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Abstract

We present an experimental study of the single source short-

est path problem with non-negative edge weights (NSSP) on

large-scale graphs using the ∆-stepping parallel algorithm.

We report performance results on the Cray MTA-2, a mul-

tithreaded parallel computer. The MTA-2 is a high-end

shared memory system offering two unique features that

aid the efficient parallel implementation of irregular algo-

rithms: the ability to exploit fine-grained parallelism, and

low-overhead synchronization primitives. Our implementa-

tion exhibits remarkable parallel speedup when compared

with competitive sequential algorithms, for low-diameter

sparse graphs. For instance, ∆-stepping on a directed scale-

free graph of 100 million vertices and 1 billion edges takes

less than ten seconds on 40 processors of the MTA-2, with a

relative speedup of close to 30. To our knowledge, these are

the first performance results of a shortest path problem on

realistic graph instances in the order of billions of vertices

and edges.

1 Introduction

We present an experimental study of the ∆-stepping
parallel algorithm [49] for solving the single source
shortest path problem on large-scale graph instances.
In addition to applications in combinatorial optimiza-
tion problems, shortest path algorithms are finding in-
creasing relevance in the domain of complex network
analysis. Popular graph theoretic analysis metrics such
as betweenness centrality [25, 9, 39, 41, 32] are based
on shortest path algorithms. Our parallel implemen-
tation targets graph families that are representative of
real-world, large-scale networks [7, 22, 12, 51, 50]. Real-
world graphs are typically characterized by a low di-
ameter, heavy-tailed degree distributions modeled by
power laws, and self-similarity. They are often very
large, with the number of vertices and edges ranging
from several hundreds of thousands to billions. On cur-
rent workstations, it is not possible to do exact in-core
computations on these graphs due to the limited phys-
ical memory. In such cases, parallel computing tech-
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niques can be applied to obtain exact solutions for mem-
ory and compute-intensive graph problems quickly. For
instance, recent experimental studies on Breadth-First
Search for large-scale graphs show that a parallel in-core
implementation is two orders of magnitude faster than
an optimized external memory implementation [5, 2].
In this paper, we present an efficient parallel implemen-
tation for the single source shortest paths problem that
can handle scale-free instances in the order of billions of
edges. In addition, we conduct an experimental study of
performance on several other graph families, also used
in the 9th DIMACS Implementation Challenge [17] on
Shortest Paths. Please refer to our technical report [43]
for additional performance details.

Sequential algorithms for the single source shortest
path problem with non-negative edge weights (NSSP)
are studied extensively, both theoretically [20, 18, 23,
24, 54, 56, 33, 30, 46] and experimentally [19, 28, 27,
15, 59, 29]. Let m and n denote the number of edges
and vertices in the graph respectively. Nearly all NSSP
algorithms are based on the classical Dijkstra’s [20] algo-
rithm. Using Fibonacci heaps [23], Dijkstra’s algorithm
can be implemented in O(m + n log n) time. Thorup
[56] presents an O(m + n) RAM algorithm for undi-
rected graphs that differs significantly different from Di-
jkstra’s approach. Instead of visiting vertices in the or-
der of increasing distance, it traverses a component tree.
Meyer [47] and Goldberg [29] propose simple algorithms
with linear average time for uniformly distributed edge
weights.

Parallel algorithms for solving NSSP are reviewed
in detail by Meyer and Sanders [46, 49]. There are no
known PRAM algorithms that run in sub-linear time
and O(m + n log n) work. Parallel priority queues [21,
11] for implementing Dijkstra’s algorithm have been de-
veloped, but these linear work algorithms have a worst-
case time bound of Ω(n), as they only perform edge
relaxations in parallel. Several matrix-multiplication
based algorithms [34, 26], proposed for the parallel All-
Pairs Shortest Paths (APSP), involve running time and
efficiency trade-offs. Parallel approximate NSSP algo-
rithms [40, 16, 55] based on the randomized Breadth-
First search algorithm of Ullman and Yannakakis [58]



run in sub-linear time. However, it is not known how
to use the Ullman-Yannakakis randomized approach for
exact NSSP computations in sub-linear time.

