can be 

characterized in the context of pathways, whereby pathways are associated with genes via gene products 

that can function as enzymes catalyzing individual reactions of metabolic pathways. Similar to isolate 

microbes, the metabolic capacity of a whole microbiome can be characterized by analyzing the metabolic 

maps inferred from the gene content and distribution of its composite genome.  

Metagenomic data have an additional level of complexity reflecting the complex nature of microbiomes, 

which, unlike clonal isolates, consist of heterogeneous pools of cells belonging to different strains and 

species. Therefore metagenomic scaffolds can be further characterized in terms of their bin assignment, 

whereby a bin could correspond to a composite genome of a species population or another higher-level 

taxonomic group. If a bin corresponds to the species population, it could be characterized by strain-level 

heterogeneity (e.g., SNPs or genome rearrangments). Similar to a metagenome which represents a random 

sample of the aggregate microbiome genome, a bin may represent only a subset of the aggregate genome of 

a species population, and therefore may not reflect all the diversity of this species population in terms of 

strain-level heterogeneity. 

Another important difference between metagenomic data and isolate genome data is that metagenome 

data are representative of a microbiome in a specific host environment and a specific sample of this 

environment. Sample (meta) data characterizes the biological material collected for sequencing, are specific 

to a specific application domain. For example, for biomedical applications samples are collected from 

human donors and therefore are associated with attributes that describe donor host data (e.g., demographic 

and clinical record), sample structural and morphological characteristics (e. g., site and time of collection) 

and sample processing protocol. Sample metadata are critical in metagenome comparative data analysis. 

Comparative data analysis plays an important role in understanding the biology of isolate microbial 

genomes [3, 15]. Similar to isolate genomes, the analysis of metagenomes in the comparative context of 

other (e.g., phylogenetically related) genomes is substantially more efficient than analyzing each 

metagenome in isolation. Metagenome data analysis is set in a multidimensional data space, such as that 

illustrated in Figure 1, whereby microbiome samples form one of the dimensions and are analyzed in the 

context of other dimensions, such as component species populations, gene families represented by 

homolog/ortholog clusters, COG groups or Pfam families, and pathways and networks.  

Consider the example shown in Figure 1: microbiome samples can be compared in terms of 

presence/absence and abundance of certain gene families, with gene family abundance represented as a heat 

map. This type of analysis is based on the assumption that the genes important for adaptation to a particular 

environment will be found in many (if not all) organisms in the microbiome; moreover, such genes might 

be present in multiple copies, therefore, they are more likely to be found among the abundant gene families. 

Gene family abundance profiles can be analyzed at higher resolution, when bins within the same 

microbiome rather than microbiome samples are compared; this type of analysis allows to verify directly 

the assumption that abundant gene families are indeed present in many members of a microbiome. 

Another emerging method of analyzing metagenomic data involves detection of presence and abundance 

of certain metabolic pathways in a specific microbiome sample or across samples of the same microbiome 

or different microbiomes. Such analysis typically involves examining occurrence profiles [15] of functions 

and pathways of interest across samples associated with a specific microbiome or across diverse 

microbiomes. Alternatively, the bins within the same metagenomic sample can be compared in terms of 

presence/absence of functions and pathways. This analysis helps to infer the metabolic capabilities of the 

component organisms in the community, and thus identify the key members of the microbiome that 

perform community-essential tasks and pinpoint the metabolic interactions within the microbiome and 

between the microbiome and its host environment. 



 
Figure 1. Analysis of Gene and Species Population Abundance in Multidimensional Data Space. 

Both examples discussed above are focused on the analysis of metagenomic data per se, however, an 

efficient analysis of metagenomes is not possible without the context of reference genomes. Similar to 

comparisons of microbiome samples and bins within metagenomic datasets, metagenomic sequences can be 

compared to isolate microbial genomes in terms of gene family abundance, presence or absence of 

functions and pathways, and so on.  

4. AN EXPERIMENTAL METAGENOME DATA MANAGEMENT AND ANALYSIS SYSTEM 

We have developed an experimental metagenome data management and analysis system, IMG/M, based on 

the Integrated Microbial Genomes (IMG) system [12]. The IMG/M system and data analysis tools are 

presented below. 

