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Abstract

This paper describes an experimental study of a proxy
service to support collaboration among mobile users.
Specifically, the paper addresses the problem of reliably
multicasting web resources across wireless local area net-
works, whose loss characteristics can be highly variable.
The software architecture of the proxy service is described,
followed by results of a performance study conducted on a
mobile computing testbed. The main contribution of the pa-
per is to show that an adaptive forward error correction
mechanism, which adjusts the level of redundancy in re-
sponse to packet loss behavior, can quickly accommodate
worsening channel characteristics in order to reduce delay
and increase throughput for reliable multicast channels.

1. Introduction

The large-scale deployment of wireless communication
services and advances in portable computers are quickly
making “anytime, anywhere” computing into a reality. One
class of applications that can benefit from this expand-
ing and varied infrastructure is collaborative computing.
Examples include computer-supported cooperative work,
computer-based instruction, collaborative scientific experi-
mentation, and crisis management systems. A diverse in-
frastructure enables individuals to collaborate via widely
disparate technologies, some using workstations on high-
speed local area networks (LANs), and others using wire-
less handheld/wearable devices.

Collaborative applications differ widely in their quality-
of-service requirements and, given their synchronous na-

�
This work was supported in part by the NSF grants CCR-9503838,

CDA-9617310, NCR-9706285, and CCR-9912407.�
This work was conducted while the author was a graduate student at

Michigan State University.

ture, they are particularly sensitive to the heterogeneous
characteristics of the computing devices and the network
connections used by participants. One approach to accom-
modating heterogeneity is to introduce a layer of middle-
ware between applications and underlying transport ser-
vices. The appropriate middleware framework not only can
help to hide differences among networks and computing de-
vices, but can facilitate the development of new applications
through software reuse and domain-specific extensibility.

Towards this end, we have developed Pavilion [11],
an object-oriented middleware framework for collaborative
web-based applications. Pavilion enables a developer to
construct new applications by inheriting and extending its
default functionality. In a follow-on project, we are creat-
ing RAPIDware, a design methodology that enables mid-
dleware components to dynamically respond to disparities
among participating hosts and changing conditions on their
network connections.

One technology that is likely to play an important role in
this area is the wireless LAN, which can provide network
access to mobile users with handheld, laptop, and wearable
computing devices. Usually, such a network is installed as
an extension to an existing wired LAN. We refer to such a
configuration as a heterogeneous LAN. While many future
collaborative applications will involve mobile users inter-
connected by cellular services, other applications will in-
volve users (the entire group or a subset thereof) in a local
environment, such as a school, office, factory, or hospital. In
such settings, a multicast-capable local infrastructure, such
as a heterogeneous LAN, may be less expensive and offer
higher bandwidth than cellular services.

Extending collaborative applications to wireless hosts
calls for redesign of communication services in order to
accommodate the relatively high loss rates and generally
lower bit rates of such environments. Many approaches to
solving this problem involve the use of proxies [2,3], which
represent wireless receivers to the rest of the wired network.



In this paper, we describe an experimental study in the use
of proxy services to support collaboration across heteroge-
neous LANs. Specifically, we address the issue of reliably
multicasting web resources to users in such environments.

The main contributions of this work are threefold. First,
we show how object-oriented proxy services can be con-
structed from existing protocols and processing compo-
nents. Second, we demonstrate the effect of proxy-based
flow control on reliable multicast receivers in heterogeneous
LANs, specifically, that the use of multiple instances of
the protocol in the proxy hides the effects of slow wire-
less receivers on faster wired receivers. Third, and the
primary focus of the paper, we describe an adaptive for-
ward error correction (FEC) mechanism, which adjusts
the level of redundancy in response to channel loss be-
havior. Our results complement those of Rizzo [15] and
Towsley [13] by providing experimental results demonstrat-
ing that a proxy-based, adaptive FEC generator can quickly
accommodate dynamic channel characteristics in order to
reduce delay and increase throughput. We focus on block
erasure codes [8,15], due to their ability to correct uncorre-
lated packet losses among multiple mobile receivers.

The remainder of the paper is organized as follows. In
Section 2, we provide background information on the Pavil-
ion and RAPIDware projects. Section 3 discusses the rel-
evant issues in reliable multicasting in wireless LANs and
motivates the use of a proxy server. Section 4 describes how
FEC is integrated into the proxy, and Section 5 presents the
details of the adaptive FEC protocol and evaluates its per-
formance. In Section 6 we review related research projects,
and in Section 7 we summarize the results and discuss fu-
ture directions. Due to space limitations, many details of
the project are omitted in this paper, but may be found in a
companion technical report [12].