Meyer and Sanders give the ∆-stepping [49] NSSP
algorithm that divides Dijkstra’s algorithm into a num-
ber of phases, each of which can be executed in par-
allel. For random graphs with uniformly distributed
edge weights, this algorithm runs in sub-linear time with
linear average case work. Several theoretical improve-
ments [48, 44, 45] are given for ∆-stepping (for instance,
finding shortcut edges, adaptive bucket-splitting), but
it is unlikely that they would be faster than the simple
∆-stepping algorithm in practice, as the improvements
involve sophisticated data structures that are hard to
implement efficiently. On a random d-regular graph in-
stance (219 vertices and d = 3), Meyer and Sanders
report a speedup of 9.2 on 16 processors of an Intel
Paragon machine, for a distributed memory implemen-
tation of the simple ∆-stepping algorithm. For the same
graph family, we are able to solve problems three or-
ders of magnitude larger with near-linear speedup on
the Cray MTA-2. For instance, we achieve a speedup of
14.82 on 16 processors and 29.75 on 40 processors for a
random d-regular graph of size 229 vertices and d set to
3.

The literature contains few experimental studies on
parallel NSSP algorithms [35, 52, 37, 57]. Prior im-
plementation results on distributed memory machines
resorted to graph partitioning [14, 1, 31], and running a
sequential NSSP algorithm on the sub-graph. Heuristics
are used for load balancing and termination detection
[36, 38]. The implementations perform well for certain
graph families and problem sizes, but in the worst case,
there is no speedup.

Implementations of PRAM graph algorithms for ar-
bitrary sparse graphs are typically memory intensive,
and the memory accesses are fine-grained and highly ir-
regular. This often leads to poor performance on cache-
based systems. On distributed memory clusters, few
parallel graph algorithms outperform the best sequen-
tial implementations due to long memory latencies and
high synchronization costs [4, 3]. Parallel shared mem-
ory systems are a more supportive platform. They offer
higher memory bandwidth and lower latency than clus-
ters, and the global shared memory greatly improves
developer productivity. However, parallelism is depen-
dent on the cache performance of the algorithm [53] and
scalability is limited in most cases.

We present our shortest path implementation re-
sults on the Cray MTA-2, a massively multithreaded
parallel machine. The MTA-2 is a high-end shared
memory system offering two unique features that aid
considerably in the design of irregular algorithms: fine-

grained parallelism and low-overhead word-level syn-
chronization. The MTA-2 has no data cache; rather
than using a memory hierarchy to reduce latency, the
MTA-2 processors use hardware multithreading to tol-
erate the latency. The word-level synchronization sup-
port complements multithreading and makes perfor-
mance primarily a function of parallelism. Since graph
algorithms have an abundance of parallelism, yet often
are not amenable to partitioning, the MTA-2 architec-
tural features lead to superior performance and scalabil-
ity. Our recent results highlight the exceptional perfor-
mance of the MTA-2 for implementations of key com-
binatorial optimization and graph theoretic problems
such as list ranking [3], connected components [3, 8],
subgraph isomorphism [8], Breadth-First Search and st -
connectivity [5].

The main contributions of this paper are as follows:

• An experimental study of solving the single-source

shortest paths problem in parallel using the ∆-

stepping algorithm. Prior studies have predomi-
nantly focused on running sequential NSSP algo-
rithms on graph families that can be easily parti-
tioned, whereas we also consider several arbitrary,
sparse graph instances. We also analyze perfor-
mance using machine-independent algorithmic op-
eration counts.

• Demonstration of the power of massive multithread-

ing for graph algorithms on highly unstructured in-

stances. We achieve impressive performance on
low-diameter random and scale-free graphs.

• Solving NSSP for large-scale realistic graph in-

stances in the order of billions of edges. ∆-stepping
on a synthetic directed scale-free graph of 100 mil-
lion vertices and 1 billion edges takes 9.73 seconds
on 40 processors of the MTA-2, with a relative
speedup of approximately 31. These are the first
results that we are aware of, for solving instances
of this scale and also achieving near-linear speedup.
Also, the sequential performance of our implemen-
tation is comparable to competitive NSSP imple-
mentations.

