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ABSTRACT OF PAPER

The electrodynamic method for obtaining the solution of
clectrostatic and allied problems is developed to a high degree of
accuracy. The method is then applied to the study of high-
voltage bushings. An experimental high-air-efficiency bushing
was built and tested with the result that the arc-over was very
materially lower than had been anticipated.

A study was then made to ascertain the reason for this large
discrepancy, which was found to be due to an unexpectedly
large surface effect which varied greatly with different materials.

After obtaining the numerical value for the surface effect a
rcasonably accurate predetermination of the arc-over of struc-
tures, in which the stress distribution is known, can be made.

In order to determine the desirability of using artificial equipo-
tential surfaces to increase the efficiency of the use of the support-
ing dielectric, diagrams were taken and a small bushing of this
type constructed and tested.

A study was then made to find out whether the reduction in
diameter of condenser bushings is principally due to equalization
of potential or due the greater strength of insulation when
barriers are used. As a result of this work, it is believed that the
barrier effect greatly predominates.

A short discussion follows which shows the difficulties of ob-
taining a sufficiently exact theory of bushing design to enable us
to predetermine the most efficient shape for a practical bushing.

A series of small bushings were made and tested with a
view to determining the general shape and characteristics which
go to make up a practical all around bushing.

The appendix gives an unexpurgated solution of the following
two-flow problems.

I. The distribution of the electrostatic field when any two
confocal hyperboloids of revolution of one sheet and of the same
family are maintained at given potentials.

II. The distribution of the electrostatic field when any two
confocal hyperboloids of revolution of two sheets and of the same
family are maintained at given potentials,

INTRODUCTION
N general, a bushing has to serve two purposes; first, it must
support the leading-in wire or conductor and must act as a
mechanical unit capable of being removed or replaced in case of
damage; secondly, it must insulate the high-potential conductor
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from the tank which is usually at zero or ground potential. The
leading-in wire, or what may be called the high-voltage electrode
may have various shapes. The tank with hole in it may be
called the grounded electrode and it may be shaped in various
ways. A solid supporting dielectric is necessary to make the
structure a mechanical unit, that is, to mechanically connect
the high-voltage central electrode with the tank or grounded
electrode. Between the grounded electrode and the high-voltage
electrode, isolated metallic surfaces may be introduced which
will form artificial equipotential surfaces. The condenser bushing
is a familiar example.

The electrical part of the design consists in studying the
electrostatic field distribution between the electrodes in order
to use the various available insulating materials to their best
advantage. It isobvious that there are large numbers of possible
electrode shapes and arrangements, the electrostatic field dis-
tribution of which should be studied in order to determine the
one which is best adapted for commercial use. The following
investigation was undertaken with a view of determining the
theoretical possibilities of some of the various possible arrange-
ments. The work was started in July 1914, and extended with
short interruptions to July 1916. Naturally an investigation of
this nature is never complete but I hope that the work to be
described will be of interest to engineers and also stimulate
others to take up the work so that eventually we will have a
better and more complete understanding of this and similar
problems.

Preliminary Work

The preliminary work consisted in investigating the possi-
bilities of obtaining a reasonably approximate solution
of the bushing problem. The first question which presented
itself was the following: Can two-dimensional fields be rotated
and used as satisfactory approximations for three-dimensional
problems? In order to test out this matter the literature was
searched for a solution of the rod and torus problem, so as to be
able to compare it with the solution obtained by rotating the
field of two parallel wires. If the approximate solution, as
obtained by the rotation of the plane figure, did not prove useful
as a result of comparison with the exact solution, it was thought
that possibly some simple law of distortion or stretching might
be arbitrarily imposed upon the rotating-plane diagram which
would change the lines of force and equipotential surfaces so as



1917] RICE: ELECTROSTATIC PROBLEMS 907

to closely conform with the accurate three-dimensional solution.
If such a procedure was found possible, it was hoped that the
same method could be used in transforming the many available
two-dimensional problems into approximate solutions of the
related three-dimensional figures of revolution.

The problem of insulating two parallel wires was studied in
order to compare some of the various criterions which might be
advanced for the correct and strongest surface along which to place
the insulating material. For this preliminary work the question
of different inductive capacities was neglected. The following
surfaces were studied by graphical construction on a large sized
diagram of the field between parallel wires drawn for equal tubes
of electrostatic flux and equal differences of potential.

I. —Constant surface flux density.
Equal areas between lines of flux on equipotential
surfaces.
II. —Surface of constant potential gradient.
Equal distances along lines of force between equipo-
tential surfaces.
IIT.—Surface of constant volume energy density.
Surface defined by unit cells of equal volume.
IV.—Surface such that the component of the potential
gradient along the surface has a definite limited
value, for example say, 50 per cent of the gradient.
The object in studying such a surface is apparent
if we assume that the surface of the insulation in-
troduces a weakening effect. For in that case the
component of the gradient tangent to the surface
must not exceed the breakdown strength of the
surface, whereas the actual gradient may be equal
to the dielectric strength of the surrounding dielec-
tric.
V. —Surfaces of constant creepage.
Equal distances between equipotential surfaces.

The surfaces defined in I, IT and III were seen to be identical
as would be expected.

The corresponding surfaces were drawn for the solid figure
resulting from the rotation of a right section of the plane figure.
Of course, such a procedure does not give the solution of the
torus problem, but as explained above it was done in order that
the result might be compared with the true solution of that
problem. .

A search of the literature failed to yield a useful solution of
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the torus problem. C. L. Fortescue and S. W. Farnsworth!
state that the smooth lines (in Fig. 4 of the paper) show theoreti-
cal equipotential surfaces of indicated potential for the given
terminals. Inspection of the figure shows that the smooth
surfaces are those cut out by revolving a family of circles about
the axis of the rod which would yield a set of anchor rings, the
orthogonal surfaces would then be a set of spheres. That this
cannot be a solution of the torus problem is stated by W. E.
Byerly.? ‘“‘Indeed no possible distribution can make our anchor
rings or our spheres a set of equipotential surfaces.” It is
therefore, evident that their solution and the calculations given
in their curves Figs. 13, 14, 18 and 19 must have been the result
of some sort of an approximation. It seems to me that a dis-
cussion would have added to the interest and clearness of their
paper.

A study of the solution of the torus problem, as outlined by
Byerly and also given by Hicks,® convinced me that the difficul-
ties of calculating sufficient points for the construction of a
diagram of the field would be very great, and even if the solution
were available, it would not be of great assistance in solving the
bushing problem because the rod and torus does not constitute a
self-supporting structure resembling a bushing. It was realized,
at this time, that if the solution of an infinite rod passing per-
pendicularly through a hole in a plane were available, it would be
of considerable value as this would constitute the simplest form
of bushing.

As a result of this preliminary work, the difficulty of obtaining
even approximate mathematical solutions of such electrostatic
problems was brought out.*

Various experimental methods were, therefore, looked into
with the hope of obtaining a method which would enable us to
obtain experimentally the solution of any desired electrostatic
problem.

1. ““Air as an Insulator when in the Presence of Insulating Bodies of
Higher Specific Inductive Capacity.” A. I. E. E. Trans., 1913, Vol.
XXXII, Part I, p. 893.

2. Fourier's Series and Spherical Harmonics page 265.

3. Toroidal Functions, Philosophical Transactions of the Royal Society,
Part I1I, pages 608-562, 1881. )

4. In this connection it is interesting to read what Maxwell has to say
about such problems; Electricity and Magnetism. Vol. I, page 177-178.
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The desired diagrams can be obtained in a variety of ways®
some of which are enumerated below:

I. Directly calculated by the process of cut and try. This
method is outlined by Karapetoff® from which I quote in
part; “In order to calculate the permittance (capacity) of
a given dielectric, or to find the flux densities and stres-
ses in different parts of it, proceed as follows: The field is
mapped out into small cells by lines of force and equipotential
surfaces, drawing-them to the best of ones judgment, the total
permittance is calculated by properly combining the permittances
of the cells in series and in parallel. Then the assumed directions
are somewhat modified, the permittance is calculated again, and
so on, until by successive trials the positions of the lines of force
are found with which the permittance becomes a maximum.”’
The method of successive approximations was systematized
and used by Lord Rayleigh.”

While theoretically possible in all cases this method is very
laborious even for problems in two dimensions and for three-
dimensional problems it becomes still more exasperating, as will
be readily discovered by anyone who tries it. A counsiderable
assistance in the application of this method is rendered by ex-
perimentally obtaining the approximate direction of the lines of
force by the well known method of using mica filings, or better
fine needle-shaped pieces of glass which can be obtained by
grinding up glass wool or fabric.

II. Obtain experimentally the isothermal surfaces in the
related - heat-flow problem. Experimental difficulties such as
radiation and conduction, obviously make this method imprac-
tical. :

ITI. Obtain the equipotential surfaces in the equivalent
electrical conduction problem® or what I have termed the elec-
trodynamic method.

5. For references to the numerous articles on this subject I will refer
the reader to those contained in the excellent article on this same subject
by John F. H. Douglas, A. I. E. E., Trans. 1915, Vol. XXXIV, Part
I, page 1067, *‘The Reluctance of Some Irregular Magnetic Fields.”

6. Electric Circuit, pages 160-163.

7. See Phil. Trans. Royal Society, 1871, p. 77, “‘On the Theory of Reso-
nance,” also ‘“Theory of Sound,” Vol. II, p. 171.

8. I understand from Mr. Douglas’ paper ‘“The Reluctance of Some
Irregular Magnetic Fields”, A. 1. E. E., Trans,, 1915, Vol. XXXIV,
Part I, p. 1081, that Kirchoff first proposed such a method in 1845, and
was subsequently modified and employed by many investigators. Re-
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The possibilities of this method appeared very attractive and
it was, therefore, selected as the one best suited for the present
purposes.

Tue ELECTRODYNAMIC METHOD

The method consists in obtaining the equipotential surfaces
for any desired shape of electrodes from the exactly analogous
conduction problem in an electrolyte.  Thus the chosen elec-
trode shapes are placed in an electrolyte and alternating current
passed between them. The equipotential surfaces are then
obtained by an exploring point connected through a quadrant
electrometer to a definite known potential with regards to that
between the electrodes. The locus of the points of zero potential
difference as thus read by the electrometer constitutes the
desired equipotential surface.
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The electrodes under investigation were placed in a large box
made of paraffine treated wood and filled with an electrolyte—
ordinary city water being found most convenient. The box was
bolted together on the outside as will be seen in Fig. 1, thus
eliminating all metal from contact with the electrolyte in the
box. A small transformer (200 watt) was employed to step
down the 110-volt, 60-cycle lighting circuit to 55 volts which
was used as supply for the tests. A non-inductive resistance
of 6490 ohms, divided into 50 equal parts, was shunted across
the mains between the electrodes. The exploring pointer which
was carried by the pantograph consisted of a slender glass tube

cently C. L. Fortescue and S. W. Farnsworth, A. 1. E. E., Trans., 1913,
Vol. XXXII, Part I, p. 893, ‘‘Air as an Insulator when in the Presence of
Insulating Bodies of Higher Specific Inductive Capacity”, as well as
Mr. J. F. H. Douglas have employed this method.
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with a small platinum wire sealed through at theend. The glass
tube was slipped over a metal tube carried by the pantograph and
the insulated wire brought out from the platinum point through
the metal tube. The metal tube was used for mechanical stiffening
and the glass tube with platinum point so as to avoid electrical
leakage. Any defect in the insulation such as a crack in the
glass tube being easily detected.

The pointer was connected to one pair of quadrants of the
electrometer, the other pair being connected to a point of known
potential on the resistance R, Fig. 2. The needle of the elec-
trometer had a metallic suspension and was kept at a definite
potential above that of the quadrants by the transformer as
shown in the illustration. This method of excitation gives a
constant sensitivity regardless of the point at which connection
is made to the resistance R. It also makes it possible to change
the sensitivity of the instrument by varying the potential ap-
plied to the needle. For example, in exploring the field between
a given pair of electrodes we can apply a certain low potential
to the needle when exploring the dense part of the field, and
when exploring the weak part of the field we can raise the po-
tential applied to the needle by selecting a tap on the exciting
transformer. Thus, we can maintain equal accuracy in all
portions of the field.

Some of the advantages of using the arrangement described
above are as follows: - The use of alternating current eliminates
polarization, to a large extent, and automatically gives ‘‘reversed”’
readings. The use of a quadrant electrometer has the advantage
that it takes practically no energy to operate, and it is a good
zero instrument since when a point has been nearly located the
difference in potential between the quadrants is small in compari-
son with that of the needle and under these conditions the de-
flection is very nearly proportional to the potential difference
being measured.?

The fact that these experiments were carried out on a large
scale combined with the small energy necessary to operate the
electrometer made it possible to use ordinary city water as the
electrolyte which is obviously a great convenience.

9. For the theory of the quadrant electrometer reference may be made
to Maxwell, ‘“Electricity and Magnetism,” Vol. I, page 338; Jeans,
“Electricity and Magnetism,” Vol. [, page 108; J. J. Thomson, ‘“Elec-
tricity and Magnetism, Vol. I, p. 97-103.
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Method of Procedure

In applying the electrodynamic method to problems having
symmetry about an axis of revolution, a quadrant or octant of
the actual figure was studied because in this manner the size
of the electrodes used could be made larger and, therefore, the
accuracy correspondingly improved. Skeleton electrodes were
used because of the obvious ease with which they can be cut out
of tin or other metal, and for the further reason that if it ever
becomes possible to obtain a mathematical solution of such
problems the boundary conditions would be of as simple geom-
etry as possible. Of course in applying the resulting diagrams
to the design of any piece of apparatus the electrode shape which
would actually be built and used would conform to one of the
experimentally obtained equipotential surfaces at some distance

T e N
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from the actual skeleton electrodes. Under some circumstances
it would be desirable to employ actual models of the desired
electrodes. .

The method of images is obviously applicable and is of con-
siderable value in improving the accuracy and simplifying many
problems. For example, if we wish to study the disturbing
influence of one bushing in proximity to another, when they are at
opposite potentials, we can set up the experiment as shown in
Fig. 3. In this manner we can determine the maximum stress
between the two bushings and the minimum stress on the out-
side of the bushing. Of course a diagram taken in this manner
is no longer a plane section through a figure of rotation.

Theoretically there is no difficulty in obtaining the solution of
electrostatic problems involving materials of different inductive
capacities by this method, as we may employ electrolytes or
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materials having the proper relative conductances. Practically,
however, there are obvious difficulties in obtaining materials
having suitable characteristics especially for the case of three-
dimensional problems.

In Fig. 44 is illustrated the use of a high- re51stance substance
such as carbon or a silicon clay composition, etc., as high induc-
tive capacity material immersed in a suitable electrolyte to
represent the surrounding air or low inductive capacity material.

Another method is to use an insulating diaphram to separate
two electrolytes of different conductivities one inside and the
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other outside of the shell. In Fig. 4B a series of wire rings are
used which are connected together metallically. In Fig. 4c, the
same method is shown except that metal pins are substituted to
connect the outside with the inside point for point. Still another
and possibly the simplest method of carrying out the same
principle is shown in Fig. 4p and was suggseted to me by Mr.
G. B. Shanklin. It consists in building up the separating shell
of alternate metallic and insulating washers. It will be observed
that the methods employing the wire rings or washers are only
applicable to problems having circular symmetry.
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It is difficult in all of these methods to obtain the equipoten-
tial surfaces inside of the containing shell, although this can be
accomplished in some instances. For example, in the case of a
bushing, by placing the quarter section inverted at the top of the
large wooden box somewhat as shown in Fig. 5, the exploring
plane would then be at the surface of the electrolyte.

It will be seen that in this simple apparatus we have a most
remarkable calculating machine which is able to obtain the
solution of Laplace’s equation and automatically calculate and
plot the results for boundary conditions which as yet have not
been obtained by analytical methods. The accuracy merely
depends upon the scale and care with which the experiments are
carried out. For example, in the experiments here described
the potential of any point on the
full sized diagram, 3 ft. by 4 ft.
(90 em. by 120 cm.) could be
determined inside of a pin head.
Of course, the diagrams are not
accurate to this extent due to ¥
the fact that the electrodes used
were large compared with the
size of the containing box, and, e
therefore, the edges of the ’ Electrolyte K=1
diagrams show large distortions, | "
as will be readily seen by com- FIG. 5
paring the experimental diagram
Fig. 9 with the mathematical solution for the similar case
Fig. 10. The first two diagrams are also subject to slight
pantograph errors arising from a lack of rigidity and accuracy
of the original pantograph. The later diagrams are more ac-
curate as a new pantograph was constructed of large thin walled
steel tubing and provided with ball bearings throughout.

Before taking a diagram the inside of the paraffine treated
wooden box was painted over with a mixture of beeswax and
rosin to eliminate or reduce to a minimum any conductivity of
the wood.

Completing the Diagrams.

After obtaining an experimental diagram giving the equipoten-
tial surfaces for equal or unit differences of potential, in the
manner described above, the diagram may be completed by
drawing in the family of orthogonal surfaces which divide the
field into unit tubes of electrostatic flux. Besides being a great
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help to the eye in using the diagrams this process furnishes a
graphical check on the accuracy of the experimental work. If
it is found possible to draw in an orthogonal family of surfaces
so that the elementary condensers, cut out between the equipoten-
tial surfaces and tubes of electrostatic flux, have the same capacity
throughout the field, we know that our diagram is the one and
only solution of that particular electrostatic problem. For it is
known that there is one and only one solution of any problem
in electrostatics. In the second place, the following two condi-
tions must be fulfilled when the field is mapped out in unit
tubes of electrostatic flux, and in equipotential surfaces for every
unit difference of potential.

I.—The tubes of flux must intersect the lines of force every-
where in the field at right angles, for if this were not true there
would be a component of the potential gradient (or electric
intensity) along an equipotential surface which is impossible in
a static field.

II.—The unit cells, or elementary condensers, which are cut
out by the intersection of unit tubes of flux (or force) and unit
equipotential surfaces must have the same capacity everywhere
in the field. The correctness of this condition can be seen by the
following reasoning.

All the elementary condensers between two adjacent flux lines,
that is, cut out by a unit tube of flux, are in series and if they
were not of equal capacity they would not divide the potential
difference equally between them. This is contrary to the assump-
tion that the field is to be divided up into equipotential surfaces
for every unit difference of potential.

Again we see that the elementary condensers between any two
adjacent equipotential surfaces are in parallel and have unit
impressed electromotive force across them. Therefore, if they
were not of equal capacity they would not divide the flux equally
between them (¢ = Ce¢), which would be contrary to the condi-
tion that the field is to be divided into equal tubes of flux.

The process of drawing in the lines of force was briefly as
follows: An appropriate height for the unit cell was selected
near the axis of symmetry of the diagram, a perpendicular 1 was

10. A convenient method of erecting the perpendiculars is to employ
a small plane mirror held, for example by a block of wood at right angles
to the drawing board. When the part of the equipotential line which
is seen in the mirror forms a continuous smooth curve with the part of
the equipotential line which is viewed directly, perpendicularity exists
and a line can be drawn using the mirror as a straight edge.
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erected from this point on the equipotential surface half way to
the next one. The perpendicular was then drawn to the next
equipotential surface which cut the first perpendicular half way
between the two equipotential surfaces. The latter perpendicular
was extended half way to the next equipotential surface and the
process continued,—in this follow your nose fashion,—until an
entire flux line was completed. A smooth curve was then drawn
through the intersection of the perpendiculars. After completing
a pair of lines in this manner the mean heights of the elementary
condensers or unit cells were calculated assuming a constant
value of capacity. These mean heights were then plotted on the
diagram and it was inspected to see whether the flux line, ob-
tained by perpendiculars, was a good mean curve through all
these points. At the beginning of a diagram these points were
generally high and low in an erratic manner as would be expected.
Another flux line was then obtained by the method of perpen-
diculars, the smooth curve drawn through the intersection and
the mean heights calculated as before and compared with the
drawn in curve. In this manner the flux lines were built up
one upon another. After completing six or seven flux lines
it was generally found that the calculated heights of the cells
were showing a slight consistent deviation from the curve
as obtained by perpendiculars in some part of the field. The
constant error was then distributed throughout all of the flux
lines so as to make the two criterions, namely, perpendicularity
and equal capacities, come into as harmonious agreement as
possible. The work of drawing in more flux lines was then con-
tinued and the various processes repeated until the entire diagram
was completed.

The fact that it was possible to satisfactorily complete the
above process is considered a good check on the accuracy of the
experimental work.

Determination of Capacities from the Diagrams

After completing the diagrams by dividing up the field into
elementary cells, we can calculate the capacity of any desired
part of the field by properly combining the elementary cylin-
drical condensers in series and in parallel. For example, in the
diagram, Fig. 12, we may desire to calculate the capacity as-
suming a single dielectric between equipotential surfaces 0 to 36
and bounded by flux lines 0 to 54. Here we have 54 of our
elementary condensers in parallel and 36 in series. Now since
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the small cylindrical condensers are all of the same capacity
C. we can write as the total capacity of the part of the circuit
under consideration

54
C = 36 Cu
or,
C = ﬂ Cu
in
where m = number of elementary cells in parallel.

n = number of elementary cells in series.

Cu = the capacity of the unit cell or the capacity of
the elementary cylindrical condenser assumed
for the particular diagram.

C, will obviously depend upon the assumed inductive capacity
and size of the diagram.

In selecting the mean height of the first cell which determines
the capacity of the unit cells no particular value was chosen,
the spacing for the flux lines being selected only for convenience
in construction. They are not therefore, strictly speaking, unit
cells.

It is obviously necessary to assume some limit to the extent
of the field in making any calculation on a field of this type for,
if we assumed the central rod with cap infinite in extent as well
as an infinite plane with hole and collar, the capacity of the
entire circuit would be infinite.

A check on the accuracy of the capacity as calculated from
any of the diagrams could be obtained from a measurement of
the resistance of the circuit as set up in the large box combined
with a determination of the specific resistance of the electrolyte
used. I am sorry that I neglected to accurately record this
data when taking the various diagrams.

In the case of the diagram of Fig. 28, the following resistance
measurements were retained.

Artificial Equipotential Surfaces

Voltage applied, 60-cycle.......... ... .. 54.2  volts.

Current......... ... .. ... ... ... ...... 1.39 amperes.

Resistance.................. ... .. ... 39.0 ohms.
Artificial Equipotential Surfaces Removed

Voltage applied, 60-cycle............... 54.2 volts

Current........... .. i 1.30 amperes.

Resistance......... ... . ... .. ... .. 41.7 ohms.
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The resistivity of the electrolyte used (Schenectady city water)
was determined from a sample taken from the box during the
experiment and was found to be approximately 3000 ohm-cm. at

25 deg. cent.
A comparison of the measured resistance of the circuit with

and without artificial equipotential surfaces shows that by their
introduction we have lowered the resistance of the circuit or, if
considering the capacity, we have increased the capacity by
the addition of artificial equipotential surfaces.

It will be readily seen that in those cases where we are merely
interested in determining the resistance to flow for any of the
problems which obey the Fourier-Ohm law, such as the flow of
an ideal incompressible fluid, heat, or the so-called electrostatic
and magnetic fluxes and current, we merely have to set up the
desired electrodes in an electrolyte of known specific resistance
and make a determination of resistance. The model used in the
tests need not be the same size as the actual piece of apparatus
which it is desired to study but may be either a magnified or
reduced image. If the linear dimensions are all # times as
large as the original then the conductance will be # times larger
than it would be for the original model and inversely. A simple
and also general method of obtaining the relation between the
resistance in ohms as determined from the conduction experi-
ments and the electrostatic capacity of the equivalent electro-
static problem is to compare the two cases for parallel plane
electrodes at close spacing when neglecting all edge effect.

The well known expression for the capacity of a parallel plate
condenser expressed in practical units is
A4 3

1
€ =gxa *gx 00

farads
and the resistance between the same electrodes is

R=ipohms

A
where A = area of the dielectric or electrolyte, or what is the
same thing, the area of one plane.
d = spacing between the planes.
k = specific inductance capacity (permittivity) of the
dielectric.
p = specific resistance (resistivity) of the electrolyte in

ohms cm.?
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If we now substitute the value of —‘3— in terms of R and p in

the above equation for the capacity we obtain

kp

1
C=frr Gxion orads

as the expression giving the capacity of our electrodes in terms
of the resistance measurements!' R and p.

As an illustration, we may calculate the capacity of a bushing
built from the diagram of Fig. 28 full size, assuming permittivity
unity. The resistance measurement of a quadrant of the bush-
ing gave approximately, 40 ohms, and therefore, the resistance
for the complete structure would be 10 ohms. Assuming
p = 3,000 ohm-cm., we have

-_p_ 1
C“47rR 9 X 10°

microfarads

3000 1

= I i 9o = 0000027 microfarad

Stupy oF ELECTRODE SHAPES

The following are some of the questions which presented
themselves at the outset, and which it was hoped could be
answered by taking various diagrams of the electrostatic field
by the electrodynamic method:

I. What is the best form of equipotential surface for the rod
or high-potential electrode?

II. What is the best form of surface to select for the cover
of the tank with a hole in it?

IIT. Isthere a proper best ratio of rod to hole diameter under
various conditions?

IV. Are hats desirable? Of how great an assistance are
they in screening the bushing from surrounding influence? Are
they useful in acting as a rain shed and thereby reducing the
field distortion under rain conditions, etc.?

V. Can artificial equipotential surfaces be of material assist-

11. See A. E. Kennelly, Electrical World, December 29, 1906, Vol.

XLVIII, page 1239, who has used this method for determining the ca-
pacity of wireless antenna.
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ance in bringing about a better distribution of stress in the
solid or supporting dielectric; and, at the same time, what are
their effects upon the distribution of stress in the air and under
oil part of the dielectric? Are their effects conflicting?

AppPLICATION OF THE DELECTROSTATIC-FIELD DIAGRAMS TO
Busaing DEesioN

The problem of high-voltage bushing design is in reality a
problem involving two or more dielectrics of different inductive
capacities. Therefore, in general the diagrams obtained by
using a single electrolyte only offer approximate solutions of our
problem.

There are two conditions, however, in which the introduction
of high inductive capacity material does not result in a distor-
tion of the field by flux refraction.

Case I. High inductive capacity material in parallel with the
air dielectric, that is, when the supporting dielectric conforms
to a line of flow. In this case the form and distribution of the
flux and equipotential surfaces are neither altered in form nor
distribution—nothing is changed under these conditions when
considering perfect dielectrics.

Case I1. High inductive capacity material in series with the
air dielectric, that is, when the additional material conforms to an
equipotential surface. In this case the form of the equipotential
and flux surfaces is not distorted by refraction. There is, however,
an increase in the total amount of flux at constant applied
potential difference which causes a change in the distribution
of the stresses. The stress in the part of the field where the
high inductive capacity (permittivity) material has been in-
serted is reduced, and that in the low capacity (permittivity)
material increased. Therefore, in this case allowance has to be
made for this effect.

In the above cases it is not necessary to have the surface of
discontinuity rigorously conform to the flux or the equipotential
surface since a small variation will not greatly disturb the field.
This can be easily seen by making simple calculations by the
law of flux refraction, which states that the tangent of the angle
of incidence 8, is to the tangent of the angle of refraction 6, as
permittivity of the first medium k, is to the permittivity of the
second k,.12

12. For example see Jeans, ‘“Electricity and Magnetism,” p. 335;
Webster, ‘‘Electricity and Magnetism,” p. 327; Karapetoff, “The Electric
Circuit,”’ p. 28 or 163.
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Thus
tan 01 _ k1 .
- R (See Fig. 6)
As an example consider the case in which
k=1 (air)
ky = 3 (oil)
#;, = 70 deg. (the assumed angle of incidence)
Then,
kg
tan @, = tan 6, —=
ki
tan 0, = 2.747 X 3 = 8.25

f, = 83 deg. (the angle of refraction®

| 3
Equi.
Pot.
K2>1 . X
0,=83° ~Equi.
Ky=1 Pot.
- :
° \
70% 601
A Magnified Section
I
5
Fi1:. 6

As 6, approaches 90 deg., that is coincidence with the line of
force, #; also approaches 90 deg., and in the limit we have the
case of two dielectrics of different permittivities in parallel.
Under these conditions the form of the electrostatic field is
unaltered by the presence of the two dissimilar materials, and
the flux density in the air is not increased thereby. If 6, ap-
proaches zero degree then, in the limit, we have the case of two
dissimilar dielectrics in series, and for this case the flux density
in the two materials is the same, but due to the increase in total
amount of flux the density in the air is increased by the presence
of the higher permittivity material.

The above considerations show that there are two cases in
which we can apply the diagrams obtained by using a single elec-
trolyte to bushing design without fear of large errors being intro-



922 RICE: ELECTROSTATIC PROBLEMS [Nov. 9

duced due to flux refraction between the dissimilar materials
which are in practise necessarily used for bushing.

Uniform-Field Type of Bushing

Thus applying Case 1 we see that it may be possible to so shape
the electrode that the strongest surface of discontinuity between
the supporting or high inductive capacity material and the air
conforms closely to a line of flux. In that case the introduction
of the solid material will not alter the field distribution and we
would thus obtain one of the infinite number of theoretically
correct designs. If this design can be obtained without making
the electrodes of an impractical shape or size, this particular
solution of the problem would be all that we require. For the
case of ideal or perfect dielectrics, which assumes that the sur-
face of discontinuity between the air and solid dielectric does
not introduce a weakening influence, the strongest surface would
be an equigradient surface which coincides with a line of flux.®

In this type of bushing it will be observed that the surface of
discontinuity receives the full value of the potential gradient
and therefore any weakening influence due to the surface of
discontinuity between dissimilar dielectrics will exert its maxi-
mum ill effect. In the following a bushing built along these lines
has been referred to as the “High-Air-Efficiency Bushing.” It
may also be called the “Uniform-Field Type,” since the support-
ing dielectric and air are in parallel in an essentially uniform
field.

By the use of artificial equipotential surfaces placed so as to
bring about uniform gradient in the supporting dielectric, this
type of bushing would, assuming perfect dielectrics, be as small
as it is possible to construct, that is, it would use the air and any
available supporting dielectric to their maximum efficiencies.

