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Abstract—Word sense disambiguation (WSD), the task of identifying the intended meanings (senses) of words in context, has been a

long-standing research objective for natural language processing. In this paper, we are concerned with graph-based algorithms for

large-scale WSD. Under this framework, finding the right sense for a given word amounts to identifying the most “important” node

among the set of graph nodes representing its senses. We introduce a graph-based WSD algorithm which has few parameters and

does not require sense-annotated data for training. Using this algorithm, we investigate several measures of graph connectivity with

the aim of identifying those best suited for WSD. We also examine how the chosen lexicon and its connectivity influences WSD

performance. We report results on standard data sets and show that our graph-based approach performs comparably to the state of

the art.

Index Terms—Word sense disambiguation, graph connectivity, semantic networks, social network analysis.
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1 INTRODUCTION

WORD sense disambiguation (WSD), the ability to
identify the intended meanings of words (word

senses) in context, is a central research topic in Natural
Language Processing (NLP). Sense disambiguation is often
characterized as an intermediate task, which is not an end
in itself, but essential for many applications requiring
broad-coverage language understanding. Examples include
machine translation [1], information retrieval [2], question
answering [3], and summarization [4].

Recent advances in WSD have benefited greatly from the
availability of corpora annotated with word senses. Most
accurate WSD systems to date exploit supervised methods
which automatically learn cues useful for disambiguation
from hand-labeled data. Although supervised approaches
outperform their unsupervised alternatives (see [5], [6] for
overviews), they often require large amounts of training data
to yield reliable results [7], and their coverage is typically
limited to the words for which sense-labeled data exist.
Unfortunately, creating sense-tagged corpora manually is an
expensive and labor-intensive endeavor [8] which must be
repeated for new domains, languages, and sense inventories.
Given the data requirements for supervised WSD and the
current paucity of suitable data for many languages and text
genres, unsupervised approaches would seem to offer near-
term hope for large-scale sense disambiguation.

In the field of WSD, the term unsupervised is
commonly used to describe approaches that perform sense
disambiguation without resorting to labeled training data

(see [9], [10]). Importantly, these approaches are not
knowledge-free since they are expected to disambiguate
instances according to a preexisting sense inventory and
often exploit its structure and relations in order to perform
the disambiguation task more accurately. A more restric-
tive view of “unsupervised” applies to methods for sense
induction or discrimination, which attempt to automati-
cally identify all possible senses of an ambiguous word
without an inventory or labeled training data (see [11],
[12]). The induced senses here have no external meaning,
they only match natural divisions in the data with respect
to the task.

Throughout this paper, we will use the term unsuper-
vised to refer to knowledge-based WSD methods that
employ an existing sense inventory but no labeled data (see
also [13], [14] for a more detailed discussion of these issues).
Most of these methods can be broadly divided in two
categories, namely, graph-based ones and similarity-based
ones. Graph-based algorithms often consist of two stages
[4], [9], [15]. First, a graph is built from a lexical knowledge
base representing all possible interpretations of the word
sequence being disambiguated. Graph nodes correspond to
word senses, whereas edges represent dependencies be-
tween senses (e.g., synonymy and antonymy). Next, the
graph structure is assessed to determine the importance of
each node. Here, sense disambiguation amounts to finding
the most “important” node for each word. Similarity-based
algorithms assign a sense to an ambiguous word by
comparing each of its senses with those of the words in
the surrounding context [10], [16]. The sense whose
definition has the highest similarity is assumed to be the
correct one. The algorithms differ in the type of similarity
measure they employ and the adopted definition of context,
which can vary from a few words to the entire corpus. In
graph-based methods, word senses are determined collec-
tively by exploiting dependencies across senses, whereas in
similarity-based approaches, each sense is determined for
each word individually without considering the senses
assigned to neighboring words. Experimental comparisons
between the two algorithm types (e.g., [9], [17]) indicate that
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graph-based algorithms outperform similarity-based ones,
often by a significant margin.

In this paper, we focus on graph-based methods and
investigate in depth the role of graph structure in determin-
ing WSD performance. Specifically, we compare and
contrast various measures of graph connectivity that assess
the relative importance of a node within the graph. Graph
theory is abundantwith suchmeasures and evaluations have
been undertaken in the context of studying the structure of a
hyperlinked environment [18] and within social network
analysis [19]. Our experiments attempt to establish whether
some of these measures are particularly appropriate for
graph-basedWSD.We also investigate the role of the chosen
lexicon and its contribution to WSD. The inventory is of
primary importance here as it determines the shape and
structure of the smaller subgraphs upon which WSD takes
place. Such a comparative study is novel; previous work
restricts itself to a single lexicon and measure which is either
devised specifically for WSD [4] or adopted from network
analysis [9], [15]. Our contributions are threefold: a general
framework for graph-based WSD, an empirical comparison
of a broad range of graph connectivity measures using
standard evaluation data sets, and an investigation of the
influence of the WordNet sense inventory and its graph
structure on WSD.

2 RELATED WORK

Measures of graph connectivity have been studied exten-
sively in the social sciences, especially within the field of
Social Network Analysis (SNA) [20]. A social network is a
set of people or groups of people with some pattern of
contacts or interactions between them. Examples include the
patterns of friendship between individuals or the business
relationships between companies. One of the fundamental
problems in network analysis is to determine which
individuals are most central or important in the network
(by being most connected or having most influence) and
how they are connected to one another. Quantifying
centrality and connectivity allows us to characterize the
structure and properties of large networks and make
predictions about their behavior (e.g., what happens if the
network becomes more or less connected).

Recent years have witnessed great interest in network
research, partly due to the expansion of the World Wide
Web and the development of link analysis algorithms for
information retrieval. Among these, PageRank [21] and
HITS [22] have been extremely influential. PageRank assigns
a numerical weighting to each element of a hyperlinked set
of documents, with the purpose of measuring its relative
importance within the set, whereas HITS rates Web pages
for their authority and hub values. Hubs and authorities
exhibit a mutually reinforcing relationship: A good hub is a
document that points to many others, and a good authority
is a document that many documents point to (we discuss
HITS and PageRank more formally in Section 4). Beyond
information retrieval, link analysis algorithms have been
applied in a variety of tasks. Examples include spam
detection [23], topic-oriented crawling [24], keyword search-
ing in relational databases [25], and measuring citation
impact factor [26].

Graph-based approaches have also enjoyed growing
popularity within NLP. This is because, in many cases, one

is faced with the problem of selecting a single best
candidate out of many interrelated objects. Word sense
disambiguation is a case in point here. Assuming that we
have access to a dictionary which lists for each word its
different senses, we can work out the multiple meanings of
a word sequence (e.g., sentence, paragraph, and document)
by looking up the meaning of individual words in our
dictionary. These different interpretations can be compactly
represented as a graph where nodes correspond to senses
and edges to sense relations (e.g., synonymy and hypony-
my). Now, our task is to come up with a single sense for
each ambiguous word in context. This can be done
intuitively by selecting the sense with the most connections
(i.e., incoming edges) in the graph [4], [27]. These connec-
tions can be weighted according to semantic type (e.g.,
synonymy relations are more important than hyponymy).
In other work [15], senses are scored by taking edge paths
into account. The PageRank algorithm has also been used to
induce a ranking of the senses of an ambiguous word [9],
[28]. Graph algorithms are appealing to WSD since they
essentially work in an unsupervised setting without
requiring data hand labeled with correct word senses.