2 Review of the ∆-stepping Algorithm

Let G = (V, E) be a graph with n vertices and m
edges. Let s ∈ V denote the source vertex. Each
edge e ∈ E is assigned a non-negative real weight
by the length function l : E → R. Define the
weight of a path as the sum of the weights of its edges.
The single source shortest paths problem with non-
negative edge weights (NSSP) computes δ(v), the weight
of the shortest (minimum-weighted) path from s to v.



δ(v) =∞ if v is unreachable from s. We set δ(s) = 0.
Most shortest path algorithms maintain a tentative

distance value for each vertex, which are updated by
edge relaxations. Let d(v) denote the tentative distance
of a vertex v. d(v) is initially set to ∞, and is an upper
bound on δ(v). Relaxing an edge 〈v, w〉 ∈ E sets d(w)
to the minimum of d(w) and d(v) + l(v, w). Based on
the manner in which the tentative distance values are
updated, most shortest path algorithms can be classified
into two types: label-setting or label-correcting. Label-
setting algorithms (for instance, Dijkstra’s algorithm)
perform relaxations only from settled (d(v) = δ(v))
vertices, and compute the shortest path from s to all
vertices in exactly m edge relaxations. Based on the
values of d(v) and δ(v), at each iteration of a shortest
path algorithm, vertices can be classified into unreached

(d(v) =∞), queued (d(v) is finite, but v is not settled)
or settled. Label-correcting algorithms (e.g., Bellman-
Ford) relax edges from unsettled vertices also, and may
perform more than m relaxations. Also, all vertices
remain in a queued state until the final step of the
algorithm. ∆-stepping belongs to the label-correcting
type of shortest path algorithms.

The ∆-stepping algorithm (see Alg. 1) is an “ap-
proximate bucket implementation of Dijkstra’s algo-
rithm” [49]. It maintains an array of buckets B such
that B[i] stores the set of vertices {v ∈ V : v is queued
and d(v) ∈ [i∆, (i + 1)∆)}. ∆ is a positive real number
that denotes the “bucket width”.

In each phase of the algorithm (the inner while loop
in Alg. 1, lines 9–14, when bucket B[i] is not empty), all
vertices are removed from the current bucket, added to
the set S, and light edges (l(e) ≤ ∆, e ∈ E) adjacent to
these vertices are relaxed (see Alg. 2). This may result
in new vertices being added to the current bucket, which
are deleted in the next phase. It is also possible that
vertices previously deleted from the current bucket may
be reinserted, if their tentative distance is improved.
Heavy edges (l(e) > ∆, e ∈ E) are not relaxed in
a phase, as they result in tentative values outside the
current bucket. Once the current bucket remains empty
after relaxations, all heavy edges out of the vertices
in S are relaxed at once (lines 15–17 in Alg. 1). The
algorithm continues until all the buckets are empty.

Observe that edge relaxations in each phase can
be done in parallel, as long as individual tentative
distance values are updated atomically. The number
of phases bounds the parallel running time, and the
number of reinsertions (insertions of vertices previously
deleted) and rerelaxations (relaxation of their out-going
edges) costs an overhead over Dijkstra’s algorithm. The
performance of the algorithm also depends on the value
of the bucket-width ∆. For ∆ = ∞, the algorithm is

Algorithm 1: ∆-stepping algorithm

Input: G(V, E), source vertex s, length func-
tion l : E → R

Output: δ(v), v ∈ V , the weight of the shortest
path from s to v

1 foreach v ∈ V do

2 heavy(v) ←− {〈v, w〉 ∈ E : l(v, w) > ∆};
3 light(v) ←− {〈v, w〉 ∈ E : l(v, w) ≤ ∆};
4 d(v)←−∞;

5 relax(s, 0);
6 i←− 0;
7 while B is not empty do

8 S ←− φ;
9 while B[i] 6= φ do

10 Req ←− {(w, d(v) + l(v, w)) : v ∈ B[i] ∧
〈v, w〉 ∈ light(v)};

11 S ←− S ∪B[i];
12 B[i]←− φ;
13 foreach (v, x) ∈ Req do

14 relax(v, x);