4.1 System Overview 

The content of IMG/M can be seen as a superset of IMG’s content. IMG integrates bacterial, archaeal and 

selected eukaryotic genomic data collected from multiple data sources. Thus, IMG 1.3 (as of December 1st, 

2005) contains a total of 678 genomes consisting of 377 bacterial, 26 archaeal, 15 eukaryotic genomes and 

260 bacterial phages. IMG’s extensive collection of microbial provides the foundation for analyzing the 

fragmented inventory of genes, functions, and organisms in microbiomes and their component populations.  

In addition to IMG’s isolate genomes, IMG/M includes metagenomic sequences generated from an acid 

mine drainage (AMD) biofilm [21], an agricultural soil sample [20], three isolated deep sea “whale fall” 

carcasses [18], and two biological phosphorus removing (EBPR) sludge samples [13]. These microbiomes 

comprise a representative set in terms of species diversity, abundance of dominant organism(s) and 

sequencing depth. For instance, species diversity ranges from very low in the case of the AMD sample to 

extremely high in the soil sample, while abundance of dominant organism(s) ranges from less than 1% in 

the soil sample to more than 80% in EBPR sludge samples. Furthermore, two EBPR sludge samples 

represent an example of microbiomes inhabiting similar environments in two distinct geographical 

locations. Consequently, the metagenome data in IMG/M can be employed to test use case scenarios, assess 

performance of available tools and develop new methods for metagenome analysis.  

The IMG/M back-end consists of a data warehouse, sequence databases for similarity (BLAST) 

searches, and various auxiliary data files containing scaffold DNA sequences, pathway map images, and 

cached data for improving performance, such as pre-computed statistics and homolog results. An additional 

BLAST database supports similarity searches based on the sequencing reads for analysis of strain level 

single nucleotide polymorphisms (SNPs). The data generated by microbial genome and metagenome data 

processing pipelines serve as input for a custom ETL (Extract-Transform-Load) toolkit that loads data into 



the IMG/M data warehouse. This toolkit is also employed for extracting, cleaning, integrating, and loading 

additional genomic and contextual data from external resources into the data warehouse. Additional custom 

tools are employed to compute gene relationships and clusters and load these data into the data warehouse.  

The data model for the IMG/M data warehouse allows integrating primary genomic sequence 

information, computationally predicted and curated gene models, pre-computed sequence similarity 

relationships, and functional annotations and pathway information in a coherent biological context. Isolate 

organisms are identified via their taxonomic lineage (domain, phylum, class, order, family, genus, species, 

strain). For each genome, the primary DNA sequence and its organization in scaffolds and/or contigs, are 

recorded. Genomic features, such as predicted coding sequences (CDSs) and some functional RNAs, are 

also recorded. Protein-coding genes are further characterized in terms of molecular function and 

participation in pathways. Proteins are grouped into protein families based on sequence similarity. 

Pathways, reactions, and compounds are included from KEGG and LIGAND.  Additional functional 

annotations according to Gene Ontology terms [8] are provided by EBI Genome Reviews [11], while COG 

[19] provides clusters of orthologous groups of genes. Ortholog and paralog gene relationships for isolate 

microbial organisms are computed based on bidirectional best hit (BBH) with clusters formed using 

Markov Clustering method (MCL) [7]. Isolate organisms are characterized in terms of phenotypes (e.g., 

morphology, geochemistry), ecotype (including geographical coordinates) and disease. 

Microbiome samples are treated as  “meta” organisms with the collection of their associated genes 

forming their respective metagenomes. The sequences of a microbiome sample together with their 

associated genes and annotations are organized in bins when possible, with multiple bins providing support 

for recording data generated using different binning methods. Similar to isolate organisms, microbiome 

samples are characterized in terms of phenotypes, ecotype, disease, and relevance. These data are only 

minimal in coverage, reflecting the current scarcity of such data for microbiome samples. 

4.2 Data Analysis 

We review below the IMG/M data exploration and comparative analysis tools, with special emphasis on the 

support for metagenome analysis. IMG/M tools can be also employed for analyzing isolate microbial 

genomes in the same way as their IMG counterparts  [12].  

4.2.1 Data Exploration 

Data exploration tools in IMG/M help selecting and examining genomes, genes, and functions of interest. 

Metagenomes as well as isolate genomes can be selected using a keyword based Genome Search in 

conjunction with a number of filters or an alphabetically or phylogenetically organized Genome Browser. 