Graph algorithms have also been applied to word sense
induction, the task of automatically inferring the senses of a
given target word without recourse to a dictionary [29], [30].
For example, in theHyperLex algorithm [29],words are taken
as the nodes of the graph andword co-occurrence represents
an edge between two nodes. Detecting the different senses of
a word thus amounts to isolating the high-density compo-
nents in this co-occurrence graph. Although we focus here
primarily on unsupervised methods, it is worth pointing out
that graph algorithms such as Label Propagation [31] have
been successfully employed in supervisedWSD [32]. Beyond
WSD, graph-basedmethodshavebeen adopted inmanyNLP
tasks such as summarization [33], [34], [35], keyword
extraction [34], sentiment analysis [36], sentence retrieval
for question answering [37], ontology learning [38], human
conversation analysis [39], and for estimating word depen-
dency distributions [40].

Despite the popularity of graph-based methods in NLP,
there have been virtually no studies assessing how graph
connectivity and the different ways of measuring it affects
different tasks. A large number of graph connectivity
metrics have been proposed within social network analysis
and applied to different networks. Recent research shows
that there is no single universally appropriate metric [41].
Previous work has used almost exclusively two metrics,
either variants of degree centrality [4], [27] or PageRank [9],
[28]. This is in marked contrast with similarity-based
approaches, where several studies have evaluated the effect
of similarity measures on WSD performance [42], [43].
Another related issue concerns the dictionary employed for
constructing the sense graph. The latter shapes the topology
of the graph and determines its connectivity patterns. For
instance, a densely connected graph will be created from a
dictionary that lists many sense relations. Our own work
[44] has explored some of these issues, in a rather restricted
setting. Specifically, we used the graph algorithm presented
in [15] to build the sentence representations used to assess
the performance of graph connectivity measures. The
algorithm builds the sense graph by consulting a hand-
constructed grammar that determines which graph edge
sequences are valid. Unfortunately, this casts doubt on the
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generalizability of our results since the connectivity mea-
sures are applied to an idealized graph with only mean-
ingful edges. So, it is not clear whether differences in WSD
performance are due to a specific connectivity measure, to
the graph construction process, or to their interaction.

In this paper, we analyze the impact of connectivity
metrics for unsupervised WSD on a sounder empirical and
theoretical footing. We devise a general-purpose graph-
based algorithm that does not rely on a hand-constructed
grammar. We analyze its computational complexity de-
pending on the connectivity measure of choice and provide
a detailed study on howWordNet and its relations (number
and type) affect WSD performance. To preview our results,
we find that Degree, a relatively simple measure, outper-
forms more sophisticated alternatives and delivers state-of-
the-art performance. We also find that lexicons with many
connections between senses are beneficial for graph-based
WSD. In all cases, we present results on benchmark data
sets in the context of a competitive baseline algorithm [45]
(contrary to [44], where we compare against a naive
baseline that selects a sense for each word at random).

3 GRAPH-BASED WSD

In order to isolate the impact of graph connectivity
measures on WSD, we devised a fairly general disambigua-
tion algorithm that has few parameters and relies almost
exclusively on graph structure for inferring word senses. In
common with much current work in WSD, we are assuming
that meaning distinctions are provided by a reference
lexicon which encodes a discrete set of senses for each
word. Although our experiments will use the WordNet
sense inventory [46], neither our graph-based algorithm nor
the proposed connectivity measures are limited to this
particular lexicon. Resources with alternative sense distinc-
tions and structure could also serve as input to our method.
In the following, we first provide a brief introduction to
WordNet. Next, we describe our WSD algorithm and show
a working example.

3.1 The Lexicon

WordNet is an online lexical reference system1 whose
design is inspired by psycholinguistic theories of human
lexical memory [46]. The WordNet lexicon contains nouns,
verbs, adjectives, and adverbs. Lexical information is
organized in terms of word meanings, rather than word
forms. Senses in the WordNet database are represented
relationally by synonym sets (henceforth synsets)—the sets
of all words sharing a common sense. As an example,
consider three senses of the verb drink, “consume liquids,”
“consume alcohol,” and “toast.” These are, respectively,
represented as:

(1) a. fdrink1v; imbibe3vg,
b. fdrink2v; booze

1
v; fuddle

2
vg,

c. ftoast2v; drink
3
v; pledge

2
v; salute

1
v; wassail

2
vg.

Each word in a synset is associated with a part of speech
which we denote with a subscript: n stands for noun, v for
verb, a for adjective, and r for adverb. The superscript
denotes the sense number associated with each word (e.g.,
drink2v corresponds to the second sense of the verb drink).

Each synset is associated with a gloss, i.e., a textual
definition which explains its meaning. For example, the
synset in 1b is defined as “consume alcohol.” Moreover, the
synsets for each word are ranked according to their
frequency of occurrence in the SemCor corpus [47] which
is a subset of the Brown corpus annotated with word senses
(see Section 6.1 for details). Thus, the first sense given for a
word in WordNet is attested more times in SemCor than the
second one, which, in turn, is more frequent than the third
one, etc. The latest WordNet version (3.0) contains approxi-
mately 155,000 words organized in over 117,000 synsets.

WordNet also encodes lexical and semantic relations.
The former connect pairs of word senses, whereas the latter
relate synsets. Lexical relations in WordNet are nominaliza-
tion (e.g., the noun drinking1n is a nominalization of the verb
drink1v), antonymy (e.g., cold1a is an antonym of hot1a),
pertainymy (e.g., dental1a pertains to tooth1

n), and so on.
Examples of semantic relations are hypernymy (e.g., {milk1n}
is a kind of {beverage1n; drink

3
n; drinkable

1
n; potable

1
n}) and

meronymy (e.g., {milk1n} has-part {protein
1
n}). Notice that we

can transform a lexical relation into a semantic relation by
extending the relation existing between a pair of word
senses to the synsets which contain them. For example, we
can extend the nominalization relation in 2a to the two
synsets containing the senses drinking1n and drink1v (see 2b):

(2) a. drinking1n ��!
NOM

drink1v,

b. fdrinking1n; imbibing1n; imbibition2
ng ��!

NOM

fdrink1v; imbibe3vg,

where NOM denotes the nominalization relation.
We can view WordNet as a graph whose nodes are

synsets and edges lexical and semantic relations between
synsets. Even though WordNet does not include a gloss
relation, we can induce it heuristically [48]: A pair of synsets
S and S0 is connected via a gloss relation if an unambiguous
word w 2 S0 occurs in the gloss of S.2 Note that w must be
unambiguous; otherwise, S should have been connected
with the appropriate sense of w. For example, the first sense
of milkn is defined as “a white nutritious liquid secreted by
mammals and used as food by human beings.” Here, the
words nutritiousa, mammaln, and human beingn have only
one sense in WordNet, so we can infer the following gloss
relations:

(3) a. milk1n ���!
GLOSS

nutritious1a,

b. milk1n ���!
GLOSS

mammal1n,

c. milk1n ���!
GLOSS

human being1n.

In Fig. 1, we show an excerpt of the WordNet graph
centered around the synset {drink1v; imbibe3v}. In this graph,
nodes correspond to synsets which we abbreviate to a
single word in the synset (e.g., drink1v corresponds to
{drink1v,imbibe3v}). The node for drink1v is drawn as a dark
gray ellipse, whereas adjacent vertices (senses) are shown as
white ellipses (e.g., consume2v; beverage

1
n). In graph theory,

an adjacent vertex3 of a graph is a vertex that is connected to
another vertex with an edge within the graph. In our case,
adjacent vertices result from relations in WordNet. Senses
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which are not directly adjacent to drink1v, but reachable
through a sequence of edges are shown in light gray (e.g.,
toast4n;milk1n). Notice that the graph is undirected and does
not explicitly encode different kinds of relations.

3.2 The WSD Algorithm

Our disambiguation algorithm proceeds incrementally on a
sentence-by-sentence basis. Initially, we build a graph G ¼
ðV ;EÞ for each target sentence � which we induce from the
graph of the reference lexicon. We assume sentences are
part-of-speech tagged, so our algorithm considers content
words only (i.e., nouns, verbs, adjectives, and adverbs). As
explained in Section 2, the nodes in the graph are word
senses and the edges semantic relations. Given this graph
G, we select for each content word wi 2 � the most
appropriate sense Swi

2 SensesðwiÞ, where SensesðwiÞ is
the set of senses of wi listed in WordNet. We accomplish
this by ranking each vertex in the graph G according to its
importance, which we operationalize in terms of graph
connectivity.