15 Req ←− {(w, d(v) + l(v, w)) : v ∈ S ∧
〈v, w〉 ∈ heavy(v)};

16 foreach (v, x) ∈ Req do

17 relax(v, x);

18 i←− i + 1;

19 foreach v ∈ V do

20 δ(v)←− d(v);

Algorithm 2: The relax routine in the ∆-stepping
algorithm

Input: v, weight request x

Output: Assignment of v to appropriate
bucket

1 if x < d(v) then

2 B [⌊d(v)/∆⌋]← B [⌊d(v)/∆⌋] \{v};
3 B [⌊x/∆⌋]← B [⌊x/∆⌋] ∪ {v};
4 d(v)← x;



similar to the Bellman-Ford algorithm. It has a high
degree of parallelism, but is inefficient compared to
Dijkstra’s algorithm. ∆-stepping tries to find a good
compromise between the number of parallel phases and
the number of re-insertions. Theoretical bounds on the
number of phases and re-insertions, and the average case
analysis of the parallel algorithm are presented in [49].
We summarize the salient results.

Let dc denote the maximum shortest path weight,
and P∆ denote the set of paths with weight at most
∆. Define a parameter lmax, an upper bound on the
maximum number of edges in any path in P∆. The
following results hold true for any graph family.

• The number of buckets in B is ⌈dc/∆⌉.

• The total number of reinsertions is bounded by
|P∆|, and the total number of rerelaxations is
bounded by |P2∆|.

• The number of phases is bounded by dc

∆
lmax, i.e.,

no bucket is expanded more than lmax times.

For graph families with random edge weights and
a maximum degree of d, Meyer and Sanders [49] theo-
retically prove that ∆ = θ(1/d) is a good compromise
between work efficiency and parallelism. The sequen-
tial algorithm performs O(dn) expected work divided
between O(dc

∆
· log n

log log n
) phases with high probability .

In practice, in case of graph families for which dc is
O(log n) or O(1), the parallel implementation of ∆-
stepping yields sufficient parallelism for our parallel sys-
tem.

3 Parallel Implementation of ∆-stepping

The bucket array B is the primary data structure used
by the parallel ∆-stepping algorithm. We implement
individual buckets as dynamic arrays that can be re-
sized when needed and iterated over easily. To support
constant time insertions and deletions, we maintain two
auxiliary arrays of size n: a mapping of the vertex ID
to its current bucket, and a mapping from the vertex ID
to the position of the vertex in the current bucket (see
Fig. 1 for an illustration). All new vertices are added to
the end of the array, and deletions of vertices are done
by setting the corresponding locations in the bucket and
the mapping arrays to −1. Note that once bucket i is
finally empty after a light edge relaxation phase, there
will be no more insertions into the bucket in subsequent
phases. Thus, the memory can be reused once we are
done relaxing the light edges in the current bucket. Also
observe that all the insertions are done in the relax rou-
tine, which is called once in each phase, and once for
relaxing the heavy edges.

We implement a timed pre-processing step to semi-

sort the edges based on the value of ∆. All the light
edges adjacent to a vertex are identified in parallel
and stored in contiguous virtual locations, and so we
visit only light edges in a phase. The O(n) work pre-
processing step scales well in parallel on the MTA-2.

We also support fast parallel insertions into the
request set R. R stores 〈v, x〉 pairs, where v ∈ V and
x is the requested tentative distance for v. We add a
vertex v to R only if it satisfies the condition x < d(v).
We do not store duplicates in R. We use a sparse
set representation similar to one used by Briggs and
Torczon [10] for storing vertices in R. This sparse data
structure uses two arrays of size n: a dense array that
contiguously stores the elements of the set, and a sparse

array that indicates whether the vertex is a member
of the set. Thus, it is easy to iterate over the request
set, and membership queries and insertions are constant
time. Unlike other Dijkstra-based algorithms, we do not
relax edges in one step. Instead, we inspect adjacencies
(light edges) in each phase, construct a request set of
vertices, and then relax vertices in the relax step.