2. Pavilion and RAPIDware Projects

Pavilion [11] is a framework that supports synchronous
web-based collaboration. As with similar frameworks,
Pavilion can be used in a default mode, in which it oper-
ates as a collaborative web browser [9]. Moreover, Pavil-
ion enables a developer to construct new collaborative ap-
plications by reusing and extending existing components:
interfaces to commercial web browsers, a suite of commu-
nication protocols, a leadership protocol for session floor
control, and a variety of proxy servers that manipulate data
streams enroute to participating applications. The Pavilion
framework itself is written in Java, but supports components
written in other languages, including off-the-shelf software
such as Netscape Navigator, Internet Explorer, and virtu-
ally any helper application for displaying a particular media
type.

Pavilion makes use of local proxies, which execute on

the client’s host, as well as remote proxies, which execute
on other systems accessible to the client. Local proxies are
typically used to enhance application functionality and usu-
ally require access to client system resources, such as the
hard disk. Remote proxies are commonly used to enhance
performance by tailoring data streams to match the capabil-
ities of the client platform or network connection.

We have used both types of proxies in Pavilion-based ap-
plications. For example, Pocket Pavilion [10] enables multi-
media collaboration among users of Windows CE handheld
computers. A remote proxy, comprising existing Pavilion
components and a set of plug-ins, is used to reduce the pro-
cessing load on the handheld computers and accommodate
the limitations of the Windows CE environment. In addi-
tion, we have developed VGuide [1,11], a collaborative vir-
tual reality application that enables a user to select a VRML
(Virtual Reality Modeling Language) file from the Internet
and lead a group of users through that “world.” This task re-
quires monitoring the position and orientation of the leader
and multicasting it to the clients. VGuide uses plug-ins on
both local and remote proxies to enable synchronous navi-
gation and to avoid overwhelming slow receivers.

RAPIDware extends Pavilion by automating the instanti-
ation and reconfiguration of middleware components, such
as proxies, in order to accommodate resource-limited hosts
and dynamic network conditions. Figure 1 depicts a sim-
ple example; adaptive components operate as plug-ins that
extend the functionality of existing components, both on
the local hosts and on remote proxies. Some plug-ins (ob-
servers) monitor the system for conditions that potentially
affect the operation or performance of the application. Ex-
amples include changes in the quality of a network connec-
tion, disparities among participating devices, and changes
in user/application preferences or policies. Other plug-ins
(responders) are programmed to handle such events by in-
stantiating new components or modifying the behavior of a
communication protocol.

In this paper, we investigate proxy-based adaptability as
applied to a key service needed in mobile collaboration,
namely, reliable multicasting in wireless environments. The
project uses and extends the Web-Based Reliable Multicast
(WBRM) protocol [9], which is used by Pavilion to dis-
tribute web resources and control information to participat-
ing systems. WBRM is an application-level protocol that
implements reliability atop IP multicast. Pavilion-based ap-
plications use the protocol to deliver web resources effi-
ciently from the leader of a session to rest of the partici-
pants. Like many reliable multicast protocols [4, 16], the
WBRM protocol is a receiver-initiated, or NAK-based, pro-
tocol. A receiver notifies the sender only when it misses a
packet, with packets identified by sequence numbers. Both
the sending and receiving components of the protocol com-
prise a set of Java threads and data structures. Flow control
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Figure 1. Configuration of RAPIDware adaptive middleware components.

in WBRM is extensible and user configurable. The default
method is rate-based and is similar to that of the RAMP
protocol [7]: the delay between packets is a function of the
ratio of the total number of packets sent during an interval
to the number of NAKs received during the same interval.
Additional details of the operation and performance of the
WBRM protocol can be found in [9, 11].