Radial-Field Type of Bushing

If we apply Case II to bushing design we would obtain a con-
dition in which the potential gradient is zero along the surface
of discontinuity between the air and supporting dielectric, and,
therefore, has its full value normal to the surface. A bushing of
this type would not be affected by surface conditions. It is

13. It may be of interest to compare this suggested criterion which
assumes ideal dielectrics with that suggested by C. L. Fortescue and S.
W. Farnsworth, and J. M. Weed’s discussion, A. I. E. E., Trans., 1913,
Vol. XXXII, Part I, p. 893, “Air as an Insulator when in the Presence of
Insulating Bodies of Higher Specific Inductive Capacity.”
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obviously impossible to have the supporting dielectric connecting
the grounded and high-potential electrodes actually coincide with
an equipotential surface since the two electrodes must be at
different potentials, nevertheless the condition can be approxi-
mately obtained in practise. This type of bushing has been
referred to as the radial-field type. In this case the supporting
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and air dielectrics are essentially in series in a radial field. If the
surface effect is very great, that is, if the component of the poten-
tial gradient along the surface has to be very small, this type of
bushing when provided with artificial equipotential surfaces
to obtain uniform stress in the supporting dielectric would
result in as small a bushing as it is possible to construct.
In this case the potential gradient would be approximately
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normal to the surface and is, of course, only limited by the
strength of air.

Under-0il End. In the above discussion we have considered
the top part of the bushing where two greatly dissimilar dielec-
trics must generally be employed. The under-oil end of the
bushing can, as a fair approximation, be treated as a single
dielectric problem since the dielectrics usually employed do not
differ very greatly in inductive capacities.

The under-oil end requires careful study due to the proximity
of disturbing influences such as the core and windings of the
transformer. It may be found desirable to use a rather large cap
on the under-oil end to shield the bushing from these disturbing
influences.
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This part of the problem will have to be carefully considered
in conjunction with the whole design of the transformer or switch,
ete. Fig. 7 is an illustrative suggestion of transformer design
which would assist in an efficient under-oil-bushing design.
Fig. 8 shows a switch design in which a large cap is used to reduce
the tendency for an arc to re-strike, and, at the same time, pro-
vides a sort of deflector which throws the gas bubbles, etc., away
from the surface of the dielectric. This could be given a sort
of curved or bucket shape so as to produce eddies which might
reduce the height of oil necessary over the contacts, etc.

Explanation of Diagrams
The diagrams are drawn for equal tubes of electrostatic flux
or force and equal differences of potential between equipotentials.
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That is, they are plane sections through the solid figure of revolu-
tion. Thus, if we imagine this plane section rotated about the
axis of symmetry, the lines in the diagrams will cut out the
correct surfaces—the equipotential lines and flux lines will
generate equal tubes of flux and equipotential surfaces for equal
differences of potential. The elementary cells, or elementary
cylindrical condensers, thus cut out will have the same capacity
throughout the field.
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In the case of diagrams, Figs. 27 and 28 dealing with the use of
artificial equipotential surfaces the tubes of flux were not drawn
in since they would be discontinuous at the metal surfaces. For
this reason it was thought that they would confuse rather than
add to the diagrams.

Discussion of Diagrams
Fig. 9. (Mathematical Solution Fig. 10). It will be readily seen
that if we assume our transformer or switch tank sufficiently
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large, we can consider the top of the tank as an infinite plane
with a circular hole in the middle. As our desired means of
metallic connection the simplest would be merely a wire passing
perpendicularly through the hole in the tank connecting the
inside with the outside. As these electrodes constitute the
simplest imaginable form from which to design a bushing their
electrostatic field was the first studied.
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This diagram shows the characteristics of what has for con-
venience been termed the radial-field type.

In designing a bushing from this diagram we would probably
select equipotential surface 1 or 2 to represent the cover of the
tank with hole and rounded edge which makes the stress on the
supporting dielectric about three times as high as allowable for
the air part of the dielectric. In order to stress the supporting
dielectric near the rod to approximately the same value as that
at the edge of the hole we would select as our rod an equipotential
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surface somewhere between No. 25 and No. 30. Under these
conditions the ratio of rod diameter to hole diameter would be
about 5 to 1. There are, however, many factors (such as the
relative strengths of the dielectrics employed and whether the
strength is equal in all directions, etc.) which will influence the
above ratio and it should, therefore, not be considered as a fixed
quantity.

The edge of the hole in the tank must clearly be embedded in
the supporting, stronger than air, dielectric to eliminate over
stressed air near the edge. That is, the value of a ground shield
is clearly shown. This type of bushing will necessarily be quite
high in order not to over stress the air at the top.

A study of this diagram suggested that a mathematical solu-
tion of this case should be quite easily obtained, due to the
apparent simplicity of the equipotential surfaces and their
mutual resemblance. Some of the lines of force were drawn in
and were seen to conform fairly closely to confocal ellipses,
having the edge of the plane as focus (see Fig. 9). This sug-
gested that if there were no disturbing influences, that is, if the
rod were very small in diameter and infinitely long and the
plane also infinite in extent, the solution of the problem would
consist in a confocal system of hyperboloids of one sheet as the
equipotential surfaces, and confocal oblate spheroids as the
surfaces of force. A plane section through the axis of symmetry
of this figure is then a family of confocal hyperbolas and ellipses.
The minor axis of the ellipses is the axis of symmetry or the
axis about which the plane figure is rotated in order to cut out
the solid figure.

In order to test this assumed solution of the problem, a dia-
gram was constructed as follows:

Two large confocal ellipses were constructed having the minor
axis along the rod and the radius of the hole in the plane as
semi-major axis. The space between these two ellipses was
then divided up into cells (see Fig. 11) which obeyed the required
geometrical law:

2wy X h
d

the mean radius of the cell

distance between the two confocal ellipses

= the other dimension of the small rectangular cell
(or the distance between the concentric cylin-
ders).

= ( (a constant)

It

where

7
k
d
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By cut and try, the space between the two ellipses was di-
vided up into small cells of constant C. This value, C, is
proportional to the capacity of the small concentric cylinder
condensers which would be cut out by rotation around the
minor axis. The family of hyperbolas which has the same focus
as the ellipses was then drawn through the cells. The figure
was then completed by drawing in the complete family of con-

Rotation

Confocal Hyperbolas
=z

~Confocal Ellipses

—

Fic. 11

focal ellipses which divided the whole field into cells having the
same capacity or constant C. The fact that it was possible to
complete this construction is a graphical proof of the correctness
of the assumed solution; namely, that confocal hyperboloids of
one sheet are the equipotential surfaces, and confocal oblate
spheroids the boundary surfaces of the tubes of flux.

After obtaining the solution of the problem by this method,
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I found that it was well known; for example Maxwell'* discusses
the mathematical solution of this and similar problems. Other
treatments will also be found in many books.!

Notwithstanding the numerous treatments of the subject it
was not until a lengthy study of these sources, besides cor-
respondence and later the great privilege of an interview with
Professor W. E. Byerly, that I was able to obtain what appeared
to me to be a clear and useful solution of the problem.

I believe that there are other engineers who find it difficult
to readily understand, and therefore use, to the best advantage,
the results of the great deal of extremely valuable mathematical
work which is available in the various treatises. It seems to me
a great pity that the mathematicians do not more frequently
reduce their results to a readily utilizable form, and wherever
possible sketch out, with examples, some of the applications which
must occur to them while working on the subject. In spite of
the drudgery which necessarily accompanies any numerical cal-
culations, I believe that a writer would be amply repaid for his
trouble by the greatly increased number of people who would
study and be able to use his results.

Another difficulty, which I have frequently encountered, is
the fact that the writer assumes too great a familiarity with
existing mathematical works on the part of his readers.
No one is better able to supply page references to
what he considers a good and clear treatment of his state-
ments ‘it has been proved”. I also believe that mno
work would suffer from the inclusion of an appendix of
““it can be easily shown” and in some cases the “hences’”. All
of these additions could be skipped by the fluent mathematical
readers but would be available as wonderful time savers and
often life savers to the ordinary engineer. For these reasons I
have included an unexpurgated edition of two electrostatic
problems in the appendix to this paper.

Problem I. The distribution of the electrostatic field when
any two confocal hyperboloids of revolution of one sheet, and
of the same family, are maintained at given potentials.

14. See Maxwell, Electricity and Magnetism, Vol. I, p. 235 and fol-
lowing.

15. See Byerly, Fourier Series and Spherical Harmonics, p. 238-247.
J. H. Jeans, Electricity and Magnetism, p. 238-244; A. G. Webster,
Electricity and Magnetism, p. 203-242, 273, etc.; I. Todhunter, The
Functions of Laplace, Lamé and Bessel, Chapter XXI p. 211.
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This problem is useful as an approximation in studying high-
voltage bushing design; it also gives us an interesting variety of
possible electrode shapes for use in testing insulating materials,
where it is desirable to be able to calculate the gradients. When
testing a dielectric of given inductive capacity immersed in a
dielectric having a different inductive capacity (i.e., hard rubber
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in air or oil) the edge effect can be eliminated by shaping the
test piece so as to follow a line of force or flux. '

Problem II. The distribution of the electrostatic field when
any two confocal hyperboloids of revolution of two sheets and
of the same family are maintained at given potentials. This
problem is of interest as an approximation to a group of problems
which are of frequent occurrence in engineering. For example,
it may be applied to switch electrodes at various spacings; also,
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as an approximation in vacuum tube designs, such as X-ray
tubes, kenotrons, etc. That is, it is an approximation to the
problems of two elongated electrodes at various spacings, (i.e.,
two needles or a needle and a plane) etc.

Fig. 12. This diagram'® shows a form of field mtermedlate
between the radial and uniform-field types. The effect produced
by adding a collar to the edge of the hole in the plane is shown.
The addition of a collar or extended ground shield is generally
used on the air end to shield the bolts necessary in clamping
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the bushing to the tank. It may also be used to shield
switch mechanism, etc. A ground shield extending below the
surface of the oil on the under-oil end is usually necessary in order
to remove the stress on the air above the oil.

In designing a bushing from this diagram, we would probably
select equipotential surface No. 2 or No. 3 as cover of the tank
with hole and collar or ground shield and an equipotential surface

16. Df. C. P. Steinmetz has published this diagram in the fourth
edition ofhis Electrical Engineering, page 116fwhich has recently appeared.
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resembling No. 20 as high potential electrode. In practise we
would probably not build the electrode of the shape of surface
No. 20, but would make up the electrode of a straight rod and
cap which would be roughly equivalent to surface No. 20. The
addition of the cap and collar does not greatly alter the con-
clusions regarding the ratio of rod to hole diameters as outlined
above when discussing this point for the simplest case, that of a
rod passing through a hole in a plane. That is, the edge effect of
the collar or cylinder is about the same as that for the edge of a
plane.
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Figs. 13, 14 and 15. These diagrams are essentially of the
uniform-field type. A study of diagrams, Figs. 9 and 12, indi-
cated, that by increasing the size of the cap and bringing it closer
to the case, the efficiency of the use of the air part of the dielectric
could be increased. That is, it appeared practical to shape the
electrodes of the bushing in such a way that the distribution of
the electrostatic field would approach the condition in which the
strongest surface assuming ideal dielectric (constant gradient or
flux density) coincides with a line of force in the part of the field
where it is desired to introduce the dielectric of higher specific



1917] RICE: ELECTROSTATIC PROBLEMS 933

inductive capacity than the rest, which may be air or oil. As
previously stated the resulting bushing would use the air at its
maximum efficiency and hence the resulting bushing would be as
efficient, with respect to the air path, as any of the infinite other
solutions which could be obtained by using flux refraction com-
bined with various electrode configurations.

In order to experimentally test out this conclusion, Figs. 13,
14 and 15 were taken. Skeleton electrodes were used, as
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in the previous experimental work, in order to simplify
matters. For instance, one electrode may consist in a thin piece
of sheet iron, or tin, with a hole in it; the other electrode a small
wire with an attached metal disk. The proper actual shape of the
rod with cap and the tank will then be selected from the equipo-
tential surfaces which are obtained by the experiment.

For the new diagrams the size of the cap was increased so as
to have a diameter of about 114 times that of the hole in the
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plane, and was placed at about one diameter from the plane.
The short cylinder was added to the sheet-iron disk for Fig. 14,
to form a skeleton electrode which would flatten out the
equipotential surfaces near the edge of the disk, and also to bring
the lines of force into a more nearly cylindrical form. Briefly,
to give the effect of a cap having a greater radius of curvature
at its edge.

In applying these diagrams t:)\bushing design we would prob-
ably select the equipotential surface 2 as the top of the tank, and
an equipotential surface between 28 to 32 as our rod with cap.
This selection gives approximately equal gradient at the edge of
the hole in the tank and at the rod. Also, the maximum gradient
on the cap is not too different from that near the tank. The
supporting insulation, stronger than air and of higher specific
inductive capacity, would probably be put in somewhere between
flux lines number 4 to 7.

It is apparent from the diagram that this bushing would have
its maximum air stress near the edge of the cap, and therefore,
would probably arc-over clear of the solid insulation, unless the
surface introduces appreciable weakening influences. This
matter will have to be settled by experiment and then given
consideration according to its magnitude. Assuming a surface
which does not appreciably affect the arc-over of the bushing,
we obtain from the full size diagram, Fig. 14, the following result.
Selecting equipotential surface No. 30 as our rod with cap, we see
that the maximum potential gradient in the air occurs near the
edge of the cap. We must, therefore, select this gradient to be
that at which air breaks down or approximately 21 kv. effective
per cm. The distance between equipotential surfaces 30 and 29
is about 0.6 cm. (on the full size diagram).

Hence

), 29
e| i
‘ 30

~——————— = 21 kv. effective per cm. (assumed strength
0.6 of air.)

29

e = 12.6 kv. effective, the potential at which

breakdown will occur between these two
30 surfaces.
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Between the cap and the tank (equipotential surface No. 2)
there are 28 equipotential surfaces drawn for equal differences of
potential. Therefore, the arc-over voltage of this terminal
would be obtained by multiplying the number of equipotential
surfaces between that selected as the rod with cap and the tank,
by the voltage which would cause breakdown if applied between
the two consecutive surfaces in the densest part of the air field.
In this case the number of surfaces is 28, and the voltage at which
breakdown first occurs between two surfacesis 12.6 kv. effec-
tive.

Hence

28 X 12.6 = 350 kv. effective arc-over voltage.

The operating voltage, assuming a safety factor of 3, would be
116 kv. effective. This calculation assumes that as soon as the
gradient at the edge of the cap reaches the breakdown value,
arc-over will occur (unstable condition).

With regards to the stresses on the solid or liquid dielectric
which is used in this design, it may be of interest to observe that
the maximum gradient, which occurs along the path between
rod and edge of tank, is approximately 63 kv. effective per cm.
or three times that at which air breaks down.

The efficiency with which this bushing uses the air part of the
dielectric may be estimated as follows:

Assuming arc-over to occur from the point of maximum stress
on the cap, that is, near the outer edge, to the tank a distance of
approximately 30 cm., we see that this air path under uniform
gradient, should arc-over at

30 X 21 = 630 kv. effective.

Hence, taking the efficiency to be the ratio of the arc-over volt-
age as estimated above from the diagram, to this uniform
gradient condition, we have

350 kv.

Eﬁiciency = m

= 55 per cent.

Fig. 15, shows the effect of the addition of a collar or cylin-
drical ground shield to a bushing of this type. The con-
clusions are similar to those which may be drawn from the
previous diagrams.
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Tests oN ExperimMeNnTAL HicH-AIR-EFriciENcY BUsHING

An experimental bushing was constructed from a photographic
reduction of Fig. 14, as outlined in Fig. 16. Two supporting
dielectrics were tried. In the first case a smooth porce-
lain piece conforming as closely as possible to the flux line No. 7
was used. In the second case the porcelain surface was corru-
gated as shown in the figure between flux lines No. 4 and No. 7.
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The electrodes and porcelain pieces were cemented together with
a sort of sealing wax compound, considerable effort being made
to make good joints at the electrodes. Equipotential surface
No. 30 was chosen as the central electrode shape but was modi-
fied at the top as shown in the figure as it was not thought im-
portant to conform to the diagram at the top part of the electrode
where the stress on the air is very low. Equipotential surface
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No. 2 was selected as the ground plane and extended 43 cm. from
the axis. The upper and lower parts of the bushing were made
as nearly alike as possible; Fig. 17 and 18 show the general
appearance and construction of the bushings.

The principal electrical characteristics, as obtained from the
experimental diagram, Fig. 14, are as follows: The maximum
gradient on the air part of the dielectric occurs on the cap of the
central electrodes and well away from the surface of the support-
ing dielectric. The gradient at this point reaches 21 kv. effective
per cm. (or the assumed breakdown strength of air) at about 117
kv. effective. The gradient along flux line No. 7 (7.3 ¢m. long)
is practically uniform and will reach 21 kv. effective per cm. at
about 153 kv. The gradient at the edge of the ground electrode
and the central rod are approximately equal and are about three
times the maximum gradient on the air.

The arc-over voltages of the corrugated and smooth bushings
may be estimated as follows:

(1)  Smooth Surface

If we assume that the surface and joints of the porcelain do not
introduce disturbing influences, arc-over should occur clear of
the surface at 117 kv. effective. For this potential difference the
gradient along the surface of the porcelain would be 16 kv.
effective per cm.

(2) Corrugated Surface.

If we neglect refraction effects and make the very rough
assumption that the corrugations introduce half air and half
porcelain in series in a uniform field we would have for the arc-
over voltage

e =G4 ( x: + %—) arc-over voltage

Where
G, = 21 kv. per cm.

7.3
X1 = X3 = —— CIm.

2

k = 5 porcelain

Hence,
e =21 (3.65 + d'f5)
e = 92 kv, effective.



938 RICE: ELECTROSTATIC PROBLEMS [Nov. 9

and arc-over would occur by unstable corona formation in the
corrugations at 92 kv. effective.
At this voltage the average potential gradient along the arc-

9 .
over path would be 7—273 = 12.6 kv. effective per cm.
Summary of Tests

Sixty-Cycle Arc-over Voltage. (average of ten readings)
Surfaces cleaned with absolute alcohol and wiped dry

I  Smooth Surface................ 80 kv. £ 10 kv.
Average gradient. .......... 11 kv. per cm.

IT  Corrugated Surface............. 72 kv. £ 10 kv.

Average gradient. .......... 9.9 kv. per cm.

Surfaces cleaned as above and then covered with an oil film.

I  Smooth Surface................ 75 kv. 4= 10 kv.

Average gradient. .. ........ 10.3 kv. per cm.

II Corrugated Surface.......... ... 82 kv. &+ 5 kv.

Average gradient. . ... .. .. .. 11.2 kv. per cm.

The arc-over voltages after visible carbonization points have
been formed at the sealing wax joints and on the porcelain is
given below. This condition is reached after about 15 arc-overs,
when dry clean surfaces are used and in 5 to 10 arc-overs when
the surface is oiled. Handling the surface results in about the
same arc-over voltages.

I  Smooth Surface................. 50 kv. £ 2 kv.
' Average gradient. ... ...... 6.85 kv. per cm.
II. Corrugated Surface............ 5kv. £ 2kv.

Average gradient. .......... 7.25 kv. per cm.

Surface of electrodes and porcelain covered with city water,
that is, the surfaces were sprayed after all the oil had been

removed.

I Smooth Surface................ 23 kv. £ 3 kv.
Average gradient...... .. .. 3.15 kv. per cm.
II Corrugated Surface............ 27 kv. + 3 kv.
Average gradient.......... 3.7 kv. per cm.

Surface oiled and a needle point }4 in. long placed upright at
the corrugated surface on the ground plate.



1917} RICE: ELECTROSTATIC PROBLEMS 939

After about three arc-overs a carbonized point could be seen
to form at the arcing point on the upper electrode above the
needle, also considerable carbonization took place around the
needle.

Under these conditions the arc-over

60 Cycle Under-Oil Tests. After the above mentioned tests
were completed the bushing was immersed in oil (40 kv. oil as
measured by standard gap of 0.2 in. (0.5 cm.) between 0.5 in.
(1.27 cm.) terminals) in order to determine the under-oil charac-
teristics.

In both cases arc-over took place over the porcelain surfaces
and in the corrugated bushing followed in and out of the corruga-
tions. The results were

I Smooth Surface................. 122 kv.

Average gradient. . ........ ... 16.7 kv. per cm.
II Corrugated Surface............. 144 kv.

Average gradient............. 19.7 kv. per em.

Impulse Arc-over Tests. Impulse tests were made using F. W.
Peek’s impulse generator.” Impulses having various frequencies
and wave shapes were used but as the results were in good agree-
ment in all cases only a typical set of readings will be given.
The calculated frequency of the impulse wave is given as 500
kilocycles with a maximum voltage corresponding to 188 kv.
effective.

The arc-over voltages as measured by 12.5-cm. spheres placed
in parallel with the bushing were as follows:

( 111.5 spheres only

I  Smooth Surface............ { 117. half and half
{121. bushing only
Average gradient. . ...... 16. kv. per cm.
104. spheres only
II Corrugated Surface........ 111. half and half
117. bushing only
Average gradient........ 15.2 kv. per cm.

The results were practically identical with clean dry or oiled
surfaces.

17. “The Effect of Transient Voltages on Dielectrics.” A. I. E. E,,
TRrANS., 1915, Vol. XXXIV, Part II, p. 1857.
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Observations and Discussion

In all of the tests on the smooth bushing the arc-over appeared
to follow close to the surface. In the corrugated case arc-over
appeared to take place along flux line No. 7, that is, did not
follow in and out of the corrugations. (The only exception was
in the case mentioned of the under-oil arc-over of the corrugated
bushing where the path followed the corrugations in and out).

The previous calculations indicated that the smooth porcelain
bushing should arc-over clear of the surface at about 117 kv.
whereas in test it arced-over along the surface at about 80 kv.
=% 10 kv. (oily and dry surfaces do not seem to be greatly dif-
ferent) or say approximately 70 per cent of the calculated arc-
over voltage. However, this comparison is not a truly correct
one since the arc-over occurred at the surface and not at the
point of maximum gradient. A better comparison of calculated
and observed arc-overs is obtained by comparing the calculated
surface arc-over with the actual surface arc-over.

Sixty-Cycle Tests.  (A) Averaging the clean and oily surfaces
we have

calc. surface arc-over 153
measured surface arc-over” =TT ‘ 77

2.0

(B) Carbonization points formed after a number of arc-overs

calc. surface arc-over 153
............... = — =3.1
measured surface arc-over 50
(C) Surfaces and electrodes sprayed with water. . = l—g—g =6.6
. 153
Impulse Tests. (D) Clean or oily surfaces. . . .. =117 = 1.3

Many explanations may be advanced for the above results;
at first I was inclined to account for them in the following man-
ner.

Case A. Here breakdown occurred over the surface of the
bushing at approximately one-half the calculated voltage. To
account for this we might assume that a conducting corona ring
forms prematurely due to an imperfect joint between the porce- .
lain and electrodes, since at the joint a high stress might exist on
the air due to the high inductive capacity material being in series
with the air at this point. If such a conducting corona ring was
formed the maximum stress upon it would be approximately
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twice that existing in the uniform part of the field. For if we
insert a cylindrical conductor in a uniform field the maximum
gradient on the cylinder will be twice the gradient of the uniform
field in which it is placed or if we have two infinite plane elec-
trodes having hemicylindrical bosses upon them, then for spac-
ings between the planes such that the field between is essentially
uniform in the middle the gradient in the vicinity of the cylin-
drical bosses will be a maximum on the crest of the boss and will
be twice the gradient existing in the uniform part of the field.

‘The solution of this problem is obtained by the method of
images; by superimposing a uniform field upon the field of a
linear doublet.’® A complete diagram of the electrostatic field
is given by Maxwell in Plate XV at the end of Vol. IT of “Elec-
tricity and Magnetism."”

If we make the further assumption that the corona ring is
unstable then we see that arc-over should occur at approximately
one-half the calculated arc-over voltage assuming perfect joints
and surfaces, which is about the value observed from the tests.
It is of course probable that the gradient at the surface of the
boss will have to be somewhat above 21 kv. effective per cm. at
breakdown, or what is the same thing, the breakdown strength of
air (assumed 21 kv. eff. per cm.) must be reached at a finite
though small distance from the surface of the boss. This same
effect is well known in the case of wires or concentric cylinders,
etc., for example, it has been discussed by F. W. Peek, Jr.?

Case B. Carbonization points formed after a number of arc-
overs. In this case arc-over took place over the surface at about
one third the calculated value. A method of approximately
explaining this case may be based upon the assumption that a
small hemispherical corona hoss forms on the surface of the
electrodes. The solution of the electrostatic problem of two
infinite planes having hemispherical bosses is obtained by super-
imposing a uniform field upon the field of a spherical doublet.
The gradient is a maximum on the crest of the boss and 1is three
times that in the uniform part of the field.2

18. See “‘Electricity and Magnetism’’. A. G. Webster, p. 202, also
p. 88. Notes on Electric Field Distribution. Journal of the Franklin
Institute, July, 1913. W. S. Franklin, p. 72-75.

19. A. 1. E. E., Travns,, 1911, Vol. XXX, Part III, p. 1889, “The Law
of Corona and the Dielectric Strength of Air.”

20. J. H. Jeans, “‘Electricity and Magnetism,” p. 188-191; A. G.
Webster, ‘‘Electricity and Magnetism”’, p. 371-373; Lord Kelvin Papers
on ‘‘Electrostatics and Magnetism,”” p. 492; J. J. Thomson, “Electricity
and Magnetism,” p. 158-160,
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Diagrams of the lines of force or flux will be found in the
various references given below and a somewhat similar and in-
structive case is shown in Plate III at the end of Vol. I—Maxwell,
“Electricity and Magnetism."

Case C. Water particles on the surface. In this case arc-over
occurs at about one-half the needle-gap arc-over at this spacing.
This low arc-over under these conditions may be a sort of pro-
gressive breakdown between adjacent water particles or distor-
tion of the field by erratic conduction, ete.

Case D. The impulse test shows an arc-over voltage which is
very close to the calculated arc-over assuming that it takes place
clear of the surface. To the eye, however, the arc-over seems to
take place along or very close to the surface and therefore there
seems to be some disturbing influence at work which the above
explanations do not take into account.

The previous calculations for the corrugated porcelain bushing
indicated that the arc-over should take place along the edge of
the corrugations due to unstable corona formation in the valleys
of the corrugations. The calculation is necessarily only approxi-
mate as the flux refraction produced at the corrugations is
neglected.

A comparison of the various cases may, however, be of interest.

Sixty-cycle Tests. )
Case A. Oily and clean surfaces ratio of calculated g9

to test arc-over.......... ... . ... 7= 1.2
Case B. Carbonization points formed after a num- g9
ber of arc-overs............. ... .. ... .. — =1.74
53
. 92
Case C. Surfaces sprayed with water............. 7 = 3.4
Impulse Test
Case D. Clean and Oily Surface................ T2 = 0.83

Explanations similar to those offered for the smooth surface
might be advanced but cannot be quantitatively applied as the
field conditions are not as definitely known.

Under-0il Tests (60 Cycles). The under-oil arc-over tests also
show a lower value than would be expected if we assume perfect
joints and ideal dielectrics.
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The strength of oil at these large spacings (7.3 cm.) is about
33 kv. effective per cm., and therefore the surface arc-over voltage
should be 7.3 X 33 = 240 kv. effective for the smooth porcelain
surface

calculated surface arc-over _ 240 _

measured surface arc-over 122 2.0

It will be observed that the explanation above (corona ring or
joint effect) could be applied to these tests and give what would
appear to be a satisfactory explanation of the observed discrep-
ancy between calculated surface arc-over voltage and that ob-
tained from the tests. The corrugated porcelain surface could
be discussed qualitatively in a similar manner.

ApprrioNarl Tests oN “HicH-AIR-EFFicIENCY BUSHINGS.

The object of the following tests was to determine the dis-
turbing influence of the walls and floor of the room or ground
upon the arc-over voltage of this type of bushing. The following
tests were made using the corrugated supporting dielectric as it
was still assembled with the electrodes. The previous under-oil
tests had damaged the porcelain surface on one side, and there-
fore, necessitated submerging the injured end under oil.  For
this purpose, a wooden oil tank was used, the tests being made
on the uninjured end. The surface of the porcelain was oiled
for all tests.

Summary of Tests

Sixty-Cycle Arc-Over Voltage. (average of ten readings).

Corrugated Surface. )

(A) Plane grounded

Arc-over voltage................. 67 kv. £ 5 kv. eff.

Average gradient................ 9.2 kv. per cm.
(B) Plane isolated, central electrode grounded

Arc-over voltage................. 67 kv. & 4 kv.

Average gradient........... ... .. 9.2 kv. per cm.
(C) Bushing entirely isolated.

Arc-over voltage................. 80 kv. £ 10 kv.

Average gradient................ 11 kv. per cm.

A comparison of these tests with the previous ones show a
reduction of the arc-over voltage for the grounded cases to about
80 per cent of the previous values. The isolated case agrees
closely with the previous tests where the plane was grounded.
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The results might be expected from the following considera-
tion: In the previous tests the bushing was suspended about
10 ft. above the floor of the room, and therefore was not ap-
preciably influenced by the floor and walls, whereas the present
tests were made with the bushing about 2 to 3 ft. from the floor
of the room. The conditions of the test had to be changed, due
to the fact that it was necessary to have the damaged end of the
bushing under oil. Under these conditions the proximity of the
floor of the room or ground would have a greater effect upon the
grounded cases, 4 and B, than for case C where both plane and
central electrode were isolated.

It may be interesting to note, at this point, that the type of
electrostatic field, which we are here concerned with, for example,
an infinite rod passing through a hole in an infinite plane is
essentially different from the case of two spheres at different
potentials in space. In our case the rod and the plane both
are considered as going to infinity and are at different potentials.
Thus, it is evident that the potential at infinity is indeterminate
and the electrostatic field distribution merely depends upon the
relative potential between the two electrodes. This can be seen
analytically from the mathematical solution for this simplest case
(see appendix). The case of two spheres in infinite space is quite
different. For example, assume them to have equal and opposite
potentials, in that case, the equipotential surfaces are approxi-
mately spherical at great distances from the spheres and at an
infinite distance the equipotential surfaces around each sphere
are two infinite spheres made up of the infinite plane which
passes midway between them. By reason of symmetry this
infinite plane is seen to be at zero potential since it forms the
equipotential surface which lies midway between the two spheres
and since this plane goes to infinity the potential at infinity is
Zero.