All vertices in the request set R are relaxed in
parallel in the relax routine. In this step, we first delete
a vertex from the old bucket, and then insert it into the
new bucket. Instead of performing individual insertions,
we first determine the expansion factor of each bucket,
expand the buckets, and add then all vertices into their
new buckets in one step. Since there are no duplicates
in the request set, no synchronization is involved for
updating the tentative distance values.

To saturate the MTA-2 processors with work and to
obtain high system utilization, we need to minimize the
number of phases and non-empty buckets, and maximize
the request set sizes. Entering and exiting a parallel
phase involves a negligible running time overhead in
practice. However, if the number of phases is O(n),
this overhead dominates the actual running time of
the implementation. Also, we enter the relax routine
once every phase. The number of implicit barrier
synchronizations in the algorithm is proportional to the
number of phases. Our implementation reduces the
number of barriers. Our source code for the ∆-stepping
implementation, along with the MTA-2 graph generator
ports, is freely available online [42].

4 Experimental Setup

4.1 Platforms We report parallel performance re-
sults on a 40-processor Cray MTA-2 system with 160
GB uniform shared memory. Each processor has a clock
speed of 220 MHz and support for 128 hardware threads.
The ∆-stepping code is written in C with MTA-2 spe-
cific pragmas and directives for parallelization. We com-



Figure 1: Bucket array and auxiliary data structures

pile it using the MTA-2 C compiler (Cray Programming
Environment (PE) 2.0.3) with -O3 and -par flags.

The MTA-2 code also compiles and runs on sequen-
tial processors without any modifications. Our test plat-
form for the sequential performance results is one pro-
cessor of a dual-core 3.2 GHz 64-bit Intel Xeon machine
with 6GB memory, 1MB cache and running RedHat En-
terprise Linux 4 (linux kernel 2.6.9). We compare the
sequential performance of our implementation with the
DIMACS reference solver [17]. Both the codes are com-
piled with the Intel C compiler (icc) Version 9.0, with
the flags -O3.

4.2 Problem Instances We evaluate sequential and
parallel performance on several graph families. Some of
the generators and graph instances are part of the DI-
MACS Shortest Path Implementation Challenge bench-
mark package [17]:

• Random graphs : Random graphs are generated by
first constructing a Hamiltonian cycle, and then
adding m − n edges to the graph at random. The
generator may produce parallel edges as well as
self-loops. We define the random graph family
Random4-n such that n is varied, m

n
= 4, and the

edge weights are chosen from a uniform random
distribution.

• Grid graphs : This synthetic generator produces
two-dimensional meshes with grid dimensions x
and y. Long-n (x = n

16
, y = 16) and Square-n

grid (x = y =
√

n) families are defined, similar to
random graphs.

• Road graphs : Road graph families with transit time
(USA-road-t) and distance (USA-road-d) as the
length function.

In addition, we also study the following families:

• Scale-free graphs : We use the R-MAT graph model
[13] for real-world networks to generate scale-free
graphs. We define the family ScaleFree4-n similar
to random graphs.

• Log-uniform weight distribution: The above graph
generators assume randomly distributed edge
weights. We report results for an additional log-

uniform distribution also. The generated integer
edge weights are of the form 2i, where i is chosen
from the uniform random distribution [1, log C] (C
denotes the maximum integer edge weight). We
define Random4logUnif-n and ScaleFree4logUnif-n

families for this weight distribution.

4.3 Methodology For sequential runs, we report the
execution time of the reference DIMACS NSSP solver
(an efficient implementation of Goldberg’s algorithm
[30], which has expected-case linear time for some in-
puts) and the baseline Breadth-First Search (BFS) on
every graph family. The BFS running time is a natural
lower bound for NSSP codes and is a good indicator of
how optimized the shortest path implementations are.
It is reasonable to directly compare the execution times
of the reference code and our implementation: both use
a similar adjacency array representation for the graph,
are written in C, and compiled and run in identical ex-
perimental settings. Note that our implementation is
optimized for the MTA-2 and we make no modifications
to the code before running on a sequential machine. The
time taken for semi-sorting and mechanisms to reduce
memory contention on the MTA-2 both constitute over-
head on a sequential processor. Also, our implementa-
tion assumes real-weighted edges, and we cannot use
fast bitwise operations. By default, we set the value of
∆ to n

m
for all graph instances. We will show that this

choice of ∆ may not be optimal for all graph classes and
weight distributions.