3. Need for Reliable Multicast Proxies

Our prior work with the WBRM protocol has concen-
trated primarily on wired network environments. Extend-
ing a reliable multicast service to accommodate wireless
LANs must address three main characteristics of such net-
works: highly dynamic channel loss rates, the behavior of
the 802.11 CSMA/CA MAC layer (unlike unicast frames,
no link-level acknowledgements for multicast frames), and
the effect of a shared channel on reverse traffic such as
NAKs and flow control requests. Figure 2(a) plots sam-
ple results illustrating the relationship between signal-to-
noise ratio (SNR) and packet loss rate on one of the wire-
less LANs in our laboratory testbed. The network is a Lu-
cent WaveLAN network, which uses direct sequence spread
spectrum signaling and has a raw bit rate of 2 Mbps. (We
have recently added an 11 Mbps Aironet wireless LAN to
the testbed, but our testing on that network is not yet com-
plete.) We collected these data using a laptop computer
equipped with a WaveLAN interface card; measurements
for SNR and packet loss rate were recorded at various lo-
cations within range of the WaveLAN access point. The
results demonstrate the highly variable loss rate that can oc-
cur in such environments, and the SNR values quickly drop
below the level of 20 dB.

However, even near the access point, the performance
of reliable multicasting can suffer due to other factors. For
example, Figure 2(b) shows the results of a set of experi-
ments using the WBRM protocol to reach multiple wireless
receivers, all located inside our laboratory, where the SNR
value is high. In these tests, we artificially fixed the inter-
packet delay values used in WBRM’s rate-based flow con-
trol method. While the protocol can achieve a throughput of
approximately 1.6 Mbps on the 2 Mbps link, the value drops
dramatically when the sending rate is too high, apparently
due to buffer overflow at the wireless access point. Such be-
havior affects not only reliable multicasting, but other group
operations, such as leader election and floor control.

The bandwidth differential problem can be addressed by
inserting a proxy between the wireless nodes and the rest of
the wired network, as shown in Figure 3. The proxy node
plays the role of both a reliable multicast receiver, with re-
spect to the original wired sender, and a reliable multicast
sender, with respect to the wireless nodes. Executing two
instances of the WBRM protocol, one for the wireless re-
ceivers and the other for the wired receivers and proxies, en-
ables the flow control algorithm to tune itself independently
to match the characteristics of each network segment.

By buffering data for delivery on the slower channels, the
proxy enables the receivers with fast connections to make
better use of that capacity. Moreover, using a proxy can im-
prove (slightly) the performance for the wireless receivers,
since NAKs and retransmissions are exchanged between the
receiver and the proxy, instead of between the receiver and
the original sender. Figure 4 shows the results of a set
of experiments that we conducted in our laboratory. Fig-
ure 4(a) plots throughput results when the proxy service is
turned off; the performance of wired nodes degrades to that
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Figure 2. Experimental measurements of wireless LAN performance
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Figure 3. Proxy configuration for nodes on a wireless LAN.

of the wireless nodes (1.5 Mbps). In contrast, Figure 4(b)
plots throughput results when the proxy service is turned
on; the wired nodes achieve approximately 40 Mbps, while
the wireless nodes achieve 1.6 Mbps.

While buffering and flow control are necessary to accom-
modate the lower bit rates of wireless channels, they do not
directly address the potentially higher packet loss rates. In
order to do so, we experimented with forward error correc-
tion techniques to determine which specific methods and
parameter settings might best serve collaborative applica-
tions when executed, partially or wholly, on heterogeneous
LANs. Our approach is discussed in the next two sections.

4. Proxy-Based Forward Error Correction

Forward error correction is the sending of redundant
information with a data stream, enabling the receiver to
correct errors/losses without contacting the sender. Since

CRC-based error detection at the data link layer typically re-
sults in the removal of the corrupt packet(s) from the stream,
many FEC-based protocols target erasures [15]. An ( ���

�
)

block erasure code converts
�

source packets into � en-
coded packets, such that any

�
of the � encoded packets

can be used to reconstruct the
�

source packets [8]. A code
is systematic if the first

�
of the � encoded packets are iden-

tical to the
�

source packets. In this work, we use only sys-
tematic ( ���

�
) codes. We refer to the first

�
packets as data

packets, and the remaining ���
�

packets as parity packets.
Each set of � encoded packets is referred to as a group.