If we now assume one sphere at zero potential and the other
at a positive potential of such a value as to make the relative
potential between the two spheres the same as before, the elec-
trostatic field distribution is no longer symmetrical about the
plane midway between the spheres, that is, the field has been
changed though the relative potential between the spheres is the
same: A diagram of the electrostatic field, under these condi-
tions, is shown in Fig. 1I at the end of Vol. I, Electricity and
Magnetism, by Clerk Maxwell. In this diagram, Q, is the
spherical surface at zero potential and, 4, the other sphere at a
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positive potential. The concentration of the field about, 4, will
be observed. This is quite a different matter from the effect of
floor, walls, etc., of the room. I have taken the liberty of calling
attention to this fact because it has puzzled me considerably
and may have bothered others also. The above remarks, of
course, do not apply to the. case of two bushings in proximity,
in which case the fields of the two bushings would have to be
treated as one.
CONCLUSIONS

In general, the results of tests on the above high-air-efficiency
bushings were not very encouraging from the point of view of
building a satisfactory commercial bushing of this type. How-
ever, if the above suggested explanation of the discrepancy
between theory and test were found to be correct, that is, if the
disturbing influence is due to corona at the joints between the
porcelain and electrodes, it should be possible to eliminate it by
electrostatic shielding of these joints. This might eliminate all
the lowering of arc-over except that due to rain or sprayed
surfaces, and, therefore, might give us a useful bushing for in-
door use, especially on testing transformers, where the impulse
safety factor is not important.

INVESTIGATION OF THE DISCREPANCY BETWEEN CALCULATED
AND TEST ARC-OVER VOLTAGE OF EXPERIMENTAL HIicH-AIR-
Erriciency BusHinGg
Joint Effect

The following tests were carried out in order to obtain an
experimental check upon the explanation offered above which
was based upon the assumption that a corona ring formed pre-
maturely at the joint between the supporting dielectric and the
electrodes.

Large plane electrodes with smoothly rounded edges were
spun up of brass of the form shown in Fig. 19. The object of the
design was to obtain as nearly as possible, a uniform field between
the electrodes without disturbing edge effects. The sixty-cycle
arc-over voltage was then obtained at various spacings, with
planes alone, and when provided with small rings, hemispherical
bosses and points. The results are given in the form of curves in
Fig. 19.

It will be observed from the data given on the planes alone
that the field between them is not accurately uniform since the
breakdown gradient changes with the spacing and is in general
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lower than 21 kv, effective per cm. the approximate strength of
air at these large spacings. The arc-overs were, however, well
distributed and did not show a tendency to take place at the
rounded edges. The 200 kilocycle impulses arc-over of the
planes is given on the curve, and approximately represents the
true strength of air under uniform field conditions, as the edge
effect does not seem to greatly lower the impulse arc-over.

To show roughly the effect of hemicylindrical bosses small
copper rings % in. (0.318 cm.) cross-section were used. Two
diameters for the rings were tried first, one-inch (0.254 cm.)
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diameter and secondly, four-inch (10.15 cm.). The results were,
however, not appreciably different and, therefore, the averages
are shown, first for the case of a single ring on the upper plane,
and secondly for a ring on each plane. The rings were not made
half-sections because it was not thought necessary for such rough
tests. Of course the effect produced by the ring is not rigorously
equivalent to a straight hemicylindrical boss except where the
cross section of the ring is exceedingly small and the diameter of
the ring extremely large in comparison.

The hemispherical bosses used had a radius of } in. (0.318 cm.)
No appreciable difference was observed between the case in which
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a boss was placed on one or on both planes, and, therefore, a
single curve is shown.

The points or cones which were employed were approximately
30 deg. and % in. (0.635 cm.) high and had rather dull points.

From the previous discussion we saw that the apparent arc-
over gradient when hemicylindrical bosses were placed upon the
planes should be, assuming any corona formation to be unstable
somewhat above 10.5 kv. eff. per cm. due to the so-called “‘energy
distance effect’” which requires that the surface gradient exceed
the breakdown strength of air. The rough tests given above
indicate an apparent surface gradient of about 13 kv. eff. per cm.
Observation in the dark indicated that arc-over takes place
without previously showing corona.

A similar explanation probably suffices to explain the difference
between the apparent arc-over gradient, as discussed above, for
the case of a hemispherical boss which indicated that on the
assumption of unstable corona formation the arc-over would
take place at an apparent gradient somewhat above 7 kv. eff. per
cm. In test the apparent gradient was found to be about 10 kv.
eff. per cm. No corona could be observed in the dark before
arc-over.

The case of the small points on the planes is not so easily cal-
culated but is interesting in showing the extreme condition.
Observation in the dark showed streamers from the point to the
plane just below the arc-over voltage, sometimes resulting in
arc-over and sometimes going out, the appearance being like very
fine so-called “‘static sparks” and not a corona like glow.

Surface Effect

Tests in Air and Cil. We have seen that the explanation of the
discrepancy between calculated and test arc-over voltages of the
high-air-efficiency bushing can be fairly satisfactorily explained
on the assumption that the joint between the porcelain and metal
of the electrodes was the disturbing influence which brought
about the reduction in arc-over voltage. It has also been pointed
out that, if this were the true explanation, it should be possible
to eliminate the effect by proper electrostatic shielding of the
joints. The following preliminary tests were, therefore, carried
out in order to roughly check the assumption experimentally.

For this purpose the two brass electrodes used in the previous
tests were available, and in addition a second pair of planes were
spun up on exactly the same form, except that the annular
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grooves were added as shown in Fig. 20. The object of the
grooves was to supply an electrostatic seal for the edge of the test
piece (a glass cylinder in these tests). It is believed that in this
manner we have shielded the joint between the test piece and the
electrodes, and, therefore, should have eliminated any disturbing
influence which might arise from the joints. An imaginary
sketch of the electrostatic field about the grooves has been drawn
which is also a detail drawing of the groove. Reference may also
be made to Figs. XI and XIII, at the back of Vol. I, Electricity
and Magnetism, by Clerk Maxwell, which show the screening

e 20" >
—
[ v
¢ \: — N J
hi, : 1

- t=-Glass Tube

effect of plates and gratings, which are somewhat analogous cases.
Under these conditions the introduction of the glass cylinder of
high specific inductive capacity in parallel with the air dielectric
should have no effect upon the arc-over voltage, providing the
strength of air is not different when in contact with the test piece.

The data obtained using various test pieces between the
smooth and grooved planes in air and oil are summarized by the
curves, Figs. 21 to 25. During the tests the barometer varied
between 74.5—76. cm. Hg.; the temperature between 23 deg.
cent. to 27 deg. cent. and humidity between 34 per cent to
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53 per cent. The effect of these variations did not show them-
selves above the experimental errors involved in the tests and
therefore all the data were averaged together. The glass cylinders
used as test pieces were ordinary soda glass approximately 2.5
inches (6.25 cm.) diameter with a wall thickness of about 0.07
inches (0:18 c¢cm). In all cases minute longitudinal flaws were
visible along the grain of the glass. The edges of the cylinders
were roughly ground but the process left appreciable irregularities
which probably would be sufficient to introduce corona dis-
turbances, if they are appreciable.

Three conditions of the glass surface were investigated: I—
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Glass cylinders cleaned with absolute alcohol and dried with a
cloth. This case is represented on the curves as dry glass (I).

IT—Glass cylinders cleaned as in (I) and then heated for about
3 hours at 180 deg. cent. The cylinders were then removed from
the oven, handling being done by means of dried fibre strips, and
set up between the planes for test. Arc-overs were taken while
the cylinders were still hot and also after they had reached room
temperature. The later condition is that referred to on the
curves as dry glass (II). The hot arc-overs differed from the
room temperature ones merely in proportion to the change in air
density on the supposition of a heated film of air in the vicinity
of the hot cylinders.
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IIT—Wet glass cylinders. For these tests the cylinders were
held under the water faucet just before tests were made.

For the tests in which the cylinders were coated with paraffine,
or oil, etc., the test piece was soaked in the hot material and then
tested after reaching room temperature.

The tests with hard rubber varied considerably as shown by
the two curves. The upper curve is for hard rubber cylinders
which had been re-surfaced with fine emery just before test.
The lower curve shows the arc-over after the test piece had stood
around the laboratory for a week or so. The tests with oiled
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hard rubber refer to cylinders which had been soaked in No. 6
transil oil for a few days.

Tests were also made on wound-up paper cylinders impreg-
nated with compound.

The tests using glass disks given on curve sheet Fig. 22 were
intended to show the effect of breaking up the surface first by the
natural irregularity of the piled up disks (see Fig. 26), secondly
with larger glass disks inserted at intervals, and thirdly with
metal disks inserted at intervals. The glass disks were 0.075 in.
(0.19 cm.) thick and 2 in. (5 cm.) and 4 in. (10 cm.) diameter
and had roughly ground edges. The metal barriers were 5 in.
(12.7 cm.) in diameter and 0.019 in. (0.048 cm.) thick.
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The under-oil tests were carried out in a large wooden oil tank
containing No. 6 transil oil, testing 40 kv. between 0.5-in. (1.27
cm.) terminals at 0.2 inches (0.51 cm.) spacing.

The impulse tests were made using F. W. Peek’s impulse
generator # with an impulse resembling half a cycle of a 200
kilocycle sine wave. The voltages given are on the assumption
that arc-over occurs at the top of the sine wave impulse.

A few tests were made using glass tubes and hard rubber
cylinders having different diameters, so as to see whether the
arc-over was affected by changes in the surface resistance be-
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tween the planes. The tests did not, however, show any varia-
tion from the previous ones.

The incompleteness of the data and the irregularities which
occurred between different samples of the same material as well
as the rather crude methods of test make any conclusions rather
questionable. I am, however, inclined at present to the following
conclusions.

If all precautions were taken to absolutely free the test samples
from moisture, and furthermore, if practically perfect joints were
made between the test samples and the planes, either by electro-

21. See footnote 17,
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statistically shielding the joints or by mechanical fit, I believe
that the presence of insulation in parallel with air or oil, etc.,in a
uniform field would not result in a breakdown lower than that of
the weakest material. When, however, the joint is not carefully
made, 1 believe that premature breakdown occurs at the joint
when a high inductive capacity material is placed in parallel with
a lower inductive capacity material.

When dealing with dielectrics, which have been cleaned and
dried, with what would be considered great care in the household
sense of the word, there appears to be a very large reduction in

arc-over under the conditions
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general, it may be further pointed out that materials such as
clean new hard rubber, oiled, or paraffined surfaces, which Mr.
Harvey L. Curtis has shown have a high surface resistivity under
varying humidity conditions, also show a high breakdown under
the test conditions here described. From a purely electrostatic
point of view it is, of course, obvious that if the surface conduc-
tion took place in a perfectly regular and uniform manner it
should not result in any reduction in the arc-over of the test
pieces as the equipotential surfaces of conduction would coincide

22, The Volume Resistivity and Surface Resistivity of Insulating
Materials—General Electric Review, October 1915, p. 996.



1917] RICE: ELECTROSTATIC PROBLEMS 953

with electrostatic ones and no distortion or increase in stress
would thereby result. If, therefore, the reduction is to be
attributed to surface leakage or conduction, this effect must be of
an erratic and discontinuous nature.

It would be of considerable theoretical interest to test this con-
clusion experimentally. For example, I believe that a suitably
high resistance and homogeneous metallic film could be obtained
on a glass cylinder by subjecting it either to a cathode spray
or by volatilization in a high vacuum. Some tests were tried in
which ground-glass cylinders were coated with graphite, etc.,
but without satisfactory results.
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I believe that a thorough and accurate investigation of this
phenomena would be of considerable practical as well as theoreti-
cal interest.

Revisep Arc-ovEr Carcuration oF HigH-AIR-EFFICIENCY
BusHinG

A revised calculation ef the arc-over voltage of the high-air-

efficiency bushing may now be made which takes into account

the surface and joint effects. We have seen previously that

the surface arc-over of the bushing in air should take place under

ideal conditions at about 150 kv. effective. Now, since the
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electrostatic conditions along the surface are practically identical
for the bushing and for the test pieces between the smooth planes,
a direct comparison is legitimate except for the fact that a glass
surface is probably not identical with a glazed porcelain surface.
Nevertheless the comparison is of interest.

Arc-over of Arc-over of
High-Air-Efficiency Smooth Planes
Bushing 7.3 cm. Spacing

Tests in Air

Average of dry and oiled
smooth porcelain surfaces  Average of dry and oiled glass

60 cycle, 73 kv. effective 60 cycle, 67 kv. effective
Impulse, 117 kv. effective Impulse, 90 kv. effective
Surface wet with city water Surface wet with city water
60 cycle, 23 kv. effective 60 cycle, 21 kv. effective

Tests in Oil.

Smooth porcelain surface Glass cylinder,
60 cycle, 122 kv. effective 140 kv. effective

In conclusion it should be observed that if we are forced to use
supporting dielectrics, which show large surface effects, we must
consider this fact when we form any criterion for the best use of
air or oil in combination with the supporting dielectric. If we
assume that our surface of discontinuity between the air part of
the dielectric and the solid or supporting dielectrie, for instance
glass, is greatly weaker than air alone, for example—only stands
a potential gradient of 7.3 kv. effective per cm. instead of 21 kv,
effective as would probably be the case if perfectly dry and clean;
then considering this feature alone, we see that in order to use
both materials most efficiently, the component of the potential
gradient along the surface should not exceed 7.3 kv. effective
per cm., whereas the air itself should be used to its full strength
of 21 kv. effective per cm. Thus, the component of the potential
gradient normal to the surface should beG = V 212~ 7.32 =
19.7 kv. effective per cm. or the flux lines should make an angle
of approximately 70 deg. from the surface. This is practically
the condition existing in the so-called ‘‘Radial Type of Field” in
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which the supporting dielectric and air are approximately in

series in a radial field. It will be seen that when considering

ordinary materials from which bushings are usually made that
this surface effect practically requirés us to go to the radial type
of field in constructing a bushing.

CALCULATION OF THE ARC-OVER OF THE TEsT P1ECE, DESCRIBED
AND TESTED BY C. L. FOorTESCUE AND S. W. FARNSWORTH.®
The electrodes consisted of confocal hyperboloids of revolution

of two sheets. The equation of the hyperbolas which constitute

the generating curves were obtained from the description and

Tig. 20 of the paper as follows: 2

x2 2
raa g

Where _

f = Va® + ¢ = 1 in. the semi-focal distance.
and a = 0.875in.
¢ = 0.485 in.

from which we have
x? z2

(0.875)2 (0.485)2 1

The ellipsoidal hard-rubber supporting dielectric is cut out by
rotating the ellipse whose equation was determined in a similar
manner to be

x2 y2
@ T =l
Where f=Va&—=1in
and b= 31in.
a = 3.26 in.
and
xZ y2 _
Goor T =1

Reference to Fig. 18 or 19 of the appendix shows that the hypo-
bola No. 27 is very approximately the one corresponding to that
used for the electrodes. The ellipse bounding the hard rubber
is No. 22 counting out from the focal ellipse as 0.

23. See footnote 1.
24. See p. 863 and Figs. 1 and 2 of the appendix.
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Assuming the breakdown strength of air as 21 kv. effective
per cm. and perfect dielectrics, corona would start at the junction
between the hard rubber and electrodes at 205 kv. eff. If we
further assume that the corona formation is unstable arc-over
should occur assuming perfect dielectrics without surface or
joint effects at about this value. The factor which takes into
account the reduction in arc-over, due to what has been called
surface and joint effect, for the case of hard rubber in parallel
with air in a uniform field, in which the full value of the gradient
is along the surface, is applicable in this case. The tests
have shown that a factor of about 73 per cent should be
applied to the value as calculated neglecting this effect. Thus,
the calculated arc-over of this structure is about 150 kv. effective,
the test results reported by Fortescue and Farnsworth were
given as 160 kv. effective.

OUTLINE OF SOME OF THE P0ssIBLE METHODS FOR INCREASING
THE EFFICIENCY OF THE USE OF THE SUPPORTING
DieLECTRIC

In the previous discussion on bushing design attention has
been principally directed towards studying the possibilities of an
efficient use of the air dielectric. Theoretically, the ideal bushing
would be that in which the whole dielectric is used to its maxi-
mum efficiency, that is, it would be on the point of breakdown
simultaneously at all points. Therefore, it is interesting to study
the possibilities of increasing the efficiency of the use of the solid
or supporting dielectric. For example, inspection of the diagram,
Fig. 14 shows that the supporting dielectric in a bushing built
along these lines is not used to its maximum strength except right
near the rod and edge of the hole in the tank. Therefore, if it is
possible by some means to redistribute the stress in the solid
dielectric so as to bring about a more uniform condition, it would
be possible to greatly reduce the diameter of the bushing as a
whole. The following are some of the possible methods which
might be employed.

I—Theoretically we could bring about the desired condition
provided we had suitable dielectrics of various inductive capaci-
ties and dielectric strengths. We could then place the high
inductive capacity materials near the rod and edge of the hole
in the tank putting the lower inductive capacity materials in the
less dense parts of the field and in some such manner as this bring
about the condition in which all the dielectrics used were stressed
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to their maximum strengths. This is the well known principle of
graded insulation. Unfortunately there is not a very wide varia-
tion in the inductive capacities of the materials which are avail-
able in practise.

[I—If there were available extremely high resistance materials,
or dielectrics, we could construct a bushing which would main-
tain a proper potential distribution by conduction through the
dielectric. This might be called a resistance bushing. A graded
resistance bushing would also be possible.

III—Another method is to insert artificial equipotential sur-
faces and thereby control the stresses in the manner which
we desire. In order to effect the desired distribution of
stresses the artificial equipotential surfaces must be maintained
at the proper potentials. Some of the methods which can
theoretically be used for this purpose are as follows:

A. Metallic connection to a proper source of potential. For
example, to transformer taps or external balancing resistances,
inductances or capacities, etc. A balancing resistance might even

" be embedded in the dielectric.

B. By conduction through the supporting dielectric. This
would be similar to the resistance bushing mentioned above
except that the distribution of the conduction current could be
modified, in various ways, by the insertion of artificial equipoten-
tial surfaces.

C. Electrostatically (or the well known condenser principle)?2s
in this case we have the balancing condensers embedded in the
supporting dielectric, and, at the same time, forming the arti-
ficial equipotential surfaces. Of course graded insulation is also
applicable to this type of bushing.

Theoretically where artificial equipotential surfaces are used
they could be extended through the surface of the solid or sup-
porting dielectric into the air part of the field where they could
be used to assist in bringing about the desired field distribution,
and at the same time, even be made to act as petticoats to shield
the surface from rain, etc.

Obviously the possibility exists of making various combina-
tions of the above principles.

When the practical difficulties of utilizing the above methods

25. R. Nagel Elektrische Bahnen und Betriebe, 1906, p. 278; A. B.
Reynders, A. 1. E. E., Traxs., 1909, Vol. XXVIII, Part I, p. 209; C. L.
Fortescue, Electrical Journal, August 1913, p. 718; W. S. Franklin, Journal
of the Franklin Institute, July 1913,
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are considered it appears that case III alone, or possibly in com-
bination with grading by inductive capacities, is the most feasible
at the present time. Therefore, a brief study of this case was
undertaken making use of the electrodynamic method.

PrELIMINARY STUDY OF THE USE OF ARTIFICIAL EQUIPOTENTIAL
SURFACES OR POTENTIAL EQUALIZERS

Diagrams of Figs, 27 and 28, were taken as a preliminary study
of the effects produced by forcing a uniform distribution of
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potential gradient in the solid or supporting dielectric by the use
of cylindrical artificial equipotential surfaces. Diagram, Fig. 27,
shows the effect when the radial-field type is used on the air
end and diagram, Fig. 28, for the uniform-field type. The
under-oil ends are what might be termed semi-radial.

At the outset, it should be noted that it is necessary to study
both the air and oil ends simultaneously if they are not symmetri-
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cal, otherwise the problem is indeterminate. Briefly the method
of experiment was as follows: The skeleton electrodes, for Fig. 27
consisted of a plane with cylinder (ground shield) and a central
rod provided with a tin disk at both ends. The disk on the under-
oil end was put in so as to make a definite field in which to end
the artificial equipotential surfaces. If this were not done the
bushing would be greatly affected by the piece of apparatus in
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which it was afterwards used. I believe that this feature is quite
important. The ground shield was used in order to relieve the
stress on the air above the oil level, as usual, and was projected
into the air end so as to shield the joint which would be necessary
in construction. Five tin quarter-cylinders were then added as
the artificial equipotential surfaces. These were constructed
of two pieces so that they could be telescoped, thereby making it
possible to change their length and the position of their ends
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both in the air and oil parts of the field. The adjustment was
accomplished by a system of strings so that different positions
could be tried while experimenting with water in the box. The
apparatus was set up in this manner and the position of the
cylinders in the air and oil ends adjusted until the potential gra-
dient between the cylinders was as nearly equal as could be easily
predetermined. It was during the course of this work that it
was found necessary to add the tin disk at the top of the bushing,
(See Fig. 27) in order to have a dense field in which to end the
two inner cylinders. If this were not done they would have had
to be either too close to the under-oil disk which would mean too
great a stress at the bottom of the under-oil end, or greatly
extended in the air end. In the latter case the resulting bushing
would have been much higher than seemed desirable for the
preliminary work where an exaggeration of effects was desirable.
Naturally, the position of the potential equalizing cylinders may
be almost anything, that is, the potential of any of the cylinders
could be brought to the desired value either by adjustment of
the ends of the cylinder in the air or oil end. Such an arbitrary
arrangement, without regard to the stresses brought about on
other parts of the bushing, would obviously result in an imprac-
tical design. For instance, it might result in bad stresses at the
ends of the cylinders and outside of them at the expense of the
uniform gradient thus obtained within. In both diagrams the
object was to obtain, as nearly as possible, equal gradient within
the cylinders, and at the same time, obtain the best external
field consistent with this requirement. Naturally, in practise
it would probably be best to compromise between the internal
and external parts of the field but for a preliminary study it
seemed best to take one object to start with and study the
consequernces.

When the diagram was completed, it was found that the pre-
liminary adjustment had not actually obtained the uniform
gradient in the solid material as had been attempted. For
example, the distributions between the various artificial equipo-
tential surfaces starting from the ground shield were as follows:
(See Figure 27).

I —Numberoflines................. 6.
Average gradient. ... .. e 6 lines
2.92 cm. = 2.05
II —Numberoflines................. 6.4
Average gradient.............. 6.4 lines

3.94 cm. = 1.62
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IIT —Number of lines. . ............... 7.
Average gradient. . ............ 7 lines
4.2cm. =1.66
IV —Number of lines................. 6.5
Average gradient. .. ......... .. 6.5 lines
3.3cm. = 1.97
V —Number of lines. . ............... 10
Average gradient. . ....... ..... 10 lines
3.8cm. = 2.64
VI —Number of lines. .. .............. 14
Average gradient. ....... ... ... 14 lines

2 16cm. = 6.5

No attempt was made to obtain a low gradient in the last case,
as it was contemplated to select the equipotential surface of the
inner cylinder as our rod with cap.

Inspection of Fig. 27 will show that a concentration of the
field at the top and bottom ends of the bushing has resulted
from forcing the nearly uniform gradient between the cylinders.
It should also be observed that the capacities of the concentric
cylinder condensers formed by the artificial equipotential sur-
faces have no definite relation, under these conditions, where
the effect of the caps and assymmetry of the problem introduce
large effects. For example, assuming as the length of the con-
densers the mean height of the two adjacent cylinders we have
for the capacities starting from the ground shield.

_ meanheight _ 25.2 cm. 25.2

¢ R ~ loge1.16  0.148 170.
loge p
IT C proportional to......... ... 33.3cm. _ 33.3 _ 131
loge 1.29 ~ 0.255 :
I ¢ ‘“ Y594 cem. 594
loge 1.43 ~ 0.358 :
IV ¢ ‘ . 86.0 cm. 86
loge 1.52  0.419 205.
vV ¢ « L 94.2 cm.  94.2
loge2.5  0.916 103.
VI ¢ “« “ . ..........100 cm. 100

Toge 6.7 _ 1.00 = 93.%
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I wish/to emphasize caution against any conclusions which might
be drawn from the above values for the capacities; for an entirely
different adjustment of the lengths of the cylinders could ob-
viously be obtained which would still give equal potential
gradient between the successive cylinders and in which the
capacities calculated as above would have entirely different
values and interrelations.

Before leaving the discussion of this diagram. it may be inter-
esting to note that if we built a bushing along these lines; for
example, if we selected equipotential surface No. 36 as our cen-
tral rod with cap and equipotential surface No. 0 as plane with
ground shield, corona would start at the top of the bushing at
about 238 kv. effective and would probably arc-over slightly
above this value. The average voltage per cm. of height of this

238 kv.
70 cm.

Diagram, Fig. 28 was taken using the same electrode configura-
tion except that the large skeleton cap was put in place of the
small one used for Fig. 27. The position of the cylinders was
adjusted with the same objects in view as for the previous
diagram.

The distribution of potential between the various artificial
equipotential surfaces starting from the ground shield will be
seen to be as follows:

(See Diagram, Fig. 28).

bushing would be = 3.4 kv. effective per cm.

I. —Numberoflines................. 6.5
. 6.5 lines
Average gradient............... 3 OBom 2.13
II. —Number of lines.................. 7.
. 7. lines
Average gradient. ... .......... 301 om. 1.77
III.—Number of lines................. 7.5
. 7.5 lines
Average gradient.............. 304 om. = 1.90
IV.—Numberof lines................. 6.
: . 6 lines
Average gradient.............. 385 om. = 1.69
V. —Number of lines................. 10
Average gradient.............. 10 lines 2.62

3.82 cm.
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VI.—Number of lines................. 13
) 13 lines
Average gradient.............. IR 6.0

As before, no attempt was made to obtain a low gradient inside
of the small last cylinder as it was contemplated using this
equipotential surface for the rod with cap, as in the previous case.

The capacities of the adjacent cylinders considered as con-
centric cylinder condensers, starting from the ground shield,
are as follows:

mean height 249 em.  24.9

I— C=........ R "o 117~ 0157 = 158
loge —
4
II— C proportional to ... ........ ffg 81“2“7' = 03?;'33 = 138
€ . .
« « 7] 51 cm. _ 51. _
IIIL— “  “  “ v T4l = 03m = 148
111 [ 149 73 cm. _ 73 _
IV— «“ Tog. 1.56 ~ 0445 — 164
111 T o 86 cm. _ 86 _
V— e or 25 = oo = %
113 £ 6 99 cm. _ 99 _
VI— T T fog 6.7 190 52

As in the previous case, caution should be urged against hasty
conclusions drawn from the above capacity values, for in this
case also an entirely different adjustment would be possible in
which the magnitudes and interrelations between the capacities
would have very different values.

In designing a bushing from this diagram we might select
equipotential surface No. 38 for the rod with cap and equipo-
tential surface No. 0 for the plane with ground shield. A straight
cylindrical shell would be-added enclosing the central core and
the ground shield. The resulting distribution of the potential
on the air end of such a bushing would be approximately uniform.
Under these conditions corona would start at the cap on the
air end at about 440 kv. effective which gives an average gradi-
ent along the surface of 7.75 kv. effective per cm.

The tests made on glass cylinders in a uniform field in which
the surface breakdown gradient was found to be about 9.2 kv.
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per cm. indicate that the air end of this bushing is about as
short as practical assuming good surface conditions. A shell
would also be added to the under-oil end of the bushing enclos-
ing the ground shield. Inspection of the under-oil end shows’a
concentration of the field about the cap. Also in view of the
under oil arc-over tests on glass cylinders and hard rubber
it looks as if the under-oil end is about as short as possible.
The diameter of this bushing is evidently larger than necessary to
withstand puncture as will be readily seen by comparing the
thickness of insulation used with that found in practise to be
necessary.? It will also be observed that the ratio of external
diameter to rod diameter as used in practise is considerably
less than that used for these preliminary experiments where it
was about 8, if we take the inner equalizer as our rod with caps.
For example, the ratio between outside diameter to rod diameter
varies in practise between 2.3 and 3.7. With these relatively
small diameter ratios the gradient without artificial equipoten-
tial surfaces would not be very far from uniform to start with
(see diagram, Fig. 10). There is, therefore, very little potential
equalizing to do. In our tests, however, we have taken a ratio
of about 8, which means that we have an exaggerated con-
dition and considerable equalizing to do.

This immediately brings up the question as to whether the
small diameters of the condenser bushings is due to the equaliz-
ing effect of the tin-foil layers in bringing about uniform poten-
tial gradient, or whether the effect is not largely due to the sub-
division of the solid material by metallic barriers as well as
the laminated structure of the dielectric itself, thereby increasing
the apparent strength of the structure,(an effect analogous to
the use of solid barriers, pressboard, etc.) in liquid dielectrics.
This matter will be briefly discussed before leaving the subject.

It should be observed that there is no definite proper ratio
between the diameters of the central rod and the hole when
artificial equipotential surfaces are used in this manner. It
is, however, undesirable to use too small a central electrode
because this means that more redistribution of stress has
to be brought about by the artificial equipotential sur-
faces. This in general necessitates either too long a bushing or
an excessive stress at the ends. If we select a ratio of rod to
hole diameter which gives more nearly equal gradient at the

26. See ‘‘Construction and Application of the Condenser Terminal’’,
by J. E. Mateer, Electrical Journal, August, 1913.
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edge of the hole and rod without artificial equipotential surfaces,
we will have less potential equalizing to do which will probably
be found advantageous. :

EXPERIMENTAL BUSHING wiTH ARTIFICIAL EQUIPOTENTIAL SUR-
FaCES, UNIFOrRM-FiELD TYPE

A bushing of the uniform-field type was built from a photo-
graphic reduction of Fig. 28. It has been pointed out that
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in taking the diagram the artificial equipotential surfaces
were adjusted so as to give an approximately uniform distribu-
tion of stress in the solid or supporting dielectric, while at the
same time we attempted to produce as good an external field
distribution as could be foreseen before the diagram was actually
completed.

Fig. 29 shows the outline of the bushing drawn on the
diagram of Fig. 28. The electrodes were not made to rigorously
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conform to any of the equipotential surfaces in the diagram as it
did not seem necessary to do so, since the field will probably
not be greatly changed by the deviations made. A groove was
putin the cap on the air end to electrostatically shield the
joint between the supporting dielectric and the air. The con-
denser core of the bushing was made of wound-up shellac paper
with tin-foil layers at intervals of 1/16 in. It was turned
down to the shape shown in Fig. 29 and then stepped off as
will be seen from the photograph Fig. 30.