Microbiomes can be further examined using the Microbiome Details, where a user can find relevant 

metadata, such as geographical location, along with various summaries of interest, such as the total number 

of scaffolds and genes or the number of genes associated with functional characterizations (eg., COG, 

Pfam), as shown in the right pane of Figure 2. Microbiome Details also provides an estimate of phylum 

level assignment (Phylogenetic Mapping) of metagenomic fragments in the sample based on sequence 

comparison to isolate genomes. This overview consists of the distribution of the best BLAST hits at 

different percent identity thresholds of a metaproteome (i.e., the collection of all the proteins encoded in the 

meatgenome) of interest against the proteomes of all isolate genomes in the system, as shown in the left 

pane of Figure 2. For each metagenome one can also examine the associated list of scaffolds and contigs, 

and information on individual bins and their scaffolds when bins are available. 

Genes can be selected using  a keyword based Gene Search, sequence similarity search tools, or a gene 

profile based selection tool, the Phylogenetic Profiler , discussed in more detail below. The functional role 

of genes in IMG/M is characterized by a variety of annotations, including their COG membership, 

association with Pfam domains, Gene Ontology (GO) assignments, and association with enzymes in KEGG 

pathways. Functional annotations can be searched using keywords and filters, with the selected functions 

leading to a list of associated genes either directly or via a list of organisms. COG functional categories and 

KEGG pathways can be searched and browsed separately. The lists of genes and functional annotations that 

are of interest for further exploration can be maintained using various Analysis Carts, which are similar to 

shopping carts of commercial websites.  

Individual genes can be analyzed using Gene Details pages, as illustrated in Figure 2. A Gene 

Information table includes gene identification, locus information, biochemical properties of the product, 

and associated KEGG pathways. Gene Details also includes evidence for the functional prediction: gene 

neighborhood, COG, InterPro, and Pfam, and pre-computed lists of  homologs, orthologs and paralogs (for  



 
Figure 2. AMD Microbiome Details: Metagenome Statistics and Phylogentic Mapping of Fragments. 

Gene Details and Gene Neighborhoods Example for an AMD Metagenome Gene. 

isolate organisms), or intra-metagenome homologs as well as homologs to other genomes and 

metagenomes (for microbiomes). The gene neighborhood displays the target gene and its homologs in user 

selected related genomes with its neighboring genes in a 25kb chromosomal window: for example, the gene 

neighborhood in the Gene Details in Figure 2 shows the target gene (centered, in red) and other genes 

within a 25kb window. The Gene Neighborhoods in Figure 2 shows the neighborhood of a target gene of 

the Ferroplasma acidarmanus Type I bin of the AMD metagenome, compared to homologous genes of the 

Ferroplasma acidarmanus fer1 isolate genome: each gene’s neighborhood appears above and below a 

single line showing the genes reading in one direction on top and those reading in the opposite direction on 

the bottom; genes with the same color indicate association with the same COG. For each gene, locus tag, 

scaffold coordinates, and COG number are provided locally (by placing the cursor over the gene), while 

additional information is available in the Gene Details associated with each gene. A gene can be also 

examined in the context of its associated pathways, whereby the link embedded in the pathway name listed 

in the Gene Information table allows the KEGG map associated with the gene to be displayed. On such a 

map, EC numbers are color-coded and linked to the Gene Details for the associated genes. 

Individual COG categories can be further explored with COG Category Details that lists the COGs of a 

given category and the number of organisms that have genes belonging to each COG. For a given COG, the 

“organism counts” are linked to a list of organisms and their associated “gene counts”. Gene counts for all 

COGs in a given category can be displayed for multiple organisms using COG Category Profile. KEGG 

pathways can be explored in a similar manner using KEGG Pathway Details and KEGG Pathway Profile. 

COG Category Profile and KEGG Pathway Profile are further discussed below. 

4.2.2 Comparative Data Analysis  

The gene content of metagenomes and genomes can be examined with a profile-based selection tool, gene 

neighborhood analysis tools, and multiple sequence alignment tools. Functional annotations can be 

examined with several occurrence and abundance profile-based tools. We discuss below in more detail the 

profile based selection, occurrence profile, and abundance profile tools.  

Gene Profile Comparisons. The Phylogenetic Profiler tool allows comparison of the gene content of a 

target entity (microbiome, bin, or isolate organism) to that of other entities (microbiomes, bins or 

organisms) by defining a profile for the genes of the target entity in terms of presence or absence of 

homologs in other entities. Similarity cutoffs can be used to fine-tune the selection.  



 

Figure 3. Finding Gene Content Differences Between Bins with the Phylogenetic Profiler. 