The advantage of using block erasure codes for reliable
multicast is that a single parity packet can be used to correct
independent single-packet losses among different receivers.
Hence, sending parity packets with data packets reduces
the number of NAKs sent by receivers. Moreover, when
receivers do require additional parity packets, the sender
can respond to NAKs from different receivers with a sin-
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Figure 4. Effect of a proxy server on reliable multicast throughput.

gle set of parity packets. Recently, Rizzo [14] studied the
feasibility of software encoding/decoding for packet-level
FEC, using a particular block erasure code called the Van-
dermonde code. Depending on the values of

�
and � �

�
,

Rizzo showed that this code can be efficiently executed on
many common microprocessors. Recently, several reliable
multicast protocols have been designed to incorporate FEC,
for example [5, 6, 13, 15]. Most use a combination of FEC
and ARQ (Automatic Retransmission reQuest), in that some
parity packets initially are sent with the data packets, and
additional parity packets are sent as needed in response to
NAKs from receivers; see Section 6.

Figure 5 shows the components that constitute the FEC
proxy. Several components are reused directly from the
original WBRM protocol; plug-ins and associated data
structures are shaded. The WBRM Receiver is directly
reused from the WBRM protocol. It receives multicast
data packets over the wired network and delivers a reliable
output stream of these packets to the Packet Buffer. The
remaining components implement the sending half of the
Wireless WBRM (W-WBRM) protocol. The FEC Group
Filter collects the data packets into FEC data blocks of size
�

and places them in the Dispatcher Queue. The FEC En-
coder is a plug-in that monitors the Dispatcher Queue; when
it detects that a group of

�
packets is full, it invokes the en-

coding routines and produces the ���
�

parity packets. The
Packet Dispatcher is reused from WBRM and simply uses
IP multicast to transmit packets in the Dispatcher Queue.
If a receiver detects that it has lost more data packets than
the number of parity packets it has received, then it informs
the proxy by sending a NAK message. Based on received
NAKs, the NAK Processor signals the dispatcher to send ad-
ditional parity packets. Most of the proxy components are
written in Java and comprise one or more threads. The lone
exception is the FEC Encoder, for which we used Rizzo’s

public domain C code [15]. With minor modifications, we
compiled this code to a native library and invoked it from
our Java proxy code using the Java Native Interface.
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Figure 5. Operation of FEC proxy.

For a given group, after sending the
�

data packets, the
W-WBRM protocol could continue and send all � �

�
par-

ity packets. However, in most situations not all of these
packets will be needed, and their transmission will consume
bandwidth unnecessarily. While we could require each re-
ceiver to send back positive information when it has re-
ceived enough parity packets for each group, this solution
is inconsistent with the NAK-based nature of the protocol
and would require the proxy to maintain per-receiver state
information. Instead, we chose a compromise solution that
uses forward error correction to reduce feedback from wire-
less receivers, while attempting to minimize transmission
of unneeded parity packets. We introduce a proactive pa-
rameter, � , which represents the level of redundancy in the
transmissions of data and parity packets. For each group of
� encoded packets, the proxy immediately sends

������� �	�
packets (actually, it sends 
 ������� ����
 packets; we ignore
this technicality in the remaining discussion). Any receiver



that loses fewer than � � of these packets can recover from
the losses, while a receiver that loses more than � � packets
will send a NAK to the proxy requesting additional parity
packets. The NAK format includes fields to identify � , the
packet group, and � , the number of packets required to re-
construct the original

�
data packets in group � .

We emphasize that � is applied to all transmissions, in-
cluding transmission of requested parity packets. Hence,
in response to a NAK, the NAK Processor makes avail-
able to the dispatcher � ����� �	� additional parity packets
for transmission. Our early experiments showed that mul-
tiple NAK rounds, resulting from the loss of parity pack-
ets sent in response to a NAK, can be very detrimental to
performance. At present, the W-WBRM protocol does not
implement global NAK suppression [4] among wireless re-
ceivers, but rather uses the proactive transmission of parity
packets to “suppress” NAKs. However, the NAK Processor
does implement parity packet suppression to avoid unnec-
essary transmission of parity packets, by comparing the �
values in NAKs, for a given packet group, that are received
within a specified window of time.

The main challenge for the W-WBRM protocol is to
reduce the amount of feedback traffic from receivers in
the form of NAKs while maintaining reliability and band-
width efficiency. The proactive parameter, � , helps re-
duce NAK traffic by sending parity packets for anticipated
losses. However, sending too many parity packets immedi-
ately may waste bandwidth in low-loss situations. Clearly,
the value of � depends on the dynamic loss characteristics
of the wireless channel at the receivers. To study the effect
of different � values on the performance of the protocol for
different loss rates, we conducted a set of tests; a sampling
of the results is shown in Figure 6. The plots show the re-
sults for reliably multicasting to three wireless laptop re-
ceivers under loss rates of 5% and 10%. In order to control
the error rate, we emulated random packet losses on the all
hosts (we discuss experimental loss conditions later). An
FEC packet size of

�������
bytes was used to transfer a 4 MB

file to wireless receivers. The FEC parameters
�
���
� � were�����

�
	 � � , that is, 40 parity packets are computed for each
group of 20 data packets.