On a sequential processor, we execute the BFS and



shortest path codes on all the core graph families, for
the recommended problem sizes. However, for parallel
runs, we only report results for sufficiently large graph
instances in case of the synthetic graph families. We
parallelize the synthetic core graph generators and port
them to run on the MTA-2.

Our implementations accept both directed and
undirected graphs. For all the synthetic graph in-
stances, we report execution times on directed graphs in
this paper. The road networks are undirected graphs.
We also assume the edge weights to be distributed in
[0, 1] in the ∆-stepping implementation. So we have a
pre-processing step to scale the integer edge weights in
the core problem families to the interval [0, 1], dividing
the integer weights by the maximum edge weight.

On the MTA-2, we compare our implementation
running time with the execution time of a multithreaded
level-synchronized breadth-first search [6], optimized for
low-diameter graphs. The multithreaded BFS scales as
well as ∆-stepping for all the graph instances consid-
ered, and the execution time serves as a lower bound
for the shortest path running time.

The first run on the MTA-2 is usually slower than
subsequent ones (by about 10% for a typical ∆-stepping
run). So we report the average running time for 10
successive runs. We run the code from three randomly
chosen source vertices and average the running time.
We found that using three sources consistently gave
us execution time results with little variation on both
the MTA-2 and the reference sequential platform. We
tabulate the sequential and parallel performance metrics
in [43], and report execution time in seconds.

5 Results and Analysis

5.1 Sequential Performance First we present the
performance results of our implementation on the ref-
erence sequential platform, experimenting with various
graph families. Fig. 2 compares the execution time
across graph instances of the same size, but from dif-
ferent families. The DIMACS reference code is about
1.5 to 2 times faster than our implementation for large
problem instances in each family. The running time
on the Random4-n is slightly higher than the rest of
the families. For additional details such as performance
as we vary the problem size for BFS, ∆-stepping, and
the DIMACS implementation execution times, please
refer to Section B.1 of [43]. Our key observation is that
the ratio of the ∆-stepping execution time to the BFS
time varies between 3 and 10 across different problem
instances.

5.2 ∆-stepping analysis To better understand the
algorithm performance across graph families, we use
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Figure 2: Sequential performance of our ∆-stepping
implementation on the core graph families. All the
synthetic graphs are directed, with 220 vertices and m

n
≈

4. FLA(d) and FLA(t) are road networks corresponding
to Florida, with 1070376 vertices and 2712768 edges

machine-independent algorithm operation counts. The
parallel performance is dependent on the value of ∆,
the number of phases, the size of the request set in each
phase. Fig. 3 plots the size of the light request set in
each phase, for different graph families. By default, ∆
is set to 0.25 for all runs. If the request set size is
less than 10, it is not plotted. Consider the random
graph family (Fig. 3(a)). It executes in 84 phases, and
the request set sizes vary from 0 to 27,000. Observe
the recurring pattern of three bars stacked together in
the plot. This indicates that all the light edges in a
bucket are relaxed in roughly three phases, and the
bucket then becomes empty. The size of the relax set is
relatively high for several phases, which provides scope
for exploiting multithreaded parallelism. The relax set
sizes of a similar problem instance from the Long grid
family (Fig. 3(b)) stands in stark contrast to that of
the random graph. It takes about 200,000 phases to
execute, and the maximum request size is only 15. Both
of these values indicate that our implementation would
fare poorly on long grid graphs (e.g. meshes with a
very high aspect ratio). On square grids (Fig. 3(c)), ∆-
stepping takes fewer phases, and the request set sizes
go up to 500. For a road network instance (NE USA-
road-d, Fig. 3(d)), the algorithm takes 23,000 phases to
execute, and only a few phases (about 30) have request
sets greater than 1000 in size.

Fig. 4 plots several key ∆-stepping operation counts
for various graph classes. All synthetic graphs are
roughly of the same size. Fig. 4(a) plots the average



(a) Random4-n family, n = 220. (b) Long-n family, n = 220.