A shellac paper cylinder enclosed the air end of the bushing
and the shell for the under-oil end was built up of hard-rubber
rings. Sarco, an asphaltic compound, was used as filler.

Arc-Over Voltage as Calculated from the Diagram

An inspection of Fig. 29 will show that the gradient on the air
end is very nearly parallel to the surface of the containing
cylinder and is approximately uniformly distributed being some-
what higher near the top. The maximum gradient on the air
end is seen to be on the cap away from the surface. Under these
conditions corona should start on the cap at about 90 kv. effective
as calculated from the diagram making allowance for the fact
that the cap used did not rigorously conform to any single equi-
potential surface of the diagram. The bushing is 15 cm. high
and therefore the average gradient along the surface would be
6.7 kv. eff. per cm.

Inspection of the under-oil end shows that a concentration of
stress has resulted on the cap from forcing the uniform internat
stress by the artificial equipotential surfaces. The distance be-
tween lines No. 22 and 28 (6 lines) where the under-oil shell
meets the cap is 0.8 cm. thus we have 7.5 lines per cm.
Tests on the under-oil arc-over of rubber cylinders between par-
allel planes gave a surface arc-over gradient of about 23 kv.
effective per cm. Assuming this data to apply in this case, arc-
over of the under-oil end of the bushing should take place at

about 393 X 23 = 92 kv. effective.

It will be observed from these calculations that the air and
under-oil ends are about equally strong. Before the tests were
made it was therefore doubtful which end would arc-over first
as the calculations are necessarily only approximate, since we
have not actually followed the equipotential surfaces of the
diagram.
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Sixty-Cycle Dry Arc-Over Tests
These tests were made with the plane grounded:

Arc-over voltage..................... 86 kv. effective
Average gradient along surface........ 5.7 kv. per cm.

Arc-over took place clear of the surface from the cap to the
plane. Upon applying the voltage for the third time the bushing
apparently punctured either inside of the shell or under oil at
76 kv. effective. Inspection did not indicate an under-oil arc-
over and therefore the bushing had to be taken to pieces in order
to determine the cause of failure. This process necessitated
destroying the bushing as it is difficult to get the compound out
in any other way. The investigation showed that the result of
failure was due to an arc-over of the bushing on the air end along
the inside surface of the containing shell. A large blister about
114 in. (4 cm.) long was found at this point which had held the
compound away from the surface and thus left an air pocket
which weakened the inside surface and resulted in the failure.

I was disappointed not to be able to obtain wet arc-over,
impulse arc-over and under-oil arc-over, but did not believe that
these results would warrant rebuilding a bushing of this sort for
it is quite certain that the results would be low, for the same
reasons which were met with in the tests on the high-air-efficiency
bushing and from which it was concluded that a more nearly
radial type of field is generally desirable in practise.

A reference to Fig. 10, will show that in the radial-field
type of bushing the natural equipotential surfaces are ap-
proximately cylindrical in form and therefore it will be
impossible to produce any considerable change in the potential
distribution by means of cylindrical artificial equipotential sur-
faces, unless they extend to a great distance in the air end, or
unless a cap or hat, or the equivalent, is provided on the under-
oil end, which changes the natural equipotential surfaces from
the cylindrical form, and therefore, allows us to bring about a
change in potential distribution by inserting cylindrical artificial
equipotential surfaces. That is, if our inserted metal equipoten-
tial surfaces do not differ in form from the naturally existing
equipotential surfaces no effect in the potential distribution
results from their insertion, regardless of number, spacing, etc.
It is, therefore, useless to employ them unless they produce an
effective increase in the apparent strength of the solid or support-
ing dielectric by virtue of a subdivision of the dielectric into
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elements. The following preliminary tests were, therefore,
undertaken to check up this point.

EFFECT OF BARRIERS ON STRENGTH OF INSULATION

It is well known that the strength of dielectrics decrease with
increase in thickness. I believe that Lord Kelvin was the first
to observe this effect for the case of air¥ in 1860.

For example, assume that we have two parallel plane elec-
trodes with such a gradual curvature at the edges that the
gradient is always less at the edges than that in the uniform
part of the field. If we then take measurements of the voltage
required to breakdown various thicknesses of air, we find that
the apparent strength of air as determined by the potential
gradient necessary to cause breakdown decreases as we increase
the spacing of the planes. At exceedingly small spacings the
potential gradient required to produce breakdown may be very
great, for example, tests recently made by F. W. Peek, Jr.,% using
2.54 cm. diam. spheres at 0.0035 cm. spacing gave as the dis-
ruptive gradient 150 kv. effective per cm. As we increase the
spacing the breakdown gradient for air apparently approaches a
constant value of approximately 21 kv. effective per cm. at
normal temperature and pressure.

De La Rue and Miller investigated this effect® for various
spacings of parallel plane electrodes at constant pressure and
temperature as well as the variation under constant spacing and
varying pressure and concluded that, “The law of the hyperbola
holds equally well for a constant pressure and varying distance
as it does for a constant distance and varying pressure; the
obstacle in the way of a discharge being as the number of mole-
cules intervening between the terminals up to a certain point.”
Harris® had previously found that a change in air density pro-

24, Measurement of the electromotive force required to produce a
spark in air between parallel metal plates at different distances. Pro-
ceedings Royal Society, Feb. 23 and April 12, 1860, or Philosophical
Magazine, 1860, or Papers on Electrostatics and Magnetism, p. 247-259
Lord Kelvin. An account of these tests will also be found in, Electricity
in Gases, J. S. Townsend, p. 346.

28. Law of Corona and Dielectric Strength of Air, III., F. W. Peek,
Jr., A. 1. E. E,, TraNs,, 1913, Vol. XXXII, Part 11, p. 1767.

29. Experimental Researches on the Electric Discharge with the
Chloride of Silver Battery. Phil. Trans. Royal Society, Part I, 1880,
p. 79-83.

30. W. S. Harris, Phil. Trans. Royal Society, 1834, p. 230.
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duced the same effect whether due to temperature or pressure,
that is, when air is contained in an air-tight receiver, so that the
density remains constant the potential difference between two
electrodes required to produce a discharge was unaltered when
the temperature varied from 50 deg. fahr. to 300 deg. fahr.

If we immersed our electrodes in oil we would obtain a similarly
shaped curve showing the relation between the disruptive
gradient and spacing. The constants in the equations for air
and oil would probably, however, be different. Again if we
imagine our parallel plane electrodes embedded in some solid
dielectric, for example glass, we would obtain a similarly shaped
curve. For very great and very small spacings it is quite possible
that all materials have the same apparent strength.

Now, if we assume that our dielectric is homogeneous and
isotropic and is a perfect dielectric in every respect (no conduc-
tion, dielectric losses, etc.,) the equipotential surfaces for equal
differences of potential would be equally spaced between our
parallel planes. If we desired we could put in infinitely thin
conducting sheets at any desired intervals without in any way
changing the problem from a purely electrostatic point of view.
For convenience we could space them at equal intervals so that
the dielectric between any two adjacent metal equipotential
surfaces between the planes was subjected to the same potential
gradient. If we wished we could also metallically connect the
inserted metal sheets to equal intervals on a balancing resistance
shunted across our parallel plane electrodes, that is, connect the
equipotential surfaces to a source of potential having the value
naturally existing. Obviously nothing has been changed elec-
trostatically by any of these processes and therefore it is evident
that we can confine our attention to the dielectric included
between any two equipotential surfaces, and if we now raise the
potential between our parallel plane electrodes the potential
gradient on the dielectric between the two equipotential surfaces
which we have selected to watch will increase until finally break-
down will occur when the gradient exceeds a certain value called
the strength of the material. It is observed that nothing has
been said about the actual thickness of the section of the dielec-
tric between our two metal equipotential surfaces under observa-
tion. In other words, we might in one case insert a great number
of equipotential surfaces dividing the dielectric into exceedingly
thin layers and in another case use fewer metallic surfaces and
have thicker insulation under observation. When considering
ideal dielectrics from a purely electrostatic point of view, as here
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described, I think that it is clear that the actual thickness of the
dielectric should have no influence upon the breakdown strength.
For it should not make any difference whether we inserted
isolated thin metal equipotential surfaces or left them out, or
inserted them and connected them to a proper source of potential.
Nothing that we could detect from a purely electrostatic view
point has been changed. It is also interesting to observe that a
uniform leakage current should not affect these conclusions
provided the heating effects were taken care of, since the equipo-
tential surfaces for current flow would coincide with the elec-
trostatic equipotential surfaces and no potential distortion would
result.

The fact that we observe a difference
in the apparent strength of dielectrics
with different thicknesses, which 1is
contrary to the above electrostatic
reasoning, based on the assumption that
the metal equipotential surfaces could
be inserted without changing the break-
down strength, makes it interesting to
determine what does take place in
practise when a dielectric is divided up
in this manner. Obviously when we con-
sider the case of the metallic equi- FI6- 31—ARRANGEMENT
potential surfaces connected to the %in;iS:BOARD AND
proper sources of potential, the break- )
down strength must be the same for a given spacing between
the surfaces or thickness of dielectric, no matter how many
are connected in series, or what is the same thing, regard-
less of the total thickness of insulation under test, for each
element forms a separate test piece isolated between the two
metal surfaces and connected to a definite potential. The inter-
esting thing therefore is a comparison of the dielectric strength
of a given thickness of insulation with and without isolated
metallic barriers placed at various spacings.

I am sorry that the experimental results, which I have to
offer, are so crude and incomplete, but if they will serve the pur-
pose of starting some one on a more complete investigation of
this subject. I will regard them as having served a good purpose.
I believe that a complete investigation of this subject would
lead to a great deal better understanding of the true mechanism
of the breakdown of insulations, or the theory of ionization by

T T S e oty
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collision which of course offers a qualitative explanation of the
phenomena.

TesTs To DETERMINE THE EFFECT OF BARRIERS ON SOLID AND
Gaseovus INsuLATION UNDER UNIFORM-FIELD CONDITIONS

The first set of tests recorded below in Table I were made on
sheets of oiled pressboard 1/16 in. (0.16 cm.) thick. The barriers
and pressboard were sealed together under No. 6 transil oil and
then placed between the parallel plane electrodes as shown in
Fig. 31, the whole then being immersed under No. 6 transil oil
at 25 deg. cent. for test.

The object of using solid metal barriers and comparing their
effect with wire-gauze barriers was to see whether the mean
velocity of the particles or ions in the solid dielectric, which
must precede rupture, was sufficiently high'to allow an appre-
ciable number, to pass through the openings in the gauze,
whereas they should all be stopped by a metal sheet. Elec-
trostatically the gauze should not be essentially different from
the solid metal sheet.

TABLE I
Instantaneous 60-cycle puncture tests in No. 6 transil oil at 25 deg. cent. on dried 1/16 in,
oiled pressboard. The average of 5 readings are given. A maximum variation of = 2 kv.
existed between individual raedings.

No. of sheets 60-cycle puncture Average gradient Number of isolated
of pressboard each kv. effective kv. eff. per cm. barriers.
0.16 em. thick
1 70.5 445.0 no barriers
2 113.0 355.0 “ “
3 164.5 345.0 “ “
2 117.0 368.0 1 tin barrier
2 124.0 390.0 Fine copper gauze
2 121.0 380.0 Coarse copper gauze

The points of puncture were well distributed over the surface
of the insulation and in no cases occurred at the edge of the
barriers. Contrary to the expectation the gauze barrier seems
to be more effective than the tin barrier but the tests are so
fragmentary that conclusions are not safely drawn. If, we
attempted to use larger thicknesses arc-over occurred around the
edge of the pressboard before puncture. A more satisfactory
method of test was, therefore, sought. The method decided upon
consisted in setting up a series of paraliel plane electrodes as
shown in Fig. 32, the sheet insulation being placed between the
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several electrodes in series. Thus, each pair of electrodgs which
are connected together may be considered as a barrier. It is also
possible, under these conditions, to have the barriers isolated or
connected across a proper balancing resistance. An additional
barrier can be placed midway between each pair of electrodes
without fear of distorting the field.

'lr{sulation
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A great difficulty with this method is the unbalancing of stress
which the capacity or electrostatic flux to ground of the various
electrodes will introduce. It was hoped that possibly this effect
would not be appreciable when using fairly high inductive
capacity material for the tests, as the capacity between the

Airgap ) Parallel Plates

Balanced Water Tube Resistances
To Transformer

R-Balancing Resistance
r-Protective Resistance

Fi1G. 33

electrodes proper would then be large in comparison with that to
ground. A few tests made with one end of the series grounded
and compared with the case in which the electrodes were isolated,
in which case the neutral or ground potential would be in the
middle of the series, shows a rather large effect which means that
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the isolated tests are subject to voltage distortion from this cause
though to a less extent than when one end was grounded.

Fig. 32 shows the arrangement of barriers and insulation for
four and eight isolated barriers respectively. When it was desired
to metallically connect the barriers to the proper potential, water
tube resistances were used of such a value as to allow 7 to 10
times the capacity current to flow (see Fig. 33). The maximum
variation of the individual resistance tubes was about 2 per cent.
The apparatus was placed at about 42 in. above the floor of the
room and the gap line parallel to the ground. The tests were
made in No. 6 transil oil (40 kv. flat electrodes 0.2 in. (0.51 cm.)
gap, 0.51in. (1.27 cm.) diameter) at 25 deg. cent.

The insulation used was 12-mil black varnished cambric the
individual sheets being sealed to each other under oil. When the
balancing or shunted resistance was connected the voltage
readings were corrected for the drop in the protecting resistances.
The results are tabulated in Table IT.

TABLE II

Instantaneous 60-cycle tests on 12-mil black varnished cambric immersed in No. 6 transil
oil at 25 deg. cent. Terminals 4 in. plane with 2 in. radius at edge. Individual readings
differed by =1 kv,

Variation of Insulation Strength with thickness or number of layers.
Average of five readings

Using one pair of planes

No. of sheets Total thickness 60-cycle kv. Kv. per cm,
’ insulation cm. effective effective
1 0.031 16.5 540.0
2 0.061 29.7 480.0
4 0.122 51.5 422.0
8 0.244 . 92.5 378.0
16 0.488 138.3 284.0

Data repeated using four pair of planes connected in parallel to obtain the effective
strength when larger areas are used and therefore greater chances for weak spots.

Average of two readings.

1 0.031 14.7 482.0
2 0.061 28.5 451.0
4 0.122 51.3 421.0
-8 0.244 91.7 376.0
16 0.488 136.5 280.0
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Effect of Isolated Barriers on Puncture Strength of Insulation.

One End
Total Thickness Non-Grounded Giounded
thickness between
Condition | insulation barriers
of test under cm, Puncture|Kv./cm. | Kv./cm. [Puncture| Kv./cm.
test cm. kv. eff. roughly | kv. eff.

corrected

2 sheets be-
tween each of 0.244 0.061 106.8 438.0 521.0 86.8 355.0
4 planes in
series

1 sheet be-
tween each of 0.244 0.031 105.8 434.0 516.0
8 barriers in
series

4 sheets be- -

tween each of 0.488 0.122 168.5 345.0 411.0
4 barriers in
series.

Effect of Barriers when Shunted by
High Resistance on the Puncture Strength
of Sheet Insulation

2 sheets be-
tween each of 0.244 0.061 112.6 462.0 433.0 98.1 403.0
4 barriers in
series. Each
unit shunted
by 8 X 108
ohms.

1 sheet be-
tween each of 0.244 0.031 110.0 452.0
8 barriers in
series. Each
unit shunted

4 X 10° ohms *
4 sheets be-
tween each of 0.488 0.122 195.8 402 0

1 barriers in
series. Each
unit shunted
8 X 10% ohms

In order to obtain an estimate of the unbalancing due to the
capacity of the parallel planes to ground in this method of deter-
mining the effect of barriers on the strength of insulation the
following tests were carried out using air as the dielectric. Two
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sets of tests were tried, the first using 14-in. (1.27 cm.) spacing
betweentheindividual planesandfor thesecond a 14-in.(0.635cm.)
gap was used. The gaps between the individual pairs of planes
were set as accurately as feasible and individual spark-over read-
ings taken non-grounded and with one end grounded. The gaps
were then all connected in multiple to check the strength of this
combination as compared with the weakest gap. After doing
this they were connected in series and arc-over taken both
grounded and isolated with and without shunted balancing
resistance. A summary of the data is given in Table III.

From other sources we know that the strength of air for large
spacings (4. e., 2 in. or 5.1 cm.) between parallel planes is about
21 kv. eff. per cm. Whereas these data show an average of 18.1
kv. eff. per cm. when the tests were made non-grounded and 14.2
kv. eff. per cm. for the grounded case. That is, when using air
as our dielectric with this arrangement we have an increase in

stress of 1 — -128T1 = 14 per cent brought about by unbalance of

voltage due to capacity to ground, etc. When operating with

one side grounded we have 1 — 4.2 _ 32 per cent or approxi-

mately twice the ill effect. A

This immediately gives us a rough method of correcting the
previous tests for this unbalancing effect where no balancing
resistance was used. We may write the following from the data
given in the table for isolated barriers.

1— 438 _ per cent apparent decrease in strength of insulation
x assumed due to capacity to ground for the non-
grounded tests.
1-—- 395 _ per cent apparent decrease in strength of insulation
x for grounded tests.

x = assumed true strength of the material.

If we further assume that the apparent decrease for the grounded
tests is twice the decrease for the non-grounded tests as shown to
be approximately the case in air, we can write

2 (1- 5 - (1- %2)
X X

x = 521 assumed true strength of the material,



Relative Humidity 40 per cent.

TABLE III
15-Inca Gap

Bar. 76 cm.  Temp. 25 deg. cent.

Grounded

Non-Grounded
Condition of test
60-cycle Kv./cm. 60-cycle Kv./cm.
kv. eff. eff. kv. eff, eff.
Gap 1 4in. 26.3 26.3
2 26.3 26.3
3 26.5 26.4
4 26.4 26.4
Ave. 26.4 20.8 26.4 20.8
Four gaps in multiple. . 26.3 20.7 26.3 20.7
Four gaps in series. 87.5 17.2 69.5 13.5
Four gaps in series
each shunted by
7 X 10° ohms.. ... . 106.0 20.8 106.0 20.8
14-IncH GAP
Temp. 20 deg. cent. Bar. 76 cm. = 1.00
|
Non-Grounded Grounded
Condition of test
60-cycle Kv./cm. 60-cycle Kv./cm.
kv. eff. eff. kv. eff. eff.
Gap 1 Y4 in. 13.9 22.0
2 14.1 22.2
3 13.8 21.8
4 13.9 22.0 14.0 22.1
Average 13.9 22.0
Four gaps in multiple
(arc-over No. 3)... 13.8 21.8
Four gaps in series. 48.5 19.0 38.0 15.0
Pour gaps in series
each shunted by
8.5 X 10%ohms with
1.4 X 10° protec-
tive resistance. .. .. 52.0 20.5 51.0 20.1
Averaging the data for 4-in. and }4-in. spacings.
Four gaps in multiple 21.2
Four gaps in series. 18.1 14.2
Four gaps in series
each shunted by
resistance......... ] 20.7 20.4
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The strength as indicated from the tests was 438 kv, effective per
cm. or only 84 per cent of the value obtained after applying this
rough method of correction. I have also applied the same correc-
tion factor to the rest of the values in this part of the table. We
might consider the corrected column as an upper limit and the
data as observed from test as a lower limit to the true value. In
that case the average of these two columns would give another
estimate of the strength as affected by barriers.

When considering the tests using air dielectric in which bal-
ancing resistances were used, we see that the stress due tocapacity
to ground is practically eliminated. It should also be noted
from these tests that there is no appreciable increase in stress
analogous to that which has been discussed for the case of
two spheres in space where it was seen that even though
there is no potential unbalance between the spheres, there is
nevertheless considerable increase in stress when one sphere is at
zero potential and the other at a given high potential, over the
case in which they are both isolated and have the same difference
of potential between them.

Therefore, it would seem that the best method of estimating
the true strength of the insulation when balancing resistances
are used is to average directly the non-grounded tests with the
grounded tests. The data obtained are not sufficiently exten-
sive to enable us to see whether there is a real difference between
these two cases or not.

TABLE IV
AVERAGE OF Dara
Thickness Thickness Average strength Strength of

of insulation of insulation of material material with

No barriers. between barriers. No barriers. barriers average
cm, cm, Kv. eff. /cm. isolated and shunted

kv. eff. /cm.

0.031 0.031 511 467
0.061 0.061 466 464
0.122 0.122 422 386

In conclusion it appears probable from a theoretical point of
view that the strength of insulation under uniform-field condi-
tions is the same whether the barriers are isolated or connected
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metallically to the proper sources of potential and also that the
strength merely depends upon the thickness of the material
between the barriers. The averages, as given in the above
table, do not warrant the above conclusions, but I am inclined
to believe that the discrepancy is due to insufficient data and
errors in the method. I hope, therefore, that someone will
take up the subject and make a careful study of this important
theoretical and also practical problem.

Another interesting question would be to determine the
limiting value of the electrostatic flux density which would
result in excessive heating, and therefore, breakdown irrespec-
tive of the so-called “instantaneous strength’ of the structure.
The effect of metal barriers in distributing the heating, eddy-
current losses in the metal barriers due to electromagnetic flux
accompanying the charging current, etc., would also be of in-
terest.

GeNERAL DiscussioN OF THE ProBrLEM oF HiGH-VOLTAGE-
BusHING DESIGN

So far we have considered the problem of high-voltage-bushing
design mainly from an ideal and purely electrostatic point of
view, that is, we have greatly simplified the problem by assum-
ing ideal or perfect dielectrics and a constant or static condi-
tion of the equipotential surfaces. These conditions do not
however, actually exist in practise, and therefore, the effects
brought about by rain, dirt, snow, steep wave front impulses
must be considered in a complete theory of the correct and
most effcient design.

For example, under rain conditions the equipotential surfaces
are in a general constantly changing and will be different from
the dry condition. There is probably also a certain space or
volume charge effect due to the rain drops becoming charged
from contact with the high potential electrodes and then fall-
ing in the vicinity of the bushing to the grounded electrode.
Furthermore, a considerable change in the electrostatic field
may be brought about by an effective increase in the permit-
tivity of the air part of the dielectric due to the presence of
small rain drops.  The problem is further complicated by the
presence of conduction over wet or dirty surfaces with the
consequent change in the potential distribution as well as the
possibility of an arc-over resulting from what might be called
fuse action, that is, the conducting material may become over-
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heated by conduction and blow like a fuse and thus precipitate
an arc-over along the path of the hot gases.

There are a great many other disturbing factors and possi-
bilities which have not been mentioned, but I believe that the
above are sufficient to show the multitude of factors over which
the designer can have no control and which, therefore, must be in-
cluded in the theoretically correct and most efficient bushing
design. '

We have already observed the large surface effect which
exists even with relatively clean dry surfaces, also the change
in the dielectric strength of materials when subdivided into
thin layers by metal barriers and probably, to some extent,
merely by laminating the material.

It might appear from what has been said about the complexity
of the problem that it is beyond the power of analysis to try to
obtain a complete theory of bushing design. Strictly speaking,
I believe that this is the case, nevertheless, I believe that the
incomplete theory which we have is of great value in determin-
ing the proper lines along which to experiment.

We will now briefly describe the construction and tests on
a series of small experimental bushings which were Ruilt for the
purpose of determing the rain and dry characteristics of va-
rious types. .

The object was to determine the general type of bushing
which would best meet the following conditions.

I. Rain and dry arc-over should have as nearly as possible
the same value.

II. The arc-over’ of the under-oil end should be consider-
ably above either the rain or dry-air end arc-over.

III. Puncture should occur considerably above the under-
oil arc-over. -

IV. The impulse safety factor or ratio should be as high as
.possible, both under wet and dry conditions and application
of a large number of impulses should not result in puncture.

The materials used in the construction of these bushings were
selected from the point of view of ease of construction and al-
terations. The caps used on the air and oil ends were turned
up of wood and metal covered by the Schoop metal spraying
process. After completing the tests with a certain shape of
cap it could be put in a lathe and altered in the desired manner
and then re-metallized. Hard rubber was selected as the mate-
rial for the core since it can be readily machined to any desired
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form; for example, the necessary protection of the edges of the
ground shield was easily obtained (see Fig. 34). This material
also has other desirable qualities such as homogeneity, high
dielectric strength, small surface effect.

A single glass tube was used for the containing shell in order to
eliminate the difficulty of making oil tight joints. The only joints
being that at the lower cap which was satisfactorily sealed with
ceresine. A glass seal was provided by which connection was
easily made between the ground shield and the tin disk which
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represents the transformer tank cover. For convenience, a
transparent Russian mineral oil was used as filler, During
tests the under-oil end was placed in a 5-gallon tin can filled
with oil, having dimensions 9 in. by 9 in. by 14 in. high. All
tests were made at 60 cycles and with the tin can and tin
disk connected together and grounded.

Determinatoin of Punciure and Under-Oil Arc-Over

This series of tests were made to determine the under-oil
and puncture characteristics of the bushings.
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Bushing No. 1. A bushing was built up as shown to scale
in Fig. 34. The joints between the glass containing cylin-
der and the metal caps were shielded by the grooves as
shown. The joint between the hard-rubber core and cap on the
under-oil end was likewise protected. The electrostatic field of
the under-oil end is practically of the uniform-field type (Fig. 14),
the desirability of which has been pointed out. The air end is
essentially the radial-field type.

In test this bushing punctured at 65 kv. effective at the point
shown in Fig. 34. After sawing the core open longitudinally,
inspection showed that the hole had not been smoothly drilled
which may have accounted for the puncture, as the space thus
left between the rod and core may not have been properly filled
with oil.

Bushing No. 2. (See Fig. 35). The core was increased to 114
in. (3.8 cm.) external diameter so as to insure a safe margin
against puncture. As an additional precaution a brass tube
closed at the bottom end and having small holes drilled radially
at intervals inside the core was used in place of the brass rod used
in Bushing No. 1. The object being to enable oil poured in at
the top of the tube to fill up any irregularities resulting from
imperfect fit between the core and central rod.

In test this bushing arced over along the surface of the hard
rubber and jumped to the inner guard ring on the cap at 94 kv.
effective. Small chips were taken out of the rubber at the point
shown in Fig. No. 35, apparently where the surface arc turned
to jump to the guard ring.

Bushing No. 2-A. Bushing No. 2 was disassembled and the

inner guard ring cut down to the shape shown by the dotted lines
in Fig. 35. In assembly the core was inverted putting the
damaged part toward the air end of the bushing, bringing the
new end under test.
. Arc-over occurred over the surface of the hard rubber core on
the under-oil end without pitting the surface at 93.5 kv. effective.
The voltage was then brought up again and arc-over occurred
over the surface of the hard-rubber core on the air end to the
previously damaged spots and there punctured to the rod at 82.5
kv.

Bushing No. 3. (See Fig. 36). The hard-rubber core, which
had been damaged by the previous tests, was turned down to
the form shown in Fig. 36, thereby removing the damaged
material. The under-oil end cap was also altered to a form
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approximately as shown. Practically the only electrostatic
change made by this alteration was to somewhat reduce the
shielding effect of the cap on the hard-rubber core. The air end
was also materially shortened.

This bushing arced-over the air end at 81 kv. Upon bringing
up the voltage a second time arc-over occurred over the surface
of the hard-rubber core on the under-oil end without damaging
the core at 86.5 kv. effective.
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Determination of the Air-End Characteristics

Having secured a fairly efficient and satisfactory under-oil end
the work was then directed towards a study of the rain and dry
characteristics of various air-end combinations.

Further Tests on Bushing No. 3. (See Fig. 36.)Temp. 24 deg.
cent. Barometer 76 cm. Humidity 57 per cent.

Bushing Dry

Corona visible air end near ground shield.. ... ... .. 41 kv.
Corona visibleon capof airend.................. 59 kv.
Bushing outlined airend................... .. ... 87 kv.

Arc-over was not taken.
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Rain about 0.2 in. per minute at 45 deg.

Corona starts top and bottom....... ... ... ... .. 10 kv.
First streamers........... ... ... .. .. .. ... ... ..., 16 kv.
Whole tube outlined............................ 20 kv.
ATC-OVET. ... e 52 kv.

This bushing is obviously unsatisfactory because of the low
corona starting points both wet and dry and the very low rain
arc-over.,

Bushing No. 4. (See Fig. 37). This bushing was similar to No.
3 except that the matal cap at the top was replaced by a rubber
stopper covered with paraffine. The object being to make the
field on the air end as nearly radial as possible.

Summary of Tests on Bushing No. 4
Temp. 23.5 deg. cent. Barometer 76 cm. Hum. 50 per cent.
Bushing Dry

Corona starts near ground shield. .. .............. 35 kv,
Corona at top and bottom....................... 60 kv,
Voltage raised without arc-over to................ 85 kv.
Rain Test about 0.2 in. per minute 45 deg.
Corona starts top and bottom.................... 15 kv,
Tube outhined........ ... .. ... ... ... ... ... ... 17 kv.
Vicious streamers over surface.......... e 34 kv.
ATC-OVEr. oottt 57 kv.
Arc-over (paraffine removed)..................... 55 kv.

This bushing is unsatisfactory for the same reasons as stated
for No. 3.

Bushing No. 5. (See Fig. 38). This bushing was exactly
similar to No. 4 except that the internal brass shield was added
as shown in Fig. 38. The object of adding this element was to
somewhat relieve the stress on the rubber stopper and paraffine
and to throw it away from the rod at the top of the bushing.

Summary of Tests on Bushing No. 5
Temp. 23 5 deg. cent. Barometer 76 cm.  Hum. 50 per cent
Bushing Dry

Corona starts at ground shield. .. ................. 32 kv.

Corona top and bottom. .. ...................... 68 kv.

Voltage raised without arc-over to................ 80 kv.
Rain Test about 0.2 in per minute 45 deg.

Corona starts top and bottom.................... 18 kv.

Arc-over... .. ... 42 kv.

This bushing is obviously unsatisfactory.
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Bushing No. 6. (See Fig. 39). This bushing was constructed
as shown in Fig. 39. The air end was shortened and the glass
tube drawn down so as to get rid of the rubber stopper and
paraffine, which gave trouble in the previous two bushings by
carbonization and burning. The internal shield shown was used
for the same reasons as in Bushing No. 5.