These plots demonstrate two important results about the
throughput for the wireless receivers. First, as expected, the
ideal value for � varies with network conditions. Specif-
ically, the � value at which throughput is maximized in-
creases with the packet loss rate. Therefore, the W-WBRM
protocol should update the value of � in response to chang-
ing loss rates among receivers. Second, all of the curves
follow a similar pattern: a relatively steep ascent just be-
fore the optimal value, and a gradual descent beyond this
value. This behavior suggests that sending more parity
packets than necessary is better than relying on feedback
in the form of NAKs from receivers. However, sending too

many unnecessary parity packets will eventually cause sig-
nificant decrease in throughput.

5. Design and Evaluation of Adaptive FEC

Given the observations of the previous section, we modi-
fied the W-WBRM protocol at the proxy so that the value of� is dynamically adjusted to accommodate loss conditions.
As shown in Figure 5, a plug-in to the NAK Processor called
the Packet Loss Monitor collects information on NAKs and
forwards it to the Adaptive FEC Control (AFC) plug-in,
which adjusts the value of the � by setting ��� � � ��
 ��� .
The value of ��
 ��� depends on the actual error rate and can-
not be determined a priori. We take a conservative approach
and use the formula

� ��
 ��������� ��� � � , where � is a small
integer (specific values are discussed below), since our pre-
vious experimental results indicate that it is less costly to
overestimate � than to underestimate it. To avoid having �
remain unnecessarily high, we periodically reduce its value
using a function, ����� � , if no NAKs have arrived at the proxy
in a window of W groups. In the experiments discussed be-
low, we used both a linear and an exponential function for����� � . Eventually, � becomes low enough that the receivers
produce one or more NAKs. At this point, � is again in-
creased by an amount relative to the number of requested
packets, and the process repeats. Considering a stream of
web resources being multicasted to the wireless receivers,
our goal is to keep the the number of packets transmitted
“hovering” slightly above the number actually needed to de-
code the data packets.

We conducted a set of tests to evaluate the behavior of
the resulting adaptive FEC protocol. We focused primar-
ily on the parameters ��
 ��� and � . Figure 7 shows a sam-
pling of the results, in which we sent a 4MB file twice via
the proxy to a single wireless receiver; the packet size is
1400 bytes and the packet loss rate in all cases is 20 per-
cent. The FEC parameters are again

�����
�
	 � � and as before,

losses are emulated by dropping packets randomly. Each
plot contains three curves that illustrate the behavior of the
protocol as the experiment progresses. The Required Parity
curve shows, for each group in the file, the total number of
parity packets needed by the receiver to decode the source
packets of the group. The Proactive Packets curve plots, for
each group, the total number of parity packets proactively
sent by the proxy. The NAK Response curve in the graph
shows the total number of parity packets actually sent by the
proxy in response to (all) NAKs from the receiver for each
group. Whenever the number of proactive packets is less
than the required parity packets for the group (indicated by
the spikes in NAK Response curve), feedback is received in
the form of a NAK and the proactive parameter � is bumped
to a higher value.

Clearly, the values of parameters � and � directly af-
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Figure 6. Throughput results with static proactive rates.

0

5

10

15

20

25

30

35

0 21 42 63 84 10
5

12
6

14
7

16
9

19
0

21
1

23
2

25
3

27
4

29
5

Group�Number

N
um

be
r�

of
�P

ac
ke

ts

Proactive�Packets
NAK�Response
Required�Parity

(a) ��� ����� � �
	���
���� ��� groups

0

5

10

15

20

25

30

35

0 21 42 63 84 10
5

12
6

14
7

16
9

19
0

21
1

23
2

25
3

27
4

29
5

Group�Number

N
um

be
r�

of
�P

ac
ke

ts

Proactive�Packets
NAK�Response
Required�Parity

(b) ��� ������� �
	���
���� ��� groups

0

5

10

15

20

25

30

35

0 20 40 60 80 10
0

12
0

14
0

16
1

18
1

20
1

22
1

24
1

26
1

28
1

Group�Number

N
um

be
r�o

f�P
ac

ke
ts

Proactive�Packets
NAK�Response
Required�Parity

(c) � � ��� ��� �
	���
���� ����� groups

0

5

10

15

20

25

30

35

0 24 48 72 96 12
0

14
4

16
9

19
3

21
7

24
1

26
5

28
9

Group�Number

N
um

be
r�o

f�P
ac

ke
ts

Proactive�Packets
NAK�Response
Required�Parity

(d) � � ��� ��� �
	���
���� ����� groups

Figure 7. Adaptive FEC behavior for single receiver, varying parameters � and � .