More formally, given a word sequence � ¼ ðw1; w2; . . . ;

wnÞ, we perform the following steps to construct G:

1. Let V� :¼
Sn

i¼1 SensesðwiÞ denote all possible word
senses in �. We set V :¼ V� and E :¼ ;.

2. For each node v 2 V�, we perform a depth-first
search (DFS) of the WordNet graph: Every time we
encounter a node v0 2 V� (v0 6¼ v) along a path
v; v1; . . . ; vk; v

0 of length � L, we add all intermediate
nodes and edges on the path from v to v0: V :¼
V [ fv1; . . . ; vkg and E :¼ E [ ffv; v1g; . . . ; fvk; v

0gg.

In DFS, edges are explored out of the most recently
discovered vertex v that still has unexplored edges leaving
it. When all of v’s edges have been explored, the search
“backtracks” to explore edges leaving the vertex from
which v was discovered. This process continues until we
have discovered all the vertices that are reachable from the
original source vertex. Our use of depth-first search is
motivated by computational efficiency. However, there is
nothing inherent in our formulation that restricts us to this
graph traversal algorithm. For instance, we could have
adopted breadth-first search (BFS) which has been pre-
viously employed in graph-based WSD [49].

Let us illustrate our graph construction process with a
simple example. Consider the sentence She drank some milk.
Here, the content words are drink and milk (i.e., � ¼ ðdrinkv;
milknÞ) for which WordNet lists 5 and 4 senses, respectively
(we omit somea from the example for the sake of brevity).
Initially, we set V� :¼ fdrink1v; . . . ; drink

5
v;milk1n; . . . ;milk4ng;

V :¼ V�, andE :¼ ;. Next, we perform a DFS from the vertex

drink1v. In WordNet, this vertex is adjacent to drink1n and
drinker2n (via a nominalization relation), and to beverage1n (via
a gloss relation). We first follow drink1n, which is, in turn,
connected to beverage1n. The latter is adjacent tomilk1n, which
is a sense in V�. Consequently, we add to the graph all edges
and vertices in the path between drink1v and milk1n: V :¼
V [ fdrink1n; beverage

1
ng, a nd E :¼ E [ ffdrink1v; drink

1
ng;

fdrink1n; beverage
1
ng; fbeverage

1
n;milk1ngg (see Fig. 2a, new

vertices and edges are highlighted in bold).
When the search backtracks to beverage1n, another path can

be followed leading to milk2n. We therefore set V :¼ V [
ffood1n; nutriment1ng, and set E :¼ E [ ffbeverage1n; food

1
ng;

ffood1n; nutriment1ng; fnutriment1n;milk2ngg (see Fig. 2b). The
search next backtracks to drink1v, so a new adjacent vertex can
be followed. Asmentioned earlier, drink1v is also connected to
beverage1n (bes ides drink1n) , so we add the edge
fdrink1v; beverage

1
ng to E (Fig. 2c). Analogously, a new path

from drink1v passes through drinker2n and beverage1n, leading
to the following update: V :¼ V [ fdrinker2ng, and E :¼
E [ ffdrink1v; drinker

2
ng; fdrinker

2
n; beverage

1
ngg (Fig. 2d).

At this point, the DFS from drink1v is completed as we
cannot find any more edge paths connecting it to other
senses in V�. We next perform a new DFS from drink2v. The
latter is adjacent in WordNet to drinker2n and boozing1n. Since
we have already created a vertex for drinker2n (Fig. 2d), we
simply add the edge fdrink2v; drinker

2
ng to E (Fig. 2e) and

create a new vertex for boozing1n (Fig. 2f) which, in turn, is
connected to beverage1n (through the gloss relation). The
search now stops, as beverage1n has been visited before, and
the graph is updated: V :¼ V [ fboozing1ng, and E :¼
E [ ffdrink2v; boozing

1
ng; fboozing

1
n; beverage

1
ngg.

The DFS does not find any related senses for drink3v and
drink4v, so we move on to drink5v. This sense is adjacent to
drinker2n and boozing1n in WordNet. As both vertices have
been visited before, we add the edges fdrink5v; drinker

2
ng,

and fdrink5v; boozing
1
ng to E (Figs. 2g and 2h). The graph

construction procedure now terminates as there are no
more paths connecting senses in V�. The final graph
represents the different meanings of the sentence She drank
some milk (3 � 2 ¼ 6 interpretations in total). Merely by
inspection, we can see that the graph is relatively dense.
Each vertex added during graph construction is �3 edges
apart from some vertex in the original set V� of word senses
(where 3 is half the maximum length of any path). For
instance, beverage1n is at distance one from milk1n, whereas
food1n is at distance two from milk1n and milk2n.

Given this graph, we must next evaluate which one of
the meanings of drinkv and milkn (see the dark gray ellipses
in Fig. 2) is most important. Many measures of graph
connectivity can be used to accomplish this, we provide a
detailed discussion in the following section. Here, we
briefly note that these measures can be either local or global.
Local measures capture the degree of connectivity conveyed
by a single vertex in the graph toward all other vertices,
whereas global measures estimate the overall degree of
connectivity of the entire graph.

Arguably, the choice of connectivity measure influences
the selection process for the highest ranked sense. Given a
local measure l and the set of vertices V�, we induce a
ranking of the vertices rankl such that ranklðvÞ � ranklðv0Þ
iff lðvÞ � lðv0Þ. Then, for each word wi 2 �, we select the best

4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. XX, XXXXXXX 2010

Fig. 1. An excerpt of the WordNet graph centered around drink1v.



ranking sense in SensesðwiÞ according to rankl. The ranking
function here operates on the entire set of vertices V� and is
thus realized for all the senses of all words at once.
Alternatively, we could define the ranking function on the
senses for each word. The former formulation represents
the gist of the sentence rather than the meaning of isolated
words, thus highlighting those concepts that are more likely
to convey core meaning. A global measure g characterizes the
overall graph structure G with a single number and is thus
not particularly helpful in selecting a unique sense for
ambiguous words—G collectively represents all interpreta-
tions of �. We get around this problem, by applying g to
each interpretation of � and selecting the highest scoring
one. An interpretation is a subgraph G0 � G such that G0

includes one and only one sense of each word in sentence �

and all their corresponding intermediate nodes. So, if our
sentence has six interpretations, we will measure the
connectivity of the six resulting subgraphs and choose the
best ranking one.

The disambiguation algorithm presented above has a
limited notion of context, and only neighboring words
within the same sentence contribute to the meaning of an
ambiguous word. It thus differs from [9], [27], who build a
disambiguation graph for an entire document and assign
the same sense to all occurrences of a word. In our case, the
senses of a word can vary across sentences and documents.

There is nothing inherent in our algorithm that restricts us

to sentences. We could just as well build and disambiguate

a graph for a document. We sacrifice a small amount of

accuracy—previous work [50] shows that polysemous

words appearing two or three times in the same discourse

tend to share the same sense—to gain efficiency (as we shall

see below that disambiguating with global connectivity

measures is computationally demanding). We also depart

from [9], [27] in our use of unweighted unlabeled edges.

The reasons for this are twofold. First, there is no agreed

upon method for inferring edge weights (these are set by

hand in [4], [27] and determined by gloss overlap in [9]).