Summary of Tests on Bushing No. 6.
Bushing Dry _
Corona starts at ground shield and extends up the

surface of glasstube. . ......... ... ... .. ... ... 50 kv.
Corona appears opposite guard ring on the airend. .. 77 kv.
ATC-OVEr. .o 79 kv.

Rain Test about 0.2 in. per minute 45 deg.

Corona starts at top near tin foil................. 5 kv.
Corona streamers run out from tin foil over the glass

surface. .. ... 10 kv.
Bushing outlined. . ......... . .. ... .. .. .. ... 12 kv.
ATC-0OVer. . .o 36 kv.

Bushing No. 6-4A. A metal cone similar to that shown in Fig.
41 was slipped over the top of bushing No. 6 and the following
results obtained.

Bushing Dry

Corona on surface of glass opposite guard ring. .. ... 30 kv.

Bushing outlined........ .. .. .. ... .. .. ... ... 60 kv.

AT COVEL . ot 78 kv.
Rain Tests approximately 0.2 in. per minute 45 deg.

Corona starts at edge of metal cone............... 14 kv.

Bushing outhined. ........... ... .. ... ..... ... 20 kv.

ATC-OVET . v 29 kv.

These bushings No. 6 and No. 6-A, are seen to be unsatisfac-
tory from the point of view of corona starting point and wet
arc-over. _

Bushing No. 7. (See Fig. 40). The previous tests showed the
necessity of breaking up the flow of water which adheres to the
smooth glass surface and thereby produces great field distortion,
or a sort of short circuit, or conducting sheet over the bushing.
In order to accomplish this result the usual method of adding
petticoats was resorted to. These were made by belling out
glass tubing as will be seen from the figures. The petticoats were
then slipped over the glass shell and the intervening space filled
in with ceresine. In other respects, the bushing was exactly
similar to Ne 6.
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From an electrostatic point of view, it will be observed that in
the radial-field type of bushing the corrugations approximately
coincide with the direction of the flux lines. Therefore, the
potential gradient is along the surface of the corrugations and
will tend to break down any surface layer of dust or dirt. For
this reason it would appear that their effectiveness is somewhat
limited. We may further observe from Fig. 9 that when dry the
presence of the corrugations will not appreciably affect the field
distribution in this type of bushing, except those which are close
to the tank. In this latter case they are seen to introduce an
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appreciable percentage of high inductive capacity material in
series with the air. Therefore, if petticoats of this kind are used
it may be best not to extend them too near the tank.

In the uniform-field type of bushing it will be observed that
the petticoats introduce high inductive capacity material in
series with the air (except in case of a vacuum bushing). This
means that when dry the stress on the air will be increased by
their addition. The surfaces of the corrugations will lie prac-
tically along the equipotential surfaces; hence, an accumulation
of dust, water, etc., would not result in so great a field distortion.
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Summary of Tests on Bushing No. 7.
Humidity 60 per cent. Barometer 76 cm. Temp. 24 deg. cent.
Bushing Dry .

Corona on tin-foil at top of bushing............... 24 kv.
Corona near ground shield................ ..... 38 kv.
Bushing outlined. . ................ ... ......... 60 kv.
Streamers over the entire surface of glass....... ... 70 kv.

Rain Tests approximately 0.2 in. per minute 45 deg.
Corona on tin-foil at top............ ... ... ... ....
Corona on edge of upper petticoat................

(a

1 Spun Copper

— Tape coveref with Tinfoil
Tt

- . P om
\ "~ Tape covered wit.. ...foil

o / \
-\ -—~7Glass Petticoats
/ a Copper Tube

1\
S -
]
F16. 40
Corona near ground shield....................... 50 kv.
Corona streamers over surface.................... 70 kv.
ATC-OVEr. ... 75 kv.

It will be observed that the addition of the petticoats has
greatly improved the wet arc-over of the bushing.

Bushing No. 8. (See Fig. 41 and Fig. 42). This bushing is
identical to No. 7 except that the spun copper cone was added in
order to act as rain shed and thereby eliminate the formation of
streamers which went out over the top surface of the glass in the
previous bushing No. 7.
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Summary of Tests on Bushing No. 8.
Humidity 60 per cent. Barometer 76 cm. Temp. 24 deg. cent.

Dry Tests
Corona near ground shield................ e 46 kv.
Arc-0over.. ... .. 69 kv.
Rain Test approximately 0.2 in. per minute at 45 deg.
Corona on edge of cone and near ground shield. . ... 36 kv.
Bushing outlined............................... 43 kv.
Arc-over.... ... 69 kv.

This bushing is seen to be quite satisfactory from the point of
view of wet and dry arc. |

Bushing No. 9. (See Figs. 43 and 44). For this bushing a new
core and caps were turned up as shown in Fig. 43; also an idea
of the appearance can be obtained from Fig. 44 which is of a
similar bushing. The air and oil ends were made identical except
for the addition of petticoats to the air end. The method of
assembly of the petticoats previously used namely to fill the
space between the petticoats and glass shell with ceresine was
given up. Instead the individual petticoats were cemented
together with a sealing wax composition. The resulting petticoat
shell was slipped over the inner containing glass cylinder and the
space filled with a viscous compound. This made a more satis-
factory scheme for assembly and disassembly.

Summary of Tests on Bushing No. 9

Temp. 24 deg. cent. Barometer 76 cm. Humidity 60 per cent.

60-cycle Tests
Bushing Dry

Coronaonedgeof uppercap................. 51 £ 2 kv.

Arc-over.... ... 59 & 2 kv.
Rain Test approximately 0.2 in. per minute 45 deg.

Corona on edge of uppercap................. 24 & 2 kv,

Bushing outlined........... ... ... ..... .. 42 + 4 kv.

Arc-over (clear of surface)................... 48+ 5 kv.

wet arc-over _
dry arc-over

Impulse Tests

200-kilocycle “B’" wave
Bushing Dry

Arc-over (1 out of 10 impulses).............. 99 kv. eff.
Arc-over (5 “ ¢ ¢ L T 103 kv. eff.
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Rain Test 0.2 in. per minute 45 deg.
Arc-over (1 out of 10 impulses).............. 93 kv. eff.
Arc-over (5 «“ ¢« ¢ L T 05.3 kv. eff.
Impulse ratio or safety factor

Dry=% =1.68

. 93
Rain = i 1.93
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Bushing No. 10. (See PFigs. 45 and 46). This bushing was iden-
tical to No. 9 except that the hard-rubber core was moved down
to the position shown in Fig. 45, thereby changing the type of
field used on the upper part of the air end from the parallel field
type to a more radial type. This bushing is shown in the photo-
graph Fig. 46.

Summary of Tests on Bushing No. 10
60-cycle Tests
Bushing Dry
Corona on edge of uppercap................. 54 + 4 kv.
Arc-over (clear of surface)................... 64 4 1 kv.
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Rain Test approximately 0.2 in. per minute 45 deg.
Bushing outlined........................... 40 =% 3 kv.
Arc-over (clear of surface)................... 46 + 2 kv,

wet arc-over

—— = 0.72
dry arc-over

Impulse Tests

200-kilocycle “B” Wave
Bushing Dry

Arc-over (1 out of 10 impulses)............ 111 kv. eff.
Arc-over (5 ¢ ¢ R 114 kv. eff.
Bushing Rain approximately 0.2 in. per minute at 45 deg.
Arc-over (1 out of 10 impulses)............ 104 kv. eff.
Arc-over (5 ¢ ¢ R 107.5 kv. eff.
Impulse ratio or safety factor
111
. 104
Rain = 1% = 2.26

Of this series of bushings it appears that the general form
shown in Figs. 43 to 46 best fulfills the various requirements
which an all around bushing has to meet.
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APPENDIX ,
MATHEMATICAL SorLuTioN oF Two ELECTROSTATIC PROBLEMS

It is not in general possible, by known mathematical methods,
to obtain the solution of Laplace’s equation so as to fulfil ar-
bitrarily given boundary conditions.* If, however, we take the
simplest conceivable electrode arrangement which would form
the skeleton of a bushing, we can obtain a mathematical solution
for this case. The most simple electrode arrangement will be
seen to be a fine wire passing perpendicularly through a hole in
an infinite plane. The mathematical formulation of these
skeleton electrodes can be obtained. Thus, for instance, we can
formulate the equation of an infinite plane with a hole in its
centre as the focal or limiting hyperboloid of revolution of one
sheet. The edge of the hole will be at the focus of the hyper-
boloid. We can now formulate the equation of a fine wire
passing perpendicularly through the centre of the hole in our
plane. It will be represented by the other limiting confocal
hyperboloid, that is, the one which degenerates into the axis of
revolution of the confocal family. You will readily see that we
have thus reduced the problem to finding the distribution of the
electrostatic field between two confocal surfaces of the same fam-
ily maintained at given potentials. In this case the equipoten-
tial surfaces will be hyperholoids of revolution.

We have thus reduced our problem to a form which can be
treated quite simply mathematically and for which the form of
the solution is known.32 Here Maxwell states that the equipo-
tential surfaces will be confocal hyperboloids of one sheet and
the surfaces of flow will be the confocal oblate spheroids.

The simplicity of the mathematical solution rests upon a wise
selection of the coordinates as it does in many other problems
of this type. For example, in dealing with cylindrical distri-
butions we would employ cylindrical co-ordinates; in spherical
distributions we would use spherical co-ordinates.

In this case where we have to deal with surfaces formed
by the revolution of hyperbolas about their conjugate axis
thus forming hyperboloids of one sheet; a system of cur-

31. An extremely interesting discussion of this subject will be found
in Maxwell's Electricity and Magnetism, Vol. I Chap. VII, page 175.
32. See—Maxwell's Electricity and Magnetism, Vol. I, page 235,
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vilinear co-ordinates of a proper form are made use of. Since
most engineers are not very familiar with their meaning and use
I have started from the beginning and gone through the develop-
ment of the system of curvilinear co-ordinates which are used in
solving our problem. This makes the work appear rather long
and clumsy, but will, I believe, make the whole subject quite
simple and clear, and is therefore justified. Assuming a famil-
iarity with the system of co-ordinates, the solution is exceed-
ingly simple, in fact it is practically as simple as the familiar
solution for parallel wires at large spacing where the diameter
of the wires is neglected.

CURVILINEAR C0-ORDINATES; CONICOIDS OR QUADRIC SURFACES

A surface whose equation is of the second degree in x, ¥ and
2, is called a quadric surface or conicoid. The sphere is a special
case of such a surface. '

It is possible, by a suitable transformation of co-ordinates, to
reduce the general equation of the second degree in x, v, and 3,
namely;

Ax* + By* 4 C22 + 2 Dyz + 2 Ezx + 2 Fxy.
+2Gx+2Hy+2Iz+ K =0 (1)

to the following form in which the terms yz, zx and xy are all
absent. That is, the equation can be put into the following
simpler form; -

Ax*+ By +C2242CGx+2Hy+2I'=+ K =0 (2)

If in this equation the constants A7, B’, C’ are all finite, we
can further simplify it by making a change in the origin of
co-ordinates and obtain an equation which when referred to its
new axis is of the form ‘

A'x*+ By + C'22 = D’ (3)

The locus of this equation is evidently symmetrical with
respect to each of the co-ordinate planes, and hence with respect
to the origin. Such surfaces are therefore called central quadric
surfaces.

We may now divide equation (8) through by D’ and obtain

52 ¥ 22 _
ity Tl @
AI B/ C’
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If in (4) we substitute

D’ ' D
@ = 77,02 = ?,'aa= Yol

We have the familiar equation of a central quadric surface
referred to, its principal axes, namely;®

e e S| (8)

where a;, a; and a; may be positive or negative. If they are all
negative, the surface is imaginary. We will now consider the
nature of the surfaces under the various other conditions.

First. Suppose one of the constants a1, as or a; is negative,
while the remaining two are positive.

Thus, let a3 = — ¢?
while a; = a?
adg = b?

Also assume that, @, is numerically greater than b, and, b,
greater than ¢,
or a>b>c¢

Substituting these values in (b) we obtain

x2 2 2
R ®
This particular central quadric surface will be recognized to be
that of a hyperboloid of one sheet with conjugate axis along the
2 axis.

This can be seen by considering the shape of the plane curves
which results as the intersection of this solid figure with the
reference planes, or what are generally called the principal
sections of the surface. First take the X-Y¥ plane, that is, the
plane whose equation is 2 = 0. Substituting this value in (6)
we obtain.

x2 y2

A

33. Proofs of the statements made above may be found in any good
book on Solid Analytic Geometry, for example; Solid Geometry by
Charles Smith,—Macmillan and Company.
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That is, the surface is cut by the X-¥ planelin the ellipse whose
semi-axes are ¢ and b. The foci are at a distance from the origin.

f=Va&—0=Va—a

which is seen by inspection from Fig. 1.

—————2b Minor Axis -

!
= -~ 2a Major Axis e
Fi16. 1—ELLIPSE

The section cut out by the Z-X plane (y = 0) is seen to be
the hyperbola
x? 22

22 =1
a? c?

N
N\
\
7
e
<
02
%,
&

gate Axis +

«-2¢ Conjuy,

g

N //"’
e 2a Transverse Axis \

Fic. 2—HYPERBOLA

with semi-axes @ and ¢. The foci are at the distance

f=VvVa+ed=Va—a

on the X axis which can be seen by inspection from the values
of the various quantities as given in Fig. 2.
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The section by the Y-Z plane (x = 0) is the hyperbola

with semi-axes b and ¢ and foci at fhe distance
f=ViEF= Va - a

on the ¥ axis.

Thus the surface defined by equation (6) is seen to be a hy-
perboloid of one sheet with the conjugate axis on the Z axis.

If in the above equation (8) we let z
a = b the section of the surface by any
plane parallel to the X-Y plane (plane
z = K) is a circle. Hence, the surface
would be formed by the revolution of

x? 22 .

the hyperbola7 — = 1 about its
conjugate axis. Fig. 3 shows the form
of the surface.

Second. Let two of the constants a;,
as, a3 in equation (B) be negative.

For example, let

Ay = — b?
a3 = — (?
- 2
@, = a Fi16. 3—HYPERBOLOID

. oF ONE SHEET
Also assume as before that a is nu-

merically greater than b and b greater than ¢,
or ¢a>b>c

Substituting these values in () we obtain,

=1 (7

and the surface is called a hyperboloid of two sheets.
The sections by the co-ordinate planes and their focal distances
are found as before.
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The section by the X-Y plane (z = 0) is the hyperbola

x2 y2
= ol

with semi-axes ¢ and b and focal distance

Vg4 b=

= \/al—‘dz

The section by the ZX plane (y = 0) is the hyperbola

F16. 4—HYPERBOLOID OF REVOLUTION OF Two SHEETS
with semi-axes ¢ and ¢ and focal distance

VETE

= \/ a,— as
The section by the YZ plane (x

0) is the imaginary ellipses

2 2
—13;2— + j—z = — 1. With semi-axes b and ¢ and focal distance

'\/— (bz— 62) = \/az— as
If in equation (T) we let b =
to the plane x = 0 is a circle.

¢ the section by any plane parallel
Hence the surface is in this case
formed by the revolution of the hyperbola

x2 y?

P
about its tranverse axis.

The form of the surface is shown in
Fig. 4.
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Third. Let all of the constants a;, a; and a; be positive.

Thus, let a, = a*
[12 b?
as = ¢*

Also let us assume that the relative magnitude of the constants
are as indicated by the equation

a>b>c¢
Upon substituting these values in equation (6) we obtain
x2 yZ ZZ

FtEtz=1 (8)

c2

which is seen to be the equation of an ellipsoid.

The sections by the co-ordinate planes and their focal dis-
tances are given below.

The section by the X-Y¥ plane (z = 0) is the ellipse

2 2
{—2— + —%’? = 1 with semi-axes ¢ and b and focal distance

f=Va—bt=Va—a

The section by the Z-X plane (y = 0) is the ellipse

x? 22 . . .
— + - = 1 with semi-axes ¢ and ¢ and focal distance

f=VaE—¢& = Va—a
The section by the Y-X plane (x = 0) is the ellipse

2 2
%2— + —-:22— = 1 with semi-axes b and ¢ and focal distance

f= \/_m“’ = \/02—(13

If in equation (8) we let @ = b the sections by the planes
parallel to the X-Y plane will be circles whose centres lie along
the Z axis and the surface is cut out by revolving the ellipse

x? 22
R

about the Z axis. If ¢ is the major axis and ¢ the minor axis
of this ellipse as has been assumed and stated in the assumption
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a > ¢, then the figure™is cut out by revolving an ellipse about
its minor axis. Such a figure is called an oblate spheroid. If
the rotation occurs around the major axis the figure is called
a prolade spheroid.

If a = b = c¢ the ellipsoid reduces to a sphere.

The form of the oblate spheroid is shown in Fig. 5.

CONFOCAL QUADRIC SURFACES

In all three cases investigated above it will be observed that
the squares of the focal distances of the principal sections
(sections cut out on the X-¥, Y-Z, Z-X planes) are the square
roots of the differences of the three constants aq, a; and a;.
Therefore, if we add a constant to each of the three constants
a1, a; and a; we obtain a surface whose principal sections have

Fi16. 5—OBLATE SPHEROID

Axis of revolution about Z axis.

the same foci as before or what is called a surface confocal with
respect to the original.
For example, if we take the equation of an ellipsoid
‘ x2 y? 22
T Eta=1 9
the focal distance of the principal section made by the X-V
plane has been seen to be

f= \/az—b2= '\/dx—(lz

If we now add the constant quantity p to a; and a, we have as
the focal distance of this principal section.

Vi —p)—(@—p) =Va—-p—a+tp=Vau—a
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and thus the focal distance has remained the same. Similarly
for the other principal sections, and we therefore see that

xZ y2 ’22 _
T TEr, tars ! (10)

represents a surface confocal with the original for any real
value positive or negative of p.

If as we have assumed throughout, a'is greater than & and b
1s greater than ¢ or,

a>b>c¢

then the character of the surface represented by equation (10)
will be seen to be determined as follows:

(1) If p > — ¢ the surface is an ellipsoid.

(2) If — ¢ > p > — b?thesurfaceis a hyperboloid of one sheet.

(3) If — b* > p > — a? the surface is a hyperboloid of two
sheets.

(4) If — a* > p the surface is imaginary. -

Suppose we now wish to pass through a given point in space
x, ¥, z a quadric surface confocal with the ellipsoid

KT
e + B + p =1 (11)
Where a>b>c

We have seen that its equation will be

A2 32 22

a2—}—p+b2+p+cz—)—p=

1 (12)

from which the value of p can be determined when the values
of x, ¥, z of the desired point are given.

It will be seen that this equation (12) is a cubic equation in p
and therefore will have three roots say p1, P2, ps and if it is found
that these roots are all real there will be three confocal surfaces
which will pass through any desired point x, ¥, z in space.
Since an equation of odd degree always has at least one real
root we see that the other two roots will be real or both imagi-
nary since imaginary roots always enter an equation in pairs.
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In order to investigate the roots of our equation (12) we can
write it when cleared of fractions as follows:

(@4 p) (B* + p) (@ + p)=2* (B* + p) (F+p)—y* (@ + p) (¢ + p)
-2 @+ p) O +p)=f(p) =0 (13)

This is our cubic equation in p and a, b, ¢, x, ¥, 5 are the constants.

We have just seen that the character of the confocal surface
depends upon the magnitude of p with respect to the three
constants @, b and ¢. To recapitulate

(1) TIf p > —¢? the surface is an ellipsoid.

(2) If —¢® > p> —b? the surface is a hyperboloid of one sheet.
(3) If—d* >p > —a?thesurfaceis a hyperboloid of two sheets.
(4) If —a? > p the surface is imaginary.

We will now substitute for p in equation (13) the values

(1) p=+ o

(2 p=-¢

3) p=-p

4) p=-a
which will be seen to be the extreme values as outlined above.
It should be observed that p = — « would result in an imagi-

nary surface and therefore is not considered.

Upon making these substitutions for p in equation (13) and
remembering that ¢ > b > ¢ we will obtain the following as
regards to changes of sign of our cubic equation in p which is
represented for brevity by f (p).

When p=-4+
sign fp)=+ o

and it is observed that f (p) is a positive quantity for all values
of x, y,2,a,b, ¢ constant under the assumed relation a > b > c.

When p=—c
fp) =—2(a2— ) (b2 — &)
sign fp)=(=)(+) (+) = (=)

in this case we observe that f (p) is negative and therefore f (p)
has changed from a positive value in the previous case to a
negative value in this case. Therefore, f (p) has passed through
zero somewhere between p = 4+ ® and p = — ¢?, that is, there
is a real root between these two values. Call this root A and
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observe that it occurs in the region which specified that the
confocal surface will be an ellipsoid.

When p=-—10
F(p) == 3 (@~ b) (@~ b
sign flo==  (H)=((H)
Here again there has been a change in sign and therefore there
is another real root somewhere between p = —¢* and p = —d%.

Call this root u and observe that it occurs in the region which
specifies that the confocal surface defined by it will be a hyper-
boloid of one sheet.

When p=—at
Flp) === (0*—a) (= a®)
sign fp)=0=) =) ) = (=)

and we see that there is another change in sign and therefore
another real root in the interval between p = — b? and p = — a2
Call this root » and observe that it lies in the interval which
specifies that the confocal shall be a hyperboloid of two sheets.

We have thus accounted for the three roots of the cubic and
found their general location also that they are all real.* Thus
we have seen that through any given point in space, say x/,
¥’, 2’ there will pass one surface of each of the three kinds and
therefore we may represent the given point in space either by
its rectangular co-ordinates x’, ¥, 2’ or by the three values A,
u, v which are the three values of p as determined by the cubic
equation in

fl

x2 yZ 22

az—l-p_}-bZ-i-p+62—|—p=1

in which the values of x, ¥, z are taken as x’ 3’ 2’.
If we write for the sake of brevity.

x2 y? 22
“FFNTEFNTEFAT
F\x, 92 =0 (14)

F(\ x93 2) 1=20

+

We see that equation (14) defines A as a function of «, y, 2 which

34. A complete treatment of the cubic equations will be found in
““Todhunter’s Theory of Equations’’. Page 109.
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is a point in space and therefore A is said to be defined as a point
function. Similarly

Fu, x,92 =0 (15)
(16)

Fv,x, v 2

define u and v as point functions.

If we have given the values of N, u, »in these three equations
we determine completely the ellipsoid N = constant, and the
hyperboloid of one sheet u = constant, and the hyperboloid of
two sheets v = constant, and hence their point of intersection
x, ¥, 2 and its seven symmetrical points in the other quadrants.
It can be further shown that the three surfaces defined by

N = constant
M constant
v = constant

Il

are mutually perpendicular at every point of intersection.’
A, i and » are called the ellipsoidal or elliptic co-ordinates of the
point. They form a system of Orthogonal Curvilinear Co-
ordinates.®

NorMAL OBLATE SPHEROIDAL CO-ORDINATES

When any two semi-axes of our standard ellipsoid become
equal the above described system of curvilinear co-ordinates
breaks down. For in that case the equation

X2 2 22

a2+p+b2+p+c2+p=

1

reduces to a quadratic equation in p and therefore has only two
roots which we may call A and u. The surfaces A = constant
and u = constant are now confocal ellipsoids and hyperboloids
of revolution. Obviously a third family of surfaces is required
before the position of a point in space can be fixed by their
intersection. Such a family of surfaces, orthogonal to the two
present families, is supplied by the system of diametral planes
through the axis of revolution of the standard spheroid. The
two cases in which the standard ellipsoid is a prolate spheroid
and an oblate spheroid require separate treatment. We are

35. A good discussion will be found in “Solid Geometry”, Charles
Smith, Macmillan and Co., Page 147.

36. The above discussion has mainly been taken from A. G. Webster,
"Electricity and Magnetism'', pages 27-31.
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here principally interested in the later case which will now be
described.
Let us assume as the standard oblate spheroid

x2 _+_ y2 22
e ()
where @ > ¢ that is, we have taken the case where the figure

is rotated about the z axis.
The equation of the confocal family of surfaces is then

X2 4 32 22 B
T, Tar, =l (18)

which is seen to be a quadratic p regarding x, v, 2, a, ¢ as
constants.

As we have seen before the character of the surface will depend
upon the magnitude of p with respect to the constants ¢ and c.
Remembering ¢ > ¢

(1) If p > —¢? the surface is an oblate spheroid.

(2) If—¢* > p > —a? the surface is a hyperboloid of revolu-
tion of one sheet.

(3) If —a® > p the surface 1s imaginary.

In order to investigate the roots of (18) we may write it

(@+p)(e+p)— @2+ (E+p)—2@+p)=f(p) =0
19)

and observe the changes of sign when the following values are
substituted for p in equation (19).

() p=+o

2 p=-¢

B) p=-a

When p=+ =
sign fp)=+ o

and it is observed that f (p) is a positive quantity for all values
of x, v, 2, a, ¢ consistent with the assumed relation a > c.

When p=—c

fp) = =2 (a* = ¢
sign f)=(=) (+) =)
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in this case we see that f (p) is negative and has therefore changed
from a positive value in the previous case to a negative value in
this case. Therefore, f (p) has passed through zero somewhere
between p = -+ o and p = —¢?% that is, there 1s a real root
between these two values. Call this root A and observe that
it occurs in the region which specifies that the confocal surface
will be an oblate spheroid.

When p=—a

fp) =— @+ y) (@~ d)
sign fo)=0=) () =) =)

it

Here again there has been a change in sign and therefore
there is another real root somewhere between p=—c?and p = —a?
Call this root u and observe that it is in the region which speci-
fies that the confocal surface will be an hyperboloid of revolution
of one sheet. We have thus accounted for the two roots of
our quadratic and also found their approximate location; also
that they are real.

We may now write

B x‘.’ + y? Z? _
F()\yx:yiz)_a2+>\+62+)\ 1 0
or,
F(Nx,v2 =0 (20)
Similarly,
Flu x,v,2) =20 (21)

Now, as we have seen before, in order to determine completely
a point in space we must have another equation which defines
a surface which will intersect the two present surfaces A =
constant, and, u = constant, at all real points. As has already
been said such a system of surfaces is that of the diametral
planes through the axis of revolution of our standard oblate
spheroid.

In this case, we have taken the z-axis as the axis of revolution.
We, therefore, wish the equation of the plane which passes
through the intersection of the planes x = 0 and y = 0. The
equation of this plane may be written.%

y—vx =20

where ¥ may have any value.

37. See—Charles Smith “Solid Geometry,” Macmillan and Co., pagell.
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Thus we may write
Fv,x,v,z2) =y—vx =20 (22)

If we are given the values of A, u, v these three equations
determine completely the oblate spheroid, A = constant, the
hyperboloid of revolution of one sheet, u = constant, and the
diametral plane through the axis of revolution, v = constant.
Hence their point of intersection #, ¥, z and its seven symmetrical
points in the other quadrants is completely determined. It can
further be shown that the three surfaces defined by

A = constant
M = constant
v = constant

i

are mutually perpendicular at every point of intersection. We
may thus take A, u, ¥ as a set of normal curvilinear co-ordinates.

In order to simplify the work which will follow we will make
certain simplifications in the form of the equations of the three
surfaces, the intersection of which represent our three co-ordi-
nates of a point. Rewriting equations (20), (21), (22) of the
three orthogonal surfaces,

x2 y? 22
F(X,x,y‘2)=02+)\+az+)\+62+)\~1=0 (23)

x2 y2 ZZ
F(“’x’y‘Z)=a2+ﬂ+a2+ﬂ+62+ﬂ—_1=0 (24)

Fxy,3)=y—vx=0 (2b)
Where a>c
A>—
—E>u > —at

v may have any real value positive or negative.
Let us now make the following substitutions in equations (23)
and (24).

Let
at— ¢ = E? (26)

and a?+ N=ED 27
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subtracting we obtain
a4+ AN=E({D-1) (28)
a®+ u=FEF (29)

also let

subtracting (26) from (29) we obtain
¢4 p=E(F-1) (30)

If we now substitute (27) and (28) in (23), and (29) and (30) in
(24) we have

22
E2D+E2D+E2(D—1)—1=O (31)
22 9
+E2F+E2(F—l) 1=0 (82)

We may now make the further substitutions,

Putting E? = ¢
E2D = A\
E2F =pn»

We then may write (31) and (32)

x2 2 22

rt3E 10 (33)
x2 'V2 22
ur + ,l:L'2 + ur=cr 1=0 (34)

If in these equations A% is greater than ¢2 and ¢’ is greater

than u’?, that is
A2 > 2> u

then equation (33) is the equation of a confocal family of oblate
spheroids in a simplified form and equation (84) the confocal
family of hyperboloids of revolution. The Z-axis is the axis of
revolution and 2 ¢’ is the focal distance. In other words, if we
take an ellipse and a hyperbola having the same foci (focal
distance 2 ¢’) and revolve them about the minor axis of the
ellipse (in this case the z-axis) we shall get a pair of surfaces
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which are mutually perpendicular; also a plane through the axis
of revolution will cut both the spheroid and hyperboloid ortho-
gonally. We may now drop the primes and write the equations
of the three surfaces:

2 2 2
FiwyaN ==+ 35+ —a-1=0 (30)
a2 y? 22
F2(x:y:zvﬂ)=72‘+7 +m—1=0 (36)
Falx,v,2,v) =y—ra=0 37

where A2 > ¢ > u?, 2 ¢ being the distance between foci.

F1G. 6—INTERSECTION OF AN OBLATE SPHEROID, CONFOCAL HYPERBOLOID
AND A PLANE THROUGH THE AXIS OF ROTATION

For all values of A\, u and v consistent with the inequality
written above the surfaces (85), (36) and (37) intersect in real
points and cut orthogonally. We can, therefore, represent any
given point in space say x, ¥, z by the intersection of the three
surfaces provided we assign the proper values to A, u and ».
Therefore, A, 4 and » are a set of orthogonal curvilinear co-
ordinates.

The form of the three surfaces is shown in Fig. 6.

Larrace’s EquarioNn 1IN NORMAL OBLATE SPHEROIDAL
CO-ORDINATES
If we solve equations (36), (36) and (37) simultaneously we
will obtain the values of x, y and z in terms of our co-ordinates
A, pand v,
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To do this we may divide equation (38) through by u? and
equation (86) through by A? and then subtract. We obtain
upon simplification.