fect the NAK behavior of the protocol. When � � 	 (that
is, � 
 ��� � 	 � ��� � ), as shown in Figure 7(a), the proac-
tive rate � is increased in response to a NAK, but the re-
ceivers often require additional parity packets in subsequent

groups, producing many NAKs. Increasing � to 3 im-
proves the situation, as shown in Figure 7(b), but with the
window � � � groups, the � decreases too quickly, pro-
ducing many situations in which additional parity packets



must be sent in response to NAKs. By increasing the win-
dow size to 10, as shown in Figures 7(c) and 7(d), the proto-
col limits this behavior. As shown in Figure 7(c), however,
if the value of � is too large (4 in this case), the protocol
risks transmitting too many unneeded parity packets. In the
remainder of the experiments reported here, we set � � � .

Figure 8 plots the resulting throughput when using adap-
tive FEC in the W-WBRM protocol, compared to the origi-
nal WBRM protocol (no FEC) and W-WBRM with static
FEC. The data stream is multicast to three wireless lap-
top computers under different (emulated) packet loss con-
ditions: 5%, 10%, and 20%. In these tests, � � � and
the FEC parameters are

��� �
�
	 � � . The value of ����� � is set

to
�

�
� 	 and � � � �

, so � will decrease by 0.02 every 10
groups (in the absence of NAKs). The adaptive protocol
improves throughput by a factor of 2 for all situations in-
volving packet loss.
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Figure 8. Performance of adaptive FEC protocol
(three laptop receivers).

In addition to random packet losses, we also consider
burst errors, which have been shown to be common in wire-
less LANs. Figure 9(a) shows an example of this behavior:
we measured the loss rate on a laptop receiver during a short
“excursion” outside our laboratory, in which we multicasted
a 4MB file repeatedly. The packet loss behavior shown in
Figure 9(a), as well as that in the other subfigures, exhibits
a bifurcation between (1) relatively large burst errors and
(2) random single-packet losses. For such environments, it
might be desirable for the ����� � function to decrease faster
than linear. Figures 9(b-d) show results for the W-WBRM
protocol when executed in our testbed with real (not emu-
lated) packet losses. Three laptop receivers were involved;
two remained in our lab, and one was carried by a user who
traversed a nearby hallway. In Figure 9(b) we used a linear� ��� � function, as in earlier tests. While the proactive par-
ity packets handle most of the losses, the overhead is quite
large. In Figure 9(c) we changed ����� � so that � decreases

exponentially. In this case, the protocol correctly predicts
several large losses and handles them. However, the lower
bound on � is 0, and many single-packet losses produce
NAKs. In Figure 9(d) we use the same exponential func-
tion, but require that the protocol always send at least one
proactive packet. In this case, the NAK feedback is signifi-
cantly reduced.

In summary, we have conducted an experimental study
(using both emulated packet losses and real packet losses)
of proxy-based FEC for reliable multicasting. Our results
show that different loss distributions (e.g., random losses
vs. burst errors) require different logic, and hence different
plug-in components for inserting FEC packets into the data
stream. For both random and burst errors, the value of �
must increase quickly in response to losses. However, for
burst errors it is also important that the value of � decreases
quickly, at least to some lower threshold. Our ongoing stud-
ies explore alternative functions for � 
 ��� and ����� � and their
effects on performance.

6. Related Work

The Pavilion/RAPIDware projects complement stud-
ies in several areas; comparisons with other group-
ware/middleware frameworks can be found in [11, 12]. In
this section, we confine our discussion to the relationship
between the W-WBRM protocol and other FEC-oriented re-
liable multicast protocols.