(c) Square-n family, n = 220. (d) USA-road-d family, Northeast USA (NE). n = 1524452, m =
3897634.

Figure 3: ∆-stepping algorithm: Size of the light request set at the end of each phase, for the core graph families.
Request set sizes less than 10 are not plotted.



shortest path weight for various graph classes. Scale-
free and Long grid graphs are on the two extremes.
A log-uniform edge weight distribution also results in
low average edge weight. The number of phases (see
Fig. 4(b)) is highest for Long grid graphs. The number
of buckets shows a similar trend as the average shortest
path weight. Fig. 4(d) plots the total number of
insertions for each graph family. The number of vertices
is 220 for all graph families (slightly higher for the road
network), and so ∆-stepping results in roughly 20%
overhead in insertions for all the graph families with
random edge weights. Note the number of insertions
for graphs with log-uniform weight distributions. ∆-
stepping performs a significant amount of excess work
for these families, because the value of ∆ is quite high
for this particular distribution.

We next evaluate the performance of the algorithm
as ∆ is varied (tables in Section B.2). Fig. 5 plots
the execution time of various graph instances on a
sequential machine, and one processor of the MTA-
2. ∆ is varied from 0.1 to 10 in each case. We find
that the absolute running times on a 3.2 GHz Xeon
processor and the MTA-2 are comparable for random,
square grid and road network instances. However, on
long grid graphs (Fig. 5(b)), the MTA-2 execution time
is two orders of magnitude greater than the sequential
time. The number of phases and the total number of
relaxations vary as ∆ is varied (See Section B.2 in [43]).
On the MTA-2, the running time is not only dependent
on the work done, but also on the number of phases and
the average number of relax requests in a phase. For
instance, in the case of long grids (see Fig. 5(b), with
execution time plotted on a log scale), the running time
decreases significantly as the value of ∆ is decreased, as
the number of phases reduce. On a sequential processor,
however, the running time is only dependent on the
work done (number of insertions). If the value of ∆
is greater than the average shortest path weight, we
perform excess work and the running time noticeably
increases (observe the execution time for ∆ = 5, 10 on
the random graph and the road network). The optimal
value of ∆ (and the execution time on the MTA-2) is
also dependent on the number of processors. For a
particular ∆, it may be possible to saturate a single
processor of the MTA-2 with the right balance of work
and phases. The execution time on a 40-processor run
may not be minimal with this value of ∆.

5.3 Parallel Performance We present the parallel
scaling of the ∆-stepping algorithm in detail. We
ran ∆-stepping and the level-synchronous parallel BFS
on all graph instances described in Section 4.2 (see
[43] for complete tabular results from all experiments).

We define the speedup on p processors of the MTA-
2 as the ratio of the execution time on 1 processor
to the execution time on p processors. In all graph
classes except long grids, there is sufficient parallelism to
saturate a single processor of the MTA-2 for reasonably
large problem instances.

As expected, ∆-stepping performs best for low-
diameter random and scale-free graphs with randomly
distributed edge weights (see Fig. 6(a) and 6(b)). We
achieve a speedup of approximately 31 on 40 processors
for a directed random graph of nearly a billion edges,
and the ratio of the BFS and ∆-stepping execution time
is a constant factor (about 3-5) throughout. The imple-
mentation performs equally well for scale-free graphs,
that are more difficult for partitioning-based parallel
computing models to handle due to the irregular degree
distribution. The execution time on 40 processors of the
MTA-2 for the scale-free graph instance is within 9% (a
difference of less than one second) of the running time
for a random graph and the speedup is approximately
30 on 40 processors. We have already shown that the
execution time for smaller graph instances on a sequen-
tial machine is comparable to the DIMACS reference
implementation, a competitive NSSP algorithm. Thus,
achieving a speedup of 30 for a realistic scale-free graph
instance of one billion edges (Fig. 6(b)) is a substan-
tial result. To our knowledge, these are the first results
to demonstrate near-linear speedup for such large-scale
unstructured graph instances.