2 __ ,2 2 . 2
(= &) (2= w2 39)

c2

2=

Substituting this value of 3? in equation (35) we obtain

N2 2
2

x4y =

and upon substituting the value of ¥ from equation (37) we
obtain

A2 2
2 — MM
o= D (39)
similarly we obtain ,
A2 2 p2
2 - MK F
Y EeaF» (40)

Equations (38), (39) and (40) enable us to express the position
of a point in space x, vy, z when the values of A, u and » are
given.

Let x = xp, ¥ = yo, 2 = 2, be the rectangular co-ordinates
of the point in space determined by the intersection of the
three surfaces A = Ao, 4 = Mo, ¥ = V,.

The rectangular co-ordinates of the point

M= Mo
V=V
will be
x=x0+g—;\cd>\
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That is, it will be the original position plus the rate of change
of x with respect to a change in A multiplied by the increment
in A. This will be readily seen from Fig. 7.

The square of the distance between the points Agand Ay + d A
will be

_ 2 x\’ Dy2 d 5\’
dﬂ]z—-(a—x) d)\2+(5—>\) d)\2+(a'—)\) d>\2

w =[G GG @

Fi16. 7—ELEMENTARY SorLip Cut OUT BY THE INTERSECTION OF A
Pair orF ConrocAL HypERBOLOIDS OF REvVOLUTION, A PAIrR oF ELLip-
SOIDS OF REVOLUTION AND A PAIR oF PLANES THROUGH THE AXIS OF
REVOLUTION (Z AXIs)

In the limit the elementary curvilinear rectangular parallelo-
piped is simply a rectangular parallelopiped, that is, the effect
of the curvative will introduce an effect which will be an infinitesi-
mal of higher order than d A and dn, and, therefore, may be
neglected. From this consideration it will be observed that
dn, is the differential unit of length normal to the surface A = A,.
Thus, a considerable simplification has resulted from the fact
that our system of curvilinear co-ordinates are orthogonal.

In like manner, we can write down the expressions for the
differential unit normals to the other two surfaces

M= poand v = p,.
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Thus,
dx\ (D ¥ ’ 0 2\?
2 = —_— —_ — 2
an = [ (3 ,u) +(5 ,u) +(3 u) Ja 42)

which is the elementary normal to the surface u = o
Similarly

wi =[G ()G

is the elementary normal to the surface v =
If we now let

2 G+ G+ () w
Zl? - (2_%)2+ (g—ff)sz (%5)2 (45)
EEDE)E) @

we can write the three equations for the differential normals in
the more compact form.

S
>

dn, = T (47)
dng = LF (48)
2
d
dng = h—: (49)

The elementary surfaces which form the sides of the differen-
tial volume may now be written (see Fig. 7)

4S8, = dnsdns = (d—;f:;‘f—s”) (50)



1010 RICE: ELECTROSTATIC PROBLEMS

for the surface A = Ao

dNdv
dSz = dﬂ]dﬂs = hl h3
for the surface u = o
_ _dAdpu
dSa -—dnldng = 'm;"

for the surface v = v,

[Nov. 9

(61)

(62)

We may now write the differential volume d 7 of the rectangu-

lar parallelopiped

dr =dn,dn2dn3=(—i—%—%ft—}%}'

u ’\(grw dni
Back Surface To
-0, — p Surface
Side Surface - e R
Ad = gle - z
=]
Frogfvs'u'r(fjagg‘ ] Back - S,ifefurf;ce
o v s
]
R -
v
H Vo
SV Ry _idf"’
Bottom Surface
A-2e

Fic. 8

(63)

We can now proceed to write down Laplace’s equation in our

present system of orthogonal curvilinear co-ordinates.

We will

here consider the case of a homogeneous and isotropic medium.
The clearest method of obtaining Laplace’s equation is to apply
the well known laws of flow of an incompressible fluid to the
infinitesimal unit of volume bounded by the intersection of the

six surfaces,

A=XN m=H V=U

A=N+dN u=pm+duy v=v+dv

Now let (see Fig. 8)

u equal the component of the flow density or flux density,

D, at the point Ao, me, ¥o, parallel to dn,
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Similarly
v = component of D parallel to dn,.

w = component of D parallel to dn;.

Now the total amount of flux (or flow) leaving the infinitesi-
mal parallelopiped is the sum of the six amounts leaving it
through the six faces; each of these is expressed as; flow density
X surface.

Therefore, they are,

|
- ud51+ (u + ba—zld?h) <de + E—é—én;?—l)—dnl >

—vd52+(v+ i”—dnz) <dS2+ a—(d%dm) L (54)

bng

—wd Ss+ (w—{-%dm) <d53 + (dn33) dn )

In order to see the exact meaning of these three equations we
will put the first one in word form. The first term says that the
total flux (or flow) entering the lower surface of the infinitesimal
parallelopiped is equal to the component of the flux density in
the direction perpendicular to the surface X the area of the
lower surface. Since we desire to express the outward flow we
designate this inward flow by the minus sign. The second term
expresses the total flux outward through the top surface. For
this case the component of the flux density will be the original
component plus the rate of increase of the component as we
move towards the top of the cube multiplied by the height of
the cube. This gives the component of the flux density at the
top of the cube and if we multiply this by the area of the top
we obtain the total outward flow at the top surface.

It will be observed that the area ofjthe top surface is the area
of the bottom plus the rate of increase of the area as we go from
the bottom towards the top multiplied by ‘the distance.

Multiplying out the second term of the first line of equation
(b4) we obtain:

udsntM dn dS; + u —a—éii%‘)—

3n dn1

_b__z_t oSy 2
Sn. on. d ny (66)
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the fourth term is of higher order and therefore may be neglected
Factoring out the d #,, we can write (bb) as:

ou
bm

dSl—i—u-a——b%] dm (66)

It will now be evident that this is merely the differential of
the product of the two functions u and 4 S;. (I am indebted to
Professor J. N. Vedder, who called my attention to this relation
while discussing the problem with him.) That is

dudS]=uddS) +dS:du
We can therefore write (56)

o]
—6_1’;1 [Zt d S]] d M

Applying the same reasoning to the other similar equations and
adding them all together, we obtain the following equation, which
represents the total amount of flux leaving the infinitesimal
volume.

0 0 0

If we substitute the values of d n;, d n: and d n3 as given by
equations (47), (48) and (49); as well as d Sy, d S», d 53, as given
by equations (60), (61) and (62) in equation (87) we obtain

hl_g_<ududv> d)\+h2—59ﬁ<v d)xdv)d,u

ER) i) Th e
> [ dNdp\ dv
T 55 (“” i > 7 (68)

Simplifying and dividing by (63) to express the equation for unit
of volume, we get:

o u ro} Y 0 w ]
[ﬂ < h2h3>+—a_p.<h1h3 >+ 6V<111h2> ha by s (59)

Now for any point in space which is neither a source nor a
sink of flux, we see that the same quantity of flux must leave as
enters any closed surface in order that there may be no accumu-
lation within. Therefore, we may set this equation equal to
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zero. This now constitutes the familiar equation of continuity
in the A, u, v system of coordinates.

To obtain the same physical statement in terms of potential
we merely have to substitute the relation between flux density
and potential gradient as expressed by the Fourier-Ohm law
namely,

1t=—KgV 1|
m 1

7)=—Kg::; ’} (60)
oV |

w=——xan3 J}

In other words these equations state that the flow density in
a given direction is equal to the potential gradient in that
direction multiplied by the specific conductivity. The minus
sign indicating that the potential is decreasing in the direction
of the flow. We will here take the specific conductivity to be
unity and equal in all directions, that is, the material has unit
specific resistance and is homogeneous and isotropic.

We may, therefore, rewrite equation (b6) for this case.

0

<

|

U= -

3

o Y
<

3
[y

(61)

o Y
=

w

o/
N
P

Substituting the values of dn,,"dn. and dn; as given by equa-
tions (47), (48) and (49) in equation (61) we obtain,

DV
u——hlak

oV )
1)='—h2 b# (62)

>
w==h gy
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Therefore, if we substitute the values given in equation (62)
in equation (89), we obtain after changing signs:

_Q_<h1 av>+a<h2 bv)
b)\ hgh;} b)\ a/.l, hlha b[.t

0 hy Qv _
+_5_V_<h1h2 —a—y>hxh2h3—-0 (63)

which is Laplace’s equation in orthogonal curvilinear coordinates.
This simple method of deducing the above equation was first
given by Sir William Thomson (see Mathematical and Physical
Papers Vol. I, p. 25).

We may now proceed to obtain the values of ki, ks and h; for
our case of normal oblate spheroidal co-ordinates from equations
(38), (39) and (40) when combined with equations (44), (456)
and (46).

Thus differentiating equations (38), (39) and (40) with respect
to N\ we obtain

0x _ B

ON VT F

Oy _ _ mv :

N vViT (64)
9z A 2 — w2

ﬂ_TVX2—c2

Substituting these values in equation (44) we obtain

2 2 —
1 M ) 87 ) RV
h? (C\/1+V2 +(c\/1+y2 +(c )\2—52)

Simplifying we get

2

(66)
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Similarly we obtain

o/
8

(%
=

(%
2

[«
=

(<%
w

[«4
®

From which

I
(XY
|

Again

(3
®

|

o/
A

</
A

(«2
<

[«7
5}

<
A3

and

If we now substitute these values of

(63) we get
M

N
cVT1F

Ay
C\/l—i-u2

A VAN
¢ /\/02—;12

A — e
62—#2
ANuv

T P

Au

IR

c(1+V2)\/c2—,u,25>\

A

cQ+ )y vV N= T2 0 M

c (A — p?)

0
A2 2
T2+ ey
L
b
[x vN= &
[uvﬂ—u

" vV (N= &) (&

1015
(66)
(67)
(68)
(69)
—1; L in equation
AN €q
ou ] T

—uy) 0 V[(l ¥ %—;/v;] =0 (70)
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which is Laplace’s equation in our spheroidal coordinates A,
#and v

If now in place of A, u and ¥ we can find some function of A,
some function of u, and some function of v which, therefore,
will represent the same set of orthogonal surfaces, and if we
can choose these functions which we shall designate by «,
and v, which of course are also functions of x, ¥ and 2, so that
they are solutions of Laplace’s equation when expressed in
rectangular co-ordinates, and, therefore, satisfy it when substi-
tuted therein. That 1s, we would have,

62

bx2+by +bz2=0

2

0 x? T 0y + 02

Y
=S
4
=S
<
=
o

2y ey
S+ 55 148 55t =0

J

under these circumstances equation (70) will be reduced to a
more simple and symmetrical form. It must be remembered
that the existence of these functions «, B, 7, is merely tenta-
tive. 'The criterion for their existence will be given later.
Equation (70) is Laplace's equation expressed in terms of
A, 4oand .
Assuming now that in equation (70) V is a function of A only;
in that case
o}
du

o
ov

~

= 0 and = (

and equation (70) would then reduce to

d ~— 0V
a_x["‘”‘z""zax =0 (1)

Integrating with respect to A we get

AVN-—E o =a (72)
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whence
Cy d )\
AV N2 (73
and integrating again
V= < sect % + K, (14)

Here V is a function of AN which satisfies Laplace’s equa-
tion. Call this value of V which, is a function of A and
which satisfies Laplace’s equation, o leaving the constant ¢;
undertermined thus

do =9 (75)
AV A= ¢
and
a= & oseen X 4K, (76)
c ¢
The constant K is zero since,
a=0
when AN=c¢
and secll =0

As above assumed now that V in equation (70) is a function

of u only; in this case g—)\— = 0 and % = 0 and
0 5 ov
sa[pve— gy | =0 ()
Integrating
N (18)
ng[.t
Ve s (79)

V=— ‘; sech-1 % + K, (80)
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Call this value of ¥V which is a function of u only, and which
satisfies Laplace's equation, 3, leaving the constant ¢ unde-
termined we have

_ Cdp
vy o
B =— -—%—’1 sech*l% + K, (82)

The constant of integrating K. is zero since

B=0
when U =c
and sech 11 =0
Similarly
0 oV
SS[a+msr]-o (83)
av
2 =
(1+V)d1l cs (84)
G dv
dV = 11 (86)
V= caitan“l Vv + K3 (86)

If, as before, we call this value of V, which is a function of v
only and which satisfies Laplace’s equation, vy, leaving the con-
stant ¢z undetermined we have

_ CadV
7= 142 (8D
v =ctan"tv 4+ K; (88)

The constant of integration K; vanishes since
v=0

when v=20

and tan—10 = 0
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If we now substitute these values in equation (70) we can
express Laplace’s equation in terms of our new functions «, 3
and vy and thereby obtain a simpler equation. To do this let
us take equation (70) term by term.

The first term is

p K ~oadV
v ma [NV ax]

expanding the indicated differentiation we get

" o} ~—— 0V
— |5 (A V M= ¢
c(l—i—:ﬂ)\/cz—m[a)\( v AN

A \/7\2‘2722 }I\Z) ] (89)

From equation (71) the first term within the bracket is equal
to zero.
If we now assign the following values to the constants, ¢y,

¢; and ¢;
ci=—co=candc; =1

*We have from equation (73)

a
<

4
N TixvVe=e

2

d N\

&
<

3 (=)

[

eV _ —c[(M-dc)+ M
dN - VN—¢

(90)

Now from equation (75) we have

d)\_)\\/)\2—62

da c

2
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Combining (90) and (91) we obtain

@V _ 4 Vd A? (AN2=¢c2) + A2

T~ dNdad vV n—a (92)
Now comparing (90) and (92) it will be seen that
2 2 2
a@av ¢ @V (93)

AN NN=&d &

2
If we now substitute this value of il—— in the second term of

v
d N\
equation (89) we get

I ~— c? 32V
c(l4»)Ve—p2 {M/M— ¢ [N()«—c’)b_az :’

or simplifying the first term of equation (70) when expressed

oV
in terms of —; 5o Ve get ‘

c oV

N+ Vamm VN—ao (94)

If we now perform the same operation upon the second term
of equation (70) which is

A
c (14 \/7\2—620.“

[.u V@ %—Z— (95)

expanding the indicated differentiation we have

A — )OV
cA+®) VN=ea [bu(’“/c ¥)3a
>V

+uVE= g (96)
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Equation (77) tells us that the first term within the bracket is
zero.
Now from equation (79) putting ¢z = — ¢ we have

dV= —c
d ,U,\/Cz-[.l,z

and then ‘
eV cl(—p)— pl

d u? = W2 (2 — u?) V= g o7
From equation (81) we have
dp _pve—p
dB —c
d 20,2 . 42
d gz e c 2 (98)
From (97) and (98) we obtain
2 2 2 2 e 1y2) — 42
@V _ @EVd p (¢~ pu)—u (99)

d B dwd B cVeE—u

Now from (97) and (99) it will be seen that the following relation
exists

&V @ a&v
d pt (- uhd

(100)

Hence substituting this value in equation (96) we get for the

second term of equation (70) when expressed in terms of 5 [;/;
the following.
2
Ac a2V (101)

p@Q+v) Vi vVN-Z o F
Now as before expand the third term of equation (70)

c (N2 — )
)\# VA2 —2 \/62__”2

—aij(l—{-v

(102)
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and observe that the first term within the brackets vanishes by
equation (83).
Now from equation (86) putting ¢; = 1, we get,

v _ 1
dv 1+ 12
@V -2
dv T+ e (103)
From equation (87)
dv
— =1+
Y
(104)
ar _ .
d 72 - (1 + V)
From (103) and (104)
@2V &EVdy
d'y2_du2d'y?~—2y (106)
Now from (103) and (106) we get
2 2
aev 1 av (106)

dv T 1 FPrdqt

Hence substituting this value in equation (102) we get for the

2
third term of equation (70) when expressed in terms of Sb_‘;/;

the following.
c (N2~ u?) *?V
Au(l+v) Vo—g V- 07

(107)

If we now combine the three terms as given by equations (94),
(101) and (107) we get

1oV, 12V N-wgdV
A\ O of ut o B N u2d 2

=0 (108)
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or since from equation (76), (82) and (88) and remembering
that we put ¢y = — ¢» = ¢; = 1 we have

A =—csecuw

¢ sech 8 I (109)

i

M

v = tan vy
we can now write equation (108)

oV vV otV
2 2 2 2 —
cos’ &t 5—, -+ cosh BE B + (cosh? § — cos? @) S = 0 (110)

which is Laplace’s equation expressed in terms of what have
been called normal oblate spheroidal co-ordinates.

When using this equation (110) it is to be noted that the
point whose co-ordinates are (&, 8, ¥) is the point of intersection
of an oblate spheroid whose semi-axes are

¢ sec & (major axis)
¢ tan a (minor axis and the axis of revolution.)

and a hyperboloid of revolution of one sheet whose semi-axes

are
¢ sech B (transverse axis)

¢ tanh B (conjugate axis, the axis of revolution.)

and a plane containing the axis of revolution of the system and
making the angle 7 with a fixed plane.

If the axis of revolution is the z axis and the fixed plane of
reference is the XZ plane; the rectangular co-ordinates of «, 3,
v, will be obtained by substituting the values of A, u and »
given by equation (109) into equations (38), (39) and (40). This
substitution gives

x = ¢ sec & sech 3 cos ¥y

y = ¢ sec a sech 8sin ¥ (111)
z = ¢ tan a tanh 8
If now we let « range from 0 to ——g—-, 8 from — » to + , and

v from 0 to 2 7, we shall be able to represent all points in space;
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and if we agree that negative values of § shall belong to points
below a plane through the origin and perpendicular to the axis
of revolution and positive values of f to points above that
plane. Then not only shall we have no ambiguity, but also
the rectangular co-ordinates of any point in space as given by
equations (111) will have their proper signs. (See Fig. 9)

The above transformation of Laplace’s equation, as expressed in
terms of the orthogonal curvilinear co-ordinates A, u and »
which represent an orthogonal system of surfaces, to the simpli-
fied form in which it was expressed in terms of the new co-ordi-
nates a, B3, v was made possible by the assumption that certain
functions «, 3, v of A, u and » exist. Thus we determined the
value of « by solving equation (70) on the assumption that V
is a function of A only; u and » not entering. This means that

z

~
Fic. 9—ConrocaL ErLipsE AND HYPERBOLA

we assumed that the curvilinear co-ordinate A corresponds to a
possible equipotential or isothermal surface, for in that case
there would be a function of A which would satisfy Laplace’s
equation.

We may write it symbolically as follows:

Starting with Laplace's equation in terms of rectangular co-
ordinates namely A? ¥V = 0 and remembering that A = f (x, ¥,
z). Then if it happens that ¥V = f (A) only, is a solution of
Laplace’s equation, then we may write it

V=FfA=a«a

and upon substituting back in Laplace’s equation we would get
the condition that
Ao =0
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In other words, this means that « as found by this process is a
value of the potential V corresponding to such a distribution
that the surface obtained by giving particular values to A are
equipotential surfaces. The particular value of the function of
A, a is given in equation (76).

The condition that such a function « should exist, for a
given system of surfaces, that is, that the distribution described
above should be possible will be obtained analytically below.

We have seen that the required condition is merely that V
in Laplace’s equation may be a function of A alone.

If Vis a function of N alone and we also remember that A
is a function of x, y and 2, we may start from this information
to write out Laplace’s equation.

We have
V=7
N=filx, v 2
Hence
2V _ dVax
dx dANdx
2V _ 4V o)
0y dMAJdy
2V _dv )
dz  d\N Jz

Differentiating again we obtain

>

>V _&vox avy
dxr  d N Ox? dN Ox?

>

0V Vo )\2+dV
04 d N 0y? d

D2
9 y?

>

PV _&VoN 4V
022 d N Aoz dN 0z

Adding these three equations and equating the result to zero
in order to obtain Laplace’s equation we get
2V rV 2V

0 x? + 0y? + 022 =0
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also
2

[G2) 6D +(D 15+

BB EA N
0«2 092 o2 1d N

We thus have obtained an expression for Laplace’s equation
based upon the assumption that the potential V shall be a
function of A alone. If we now write it

&
<

AN, RN, RN
bx2+ by2+ 022

C+E)CY 3

This may be written in symbolic form

]

S
>

13
<

2
%1—2‘=F1(>\)

2

where F; (A\) may be any function of N alone. Thus our re-
quired condition is that

A2 N
7z =B o (112)

and when this is fulfilled the original curvilinear co-ordinate A
corresponds to a possible equipotential or isothermal surface
and in this case a function « exists. If similar relations are
found to hold for B and 7 the reduction of Laplace’s equation
to the so-called symmetrical form is possible.

Similarly we determine the values of 8 and v on the assump-
tion that V is a function of u only in the case of 8 and a function
of v only in the case of . In that case it is evident that

A? B = 0 and in the second case

Ay =0 .
It is therefore evident that B is a value of V corresponding to
such a distribution that the surfaces obtained by giving par-
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ticular values to u are equipotential surfaces; and that v is a
value of V corresponding to such a distribution that the sur-

faces obtained by giving particular value to ¥ are equipotential
surfaces.

From what has been said above it is evident why Lamé,
the inventor of this system of co-ordinates called the functions
«, B and 7y thermometric parameters.®

The analytical method of obtaining the criterion for the
existence of these functions @ and v is exactly the same as that
for the case of « which has been worked out. It is in the case
of A

AT A
h12 = Fl (A)
and it is for u
A u
h22 = F2 (M)
and for » (113)
Ay
‘h_s? = F3 (V)

When these three conditions are fulfilled for A, u and », the
original curvilinear co-ordinates A, u and » correspond to pos-
sible equipotential or isothermal surfaces and thermometric
parameters «, B and v exist and the reduction of Laplace’s
equation to the so-called symmetrical form given by equation
(108) is possible.

In all of the above work I have followed the development of
the subject of orthogonal curvilinear co-ordinates as given in
Byerly’s Fourier Series and Spherical Harmonics pages 238 to
245 and merely tried to give an unexpurgated description of
the process. That is, I have tried to fill in some of the steps
in the process which are necessary in order that the average
engineer may follow the development with ease.

The solution of the problems given in the following pages is

38. Numerous references to Lamé’s work will be found in the follow-
ing works. ’

Maxwell, Electricity and Magnetism, page 232; Webster, Electricity
and Magnetism, page 22, 64,173; Byerly, Fourier’s Series and Spheri-
cal Harmonics, page 244, 274; J. H. Jeans, Electricty and Magnetism,
page 247; Goursat-Hedrick, Mathematical Analysis, Vol. I, page 80;
I. Todhunter, The Functions of Laplace, Lamé and Bessel, page 210,
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due to Professor W. E. Byerly. I had been struggling with the
problem for some time without success and finally took the
liberty of writing Professor Byerly concerning my troubles.
His reply of January 9th, 1915 to my letter exceeded my ex-
pectations for it gave the desired solution as given in the fol-
lowing pages. On February 17th, 1915, I had the further
privilege of talking over the problems with him, at which time
he cleared up the remaining troublesome points.

PorenTIAL AT ANY POINT IN SPACE

Laplace's equation (110) expressed in the symmetrical form:
was seen to be

4
=

2
cos? & g——;—/ cosh? B b S B + (cosh® B — cos®a g

In the present problem we wish to determine the potential
at any point in spacé between two confocal hyperboloids; one
of which is chosen to represent the tank with a hole in it; the
other representing the rod or connection which passes through
the hole in the cover of the tank.

The potential V must satisfy the above equation and is a
function of B only. This follows from the fact that the equi-
potential surfaces will be confocal hyperboloids of revolution.

Therefore, we have,

4 a4

a? 572=0

(%

and Laplace's equation reduces in our case to

0V
2 —_— =
cosh? 8 5B 0
This equation must be true for all values of § and V and since
2
cosh? @8 is not zero for all values of (3, g—ﬁz must be equal to

zero. ‘Thus our equation will be

2
g——é’; —0 (116)

The solution of this differential equation is seen to be obtained
as*follows:
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Integrating,
av
ig=4
dV=AdB
and
V=4B84+C (116)

which is the solution for the potential at any point in space.
The values of the constants of integration 4 and C will be found
from the conditions of the problem. ‘

Thus if 8 = B, for the hyperboloid selected as the tank with
hole in it, the potential is

V=20
Assuming the tank to be grounded,
Hence 0=4 8,+C

Also when @ = (3 for the hyperboloid selected as the electrode
which passes through the hole in the tank

V="V
V1=A ﬁl—I-C

Solving these equations simultaneously we have

Hence

= Vl
c_1~£l
Bo (117)
__"
4=3_"8

Substituting the values of 4 and C as thus determined into
equation (116) we have.

B V.
"CE-mYT A
Bo
or
=" -
V= g2g (B B (118)

which is the complete expression for the potential at any point
in space under the assumed terminal conditions.
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From considerations of symmetry it is obvious that the po-
tential has circular symmetry about the axis of revolution; and,
in this case, the z axis has been chosen.

We may now determine the potential at any point in space
in rectangular co-ordinates as follows. Suppose we desire the
potential at the point x, z for the case in which the semifocal
distance is c.

We have for the value of u which is the semi-transverse axis
of the hyperbola

',u=%(PF2-PF1)

(see Fig. 10)

~

Fic. 10—HYPERBOLA

Hence,

p:—;—[\/(x-{—c)?—}-zz—\/(x—c)z—{—z’] (119)

Also from equation (109) we have,

u = csech 8
cosh B = L
8= cosh-l—;— (120)

Thus we can determine the potential at any point P in space
under any desired conditions of ¢, B1, B, Vi
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PorenTIiaL DisTRIBUTION Oox THE X-AXIs

For this case we have z = 0 in equation (119) and hence it

reduces to
M=c (121)

Now under these conditions p and x are identical in value for
points along the x axis between the origin and the focus. We
can, therefore, use equation (120) directly without reference to
equation (119) or (121).

Thus we can determine the values of 8, and S, for any value
of u from equation (120) or rewriting it here

c
B = cosh—t — (122)
M
20 S S S S S
_ ) T
60 S .
i B
\ 1
> \
X 40 f—
°I'N :
g 30 \
S
20 ~ "
. N L.
10 i S
o
0 i
0 10 20 30 40 50 60 70 80 90 100
Axis L7 Focus

F16. 11-—CALCULATED POTENTIAL DISTRIBUTION ALONG THE X-AXIS

If we select for the hyperboloid B, the limiting case that of the
infinite plane with a hole in the centre Sy = 0 for

I

B

where M=c
B= By=-cosh11=0

c
cosh—1—
N

We may then write equation (118) as follows:—

v=(§)e (123)
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The potential distribution for this case is shown in the curve,
(see Fig. 11). From this curve we may find the proper spacing
for the hyperbolas which when rotated about their z axis cut out
the equipotential surfaces for unit differences of potential. All
we have to do is to divide the potential into equal increments
and note the corresponding value of g or x. In this manner
we can construct a diagram similar to Fig. 12. In the case
before us the potential has been divided into 51 equal increments.

- 30 35 40 50

LYA
'L\'ﬂ—fﬂ
\97*0 T AT it
\1 \8 AT
16
9
L
135
-
-
12l ! 5
< H
11 S » &
e ¥ :f,
10 o’ <
9 <
8
7 /
6
5
4
3
2
y=1
V‘o(,.,__H...;_4___.,__.,,_91A5 CM. - ——--Focus____________. N
FiG. 12

PoTENTIAL (GRADIENT AT ANY POINT IN SPACE

The potential gradient is defined as the rate of change of
potential in the direction of the greatest decrease in potential,
that is, along the normal to the equipotential surface in the direc-
tion of decreasing potential. The sign will depend upon whether
our unit normal is taken in the direction of increasing or decreasing
potential. For the former case the expression for the potential
gradient will be positive and for the latter negative. By refer-
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ence to Figs. 7 and 8 and remembering that we have assumed
the tank to be at zero potential it will be seen that we have
selected the differential normal d #, in the direction of decreasing
potential and, therefore, our expression for the potential gradient

. av
will be — 7

We have seen that the potential at any point in space is
given by equation (116) and is

V=Ap8+C

Thus the potential gradient will be

av. _ dB
_dn_—Adn (124)

S

[}
~

where d n, is the normal to the surface u = wo, (a constant).
and in the direction of decreasing potential.
In order to determine 8 we have the relation

B8 = sech™! Nl
¢
Hence,
c

dp
d p uVeE— pu? (125)

Now we have seen from equation (48) that

Ay = ¥ (126)

ha

Equation (67) gives us the value of _L

2
1 Now
Bt & — ub

1 N — 2
T “/zz‘:—,’f? (127)
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We may now substitute this value in equation (126) and we
obtain

N — 2
dn2=\/>\2 Ll (128)
- W
Thus,
dﬂv _ 2 — u
P vV e (129)

Combining now equation (126) and (129) we have,

av _ dﬁ d
Tm - Yaudm (130)
or,
av dc ¢ — u
=" VEZE sy
and
_av _ Ac (132)

d nq #\/)\2_#2

The value of the potential gradient at any point in space.

The value of the constant 4 is that given in equation (117)
and in order to determine the values of u and A in rectangular
co-ordinates we have the relations given by equations (109) and
(111). It will here be observed that the potential gradient is
independent vy which is obvious from the symmetrical arrange-
ment, that is, the potential gradient will be similar for any of
the diametral planes v = constant. Thus, we may write

x = ¢ sec  sech 3
(133)
y = ¢ tan « tanh 3
also,
A =cseca
(134)
u = csech 8 }

These equations in combination with (132) enable us to calcu-
late the potential gradient at any point in space in rectangular
co-ordinates. (See Fig. 9.)
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Curves oF CONSTANT POTENTIAL GRADIENT

The curves of constant potential gradient may now be ob-
tained by putting

— 3—172 =0 = 'u-———-—\/ g (136)
Then
pv @ =Af (136)

Thus for any given condition the right hand side of equation
(136) is a constant. If we now substitute the values of N\ and
4 as given in equation (134) we may write

(Ze)

sech? B

sec a = :i:/\/sechzﬁ-l-

or for purposes of calculation we may put for

sech? 8 = 1~ tanh? 8
and we have

@)

seca = + V (1 ~ tanh? 8) + 0= tank® B) (137)

where the values in terms of x and y are

csecasech 8 )

Il

X

¥y = ¢ tan o tanh 8

The curves of constant potential gradient as calculated from
these equations are shown in Fig. 13.