Second, aside from the problem of computing the weight of

an edge, which warrants a separate study on its own, we

wanted to isolate the influence of graph connectivity

metrics on WSD without any potentially confounding

factors. Finally, we should point out that our algorithm

can be used without resorting to use of the first sense

information available in WordNet. The latter is often used

(e.g., [27]) to break ties; however, we default to random

choice unless otherwise stated. The sense frequencies in

WordNet are derived from the hand-labeled SemCor

corpus (see Section 3.1). Albeit valuable, these are not

typically available in other languages or domains.
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4 CONNECTIVITY MEASURES

In this section, we describe the measures of graph
connectivity that we consider for unsupervised WSD.
Although our measures can be applied to both directed
and undirected graphs, in the context of WSD, we are
assuming that we are dealing with undirected graphs. This
is motivated by the fact that semantic relations often have
an inverse counterpart (e.g., hypernymy is the inverse
relation of hyponymy). Moreover, the assumption enables
the use of knowledge resources which do not explicitly
specify relation directions or provide some connections
without an inverse counterpart.

We first introduce the distance function dðu; vÞ, which is
used by some of the measures discussed below:

dðu; vÞ ¼
length of shortest path; if u e> v;
K; otherwise;

�
ð1Þ

where u e> v indicates the existence of a path from u to v

and K is a conversion constant [18], which replaces the

1 distance with an integer when v is not reachable from

u (we choose K ¼ jV j, as the length of any shortest path

is <jV j). The length of a path is calculated as the number

of edges in the path. For example, in Fig. 2h,

dðdrink1v;milk2nÞ ¼ 4 and dðdrink1v;milk1nÞ ¼ 2.

4.1 Local Measures

Local measures of graph connectivity determine the degree
of relevance of a single vertex v in a graph G. They can thus
be viewed as measures of the influence of a node over the
network. Formally, we define a local measure l as:

l : V ! ½0; 1�: ð2Þ

A value close to one indicates that a vertex is important,
whereas a value close to zero indicates that the vertex is
peripheral.

Several local measures of graph connectivity have been
proposed in the literature (see [20] for a comprehensive
overview). Many of these rely on the notion of centrality: A
node is central if it is maximally connected to all other
nodes. In the following, we consider three best known
measures of centrality, namely, degree, closeness, and
betweenness [51], and variants thereof.

4.1.1 Degree Centrality

The simplest way to measure vertex importance is by its
degree, i.e., the number of edges terminating in a given
vertex:

degðvÞ ¼ jffu; vg 2 E : u 2 V gj: ð3Þ

A vertex is central, if it has a high degree. Conversely, a
disconnected vertex has degree zero. Degree centrality is
the degree of a vertex normalized by the maximum degree:

CDðvÞ ¼
degðvÞ

jV j � 1
: ð4Þ

According to the graph in Fig. 2h,

CD

�
drink1v

�
¼

3

14
; CD

�
drink2v

�
¼ CD

�
drink5v

�
¼

2

14
;

and CDðmilk1nÞ ¼ CDðmilk2nÞ ¼
1
14
. So, the sense for drinkv

with the highest degree score is drink1v, whereas there is a
tie for milkn. As discussed earlier (see Section 3.2), in this
case, we choose randomly. The degree centrality scores for
all graph nodes are given in Table 1. We show the best
scores for the senses of drinkv and milkn in bold face. The
score for disconnected nodes is zero (e.g., drink3v).

4.1.2 Eigenvector Centrality

A more sophisticated version of degree centrality is
eigenvector centrality. Whereas the former gives a simple
count of the number of connections a vertex has, the latter
acknowledges that not all connections are equal. It assigns
relative scores to all nodes in the graph based on the
recursive principle that connections to nodes having a high
score contribute more to the score of the node in question
[52]. The term eigenvector centrality stems from the fact that
it calculates the dominant eigenvector of a matrix associated
with (and possibly equal to) the adjacency matrix of the
target graph. PageRank [21] and HITS [22] are variants of
the eigenvector centrality measure and have been a popular
choice in graph-based WSD (see Section 2).

PageRank determines the relevance of a node v recur-
sively based on a Markov chain model. All nodes that link to
v contribute toward determining its relevance. Each con-
tribution is given by the page rank value of the respective
node (PRðuÞ) divided by the number of its neighbors:

PRðvÞ ¼
ð1� �Þ

jV j
þ �

X

fu;vg2E

PRðuÞ

outdegreeðuÞ
: ð5Þ

The overall contribution is weighted with a damping
factor �, which implements the so-called random surfer
model: With probability 1� �, the random surfer is
expected to discontinue the chain and select a random
node, with relevance 1

jV j . Thus, if a node is disconnected, its
PageRank value is given by the first term in (5) (this value is
small—close to zero—when V is large).

In contrast, Hypertext Induced Topic Selection (HITS)
determines two values for each node v: the authority (aðvÞ)
and the hub value (hðvÞ). In a directed graph, these are
defined in terms of one another in a mutual recursion:
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Values of Local Connectivity Measures for the Nodes in Fig. 2h

The best scores for the senses of drinkv andmilkn for each connectivity
measure are shown in bold face.



hðvÞ ¼
X

u:ðv;uÞ2E

aðuÞ; aðvÞ ¼
X

u:ðu;vÞ2E

hðuÞ: ð6Þ

Intuitively, a good hub is a node that points to many good
authorities, whereas a good authority is a node that is
pointed to by many good hubs. The hub and authority
values of a disconnected node are both zero.

A major difference between HITS and PageRank is that
the former is computed dynamically on a subgraph of
relevant pages, whereas the latter takes the entire graph
structure into account.

Both algorithms iteratively calculate their ranking scores

through increasingly precise approximations. In Fig. 2h,

the authority values for the nodes representing the senses

of drinkv and milkn are aðdrink1vÞ ¼ 0:39, aðdrink2vÞ ¼
aðdrink5vÞ ¼ 0:23, aðmilk1nÞ ¼ 0:17, and aðmilk2nÞ ¼ 0:02.

The PageRank values for these nodes are PRðdrink1vÞ ¼
0:08, PRðdrink2vÞ ¼ PRðdrink5vÞ ¼ 0:05, and PRðmilk1nÞ ¼
PRðmilk2nÞ ¼ 0:03. HITS unequivocally selects drink1v and

milk1n as the best senses for our sentence. PageRank agrees

with HITS on the sense assignment for drinkv, but yields a

tie for milkn (again to be resolved by random selection).

Generally, HITS tends to deliver finer-grained sense

rankings than PageRank. In Fig. 2h, ranking all nodes

with HITS delivers 10 distinct nonzero scores, whereas

PageRank only six (see Table 1). Note that, since our

graphs are undirected, the authority and hub values

coincide. In fact, the edges ðu; vÞ and ðv; uÞ collapse to a

single undirected edge fu; vg.

4.1.3 Key Player Problem (KPP)

With KPP, a vertex is considered important if it is relatively
close to all other vertices [53]:

KPP ðvÞ ¼

P
u2V :u 6¼v

1
dðu;vÞ

jV j � 1
; ð7Þ

where the numerator is the sum of the inverse shortest
distances between v and all other nodes and the denomi-
nator is the number of nodes in the graph (excluding v). The
KPP of a disconnected node is a small constant, given by
1
K
¼ 1

jV j .
For example, in Fig. 2h,

KPP
�
drink1v

�
¼

3þ 5 � 1
2
þ 1

3
þ 1

4
þ 4 � 1

14

14
¼ 0:45:

KPP selects drink1v and milk1n as the best scoring senses for
our sentence (see Table 1).

KPP is similar to the better known closeness centrality
measure [54] which is defined as the reciprocal of the total
shortest distance from a given node to all other nodes. Here,
we consider only KPP since it outperformed closeness
centrality in our experiments.