In case of all the graph families, the relative speedup
increases as the problem size is increased (for e.g., on 40
processors, the speedup for a Random4-n instance with
n = 221 is just 3.96, whereas it is 31.04 for 228 vertices).
This is because there is insufficient parallelism in a
problem instance of size 221 to saturate 40 processors
of the MTA-2. As the problem size increases, the ratio
of ∆-stepping execution time to multithreaded BFS
running time decreases. On an average, ∆-stepping is 5
times slower than BFS for this graph family.

For random graphs with a log-uniform weight dis-
tribution, ∆ set to n

m
results in a significant amount of

additional work. The ∆-stepping to BFS ratio is typi-
cally 40 in this case, about 8 times higher than the cor-
responding ratio for random graphs with random edge
weights. However, the execution time scales well with
the number of processors for large problem sizes.

In case of Long-n graphs and ∆ set to n

m
, there is

insufficient parallelism to fully utilize even a single pro-
cessor of the MTA-2. The execution time of the level-
synchronous BFS also does not scale with the number
of processors. In fact, the running time goes up in case
of multiprocessor runs, as the parallelization overhead
becomes significant. Note that the execution time on a



(a) Average shortest path weight ( 1

n
∗
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v∈V
δ(v)) (b) No. of phases

(c) Last non-empty bucket (d) Number of relax requests

Figure 4: ∆-stepping algorithm performance statistics for various graph classes. All synthetic graph instances
have n set to 220 and m ≈ 4n. Rand-rnd: Random graph with random edge weights, Rand-logU: Random graphs
with log-uniform edge weights, Scale-free: Scale-free graph with random edge weights, Lgrid: Long grid, SqGrid:
Square grid, USA NE: 1524452 vertices, 3897634 edges. Plots (a), (b), (c) are on a log scale, while (d) uses a
linear scale.



(a) Random4-n family. 220 vertices (b) Long-n family. 220 vertices

(c) Square-n family. 220 vertices (d) USA-road-d family, Florida (FLA). 1070376 vertices, 2712798
edges

Figure 5: A comparison of the execution time on the reference sequential platform and a single MTA-2 processor,
as the bucket-width ∆ is varied.



(a) (b)

Figure 6: ∆-stepping execution time and relative speedup on the MTA-2 for Random4-n (left) and ScaleFree4-n
(right) graph instances (directed graph, n=228 vertices and m = 4n edges, random edge weights).

single processor of the MTA-2 is two orders of magni-
tude slower than the reference sequential processor. In
case of square grid graphs, there is sufficient parallelism
to utilize up to 4 processors for a graph instance of 224

vertices. For all smaller instances, the running time
does not scale for multiprocessor runs. The ratio of the
running time to BFS is about 5 in this case, and the
∆-stepping MTA-2 single processor time is comparable
to the sequential reference platform running time for
smaller instances. For the road networks, we note that
the execution time does not scale well with the number
of processors, as the problem instances are quite small.
We observe better performance (lower execution time,
better speedup) on USA-road-d graphs than on USA-
road-t graphs.

6 Conclusions and Future Work

In this paper, we present an efficient implementation
of the parallel ∆-stepping NSSP algorithm along with
an experimental evaluation. We study the perfor-
mance for several graph families on the Cray MTA-2,
and observe that our implementation execution time
scales very well with number of processors for low-
diameter sparse graphs. Few prior implementations
achieve parallel speedup for NSSP, whereas we attain
near-linear speedup for several large-scale low-diameter
graph families. We also analyze the performance using
platform-independent ∆-stepping algorithm operation
counts such as the number of phases and the request set

sizes to explain performance across graph instances.
We intend to further study the dependence of the

bucket-width ∆ on the parallel performance of the

algorithm. For high diameter graphs, there is a trade-off
between the number of phases and the amount of work
done (proportional to the number of bucket insertions).
The execution time is dependent on the value of ∆ as
well as the number of processors. We need to reduce
the number of phases for parallel runs and increase
the system utilization by choosing an appropriate value
of ∆. Our parallel performance studies have been
restricted to the Cray MTA-2 in this paper. We
have designed and have a preliminary implementation
of ∆-stepping for multi-core processors and symmetric
multiprocessors (SMPs), and for future work we will
analyze its performance.
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