Similar to isolate genomes, the differences in gene content between metagenomes can be correlated with 

a specific phenotype or environment, while comparison of gene content of bins within the metagenome 

helps to infer metabolic capabilities of the component populations and reveal organisms that might be 

responsible for community-essential tasks. The example in Figure 3 illustrates how the Phylogenetic 

Profiler helps to find the differences in gene content between the component populations in the Acid Mine 

Drainage (AMD) microbiome. In this example, genes in the bin corresponding to Leptospirillum sp. group 

III that have no homologs in other bins in this metagenome are identified. Among the “unique” genes in 

Leptospirillum sp. group III one can find those responsible for nitrogen fixation, which makes this 

organism a keystone species in the AMD microbiome due to limitation of external nitrogen sources [21].  

Occurrence Profile Comparisons.  Occurrence profile tools allow examining profiles of genes and 

functions across microbiomes, bins, and isolate organisms. Gene occurrence profiles are usually examined 

within the same bin or organism: if such genes have similar occurrence profiles then they may also have a 

similar evolutionary history and may potentially be functionally linked, or co-regulated in a pathway [3]. In 

order to find such genes in IMG/M, a Phylogenetic Occurrence Profile Similarity search allows identifying 

other genes in the same metagenome that have occurrence profiles that are similar to that of a gene of 

interest, where the similarity is defined using a percent occurrence match threshold1.  

Functional profiles, such as COG Category Profile, Pfam Profile, and KEGG Pathway Profile show the 

occurrence profiles for functional characterizations such as COGs, Pfam families, or enzymes involved in 

pathways across the selected entities (microbiomes, bins and organisms), whereby the occurrence profile 

for a specific characterization, c, shows the pattern of c across the selected entities in the form of a vector 

of the form (k1, …,kn), where ki is the number (count) of genes of entity Ei  that are associated with c. Such 

profiles provide an estimate of the similarity between entities in terms of association with a specific 

pathway or functional characterization. In addition to predefined functional and KEGG pathway profiles, 

users can define custom lists of individual COGs, enzymes or Pfam families using a variety of search and 

browse options. These user-defined lists are maintained using Analysis Carts and can be analyzed in terms 

of their occurrence profiles. 

The example in Figure 4 illustrates how a custom list of Pfam families can be used to predict the 

presence of a pathway for CO2 fixation in metagenomic samples. The first step in one of CO2 fixation 

pathways is catalyzed by anaerobic carbon monoxide dehydrogenase. A keyword search on expression 

“CO dehydrogenase” with Pfam as a filter retrieves a list of 6 Pfam families, 4 of them corresponding to 

different subunits of anaerobic carbon monoxide dehydrogenase. The occurrence profiles of these Pfam 

families across bins in the AMD  metagenome  demonstrates that, despite the presence of  several  spurious 

                                                 
1Percent occurrence match threshold defined as follows: (i) for a gene of interest, x, let N(x) be the number of occurrences (i.e., 

number of “p”’s) in its occurrence profile vector, across the selected organisms; (ii) for a gene y, let M(y, x) be the number of 

occurrences (i.e., “p”’s in its occurrence profile vector) that match occurrences in the same position in the occurrence profile vector 

for x; (iii) min (M(y, x) / N(x), M(x, y) / N(y) ) is employed for determining whether y is above the threshold set for finding genes that 

have occurrence profiles similar  to x. 



 
Figure 4. Exploring the Presence of a Pathway for CO2 Fixation with Pfam Profile. 

hits, anaerobic CO dehydrogenase is most likely absent from the organisms constituting this community 

and they rely on some other pathway of CO2 fixation. Surprisingly, the genes coding for anaerobic CO 

dehydrogenase appear to be present in 2 out of 3 whalefall samples. Occurrence profile tools provide two 

(functions vs. genomes, genomes vs. functions) display options for data visualization purposes. 

Abundance Profile Comparisons.  Abundance profile tools allow comparing functional annotation profiles 

(e.g., COGs, Pfam families or sequence similarity-based protein clusters) across microbiomes, bins, and 

isolate organisms of interest. This tool is especially useful for analysis of datasets obtained from the 

communities with high species diversity, where little or no sequence assembly can be achieved: for such 

datasets identification of predominant protein families allows users to infer habitat-specific biological traits.  