4.1.4 Betweenness Centrality

The betweenness of vertex v is calculated as the fraction of
the shortest paths between node pairs that pass through v

[51]. Formally, betweenness is defined as:

betweennessðvÞ ¼
X

s;t2V :s6¼v 6¼t

�stðvÞ

�st

; ð8Þ

where �st is the number of the shortest paths from s to t,
and �stðvÞ the number of the shortest paths from s to t that
pass through vertex v. We normalize by dividing
betweennessðvÞ by the maximum number of node pairs
excluding v:

CBðvÞ ¼
betweennessðvÞ

ðjV j � 1ÞðjV j � 2Þ
: ð9Þ

The intuition behind betweenness is that a node is
important if it is involved in a large number of paths
compared to the total set of paths. The betweenness of a
disconnected node is zero as no path can pass through it.

In Fig. 2h, the vertices fdrink2v; beverage
1
ng are connected

by two shortest paths: drink2v; drinker
2
n; beverage

1
n and

drink2v; boozing
1
n; beverage

1
n. Thus, �drink2v ;beverage

1
n
¼ 2 and

�drink2v ;beverage1nðdrinker
2
nÞ ¼ 1. Once we obtain all � values for

drinker2n, we can calculate betweennessðdrinker2nÞ ¼ 12:19

and CBðdrinker2nÞ ¼
12:19
14�13 ¼ 0:067. As shown in Table 1,

drink1v has the highest betweenness score for drinkv. The

senses of milkn score 0, since they are not an intermediate

node in any path between the senses of drinkv and milkn.

4.2 Global Measures

Global connectivity measures are concerned with the
structure of the graph as a whole rather than with individual
nodes. Here, we discuss three well-known measures,
namely, compactness, graph entropy, and edge density.

4.2.1 Compactness

This measure represents the extent of cross referencing in a
graph [18]: When compactness is high, each vertex can be
easily reached fromother vertices. Themeasure is defined as:

COðGÞ ¼
Max�

P
u2V

P
v2V dðu; vÞ

Max�Min
; ð10Þ

where Max ¼ K � jV jðjV j � 1Þ is the maximum value the
distance sum can assume (for a completely disconnected
graph) and Min ¼ jV jðjV j � 1Þ the minimum value (for a
fully connected graph). COðGÞ is zero when G is completely
disconnected and one when G is a complete graph.

Table 2 illustrates the compactness scores for the different

interpretations (i.e., sense assignments) of our example

sentence. For instance, the compactness of graph (1) is

COðGÞ ¼ ð5�5�4Þ�28

ð5�5�4Þ�ð5�4Þ ¼
72
80
¼ 0:90 (where K ¼ jV j ¼ 5). As can

be seen, this graph obtains the highest score among all

possible sense interpretations (here, drinkv disambiguates

to drink1v and milkn to milk1n).

4.2.2 Graph Entropy

Entropy measures the amount of information (or, alterna-
tively, uncertainty) in a random variable. In graph-theoretic
terms, high entropy indicates that many vertices are equally
important, whereas low entropy indicates that only a few
vertices are relevant. We define a simple measure of graph
entropy as:

HðGÞ ¼ �
X

v2V

pðvÞlogðpðvÞÞ; ð11Þ

where the vertex probability pðvÞ is determined by the

degree distribution fdegðvÞ
2jEj gv2V . To obtain a measure with a

NAVIGLI AND LAPATA: AN EXPERIMENTAL STUDY OF GRAPH CONNECTIVITY FOR UNSUPERVISED WORD SENSE DISAMBIGUATION 7



½0; 1� range (0 for a totally disconnected graph, 1 for a

complete graph), we divide HðGÞ by the maximum entropy

given by log jV j. For example, the distribution associated

with graph (1) in Table 2 is ð 3
12
; 2
12
; 4
12
; 2
12
; 1
12
Þ (with jEj ¼ 6)

yielding an overall graph entropy HðGÞ ¼ 2:18
log 5

¼ 0:94.

Graphs (5) and (6) have the highest entropy in Table 2.

4.2.3 Edge Density

Finally, we propose the use of edge density as a simple
global connectivity measure. Edge density is calculated as
the ratio of edges in a graph to the number of edges of a
complete graph with jV j vertices (given by ðjV j

2
Þ). Formally,

EDðGÞ ¼
jEðGÞj

jV j
2

� � ; ð12Þ

where EDðGÞ has a ½0; 1� range, with 0 corresponding to a
totally disconnected graph and 1 to a complete graph. For
example, graph (1) in Table 2 has edge density

EDðGÞ ¼
6
5
2

� � ¼ 6

10
¼ 0:60;

and graph (2)

EDðGÞ ¼
5
5
2

� � ¼ 5

10
¼ 0:50:

4.2.4 Search Strategies

The use of global connectivity measures makes our WSD
algorithm susceptible to combinatorial explosion since all

possible interpretations of a given sentence must be ranked
(see the complexity analysis in Section 5). There are several
heuristic search methods to solve combinatorial optimiza-
tion problems [55]. Examples include local search, simu-
lated annealing, and genetic algorithms. For our WSD
problem, we would like to adopt a search strategy that
obtains a reasonable interpretation, even though it is not
always the best possible one. Although a detailed study of
heuristic search algorithms falls outside the scope of this
paper, we nevertheless compared two widely used meth-
ods, namely, simulated annealing (SA) and genetic algo-
rithms (GAs). SA has been previously applied to WSD [56],
while the use of GAs is novel to our knowledge. In the
following, we briefly sketch how we adapt these algorithms
to our task. We report on their performance in Section 6. In
our setting, the search space consists of interpretations I ¼
ðS1; . . . ; SnÞ for a sentence � ¼ ðw1; . . . ; wnÞ such that Si 2
SensesðwiÞ for all i ¼ 1; . . . ; n.

Simulated annealing. Initially, we randomly select an
interpretation I for sentence �. At each step, we (randomly)
select a word from � and assign it a new sense also chosen
at random. As a result, a new interpretation I 0 is produced.
Next, we apply our global measure to the graph induced by
I 0 and calculate the difference (�E) between its value and
that of the graph obtained from the old interpretation I . If
the new interpretation has a higher score, we adopt it (i.e.,
we set I :¼ I 0). Otherwise, we either retain the old
interpretation with probability 1� e

�E
T or nonetheless switch

to the new interpretation with probability e
�E
T , where T is a

constant. The procedure is repeated u times. The algorithm
terminates when we observe no changes in I after u steps.
Otherwise, the entire procedure is repeated starting from
the most recent interpretation.

Genetic algorithms. Our genetic algorithm [57] starts
from an initial random population P of p individuals (i.e.,
sentence interpretations) and iteratively creates a new
population P 0 from a previous generation P by performing
the following three steps:

1. probabilistically select ð1� rÞ � p elements of P to be
kept in P 0 (r 2 ½0; 1�);

2. probabilistically select r�p
2

pairs from P , apply a
crossover operator to each pair, and add the
resulting pair of individuals to P 0. We adopted
single-point crossover, which, given two individuals
ðS1; . . . ; SnÞ and ðS0

1; . . . ; S
0
nÞ, establishes a crossover

point i 2 f1; . . . ; n� 1g and generates two offspring
ðS1; . . . ; Si; S

0
iþ1; . . . ; S

0
nÞ and ðS0

1; . . . ; S
0
i; Siþ1; . . . ; SnÞ;

3. mutate m � p individuals in P 0 (m 2 ½0; 1�). Mutation
consists of the random change of one sense in the
chosen individuals.