PoTENTIAL GRADIENT ALONG THE X AXIs

The value of the potential gradient at any point along the
x axis between the origin and the focus may be obtained from
equation (132) as follows:

From equation (111) we have

z = ¢ tan « tanh 8
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Now whenz = 0
ctan atanh B =0

and since ¢ tanh S is not zero we have

tana = 0
a =10
125 30 3540 50
7 T T
97_0'1\2 {1 4 = E
\6\ L g {
o 41 + S
I\ hs | ;5
S A ARy
e
E -4
13 e
: E;OU;
{ S
12 A
1
i
10 it oRie
e -
8 2ar
, =l )
201
6 18
/ 16|
5 14F 8
P 12::
10: g
3 3—§
2 6 ZE
4—
V=l L
2
V=0 "X Axis 915 CM Fdcus (%L ;
i}
Fic. 13

Substituting this value of « in equation (134)
A=c¢
and further upon substituting this value of A in equation (132)
we have
_av _ 4c
d ne m vV = e

(138)

The potential gradient along the x axis.
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Another method of obtaining the same result is to observe

that the potential gradient along the x axis is merely — Z—E
since the hyperbolas cut the x axis normally. Thus as we have
seen

V=484+C
Differentiating with respect to u
av _ dp
" , Ta 4 au
18 Also,
£
5 x B = sech—t £
% 4
14 Hence differentiating
< ‘
?rs av dg —Ac
FE _— = A e
2l Y d u du pVeE—
N \‘ Thus, '
\
TN ~4r - ‘————-\/AZC . (139)
AN 7 K uved—u
. . ,
N //
) —~ which is identical with equation
(138) and is the potential gradient
ob— Lt along the x axis between the origin
& and the focus. The potential

F16. 14—CALCULATED POTEN-
TIAL GRADIENT BETWEEN ROD
AND EDGE OF PLANE

gradient curve for this case is cal-
culated and plotted in the curve
Fig. 14.

Testing this equation for the values u = 0 and y = ¢ it will
be. observed that the potential gradient is infinite at the edge
of the hole in the plane or focus and at the origin or along the
z axis. A minimum value of the gradient will exist somewhere
between these two limits. Its value will be found in the usual

manner as
L(ﬂf)_();
du\du/

Thus differentiating equation (139) with respect to 4 and equa-
ting the result to zero we have
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@V _Adcl(e— ) —
d ,u2 - M2 (b2— “2)3/2

_Acl(@—2)]
#2 (b2 — M2)3/2

Equating to zero and observing that A ¢ is not zero we have

2

2 =2 u?

c
r=Ts (140)
Thus the minimum value of the potential gradient occurs at
this point which is about 71 per cent of the distance from the
axis towards the edge of the hole in the infinite plane.

The potential gradient curve enables us to determine the
proper size of central electrode so as not to over stress the
dielectric. Or by selecting the hyperboloid which we choose to
represent our tank with hole we can select a central electrode
which has the same value of the potential gradient or any,other
value which we may desire for other reasons. Knowing the
characteristics of our dielectric used we can determine the
puncture voltage of the apparatus, etc.

SoLuTioN FOR THE TuUBEs oF FrLow or FLux

The flux or flow across any area may be defined as the surface
integral of the normal component of the flux density, and as
we have seen from equations (66) and (B7) this in turn is equal
to the normal component of the potential gradient.

Thus,
fj _— dﬂ] dn3
or
~ i ng

We have from equatlon (132)

(141)

_dV= Ac
d ne M\/>\2"IJ'2
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We also have for the values of d #, and d n; or d S, equation (b1)

dAdv
hy b

and from equations (65) and (69)we have

1 _\/E—

h1 )\2—62
1 __Aw
e c (1 + )

Substituting these values in (142) we get

48, = N/N"“(— LY )dxdu

¢ \c(d + )

and combining in equation (141) and simplifying we get

av AN
ff—ndSz-—\/-)\2_6..2_(1+V2)d)\d1/
ANd A
(1+V2) VN2

Integrating the first part between the limits v = 0 and v = v,
we have,

=19
[tan“v-{-K] — tan"'wp

and since v may have any value we can neglect it as far as the
spacing of the surfaces of flow are concerned. Integrating the
second part between the limits A = Ao and A = A; we have

A =N\
Nd A T
f V=g [\/)\ C+K] M=)
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That is we have

ff— —-'——'d52-—14(\/)\0—C2 \/)\1—62)

(143)

If we now remember that from equation (109)

A = csec«

we may write

f Lf——-«dSz—A ¢ (Vsectap— 1 — +/ secta;— 1)

(144)

Also, secta— 1 = tan’ «

Substituting we get

J‘f—“dSz——A(ctanao—ctanal) (145)

But it will be observed from Fig. 9 that ¢ tan « is the minor
axis of an oblate spheroid, and, therefore, for equal tubes of
flow the surfaces will have any constant spacing on the minor
axis of the spheroid. (See Figs. 12 and 13.)

In the above work we have obtained the solution of the electro-
static problem in which any two confocal hyperboloids of revo-
lution of one sheet and of the same family are maintained at
definite potentials. The solution of this problem should be of
interest to engineers as it furnishes us with a solution which
may be applied as an approximation to many engineering prob-
lems. For example, it is a useful guide in studying the high-
voltage bushing problem; it also gives us an interesting variety
of possible electrode shapes for use in testing insulating materials,
where it is very desirable to be able to calculate the gradients,
etc., etc.

Another problem which should also be of considerable in-
terest to engineers is the case when any two confocal hyper-
boloids of revolution of two sheets and of the same family are
maintained at definite potentials. The solution of this problem
may be applied as an approximation to another group of prob-
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lems which are of frequent occurrence in engineering. For
example, it may be applied to switch electrodes at various
spacings; also as an approximation in vacuum-tube designs,
such as X-ray tubes, kenotrons, etc. That is, it is an approxi-
mation to the group of problems of two elongated electrodes at
various spacings, or such as an electrode and a plane (i.e., two
needle points or a needle and a plane).

The solution for this case is obtained in exactly the same
manner as that described above except that in this case we
select as our standard ellipsoid the prolate spheroid and express
Laplace’s equation in normal prolate spheroidal co-ordinates.

Two other problems namely, the distribution of the electro-
static field about the charged oblate or prolate spheroids are
obtained in exactly the same manner.

Fic. 15—INTERSECTION OF PROLATE SPHEROID, CONFOCAL HYPERBOLOID
oF TwWo SHEETS AND A PLANE THROUGH THE AXIS OF ROTATION

NORMAL PROLATE SPHEROIDAL CO-ORDINATES®

In this case we take for our standard ellipsoid the prolate
spheroid, the axis of rotation is then the major axis and our
plane must contain that axis. Taking the x axis as axis of
rotation and the XY plane as plane of reference we have for
the equation of our three orthogonal surfaces the following.
(See Fig. 15).

2

}\2+)\2 +)\2_52=0

Ed + yz' 4 2 0 (146)
I~‘2 Mz — b ’uz — B

z—vy=20

39. See Byerly Fourier’s Series and Spherical Harmonics, page 243,
from which this discussion has been taken.
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where A2 > b2 > u?

Here, b, is the semi-major axis of the prolate spheroid.

[Nov. 9

Solving the three equations simultaneously for the values of
x, v, z as functions of N\, u and » as we did in the oblate spher-
oidal problem, and then differentiating these partially with
respect to A, u and v we will have functional equations as before,

namely;
0
b—%c\ = fi (N u, ?)
0
53 =fa(\ w7
0
5{ =fs (N, @, v)

and similar relations for x, y, 2 with respect to u and v.

We also have as before

</

l_boc2 0y 0z
W—(T)+(ﬂ)+(a—

</

l_bx2 y2 0
7= (50~ (53 + 6o

1 bx2 ?
P ‘(6_5)+(a_v)+(a_

(<%
2

and obtain the following values

>\2 — b2
h12 = Az ___ /J'z

b2 — M2
h22 = x2 — IJ—2
AT E

=8 & — 1)

(147)
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From this we have

dﬂ1— ——~/\/>\2—“d)\
du T
dng=7;=vb2_”2du + (148)
_av _AS(IN=D) (B~ )
dns—'il:-—/\/ b2(1+V2)2 dv

and Laplace’s equation in terms of our spheroidal co-ordinates
X, # and v becomes.

v 1 d
b2(1 2)a>\[(>‘2 ¥) ax] TEITY on

2V N—w 2
[e- w3 |+ e 5%

g‘:] =0 (149

[(1 +9?)

and reduces in exactly the same manner as the oblate spheroid
problem to

1 2T 12V M- 2V
N_Rowk  Fopo Bl M- = @oy - 0
(160)
Where
b
da = )\2—b2d>\
iB==C_du (161)
b2_l“'2
1
d’y=mdl)
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a = coth™! —%\—-
i (1562)
B = tanh™!
b
v = tan~ly
or,
A =bcoth &
4 =btanh f8 (163)
y = tan vy

Substituting these values in equation (150) we obtain Laplace’s
equation in the form

xV
02

. Fo L V4 2V .
LA 2 g9 ¥ 2 2
sinh? 5o + cosh? 3 > B -+ (sinh? a + cosh? ) 0

(164)

In using this equation it is to be noted that the point («, 8, ¥)
is the point of intersection of a prolate spheroid whose semi-
axes are

b coth a major
(166)

b csch a minor
a biparted hyperboloid of revolution whose semi-axes are

b tanh ( transverse axis }

b sech 3 conjugate axis

and a plane containing the axis of revolution and making the
angle v with a fixed plane. If the fixed plane of reference is
that of XY the rectangular co-ordinates of any point in space

(e, B, ) are
x = b coth & tanh

y = b csch a sech 3 cos v J (166)

b csch o sech B sin 7y

w
i
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and a may range from + « to 0, 8 from — « to + «,and 7y
from 0 to 2 w. Negative values of § are to be taken for points
lying to the left of a plane through the origin perpendicular to
the axis of revolution; in this case, to the left of the ¥Z plane.
(See Fig. 16).

PoTENTIAL AT ANY POINT IN SPACE

If we are given the potentials of any two confocal hyperboloids
of two sheets, that is, for any two values of 3 we can obtain
the potential at any point in space between them. For in that
case we have seen exactly as in the oblate spheroid problem that
V is a function of § only, hence in Laplace’s equation

a*vV *V

ba2=Oand372

0

-

Fic. 16—ConrocaL EripsE AND HYPERBOLA

Since cosh? B is not equal to zero for all values of 8 Laplace’s
equation reduces in our case to

vV
6——52 =0 (1B67)
Thé solution of which is seen to be
V=A4A8+C (168)

The constants 4 and C will be determined from the boundary
conditions of the problem as before.
Assuming the case

V=0when 8=0
V = Viywhen 8= 3,

(169)
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Substituting these values in equation (168) we get

C=0

Vi

4 5,

Thus we may write our solution under these boundary conditions
simply as

V=428 (160)
or since § = tanh™! —"bi
70
(] !
50
in /
/
23 | ;
!
20 l
el .
10 // \
T ! L :
0 T | \[ \r |

0 10 20 30 40 50 60 70 80 %0 e
"

F16. 17—CALCULATION OF POTENTIAL DISTRIBUTION ALONG THE X-AXIs

we may write it in terms of u and b as follows.

V= L4

= tanh—! % (161)
tanh™! -/‘Z—l

This equation enables us to calculate the potential at any point
along the x axis between the foci and has been plotted in Fig.
17.

A diagram of the field has been constructed in the same manner
as described above for the oblate problem. (See Fig. 18)
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1917]

PoTENTIAL GRADIENT AT ANY POINT IN SPAGE

The potential gradient will be

(162)

<3

Q=
S

o

*
3

N
=)

where d n; is the elementary normal to the surface of the hyper-

av
dnz

The sign

boloid (say for u = uo) under consideration.

3 45 67 8 9 1011 12 13 14 15 16 17 18 19 20 21 22

V=0v=1

Q3R ERELIFANAILEBSE ¥ R
x
et e s htenttiuttilin R
<X A SR st nttt : |
0 0 0 et et et gutiuustit 3]
2
|
.

Fi1G. 18

which expresses the potential gradient is here taken as positive

that is, d n, is assumed to be in the direction of increasing

potential.

In order to determine B we have the relation

tanh™!

8=

Hence,

(163)

b2 — MZ

Q3
~N =
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We also have

dm:‘,l_"_‘
2
A2_p’2
dngzvbQ e du
and
du b —
Tm = V)@ —— (164)

Thus for the gradient we have from equations (163) and (164)

dV=A@_§d,u: b b2 — p?
d ny d udnsy bt T A — u?
Simplifying

AV _ 4b

= 165
dn V(E— ) (M- (18

which is the potential gradient at any point in space. It is
observed that the potential gradient is independent of v as is
obvious from the symmetry of the problem. We may, therefore,
express the potential gradient at any point in space in rectangu-
lar co-ordinates with the help of the following relations (See
Fig. 16). :
A =bcotha }

u = btanh 8
x = b coth « tanh 3 }

and

y = b csch a sech 8

CurviEs OF CONSTANT POTENTIAL GRADIENT
The curves of constant potential gradient may now be ob-
tained by putting equation equal to the various constant values
desired.
Thus,
d Ab
it = G =
d n V@— @) (N )

<

V=B e =40 (166)
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Thus for any given condition and value of potential gradient
G the right hand member of this equation is a constant,.
If we now substitute the values of A and u we may write it
for the purpose of calculation.
A 2
(é5)

2 il A
tanh?® § + sech?f3

cotha = +

<

-
[~
o

1121314 15 16 17 18 19 20 21 22

QI O

n
&

QREXREXSXNK] 25
RIS &

PGIENTIAL GRADIENT ALONG X AXIS

W
i

7

/// ///f? Z

Wﬁé

Focus

O NWAORO DY
P

or if tables of sech? § are not available we can write it

(3)

1—tanh?f3

cotha = =+ /\/ tanh? 8 + (167)

The values of x and vy are

x = b coth « tanh 8
y = b csch a sech 8

The curves of constant potential gradient as calculated from
these equations are shown in Fig. 19.
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PorENTIAL GRADIENT ALONG THE X AXIs

The value of the potential gradient at any point along the
x axis between the origin and the foci may be found directly

from the general equation (1656) or independently as F

It is the value obtained when ¥y = 0

y = 0 = b coch a sech « 10
and since b sech 3 is not zero we have ° i
cscha =0 s ]l
1 ’ ;’
sinh o Zs
]
25
a= © £ /
g
4
Substituting this value in the equation
3 //V
A = b coth & . =
we have coth @ =1 \
|
and )\ = b 0 ]
] 20 40 €0 80 100

*t
Hence substituting N =5 in our p. 20— Carcuratep Po-
equation (166) for the potential 1gnriaL GrapIENT ALONG
gradient we get THE X-AX1s

av _ A4b _. 40

dne V(- B—u) P
for the value of the potential gradient along the x axis between
the foci. The curve is shown in Fig. 20.

(168)

SoLuTioN FOR THE TuUBEs oF FLow or FrLux
The total flux across any area may be defined as the surface
integral of the normal component of the flux density; in the
case of air dielectric, flux density and gradient are equivalent.
We may, therefore, write it

Jf fromon- [ $50s
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we have seen that

av _ A4b
dm VB ) (M= )

N2 — 12
dn1=/\/);\—2_—ll;i2d)\

_NEH T
dng—-/\/ b2(1+v2)2 dvy

Substituting these values and simplifying we get

A

As far as the spacing of the surfaces of flow is concerned we may
neglect the integration with respect to v by reason of the sym-
metry of the tubes of flow about the axis of rotation.

We thus have,

f Edld52=A()\o—>\1)
2

n
. Sa

But we have seen that
A = bcoth o

also that b coth « is the major semi-aXis of the prolate spheroids.
Therefore, equal tubes of flux will be obtained by taking equal
spaces along the major axis of the spheroids. (See Figs. 18
and 19).
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DiscussioN oN “AN ExPERIMENTAL METHOD OF OBTAINING
THE SoLUTION OF ErrcTROsTATIC PrROBLEMS WiITH NOTES
oN Hicu-Vortace Busuing Desien,” (Rice), NEw YORrk,
N. Y., NovemBER 9, 1917.

Ralph Mershon: There is one matter on which I shall be
glad if Mr. Rice can give us some light. That is, as to what
will happen in case the bushing has an arc-over backed up by
considerable power; and as to what work, if any, has been done
in devising means of protecting bushings from the effect of power
arcs. This is a subject which is not perhaps immediately ger-
mane to Mr. Rice’s paper, but which certainly is germane to
the matter of bushings and insulators. It is a subject which
has interested many of us for a long time.

Some time ago I conceived the idea that if we could build an
insulator in the form of a framed structure the members of
which were made up of units of massive porcelain we would
have an insulator which it would be impossible to puncture
and that if the members were so arranged that in case of a flash-
over the resulting power arc could rise freely from them, we
would have an insulator which would also be free from damage
by power arcs.

After a great deal of difficulty I succeeded in having made out
of porcelain the units for constructing the members of the struc-
tural insulator. These units were made up of solid porcelain,
with comparatively small petticoats; they each had a net length
of about nine inches. They were connected together end to
end to form the structural member by cementing the ends into
metal collars. The shape of the completed member was a good
deal that of the outside of the bushing shown in Fig. 3 of Mr.
Rice’s paper. The manufacture of the units involved the pro-
duction of massive porcelain absolutely free from flaws and hav-
ing a high tensile strength. The units as constructed could be
flashed over indefinitely under oil without puncture. - They had
a strength in tension of from 13,000 to 16,000 pounds, which
meant, as I remember it, a unit stress of about 2000 pounds per
square inch.

These insulators tested out very nicely with a testing trans-
former. It was absolutely impossible to puncture them, and
the arc following a flash-over immediately rose from the surface
of the insulator, as contemplated. But when the insulators
were subject to a flash-over backed up by large power capacity
the story was an entirely different one.

Through the kindness of the Pennsylvania Water & Power
Company a portion of their generating plant was put at my
disposal for power arc tests. A test was made on several of
the porcelain units above described, assembled as they would be
in one member of a structural insulator. This structural member
was placed in a horizontal position and arcs started across its
surface by means of fine wire fuses. In every case the arc
instead of rising from the porcelain units as it had done in the
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case of testing transformers, and as it seemed to me it ought to,
would not rise at all. It hugged in close against the petticoats
and peeled them off, one by one. If the arc was allowed to
continue long enough, it took pieces from the porcelain core,
after having denuded it of the petticoats. The endeavor was
made to protect the units from the power arc by arcing-rings,
or similar devices, but without success. The power arc in every
case stubbornly persisted in clinging close to the surface of the
porcelain units. I have never been able to satisfactorily account
tor the peculiar behavior of the power arcs in this experiment,
or to explain why the behavior should be so different in the case
of heavy power arcs and the light arcs obtained from a source
of limited capacity.

In the case of the bushing shown in this paper, which will
presumably be used on transformers, switches, etc., to go out
of doors, and which may arc over at times, no matter how care-
fully they may be designed or how great their factor of safety,
I wonder what, if any, provision is contemplated to protect
them from the effects of an arc backed up by a lot of power.
If it is intended that they shall not arc over at all, we might
recall some of the experiences we have had in the past with
apparatus which was not going to do certain things.

C. O. Mailloux: The method described by the author, aside
from its practical value as a means of graphical representation
of the distribution of points of equal stress and of the course of
the lines of action of force and energy between points having
different degrees of stress, is of the highest theoretical interest.

The author has made a very important contribution to our
working tools in physics, and to our methods of dealing with
fields of force and their distribution in space. We find, in this
paper, what is perhaps the first instance where engineers have
been called upon to make personal acquaintance with the well
known and time-honored ‘“‘Equation of Laplace.” I do not
remember ever having seen, before, a paper not on a distinctly
and purely physical subject in which that equation made its
appearance. Anybody who has studied the potential function
and who has made a passing acquaintance with Laplace’s
equation has acquired a great respect for it. He has learned
that it is, indeed, a most wonderful means of analysis and a
most potent tool for the physicist. It is agreeable to find that
it will no longer be monopolized by the physicist, but that the
electrical engineer is now going to make use of it. If, fifteen or
twenty years ago, anyone had said that the electrical engineer
would some day be able to handle the potential function and
to use Laplace’s equation as beautifully and as effectively as it
is done in this paper, he would not have been believed.

It is especially in the study of fields of force in tri-dimensional
space,—the most interesting, but also the most difficult field of
physical research—that the equation of Laplace has proved a
most wonderful instrument to the mathematical physicist. It
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has done this by virtue of certain remarkable properties which
enable it to render valuable aid in the specification and the de-
termination of the physical conditions obtaining in fields of
force at the stage of action of the forces involved, at which a
state of balance or equilibrium, either transitional or permanent,
occurs. Its range of adaptability to fields of force problems is
very great, being, indeed limited only by the mathematical
knowledge and skill employed in its use. It can, theoretically,
be applied to fields of force in which the lines of force, or the
lines of flow of energy, follow paths of the most diversified char-
acter from the simplest, like straight parallel lines, to the most
complex, like some of the cases discussed in the paper.

What interested me very much is the very ingenious develop-
ment of methods by which the author, starting from the consid-
eration of Laplace’s equation in ordinary rectangular coor-
dinates, develops and applies it to a very complex system of
coordinates, designated as ‘“Normal prolate spheroidal co-
ordinates.” That may be an awe-inspiring name to many of
you, but it is a name well worth becoming familiar with. Even
though it may take some time and study to learn all of the
mathematics which precede it, it is well worth while. Laplace’s
equation has, as I just said, some remarkable properties; and
one of its most remarkable properties, is that it enables phys-
icists to reason about the phenomena incidental to the action
of physical forces, and to reach absolutely logical, rigorous,
scientific and true conclusions without the need of any postu-
lates or any assumptions as to the intervening media, in other
words, as to the nature and properties of the ether or of any
medium in space through which force acts, and in which fields
of force are produced by physical forces. It was, in my opinion,
one of the great achievements of Laplace, that he was able to
devise an instrument of thought, an instrument of mathematical
analysis, the use of which was independent of any such com-
plicated, worrisome and perplexing postulates. With Laplace’s
equation, used in each case in manner suitable for the purpose
in view, it is possible to deal with the distribution of force under
a great variety of circumstances, to determine exactly what is
going to happen, and to obtain very interesting, useful and
beautiful results.

The interesting feature of the mathematical part of this paper
is that by the modification of the system of co-ordinates which
the author has worked out, he is able to apply and utilize La-
place’s equation in the study of the distribution, flow, and ap-
portionment of forces under conditions where the lines of flow
are no longer as you would find them in space which is free from
all constraints or boundary conditions, but such as they are in
certain special conditions, where the field is distorted by con-
straints and barriers, causing various reactions, as described in
the paper and as shown in the diagrams.

The author’s initial statement in the Appendix is almost con-
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tradicted by the fact that he himself has seemingly succeeded
in finding solutions of Laplace’s equation, which do fulfill at
least some, if not all, of the arbitrary conditions involved in
the problems. Further success and a nearer approach to the
goal will result, presumably, from further modifications of co-
ordinate systems still better adapted than those thus far de-
veloped and used for expressing the points of freedom, and the
constraints necessary in the given case.

In conclusion, I consider this one of the most interesting
mathematical papers that has been presented before the Ameri-
can Institute of Electrical Engineers in a long time. It is
interesting, not only on account of the useful application made
to an immediate practical purpose, but also because, it shows a
new development and an extension of a method of using the
equation of Laplace, and at the same time contains ideas which
may be followed by others, and may lead to still further exten-
sions of the method, so that, in presenting a new method of
study of phenomena occurring in fields of force, the author has
incidentally made a very interesting contribution to applied
mathematics.

John B. Taylor: I am rather curious to know how you get
such beautiful curves in a method where the devices introduced
for observing the quantity you want to know, change the condi-
tions under which you are working; that is, how is it possible to
get this exploring point all through the medium without making
apparent a change in conditions. It is trite to say when you put
a voltmeter in the circuit you shall not draw so much current
that the voltage is made different, or that an ammeter shall not
have so much resistance that the current is changed. In acous-
tics we have difficulty in determining the form of vibration in the
air, because the diaphragm usually changes the vibration at that
particular point, and doubtless similar difficulties exist here,
and I will be glad, if it is not covered in the paper, to hear a word
in reply as to how that has been regarded.

A, M. Gray: I have had considerable success with the follow-
ing photographic method of obtaining the dielectric flux lines

, in two-dimensional problems.
To obtain the stress distribution,
in slot insulation, for example,
a model of part of the slot and
conductors was made of metal as
shown in Fig. 1, and placed on a
photographic plate, the two
pieces were connected to the
high-voltage terminals of a
transformer, the low-tension side
Fic. 1 of which was excited by direct
current, and an impulse of high
voltage was applied across the insulation by opening the direct-
current circuit. No flash was visible but on developing the
plate the flux lines showed up beautifully.
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To test whether or not this picture is a true representation of
the stress distribution, two or three simpler cases were tried
which could be solved mathematically, and the agreement was
such as to justify the use of this experimental method for more
complicated cases. '

The application of the method to the three-dimensional prob-
lem of a rod passing through a plate would be more difficult.
A small sector parallel to the lines of flux would have to be placed
in the field and made of material which had the same permittivity
as the film, the stress distribution due to a transient voltage, as
well as that due to the contant potential from a static machine,
could then be determined.

Charles L. Fortescue: In his text the author has several times
referred to the paper by Mr. Farnsworth and myself on “Air as
an Insulator in the Presence of Insulating Bodies of Higher
Specific Inductive Capacity.” The object of that paper was to
show that dielectrics even though far from ideal do not substan-
tially weaken the air path in contact with them, provided these
dielectrics are introduced into the field in such a manner that no
distortion is produced. Several errors crept into the paper,
chiefly due to the limited time available for carrying out the
work. Among those errors is that one pointed out by Mr. Rice
in the present paper, namely, the use of circles for cross-sections
of equipotential surfaces for the rod and ring problem. It was
the original intention to work out the proper solution by the trial
and error method, which Mr. Rice has described in his paper
and the system of circles was taken as a first approximation,
but the work proved so laborious that it was finally given up on
account of lack of time.

While it would be extremely interesting from a theoretical
point of view to obtain a solution of Laplace’s equation which
could be applied to any boundary conditions, it is more important
from an engineering point of view to obtain a simple and accurate
experimental method for determining the equipotential surfaces
and flow lines for any system of insulated bodies. Mr. Rice’s
work is a valuable contribution in this direction.

The principles outlined in our original paper have been a great
aid to me in determining the best form for insulating structures,
but the lack of facilities for plotting the field form experimentally
have been a great drawback. I hope to be able to set up a per-
manent outfit for carrying out such work in the future.

Referring to Mr. Rice's criterion for maximum efficiency in an
insulator combining air and other materials, I wish to remark
that it is the same as that given by us in our paper, although Mr.
Weed among others, seems to find in the paper a general state-
ment to the effect that any surface following a line of force was
the strongest surface. What was actually intended, and I think
brought out clearly in that paper, was the principle that the sur-
face of the insulating body should conform to some system of
flow lines and the electrodes should be so designed as to make the
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intensities along the surface as nearly uniform as possible. It
appears probable that when substantial uniformity of stress is
not present, it may be obtained by slightly deforming the insula-
tion from the shape of the flow line.

Referring to Mr. Rice’s calculation for the arcing over of the
rubber test piece described in our paper, I regret to have to
inform him that his conclusions do not agree with results of tests
and since perhaps the original statement in our paper for the
breakdown of this test piece led him astray, we owe him some
explanation. The original test was made on a very jumpy cir-
cuit, as Mr. Chubb and I found to our great discomfort when
calibrating the sphere gaps. The value quoted was the lowest
value obtained, whereas, as I have pointed out in connection with
the sphere-gap calibrations, on such a circuit, with apparatus on
tests of such a character, the high values are the correct ones to
use, as the low ratios are due to surges which the measuring de-
vices do not record.

We found on this test piece that it did not make any appreci-
able difference in breakdown voltage if it were dirty or not. We
let it lie on the floor for three months to accumudate a heavy
coating of dust, and it tested just as high as when clean.

Later on, the electrodes were carefully re-cemented in such a
way as to do away with the possibility of air pockets, etc., and
when tested again under better conditions the breakdown value
by ratio lay between 180 kv. and 190 kv. With proper correc-
tions for crest value, this would represent an effective value of
somewhere between 197,000 and 218,000 volts. Tests on this
test piece were witnessed by a number of people, among them
Prof. H. J. Ryan and Mr. Lieb.

I wish to take this opportunity to correct some wrong con-
ceptions that have formed in connection with the condenser
terminal. In some cases wrong descriptions have appeared in
books on electric theory. I consider it rather regrettable that
authors do not take the trouble to inform themselves as to the
correctness of the information before presenting it. The con-
denser terminal is made with equal increments of length of the
metallic cylinders for equal increments in their potential. Thus
the adjacent pairs of cylinders have all the same capacity and
decrease in length by equal steps as their diameter increases.

In my paper on “The Application of a Theorem of Electro-
statics to Insulation Problems,” I called attention to a theorem
of electrostatics which is of much broader scope than that out-
lined by the first paper.* {(Mr. Fortescue then read an extract
from l;is paper referred to, followed by an extract from Maxwell's
work. :

Engineers would do well to give this paragraph careful con-
sideration, as it presents great possibilities in the design of

*A. I. E. E. Trans. 1913, Vol. XXXII, Part I, p. 907.
t 1904 Edition, Chapter VII, Art. 117.
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insulating structures. Among the most noteworthy of the appli-
cations of this principle are the suspension type insulator and
the condenser terminal. The principle of design of the latter
may be presented as follows: Consider a cylinder passing through
a zero potential plate whose thickness can be varied at will, and
let us suppose the two ends of the cylinder to have conductors
of a given form, for simplicity let us take infinite planes parallel
to the plate, at each end. We shall first consider the region
between the plates as having zero specific inductive capacity and
let us consider an imaginary field of uniform strength mapped
out in this region, conforming to that which would exist if the
cylinder were not present. In order to present a surface around
this cylinder having at all points the same potential as the as-
sumed field, the dielectric must have the following characteristics:

(1) Radially it must be a perfect dielectric;

(2) Axially, it must be a perfect conductor.