The example in Figure 5 shows the abundance profiles of COG groups across the low-complexity AMD 

microbiome and the highly complex soil and whalefall microbiomes. Arrows indicate COGs that are clearly  

 

Figure 5. Use of Abundance Profiles to Identify COG Families Overrepresented in Soil Metagenome. 



overrepresented in the soil microbiome (bright red) as compared to other microbiomes (pink, orange, 

yellow and green); both COGs correspond to glycosyl hydrolases of different specificity. One would expect 

to find glycosyl hydrolases abundant in microbiomes performing degradation of plant-derived carbohydrate 

polymers, such as soil microbial community. 

SNP Analysis in Species Population.  IMG/M provides a tool for analysis of strain-level heterogeneity 

within a species population in metagenome data. SNP BLAST allows users to run BLASTn of nucleotide 

sequence of the genes or scaffolds in metagenomes against a database of sequencing reads that were 

assembled to produce a composite species genome sequence comprised of multiple strains sequence types. 

5. CONCLUSION 

We have presented in this paper IMG/M, an experimental metagenome data managemen and analysis 

system. IMG/M is available at http://img.jgi.doe.gov/m and provides support for the exploration and 

comparative analysis of metagenomes and their component populations in the context of other 

metagenomes and isolate genomes. IMG/M has been successfully used for the study of  EBPR sludge 

communities [13], and continues to be used for analyzing several metagenomes sequenced at JGI. Although 

IMG/M proves to be best suited for the analysis of low-complexity microbiomes, the system can be also 

used to infer the presence of important physiological characteristics in any microbiome and its species 

populations.  

We plan to extend the tools provided by IMG/M in order to address several metagenome data analysis 

challenges. The first challenge regards the size and complexity of some metagenome data sets. Additional 

viewers need to be developed in order to improve the efficiency of analyzing such data sets via graphical 

representation of phenomena of interest, such as relationships or anomalies, set in a biological context.  

A second challenge is posed by existing methods for binning metagenome scaffolds. These methods are 

in an early stage of development and have not been properly tested on metagenomes of complex 

microbiomes. We have found that some of these methods do not perform well even when applied to low 

diversity microbiomes in IMG/M, resulting in a significant number of unclassified or misclassified 

scaffolds. While analysis of environmental samples is often function-driven and focuses on the genes and 

metabolic pathways of interest regardless of their assignment to a certain species, binning of scaffolds is 

essential for drawing a connection between the presence of certain genes (e. g., pathogenicity factors) and 

species composition of a microbiome. Consequently, there is an immediate need for tools that would 

provide support for comparing different binning methods and for assessing their accuracy, as well as for 

revising bins in terms of scaffold composition and gene content.  

Finally, metagenome analysis tools need to be extended in order to account for the stochastic nature of 

metagenomic data and variations of data quality due to incomplete sequence coverage. In most 

microbiomes a few dominant species tend to get the most sequencing coverage, sometimes approaching 

that of draft isolate genomes, while low abundance organisms can be represented by a small number of 

scaffolds or even single sequencing reads. Accordingly, statistical tests need to be devised to estimate the 

sequence coverage of the bins and whether it is adequate for certain types of comparative analyses, such as 

metabolic reconstruction. Additionally, when metagenomes are compared to each other or to isolate 

genomes, statistical tests are needed for estimating the statistical significance of the observed differences. 

For example, the analysis of Abundance Profiles described above requires testing whether the  differences 

in abundance can be ascribed to chance variation or not.  

We also plan to extend the data model underlying the system in order to enhance its ability to capture 

metadata characterizing microbiome samples. Such metadata are often specific to an application (e.g., 

biomedical, ecology) domain. Samples are associated with properties used for metagenome analysis, such 

as sample structural and morphological characteristics (e.g., sample site, time of collection) and donor or 

host  data (e.g., demographic and clinical record, including diagnosis, disease, stage of disease,  and 

treatment information for human donors). Samples may also be involved in clinical studies and therefore 

can be grouped into several time/treatment study groups. In addition to extending the data model for 

supporting sample metadata, we plan to improve the coherence and completeness of these annotations via 

manual curation.  In IMG/M, metadata such as disease, phenotype, ecotype and relevance for the isolate 

genomes were collected from sources such as GOLD [2], while the microbiome sample metadata have been 

collected from published supplemental information and manually curated. We plan to establish 

collaborations with community standardization and data collection efforts in the microbiome genome data 

domain in order to ensure high coverage and consistence of microbiome sample metadata.  
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