Probabilistic selection is performed by evaluating the
fitness of each individual in the population. Our fitness
function is the graph connectivity measure (e.g., edge
density). The GA has three parameters: the size p of the
population, the percentage r of individuals to be crossed,
and the percentage m of individuals to be mutated. The
procedure is repeated (we set P :¼ P 0) until the fitness
value of an individual in P is larger than a threshold �. The
algorithm therefore requires more extensive parameter
tuning than SA. Moreover, the execution time and memory
usage are higher (at each iteration we need to compute
order of p interpretations).
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5 COMPLEXITY

In this section, we discuss the complexity of our WSD
algorithm. Recall from Section 3.2 that the algorithm
proceeds on a sentence-by-sentence basis and consists
essentially of two steps: a graph construction phase and a
disambiguation phase. Let k be a constant denoting the
highest number of senses a word can have in WordNet:

k ¼ max
w2WN

jSensesðwÞj: ð13Þ

Given a sentence � with n words, the number of senses in
the associated sentence graph V� is bound by

jV�j ¼
���
[n

i¼1

SensesðwiÞ
��� �

Xn

i¼1

jSensesðwiÞj �
Xn

i¼1

k ¼ kn:

ð14Þ

Our graph construction procedure executes a DFS from
each vertex v 2 V�. The running time for this is OðjVWNj þ
jEWNjÞ [58], where VWN and EWN are the sets of vertices and
edges in the entire WordNet graph. The number of edges
jEWNj can be bound by k0jVWNj, where k0 is a constant equal
to the maximum number of WordNet edges incident to any
node in the WordNet graph.4 So, the cost of a single DFS is
OðjVWNj þ k0jVWNjÞ ¼ OðjVWNjÞ. Given that the number of
vertices in V� is bound by kn 2 OðnÞ, the overall running
time of the graph construction phase is OðnjVWNjÞ. In
practice, however, the running time is closer to Oðn2Þ. In
fact, a DFS can take OðnÞ time since we do not explore the
entire WordNet network, the maximum number of incident
edges is a small constant, and the number of vertices visited
during the search must be at distance �L.

With a local measure l, the running time of the
disambiguation phase is OðclðnÞÞ, where clðnÞ is the time
cost incurred by l when applied to all OðnÞ nodes in the
sentence graph. We report running times for each measure
individually in Table 3. As can be seen, Degree complexity
amounts to OðnÞ time if the sentence graph is represented
with an adjacency list. Measures of eigenvector centrality
require the application of the power method, and thus,
take Oðn2Þ time. The time complexity of KPP [59] depends
on the calculation of all shortest distances which costs
Oðmþ nÞ for each vertex; here, m is the number of edges
in the sentence graph and m 2 OðnÞ, as each vertex has a
constant upper bound on the number of incident edges.
Finally, for betweenness, an OðnmÞ-implementation has
been described [60].

Complexity increases substantially when global measures
are employed. Calculating the score of a single graph
(corresponding to one interpretation for sentence �) takes
Oðn2Þ time (OðnÞ for Graph Entropy and Edge Density if an
adjacency list is used). Exhaustively generating all possible
interpretations is computationally prohibitive with OðknÞ
complexity (recall thatk is themaximumnumberof senses for
a word in WordNet). Fortunately, we can reduce the search
space to a very large constant � using the approximation
algorithms described in Section 4.2.4. The running time of the
approximated global measures is thus polynomial.

6 EXPERIMENTAL SETUP

6.1 Data

We evaluated our connectivity measures on three bench-
mark data sets. Specifically, we used the SemCor corpus
[47], the Senseval-3 [5], and Semeval-2007 [6] data sets.
SemCor is the largest publicly available sense-tagged
corpus. It is composed of 352 documents extracted from
the Brown corpus. In 186 of these, all open class words
(nouns, verbs, adjectives, and adverbs) have been sense
annotated. The remaining 166 have sense tags for verbs
only. The corpus was created to provide examples of senses
in context. The order of senses in WordNet is based on their
SemCor frequency. SemCor has been used extensively in
many WSD approaches, both supervised and unsupervised.

The Senseval-3 and Semeval-2007 data sets are subsets of
the Wall Street Journal corpus. They each contain 2,037 and
465 words annotated with WordNet senses. They are
publicly available and distributed as part of the Senseval
(and Semeval) WSD evaluation exercises.5 Our experiments
were run in the all-words setting: The algorithm must
disambiguate all (content) words in a given text (in contrast,
in the lexical sample setting, the data set consists of a
selected few words and the system must disambiguate only
these words).

The above data sets are tagged with different versions of
WordNet. SemCor uses version 1.6, Senseval-3 version 1.7.1,
and Semeval-2007 version 2.1. These were normalized to
WordNet 2.0 using publicly available sense mappings.6

6.2 Reference Lexicons

An important prerequisite to the graph-based algorithm
described in Section 3.2 is the reference lexicon that
provides the meaning distinctions as well as the lexical
and semantic relations. Our experiments used the publicly
available WordNet and an extended version created by the
first author [61], which we refer to as EnWordNet. The latter
contains additional edges (approximately 60,000) that link
concepts across parts of speech via collocational relations.
Such information is not explicitly encoded in WordNet,
despite strong evidence that it helps in determining a
word’s sense in context [62], [63].

EnWordNet was created as follows: First, a list of
collocations was compiled from the Oxford Collocations
[64] and the Longman Language Activator [65] dictionaries
as well as collocation Web sites. These were word pairs
consisting of a base w (e.g., drinkv) and its collocate w0 (e.g.,
watern), each of which had to be attested in WordNet. Next,
each base w was disambiguated manually with an appro-
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Time Complexity of Local and Global Measures
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priate WordNet sense S. The set of collocates fw0 : ðS;w0Þg
was disambiguated automatically with the algorithm
proposed in [15] while treating S as context. Disambiguated
collocations were manually validated with the aid of a Web
interface. This process resulted in an enriched version of
WordNet 2.0 which included the same synsets as the
original with additional relation edges. Fig. 3 shows an
excerpt of this graph centered around drink1v. New nodes
that have been added to WordNet are drawn as light gray
ellipses (compare Fig. 1).

To establish the degree to which WordNet and En-
WordNet diverge, we examined their graph structure more
closely [41]. Specifically, we analyzed how each dictionary
fares in terms of the following properties:

1. The small world effect, which implies that most pairs
of vertices are possibly connected by a short path
through the network. The small world effect is
determined as the mean shortest distance between
vertex pairs in the graph:

l ¼
1

1
2
nðn� 1Þ

X

i�j

dði; jÞ;

where dði; jÞ is the length of the shortest path
between vertices i and j. A high value of l indicates
a low small world effect, i.e., the degree of reach-
ability between pairs of vertices in the graph is, on
average, low. Following [41], we set dði; jÞ to zero if
vertex j cannot be reached from i through an edge
path in the graph (notice that this definition is
different from the one given in (1)).

2. The clustering rate (or transitivity), which quantifies
the number of triangles in the graph—sets of three
vertices each of which is connected to each of the
others. In social networks terminology, the friend of
your friend is likely to be your friend. The clustering
rate is defined as:

C ¼
3 � number of triangles in the network

number of connected triples of vertices
;

where a “connected triple” is a single vertex with
edges running to an unordered pair of others. A high
C indicates that the associates of words are also
directly associated. Clustering rate is complementary
to the small world effect. The former measures graph

connectivity in terms of interconnected neighbor-
hoods, whereas the latter in terms of path length.

3. The cumulative degree distribution that is the prob-
ability that the degree is greater than or equal to k:

Pk ¼
X1

k0¼k

pk0 ;

where pk0 is the fraction of vertices in the graph that
have degree k0. The cumulative distribution of
complex networks such as the Web typically follows
a power law.

Table 4 shows the small world effect (l) and clustering
rate (C) for the two dictionaries. EnWordNet has a
considerably smaller mean shortest distance than WordNet
(5.466 versus 7.243 edges) which indicates that it is more
densely connected. Further evidence comes from the
clustering rate which is increased in EnWordNet by a
factor of 2. Fig. 4 plots the cumulative degree distributions
for both dictionaries in log-log coordinates. As can be seen,
both distributions follow a power law, with the line for
EnWordNet being slightly smoother due to the increased
connectivity discussed above.