With a dielectric of these characteristics, the bounding sur-
face may be so formed that the equipotential surfaces of the same
value in the region between the rod and bounding surfaces will
coincide with those in the region between the two plates, external
to the dielectric. If the external region has a finite specific
inductive capacity there will be a displacement current necessary
in an axial direction from the external region into the dielectric
body. This will require a slight modification of the surface of
the dielectric to take care of this additional displacement, which
must eventually pass radially through the outer cylinders and
plate. It is, of course, impracticable to obtain such a dielectric,
although there are many ways in which it may be approximated,
one of them being the use of a system of coaxial conductors cy-
lindrically imbedded in the insulation. The external surfaces
should, of course, be infinite, but in most cases they extend far
enough to give satisfactory results. The dielectric surrounding
the rod is not uniformly stressed, nor is it desirable that it should
be; on the contrary the inner portion should be stressed more
lightly than the outer, as the heat set up by the dielectric losses
must be conducted out of the dielectric.

If the writer of the paper had made use of this theorem, he
would naturally have been led to design his dielectric and system
of conducting bodies so as to give the most favorable distribu-
tion in the external region, and he would have reached a different
conclusion.

Some tests were made a few years ago on glass rods between
plates by students at Worcester Polytechnic Institute, and, as
I recall them, these tests were quite satisfactory in establishing
the non-interference of the surface of high specific inductive
capacity material on the breakdown value between plates.

I have recently obtained excellent results with porcelain,
though not so good as with moulded or machined materials.
The less satisfactory results with this material seem to be due
to the irregular form of the contact surfaces between the con-
ductors and the dielectric.
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E. DeWitt Eby: With reference to the matter in the general
statement for an ideal bushing, I wish to comment, perhaps take
exception to Mr. Rice's statement, that in an ideal bushing all
of the dielectric is stressed uniformly with respect to its strength,
that is, that it will all begin to break down at the same time.
This would mean there would be little energy consumption up
to the time of rupture or breakdown. It would mean, second-
arily, that under impulse conditions the arc-over would be very
little different from that under low-frequency stresses. In
actual operation or in practise, the low-frequency stresses to
which the bushing is subjected are as a rule definitely related to
the operating potential, whereas the impulse or lightning stresses
are not necessarily related to the line potential, outside of their
limitation by line insulation. Therefore, it appears to me that
a better relation of the stresses would prevail, if instead of all
the insulation breaking down uniformly or at the same time, a
part of it should begin to break down, preferably so that it would
not destroy or damage the bushing. For instance, the surround-
ing air should break down earlier than the rest of the structure.
In that way energy consumption would take place which would
precede the total breakdown, and increase the ratio hetween
the impulse and the low-frequency arc-over.

I wish to emphasize, or add my approval, to the conditions
for the design of bushing which Mr. Rice sets forth, that it should
arc-over without puncture, at both low frequencies and impulses,
and that it should do this without damage to the insulation; also
that it should have a high wet arc-over with respect to its dry
arc-over value, and, repeating what I said, thatits impulse arc-
over should be high with respect to its low-frequency arc-over.

I think it was Mr. Mershon who made inquiry as to whether
any attempt had been made to control the performance of the
bushing under power conditions, that is, with power behind the
test circuit or the arc-over, and while not attempting to answer
his question, I will simply remark that I know of a number of
instances in which successful operation or performance of bushing
has prevailed during arc-over with power behind the arc, without
doing any damage to the bushing. I also know of one isolated
case where the bushing was damaged by the power arc.

I wish to call attention briefly to the effect of the specific
resistance of the testing water upon the wet arc-over voltage
of a bushing or insulator, a thing which apparently has been
overlooked a great deal in making rain or wet tests, and recording
the data. The specific resistance of the water has a very great
effect upon the wet arc-over voltage, so that, for instance, with
such water as Mr. Rice probably used in his tests, the arc-over
of the bushing was probably 75 per cent of the voltage it would
have been had water been used which was of a higher resistance,
suich as is available in most natural water systems, that is moun-
tain or reservoir water supplies. I assume that the tests which
Mr. Rice has made, were made with water having the resistance
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of about 4000 ohms per cu. cm., whereas a resistance of 15,000
ohms per cu. cm. would have increased the results about one-
third.

We are all aware of the effect of altitude upon the dry and wet
arc-over voltage of bushings, both at low frequency and under
impulse conditions, and these things have to be taken into ac-
count in the application of bushings in actual operation.

It is interesting also to know that there is a temperature effect,
and that this effect of temperature is of the order that one degree
centigrade difference in temperature is equivalent to about 100
ft. (30.4 m.) difference in altitude.

There is one other point I wish to bring to your attention, and
that is, that there should be a relation between the arc-over
voltage of the bushing and the voltage of the system fo which
it is applied. This can best be related to the protection of the
system, that is, to the lightning arrester gap settings, since if
the system is properly designed the bushing will have a high
impulse ratio. It is necessary to consider principally the low-
frequency arc over of the bushing, and this should be—theoretic-
ally anyway—at least twice the low-frequency arc-over of the
lightning arrester gap which protects the system. This is be-
cause, as we are all aware, a reflected wave which is lower than
the lightning arrester will discharge, will return with double its
initial value, and the bushing should not arc-over at that voltage.

It is interesting to note that the factor of safety which the
Institute has set down as a testing value for assembled apparatus
such as lightning arresters, switches, etc., seems to be prompted
by experience, so far as bushings are concerned; that is, that a
test value of two and one-quarter times the operating line voltage
gives satisfactory results in services, and very few arc-overs take
place at that voltage.

F. W. Peek, Jr.: I will give a physical conception or picture,
of the meaning of the dielectric flux diagrams in practise.

A bushing or insulator is made up of metal parts or electrodes,
oil, necessary supporting solid dielectric, and the air in which it
is immersed. When voltage is applied between electrodes,
stresses are caused in the solid insulation and the air. If these
stresses anywhere exceed the strength of the insulation, break-
down will occur. The strength of air is much less than porcelain.
A bushing requiring the minimum amount of material would be
one in which the stresses in the different insulations were uniform
and in proportion to the respective strengths of the dielectrics.
Such a bushing would break down everywhere at once. How-
ever, since the air part of the bushing automatically replaces
itself when it punctures or flashes over, it is best to make the
designs so that flash-over takes place before puncture of the
porcelain. As the air is the weakest dielectric, it plays a great
part in determining size. Mr. Rice’s diagrams are maps of the
stress everywhere -around the electrodes; the importance of
these diagrams in design is at once apparent.
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The strength of air is 54 kv. per in. If the full strength of the
air could be utilized, a bushing with a 500,000-volt arc-over
need not be over 9.5 in. long. There are a number of good rea-
sons why such bushings should, in practise, be perhaps six tlmes
that length:

(1) It is not practicable, and for certain reasons not desirable,
to design for an abso utely uniform field.

(2) Even if the bushing is designed for a uniform field, the
field is not uniform because of apparent conduction along the
surface of the solid insulation, which greatly lowers the arc-over
voltage. Mr. Rice’s views on this are confirmed by experiments
that I have made.* The effect takes place on clean porcelain
rubber, or glass, and is not appreciably reduced if the surfaces
are polished. I believe this 1s the reason why Mr. Fortescue
discovered very little difference in surface effect over the range
of surface condition that he investigated in his very interesting
and important paper of several years ago. The effect is greatly
reduced if the surfaces are oiled.

(8) The third reason that a bushing must be made long is that
it must be used out of doors in rain, snow, and dirt. Petticoats
must be used. Under such conditions a uniform distribution is
not for a moment possible. The designs must include all of
these practicable variables.

(4) When flash-over occurs, it is generally caused by lightning.
The bushing or insulator should be designed for a “lightning arc-
over voltage” much higher than the 60-cycle arc-over voltage,
just as the lightning arrester gap should be designed for a low
“lightning arc-over voltage. 7t Ihave seen apparatus designed
in just the opposite way.

You have seen in Mr. Rice’s paper many beautiful dlagrams
determined experimentally; mathematically, it is very difficult
to draw any but the simplest diagrams. The meaning of these
plots is, however, quite simple. They map out the stresses in the
space surrounding the electrodes.

Look at Fig. 9. There is a metal plane, and a rod perpendicu-
lar to the plane, passing through a hole in the center of it. You
will see certain lines starting at right angles from the plane,
and ending perpendicularly, on the central rod. These are the
lines of force. They are so drawn that the flux between any two
lines is the same. In other words, it means that the capacity
between any two lines is equal. You will see at right angles to
these lines another set of lines or curves; these represent the
equipotential surfaces. Each point of a given curve is at the
same potential. They are so drawn that the potential differences

* “Dielectric Phenomena in High-Voltage Engineering”, pp. 190 and
220-225.

t“ The Effect of Transient Voltages on Dielectrics.” F. W. Peek, Jr,
A. I. E. E., Trans., 1915, Vol. XXXIV, Part II, p. 1857.

“ Lightning”', F. W. Peek, Jr., G. E. Review, June, 1916,
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between any two adjacent equipotential surfaces is equal. For
instance, No. 1 starts at a plane at zero potential, and the next
line has a potential of 2, the next 3, and so on up to 51, which is
the potential of the rod. The potential difference between each
adjacent surface is one. The capacities of all of the little cells,
cut out by the lines of force and equipotential surfaces, are equal.
If the diagram is revolved about the rod as axis, these cells cut
out condensers of equal capacity in space. You will note that
the equipotential surfaces are crowded together in places. The
unit stress or gradient in volts per inch or per cm. at these points
is high, since the voltage differences between two adjacent sur-
faces is the same as it is where the lines are much farther apart.

It can be seen that these fields may be easily changed, not
only by changing the dielectric, but also by changing the metal
parts. Obviously, insulation strength may often be increased
by adding metal, and some times decreased by adding insulation.

Mr. Rice has been able to draw these wonderful diagrams by
the use of the analogy between the electric and dielectric circuits.
In the electric circuit there is voltage, and in the dielectric cir-
cuit voltage, in the dielectric circuit flux, in the electric circuit
current, in the dielectric circuit permittivity and in the electric
circuit conductivity, etc.

There is one point which Mr. Rice has made to which I wish
to call attention. Mr. Rice states: ‘‘It seems to me a great pity
that the mathematicians do not more frequently reduce their
results to a readily utilizable form, and whenever possible sketch
out, with examples, some of the applications which must occur
to them while working on the subject.” He also says: “An-
other difficulty, which I have frequently encountered, is the fact
that the writer assume too great a familiarity with existing
mathematical works on the part of his readers.” I wish heartily
to endorse these statements. Any one who has ever tried to use
some of the mathematical solutions, and has had to give up in
despair, because of the great time it required to puzzle out cer-
tain steps and the meaning of certain symbols, evenin cases where
the work is really quite simple, will appreciate this. It generally
requires very little extra work to define terms and symbols. I
think Mr. Rice has made a good example here of how mathemati-
cal work should be presented.

M. E. Tressler: Some very interesting and enlightening
individual tests made to determine the cause for certain results,
such as ‘‘the apparent decrease in disruptive voltage kilovolts
per cm. with the increasing thickness of insulation’; ‘“lowered
arc-over voltage between terminals along the junction point of
two dielectrics of different permittivity, in parallel’’; etc.

Mr. Rice draws the conclusion that if the dielectric in parallel
with the air is absolutely free from moisture and if perfect joints
are made between the dielectric and the terminal, that the
presence of insulation in parallel with air or oil in a uniform field
would not result in a breakdown lower than that of the weakest
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material; this conclusion may be correct, but part of the tests
would seem to prove that the dielectric strength of air was dif-
ferent when in contact with the test piece of solid dielectric and
depending on the properties of this dielectric, as was suggested
in the paper. For instance, the difference in arc-over voltage
between an oiled hard-rubber surface and an oiled glass surface,
Fig. 21, at 8 cm. spacing is 47 kv. In this particular case where
a good comparison can be made we should be justified in assum-
ing that the joint between the oiled glass and metal planes was
equally as good as the joint between the oiled hard rubber and
the metal planes, vet the arc-over voltage on the oiled hard rub-
ber at the same arcing distance was about 65 per cent higher
than on the oiled glass surface.

In examining the curves, Fig. 23, with grooved planes and com-
paring with those in Fig. 21, it will be noted that with the grooved
planes or electrostatically shielded joints the arc-over voltages
are much higher, but if the arc over occurs the full length of the
dielectric cylinders to the bottom of the grooves, the arcing dis-
tance is greater than the distance between planes by the depth
of the grooves, or if it occurs from the bend of the plane into the
groove the air must be broken down here first due to non-uni-
form field and consequently a condition is obtained similar to
the so-called joint effect.

One other reason for assuming that the introduction of a solid
dielectric into the uniform field in air causes a change in the di-
electric strength of air or else that the curves in Fig. 23 disprove
the assumption that the joint effect is eliminated by electrostatic
shielding of the ends of the solid dielectric, is that, if the arc-over
curves on oiled glass and dry glass 11, Fig. 23, are extrapolated a
very short distance they cross the curve for arc-over between
planes alone, indicating that arc-over voltage with the dielectric
inserted is greater than the air alone between the planes, which
is a result that would not be expected if the lowering of the arc-
over voltages below certain spacings is caused by the joint-effect
at the ends or moisture on the surface of the solid dielectric.

H. O. Stevens: The point I think we should all get in this
paper is the fact that we have brought before us here in fairly
simple mathematical manner a few fundamental principles.
We have an indefinitely extended wire passing through a hole in
an indefinitely extended plane. That is a fundamental theory
worked out beautifully. In other words, we have an ideal there
to work to. We can take that fundamental principle and add
certain things to it, which may improve the design and work
up a satisfactory bushing. Unfortunately, many of the so-called
practical engineers when they start out to attack a problem do
not have the time, or perhaps the proper mathematical and
physical knowledge of the subject to study the problem in this
manner, so the thing is done by a cut and try method. When
we are designing a bushing, we put a certain amount of insulation
on it, and bring it out through a transformer tank and the voltage
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is increased a little bit more, and we add more insulation, until
ultimately we get in trouble. Then some one like Mr. Rice takes
the problem and studies it, from a mathematical and scientific
standpoint, and while oftentimes the results obtained do not
correspond with what we would expect, yet as I said before, it
gives us an ideal to work to, and that is the point we want to
bear in mind in this paper. If we can work out the fundamental
mathematical conception of a given problem, although our theory
will not be strictly borne out in practise, yet if we apply to that
our mathematical knowledge, the solution of the problem is made
a great deal easier to us.

Sidney W. Farnsworth: Mr. Rice speaks very frankly of the
difficulties which he has met and brings vividly to mind the early
days of our work on this problem, in which we encountered similar
difficulties—we would work to get the bushing completed, and
then have it puncture on the inside and be obliged to tear it down,
and we would feel that the work of first construction had been so
difficult it would not warrant us in replacing it.

As engineers we are interested in the application we can make
of the information which is given by the author, and the last
speaker voiced, I think, the sentiments of those here—I would
say that as a result of our work we were able to embody the
principles in commercial apparatus and to save money for the
company, and also to extend the upper limit of voltage range.
Mr. Rice has worked at very low voltages, and perhaps it 1s-not
appreciated that the principles involved here permit of multiplica-
tion or expansion any number of times. For instance, if you
just multiply his dimensions by two, you should get just twice
the breakdown voltage, multiply by three, three times the break-
down voltage, etc. That is the principle upon which he has
worked. Therefore, he has not solved the problem simply for the
low voltages which are mentioned here, but for higher voltages
as well.

There is one striking example of the consideration of the
principles set forth in this paper, and those which we encounter
in our work, and that is of the addition on a high-voltage con-
denser terminal of the hat, so-called. We had a terminal for a
very high-voltage transformer which showed distress at some-
thing over 300,000 volts. It was equipped originally with a disk
of some 18 in. diameter, with a rim of perhaps 0.75in. (19 mm.)
radius and 1.5 in. (38.1 mm.) diameter. The distress occurred
on the terminal prior to distress anywhere else, and the terminal
itself probably represented an outlay of some $600 or $700, and
remembering the principles we encountered in the course of the
design of the transformer and the work connected therewith, we
had a wooden hat about six ft. (182.8 cm.) in diameter, and one
ft. (30.4 cm.) thick, as I recall it, made, the hat being covered
with tinfoil, and this was used as a temporary expedient. A
thing that cost perhaps $15 or $20 and made almost over night.
We put it on top of the terminal, and distress did not show in
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that terminal up to 571,000 volts; in other words, there had been
an increase of about 150,000 volts in the usefulness of that
terminal. By making a gain of 150,000 volts in this way we are
doing well. It seems to me that is how we should make use of
the principles which are so well set forth in this paper.

I would like to ask, why the charts were made with sheet metal
and with wires. In our work we made them with rods of appre-
ciable diameter and with sheets of appreciable thickness, with
rounded edges. Fig. 9, giving the equipotential surfaces, shows
only the location of the surfaces from 1 to about 30, up to about
24 with what an engineer would call a reasonable degree of ac-
curacy of ease of reading. Now, that is only about half of the
total number that should be there, that is, there is 50 volts be-
tween the rod and plate. I understand that having the plates
and rod conform to line 30, and the plate conform to line 2, that
the distribution of the field between the two does not change;
that is, the principle is the same. But suppose we did do that,
plates and rod conforming to line 30, and an irregular rod and
irregular shaped piece conforming to line 2, then we could put
that back into the path, and each of these do have the voltage
distribution between these two surfaces, the surfaces which we
intend to use, and in that way greatly increase the area of the
disruption.

Selby Haar: 1 wish to ask Mr. Rice if he made any tests on
his experimental insulators with high direct potentials?

B. A. Behrend: The parallel which exists between the electro-
static case, in which we are interested, and which Mr. Rice has
treated with such skill, and the hydrodynamic case, is well
known. The hydrodynamic case, so far as its consideration in
two dimensions is concerned, has been beautifully worked out
experimentally by Prof. Hele Shaw in some admirable papers
which were published in the Royal Society Transactions. Now,
then, in the latest work I have had an opportunity to consult in
connection with hydrodynamics, the treatment is limited to two-
dimensional problems altogether. I want to ask Mr. Rice, in
replying to the many statements that have been made here to-
night, to what extent a correct scientific solution has been given
for three-dimensional problems. Prof. Horace L.amb states that
three-dimensional cases have not been treated successfully, and a
similar statement is made by Sir George Greenhill. The treat-
ment of three-dimensional cases is, of course, fundamental in
connection with the treatment of the subject laid hefore us by
Mr. Rice. Itrustthat Mr. Rice, in his reply, will be kind enough
to comment on this phase of the subject, and tell us how far it
has been possible to obtain complete solutions of the three-
dimensional cases.

Joseph B. Morrill (communicated after adjournment): I
should like to discuss a few points that occurred to me in going
through Mr. Rice's excellent paper.

First, in connection with the introduction of the diametral
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planes on page 1001 one might wonder where these planes come
from and whether or not they are a new family. If, indeed,
this were a new family we would have the impossible condition
of four mutually orthogonal families, which our three-dimen-
sional space will not permit. I shall endeavor to show that
these planes are in reality a degeneration of the hyperboloids
of two sheets.

Referring to the middle of page 1000, we find the root that of
the cubic in the parameter, p, which gives us the hyperboloids of
two sheets, lies between — 8% and — a?. Let us assume that
the distance between —b* and — @? on the p = 0 axis is divided
up into m equal parts each of which has a value or length 2.
We may assign any positive value to m. Since the root which
gives us the hyperboloid of two sheets must lie between — b2
and — a? we can call this root

p=—a+np

where #n may have any positive value less than m. (It must be
positive for a > b). Substituting this value of p in the equation
X2 2 52 B

a2+p+ b+ p + c4+p

and remembering that ¢ > b > ¢, we have

1

%2 B 32 B 22 _ 1
np a-0—np ad—-cc—np
which is an hyperboloid of two sheets.
Since at?— bt =mp
we can rewrite the foregoing equation as follows:

2 2 2
X7 _ £ =1
np (m—n)p a—cE—np
Multiplying this equation through by p it becomes
%2 B 42 B p 2 B
n m—n a2—c2—np_p'

For the oblate spheriodal co-ordinates the z axis becomes an
axis of revolution and a2 becomes equal to 4% which is the same as
letting p approach zero. As p approaches zero, both m and n
remain finite for as a? and 5% come closer together we can still
continue to divide the distance into m parts, each part smaller
in the same ratio as the distance between ¢? and »* becomes
smaller. If p approaches zero our last equation becomes

x2 yZ

n m—n

Or y=:i:’\/mn_nx

=0
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which gives us the diametral planes of equation (22). Since m
and » are always positive and m > # the radical

:l:/\/m——n

n

can take any value and we may substitute » for it and obtain
y—vx =20

where ¥ may have any value.

The same method may be employed to show that the third
equation of (146) is a degenerate hyperboloid of one sheet.

A point in connection with the introduction of the thermo-
metric parameters «,  and 7y, occurs to me, which might pos-
sibly aid one who likes to have a picture of such a step in the
analysis. In introducing the parameter f, for instance, it is
assumed, and the assumption later justified analytically, that
the potential, under certain conditions is a function of u only.
The conditions under which this is true is later shown to be that
two of the hyperboloids be kept at definite potentials. Referring
to Fig. 10, it is seen that p is the intercept of the hyperboloids
on the X Y plane, that is, u determines the position of any
hyperboloid. From a graphical standpoint, then, it is justifiable
to assume that if two of the hyperboloids are maintained at a
definite potential, made equipotential surfaces, the potential
of the other hyperboloids will depend only on their position with
respect to these two, in other words, tha t V is a function of ponly.

On page 1028 in solving the problem of the infinite rod through
the hole in an infinite plane, the three following equations are
given:

% o2V o2V
St = (, PE% = 0, and > =0

the 1ast one being equation (115) and is solved. One might well
wonder why the other two equations are not solved if they are
true equations. Of course the first two equations are nof true

. . . . oV
for, if V is neither a function of «a, nor <, how can >a °F
2V . . 5
57 be equal to zero unless it were purely an accident?

Equation (115) is the natural consequence of equation (114) for
neither the first nor the third term of (114) can have a meaning
if we assume that V is a function of 8 only. Is not this point
similar to the following case in algebra? If we have the equation
10 X = 0, we know that X = 0 and do not have to make the
untrue statement that 10 = 1 in order to get it. I believe this
same mis-statement is made in Professor Byerly's, ‘“‘Fouriers
Series and Spherical Harmonics,”” to which Mr. Rice refers.
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The two problems which Mr. Rice has solved by Laplace’s
equation in spheroidal coordinates can only be checked by experi-
ment, as is done in his paper, and then only approximately, due
to the impossibility of using either an infinite rod or an infinite
plane. It might be interesting to work a simple problem using
Laplace’s equation in this form which could be checked by some
other method. One such problem obviously is to calculate the
electrostatic capacity of an isolated thin circular disk. Such a
disk is obtained by allowing the oblate spheroids to degenerate
into a circular disk of radius ¢ (see Fig. 9). The oblate spheroids
will be equipotential surfaces and the tubes of lux will be bounded
by the hyperboloids of one sheet and the diametral planes.
Under these conditions the potential V is a function of « only
and equation (1156) becomes

4

cos? & S = 0
and since this must be true for all values of «, we have
eV _
0
Solving this differential equation we obtain
' V=Aa+C

To evaluate the two constants of integration, 4 and C, we shall
let the disk have a potential of ¥, and since the disk is isolated,
V=0 at infinity. We have therefore the two boundary con-
ditions, -

V=Vy,whena =0and V = Owhen o = —~.

2
Substituting these conditions in the last equation we obtain
V=T, (1 - H) :
T
The electrostatic flux, g, is given by the equation,
ff —_ d Moy d n3
The potential gradient is
a4V __2Ve da __2V, da 4\
dny T dn, T d\ dny '

which is obtained by differentiating the equation for potential
given above with respect to the normal, #;.
Since
N = cseca,
do c .
—_— Lquation 76
X YA (Equation 7b)
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From equation (47) and equation (656) we get

aX =} ___.._____\/}‘2—62
dnl_ 1= \/)\2_M2
LAY _ 2V
T dm T ANV g2

From equation (48) and equation (67) we obtain

_dp _ V=g
dne = G- = Ve OH

and from equation (49) and equation (69)

dv _ Au

hs c(1+v2)dy

dn3=

Substituting these values for —2—: , d ny and d n; in the equa-
1

tion for ¢ we obtain,

2V, ududy
T A+ ) V-2

q) =
v=tan2 = p=c
_ 4V, dv wdu
T 1422 N ___pfz
v=tan0 2 =0

(Pactor 2is introduced to get flux above and below X ¥ plane.)

47V v=tan2 & r=c
= u [arctanv] [—\/62—-[1.2]
™ v =tan u=0
=8 VQC
Since =47

where ( is the total charge on the disk,
47 Q=8 Vs

or

O _ 2¢ _ Capacity of disk.

Vo ™

This is the well known value for the capacity of an isolated
circular disk of radius ¢ and can be checked by other methods,
for instance, see Berg’'s ‘Electrical Engineering, Advance
Course” page 201.
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Lastly, in connection with the integration for the tubes of flow
where the integration for » is neglected, would it not be more
exact to say that the spacing obtained is for any diametral plane
and hence independent of v? That is, the last paragraph on
page 1039 shoul dread “and since v, may have any value we may,
neglect it as far as the spacing on any diametral plane is con-
cerned”’; and the paragraph in the middle of page 1051 should
read, “As far as the spacing of the surfaces of flow on any dia-
metral plane is concerned we may........... ”

Chester W. Rice: Major Mershon has asked what effect
power arcs will have on bushings. I am sorry to say that I
have never witnessed such tests but suppose that they will blow
the bushings up, as they do almost everything else when they
get started.

Mr. Taylor was interested to know why we did not introduce
bad distortion into the diagrams by moving the pointer around
in our electrolyte, as you would in an electrostatic problem if
you tried to obtain the potential distribution by moving the
pointer around in space. The beauty of the thing is that we
have substituted an electric current for the electrostatic flux.
This has two very important advantages, in the first place, we
can insulate all but the end of our exploring pointer from the
current whereas, there is no insulator for the electrostatic flux,
in the second place, we substitute a large conduction current for
a small displacement current which allows us to use a reasonable
amount of power for operating our instrument without fear of
distorting the field. Of course, the insulated pointer does dis-
place a slight amount of liquid and therefore introduces a slight
distortion. A method of eliminating this error is pictured in
Fig. 5. The energy required to operate a quadrant electrometer
is so small compared with the energy flowing through the circuit
that distortion due to this cause is considered entirely negligible.

Prof. Gray asked about using the photographic method for
three-dimensional problems. I think photographic methods and
all of the allied methods, such as little fine particles of glass-wool
or mica dust, are well adapted to show the general system of
flow lines. I have made some experiments with little glass rods
obtained by grinding up glass-wool, and in that way obtained a
general picture through any plane, of the desired three-dimen-
sional figure. A very considerable assistance is obtained by
this method where one wishes to apply the cut and try method
of obtaining a diagram for an electrostatic problem as it gives
you something to start guessing with.

Mr. Fortescue has made a correction of the arc-over value of
his bushing, which indicates that no surface effect exists in the
material which he has used. He gets an arc-over of approx-
imately 207 kilovolts effective, and the calculated arc-over, if
my assumptions as to the size and general structure of his test
piece are correct, comes out at 205 kilovolts effective. There
is therefore no room left for surface effect if his tests are correct.
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He also mentioned some further data which have apparently
convinced him that there is no such thing as surface effect. For
my part, I am confident that there is a large effect of this nature.
The difference in opinion shows that further study of this
phenomenon is very desirable.

I have never been able to see any very direct bearing between
the calculations on the condenser bushing and the bushings as
built. In the first place, the calculations assume that the bush-
ing has very large hats on the top and bottom ends (infinite
planes); in the second place, the structure is assumed to be
symmetrical about the cover of the tank. Neither of these
conditions is even approximated to in the bushings of this type
which I have seen.

Mr. Farnsworth has asked why the charts were made using
thin sheet metal to form the electrodes. This was done in the
first place to facilitate the construction and in the second place
to make the boundary conditions as simple as possible, so that in
case a mathematical solution some day becomes possible the
diagrams may be used as a check.

Mr. Haar has asked whether I have made any high-voltage
direct-current tests. No, I am sorry to say that I have not had
the opportunity.

Mr. Behrend has brought up the question of three-dimen-
sional hydrodynamic problems. If we assume an incompressible
and inviscid fluid, the electrodynamic method is of course avail-
able for obtaining the solution of any desired problem in hydro-
dynamics. For example; if we wish to obtain the solution of a
torpedo shaped body at rest in an infinite current of fluid, all
we have to do is to immerse a non-conducting torpedo shaped
body in our tank between large parallel plane electrodes and
investigate the potential distribution in the usual manner.
This, of course, is also the solution of the analagous electrostatic
problem, namely, a torpedo shaped body of zero permittivity in
a uniform electrostatic field.

The solution of the type of problem, where a body is moving
through a stationary perfect fluid can also be solved by this
method. Taking the case of a sphere we could obtain the de-
sired solution by immersing two pointed electrodes at close
proximity in the tank and exploring the field in the usual manner.
This would result in the well known solution of a sphere moving
through an infinite stationary fluid. Of course it is understood
that the solution of these problems does not give very interesting
data for the naval constructor because actual fluids exert ap-
preciable forces due to viscosity and radiation of compressional
waves. A sphere set in motion in a stationary fluid would move
on forever at the same speed also a stationary sphere having
mass would remain at rest in a uniform stream of perfect fluid.
In the ideal fluid theory all bodies are streamline bodies and
eddys are non-existent.

Mr. J. B. Morrill’s discussion has added some very interesting
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material, which I believe will be greatly appreciated by all those
engineers and students who have occasion to study this subject.
I believe that his analysis which shows that the diametral planes
can be considered as a degeneration of the hyperboloids of two
sheets is new and very illuminating. He is also entirely correct
in pointing out the incorrectness of setting

&V &V
daz =0 iy =0

as a method of indicating that they are meaningless for the case
under consideration and therefore may be struck out of the
equation. I think that this slip is often made and therefore it
is very well to draw attention to its incorrectness.

The solution of the limiting oblate spheroid is a very appro-
priate addition.

I am greatly indebted to Mr. Morrill for pointing out by letter
an inconsistency in my original equations used in deducing
Laplace’s equation (pages 1006-1014). On getting into the matter,
I found that the trouble arose from considering the top area of
the infinitesimal volume equal to the bottom area whereas it
is necessary to consider the rate of change of the bottom area
as we go towards the top along the normal.

I have therefore taken the liberty of making this correction
for publication in the Transactions.

I am further indebted to Mr. Morrill for the corrections of
many typographical errors to which he has so kindly drawn my
attention.