Rizzo’s work on efficient implementations of erasure
codes [14] is an important contribution that has affected the
design of multicast protocols for lossy environments. The
resulting public-domain source files have been used in many
research projects, including this one. The RMDP protocol
proposed by Rizzo and Vicisano [15] is an FEC-based re-
liable multicast protocol to be used over the MBone and
wireless mobile networks with asymmetric communication
channels. RMDP is a hybrid FEC+ARQ protocol that uses
several operating parameters set according to the type of
network. One such parameter,

�
, the expansion factor,

is the rate at which parity packets are sent unconditionally
with the data packets. The protocol uses global NAK sup-
pression by multicasting NAKs and staggering their trans-
mission randomly, as in SRM [4]. The � parameter in the
W-WBRM protocol is similar to

�
in RMDP, except that

we apply � to all transmissions, including sets of of par-
ity packets sent in response to NAKs. Rizzo and Vicisano
provide a detailed analysis of the parameter

�
, pointing

out that the appropriate value depends on the loss rate and
showing that values of

�
between 1.5 and 2.0 make the

probability of NAKs very low. Apparently,
�

is fixed for
a given environment, but the authors do discuss adaptabil-
ity in terms of changing the value of � at the encoder. By
allowing the parameter � to adapt to loss conditions, the W-
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Figure 9. Experimental results for W-WBRM in mobile testbed, where errors are bursty.

WBRM protocol quickly tunes the level of redundancy to
match the needs of receivers.

Nonnenmacher et al. [13] present an extensive analysis
of the relative merits of using an integrated FEC+ARQ pro-
tocol, compared to using a separate FEC layer beneath an
ARQ-based protocol. The authors describe an integrated
FEC-based multicast protocol, NP, for multicast data de-
livery in the Internet. The NP protocol tries to keep the
number of packets transmitted to a minimum at the expense
of latency, and does not send more parity packets than re-
quested. However, the protocol uses pipelining of groups
to improve throughput: the sender transmits data packets of
group 


� �
while waiting for NAK(s) for group 
 . NAKs are

multicast, and SRM-like global NAK suppression is used
to reduce feedback from receivers. The approach in W-
WBRM protocol is more aggressive than that of NP, with a
goal of achieving low latency for relatively small resources
and good throughput for large ones. Hence, we are willing

to error on the side of sending too many parity packets. Like
NP, W-WBRM pipelines the transmission of groups, but
uses proactive packets on both data and parity-only trans-
missions, instead of global NAK suppression.

Gemmell et al. [5] describe two FEC-based reliable mul-
ticast protocols to be used in one-to-many tele-presentations
over the Internet. One of these, FCAST, is intended for
bulk transfer of session-persistent data and does not involve
sender feedback, but rather uses an FEC-based carousel.
The other protocol, ECSRM, is closer in design to W-
WBRM and is intended for multicasting dynamic data dur-
ing a session. The ECSRM protocol uses both FEC and
global NAK suppression. The parity packet suppression
method of W-WBRM, used to avoid sending redundant par-
ity packets in response to multiple NAKs, is similar to the
method used in ECSRM. However, the ECSRM protocol
does not use proactive transmission of parity packets, and
does not adapt to changing loss conditions in the network.



Since ECSRM is designed for large groups on the Inter-
net, with long round-trip delays, such adaptation may not be
useful. W-WBRM, operating on a proxy in a local heteroge-
neous LAN environment, can make better use of a proactive
adaptive mechanism.

7. Conclusions and Future Work

In this paper, we have described a study in the use of
proxy services to support web-based collaboration when
some of the participants are located on heterogeneous
LANs. We demonstrated the integration of proxy services
into the Pavilion middleware framework and described an
FEC-based extension of the WBRM protocol. We showed
that a proactive approach to sending parity packets can min-
imize feedback by dynamically adapting the rate of redun-
dancy in response to changes in packet loss rate. Given
the increasing presence of wireless LANs in homes and
businesses, we envision immediate application of the pro-
posed techniques to improve performance of collaborative
applications involving users who roam within the range of
a wireless access point. Topics of our ongoing and future
work include: additional analysis and experimentation of
various W-WBRM parameters, including � 
 ��� and ����� � ; a
simulation study to determine parameter settings for rela-
tively large numbers of receivers; and a performance study
of the W-WBRM protocol as used in Pocket Pavilion, our
collaborative application for wireless handheld computers.

Further Information. A number of related pa-
pers and technical reports of the Communica-
tions Research Group at Michigan State Univer-
sity are available via the World-Wide Web at:
http://www.cse.msu.edu/ � mckinley/crgweb.
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