6.3 Graph Construction and Search

In order to speed up the graph construction process, all
paths connecting pairs of senses in both versions of
WordNet were exhaustively enumerated and stored in a
database which was consulted at runtime during disambi-
guation. We determined the optimal value of the maximum
path length L experimentally. We ran our WSD algorithm
on the SemCor data set using the Degree connectivity
measure and the WordNet sense inventory while varying
the path length from 0 to 10. We obtained 39 percent WSD
accuracy at path length 0 (corresponding to random
selection). This steadily increased until it reached a plateau
at path length 4 with 50 percent accuracy. Longer paths did
not bring additional gains. We thus fixed the maximum
path length to 6, as it was longer than 4 but not as
computationally expensive as 10.

When interfaced with global connectivity measures, our
algorithm relies on a heuristic search procedure to find the
best ranking interpretation (cf. Section 4.2.4). We compared
the performance of SA and GAs for this task. Our WSD
algorithm was run with the Edge Density measure and the
WordNet sense inventory. The number of iterations u for SA
was set to 5,000 and, following [56], the constant T , initially
set to 1.0, was reset to T :¼ 0:9 � T after the u iterations. SA
obtained an accuracy of 43.54 percent. As mentioned earlier
(in Section 4.2), the GAs have more parameters. We
performed a set of experiments with p 2 f50; 100g, r 2
f0:3; 0:6g, m ¼ 0:1, and � 2 f0:1; 0:2; 0:3g. The highest accu-
racy was 39.20 percent (with parameters p ¼ 50; r ¼ 0:3;

m ¼ 0:1; � ¼ 0:2) which is more than 4 percent below the
result obtained with SA. We therefore opted for SA in all
subsequent experiments with global measures.
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Fig. 3. An excerpt of the Enriched WordNet graph centered around
drink1v.

TABLE 4
Network Properties for WordNet and EnWordNet



6.4 Evaluation

We evaluated our graph-based algorithm using the publicly

available Senseval-3 scorer.7 For any given system, the

scorer reports precision (the number of correct senses over

the number of senses returned), recall (the number of

correct senses over the total number of senses identified in

the evaluation data set), and their combined F1 measure

( 2PR
PþR

). Since our method provides an answer for all

ambiguous words, precision, recall, and F1 are the same.8

We first examined the behavior of the graph connectivity

measures described in Section 4 exhaustively on SemCor,

the largest sense tagged data set available. Next, we

evaluated the best performing measure on the smaller

Senseval-3 and Semeval-2007 data sets and compared it

with the state of the art.
We also compared our results against two baselines. The

first one randomly selects a sense for an ambiguous word.

The second baseline is Lesk’s WSD algorithm, originally

introduced in [16]. The algorithm assigns a sense to an

ambiguous word by comparing the dictionary definitions

(glosses in WordNet) of each of its senses with the words in

the surrounding context. The sense whose definition has the

highest overlap with the context is assumed to be the

correct one. Following [45], we not only look for overlap

between the glosses of two senses, but also between the

glosses of their hypernyms, hyponyms, meronyms, holo-

nyms, and troponyms. These extended glosses increase the

algorithm’s coverage. We also adopt their overlap scoring

mechanism which treats each gloss as a bag of words and

assigns an n word overlap the score of n2. Analogously to

our graph-based algorithm, we disambiguate words on a

sentence-by-sentence basis and break ties randomly. Our in-

house implementation followed closely [45], the main

difference being special purpose I/O routines to handle

the relatedness relation from EnWordNet.
Finally, as an upper bound, we used the first-sense

heuristic which assigns all instances of an ambiguous word

itsmost frequent senseaccording toSemCor. It is important to

note that current unsupervised WSD approaches—and also

many supervised ones—rarely outperform this heuristic [10].

7 RESULTS

7.1 Experiments on SemCor

Our results on SemCor are summarized in Table 5. We
report the performance for WordNet and EnWordNet. The
column “All” shows results on all words (monosemous and
polysemous), whereas column “Poly” shows results on the
subset of polysemous words.

Let us first concentrate on the results we obtained with
the standard WordNet inventory. As can be seen, all local
measures perform better than the random sense baseline
(Random) and worse than the first sense upper bound (First
Sense).9 Degree, PageRank, and Betweeness are signifi-
cantly better than the extended Lesk algorithm (ExtLesk;
p < 0:01 using a �2 test). KPP is significantly better than
ExtLesk on polysemous words (see the column Poly in
Table 5), but the advantage disappears when taking all
words into account. HITS performs significantly worse than
ExtLesk, and Degree and PageRank significantly outper-
form all other local measures (p < 0:01). In fact, the two
measures yield similar results (their difference is not
statistically significant). This is not entirely surprising; the
PageRank value of a node is proportional to its degree in
undirected graphs. Previous research on undirected graphs
has also experimentally shown that the two measures are
broadly equivalent [66]. Among the global measures,
Compactness and Edge Density are significantly better
than Graph Entropy (p < 0:01). However, when compared
to local measures and the ExtLesk, global measures lag
behind (all differences are statistically significant). We
conjecture that the inferior performance of the global
measures is due to the necessary heuristic algorithm used
for searching the interpretation space (see Section 6.3).

We now discuss the performance of the different
measures under the enriched WordNet. Here, we also
observe that all measures are significantly worse than the
first sense but better than the random baseline. The best
global measure is Edge Density, which significantly out-
performs Compactness and Graph entropy and ExtLesk
(p < 0:01). The best local measures are Degree, Between-
ness, and PageRank (their difference is not statistically
significant). They all are significantly better than Edge
Density and ExtLesk.
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TABLE 5
Performance of Connectivity Measures on SemCor

Fig. 4. Cumulative degree distribution for WordNet and EnWordNet.

7. http://www.cse.unt.edu/~rada/senseval/senseval3/scoring/.
8. F1 ranges from 0 to 1. We report percentages in Tables 5, 7, and 8 for

the sake of readability.
9. The First Sense performance is an upper bound on SemCor as it is

determined on the sense-tagged version of the very same corpus.



A denser reference lexicon with a large number of
semantic relations seems to benefit both local and global
measures. The enriched WordNet yields better results in
comparison to vanilla WordNet across the board. Using the
former sense inventory increases disambiguation perfor-
mance in most cases by approximately 10 percent (see the
column Poly in Table 5). The benefit of EnWordNet is
perhaps most apparent with Edge Density which becomes
competitive with HITS despite the combinatorial explosion
problem discussed above. This makes intuitively sense. The
denser the sense inventory is, the more appropriate edge-
based measures will be at capturing sense distinctions. Note
that Graph Entropy seems insensitive to the use of a denser
sense inventory. The differences between WordNet and
EnWordNet are not radical enough to result in changes in
graph entropy. For this reason, similar performances are
observed with both dictionaries.

We further analyzed the influence of the sense inventory
on the WSD algorithm by examining how Degree’s
performance varies on SemCor as the number of incident
edges of the correct target word sense increases. Fig. 5 shows
that F1 tends to increase when the target sense has a large
number of incident edges. This is especially the case for
EnWordNet. F1 starts dropping for WordNet when a degree
of 60 is reached. This is probably due to the fact that high-
degree vertices in WordNet typically have a large number of
hyponyms (e.g., periodn; dishn). This often degrades perfor-
mance, as too many specializations may lead to accidental
sense matches. In contrast, a vertex in EnWordNet with a
high degree is related to many other vertices transversally
(i.e., in a nontaxonomic manner). Thus, the chance of
identifying semantically valid paths is increased. In fact,
when the correct sense of a target word is adjacent to more
than 100 edges (this holds for almost 20,000 test items in
SemCor), Degree obtains a precision of 88 percent with
EnWordNet (and only 62 percent with WordNet).

To get more insight into the kinds of semantic relations
that contribute to better performance, we estimated their
average distribution over the set of outgoing edges for each
sense chosen by Degree in SemCor. Table 6 reports results
for hypernymy/hyponymy (H), nominalization (N), simi-
larity (S), meronymy/holonymy (M), antonymy (A), and
collocation-based relations (C). The latter refer to relations
present in EnWordNet but not in WordNet. We only
consider relations which constitute at least 0.10 of the
incident edges per sense (on average). We observe that the

contribution of each relation significantly increases from
WordNet to EnWordNet. Expectedly, hypernymy/hypony-
my is an important relation in both dictionaries. Colloca-
tion-based relations have a prominent role in EnWordNet,
thus confirming our hypothesis that syntagmatic relations
play a key role in WSD performance.

In the results reported thus far, ties are broken randomly
as we did not want to make use of any knowledge sources
other than the WordNet graph. However, it is customary in
the WSD literature to resolve ties by choosing the most
frequent sense in SemCor. To establish how much could be
gained from this strategy, we modified our algorithm so
that it defaults to the first WordNet sense in case of ties.
Degree obtained an F1 of 53.08 percent on SemCor. F1
increased to 59.83 percent with EnWordNet. We observed
similar gains (i.e., within the range of 3 percent) for the
other connectivity measures.

In sum, our results indicate that Degree is the best
connectivity measure overall as it performs consistently
well across lexicons. This is an encouraging result: Degree is
one of the simplest connectivity measures available, with
moderate running time complexity. Indeed, we find that
more sophisticated measures such as HITS perform
comparably to the extended Lesk algorithm. The latter
does not heavily rely on WordNet’s graph structure in any
way (it selects the sense whose definition has the highest
overlap with the surrounding context words). We also find
that the lexicon at hand plays an important role in graph-
based WSD. The results in Table 5 suggest that advances in
WSD performance can be made by creating better sense
connections with a larger number of collocational relations.

7.2 Experiments on Senseval-3 and Semeval-2007
All Words

In this section, we situate the WSD algorithm proposed in
this paper with regard to the state of the art. Broadly
speaking,WSD algorithms come in three flavors. Supervised
systems learn disambiguation cues from hand-labeled data
and usually demonstrate superior performance to other
methods. Unsupervised systems, like the one presented here,
do not utilize sense tagged data in any way, and semi-
supervised approaches use some annotated data selectively,
e.g., by defaulting to the SemCor first sense when the system
is not confident about the correctness of its answers.

Table 7 shows the performance of our algorithm on the
Senseval-3 all-words data set using Degree and the
EnWordNet. The algorithm is run in an unsupervised
setting without making use of the first sense and a semi-
supervised setting where it backs off to the first sense when
the Degree score for the target sense is below a certain
(empirically estimated) threshold. The latter was set to 0.11
after maximizing Degree’s F1 on 100 randomly chosen
word instances from the Senseval-2 all-words test set [67].
Degree is also compared to Lesk, the first sense heuristic,
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Fig. 5. Performance of Degree by the number of incident edges for
polysemous words in SemCor.

TABLE 6
Average Number of Outgoing Edges by Kind for the

Senses Selected by Degree with WordNet and EnWordNet



and the best supervised, unsupervised, and semi-super-
vised systems that participated in Senseval-3.

As can be seen in Table 7, Degree in the unsupervised
setting outperforms Lesk and the best unsupervised
Senseval-3 system (Sussex). Both differences are statistically
significant (p < 0:01) using bootstrap resampling. The latter
system [10] implements a method that does not rely on
contextual cues for disambiguation. Instead, it acquires first
senses automatically by quantifying the degree of similarity
between the distributional neighbors and the sense descrip-
tions of an ambiguous word. Degree has an advantage over
[10] as it disambiguates words in context and is not
restricted to a unique first sense.

In the semi-supervised setting, Degree is not signifi-
cantly worse than the first sense heuristic, but is signifi-
cantly better (p < 0:01) than the best semi-supervised
Senseval-3 system (IRST-DDD), which implements a
similarity-based algorithm. The system was developed by
[68] and performs domain driven disambiguation. It
compares the domain of the context surrounding the target
word with the domains of its senses using a version of
WordNet augmented with domain labels (e.g., ECONOMY,
GEOGRAPHY, etc.). Finally, the best supervised system
(GAMBL) is significantly better than Degree in both the
unsupervised and semi-supervised settings (see Table 7).
This is not surprising: GAMBL [69] is a memory-based
system which learns word experts from an extensive
collection of training sets. In contrast, Degree has access
to no (unsupervised) or very little (semi-supervised)
training data. Also, note that GAMBL (significantly) out-
performs the first sense heuristic, albeit by a small margin
(2.8 percent).

We replicated the experiment just described on the most
recent all-words WSD data set, which was created in the
context of the Semeval-2007 competition [70]. Again, we
compared Degree in the two settings (unsupervised and
semi-supervised) against Lesk and the best systems that
participated in Semeval-2007. Although the Semeval test set
is generally more difficult than Senseval-3—it has a higher
number of verbs which are notoriously hard to disambi-
guate—we observe similar trends. Degree in the unsuper-
vised setting is significantly better than Lesk. It is also
numerically better than the best unsupervised system (JU-
SKNSB) which is a modified version of the extended Lesk
algorithm [71]. However, the difference is not statistically
significant (the Semeval-2007 test set is relatively small,
containing only 465 instances). The semi-supervised De-
gree, the best semi-supervised Semeval system (RACAI),
and the first sense heuristic are all in the same ballpark (the
differences are not statistically significant). RACAI [72] is
inspired by lexical attraction models [73]; it finds the

combination of senses that is most likely in a sentence
represented by dependency-like structures. Expectedly,
Degree (and all other unsupervised and semi-supervised
approaches) is significantly worse than the best supervised
system (PN-NL), which is essentially a maximum entropy
classifier with a rich feature set [74].

Overall, we find that our graph-based algorithm yields
competitive performance with the state of the art. Bear in
mind that our approach is relatively simple and para-
meter-free. All we need is a lexicon and a means of
assessing the importance of graph nodes. We do not use
any sense-annotated data for training or any syntactic
information other than part-of-speech tagging. It is there-
fore interesting to see that our algorithm fares well in
comparison with other more sophisticated methods that
exploit syntactic information (e.g., [10], [72]) or additional
resources (e.g., [68]).

8 CONCLUSIONS

In this paper, we presented a study of graph connectivity
measures for unsupervised WSD. We evaluated a wide
range of local and global measures with the aim of isolating
those that are particularly suited for this task. Our results
indicate that local measures yield better performance than
global ones. The best local measures are Degree and
PageRank. A similar conclusion is drawn in [66] in the
context of Web page ranking. Furthermore, Litvak et al. [75]
prove that the two measures are closely related, obeying a
similar power law distribution.

We also find that the employed reference dictionary
critically influences WSD performance. We obtain a large
improvement (in the range of 10 percent) when adopting a
version of WordNet enriched with thousands of relatedness
edges. This indicates that graph-based WSD algorithms will
perform better with more densely connected sense inven-
tories, with more incident edges for every node. An
interesting future direction would be to investigate ways
of automatically enhancing WordNet (and similar diction-
aries) with relatedness information. For example, by adding
edges in the graph for nodes whose distributional similarity
exceeds a certain threshold.

Beyond the specific algorithm presented in this paper,
our results are relevant for other graph-based approaches to
word sense disambiguation [9], [15] and discrimination [29],
[30]. Our experiments show that the performance could
potentially increase when the right connectivity measure is
chosen. The proposed measures are independent of the
adopted reference lexicon; they induce a sense ranking
solely by considering graph connectivity, and can thus be
ported across algorithms, languages, and sense inventories.
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TABLE 7
Results on the Senseval-3 All-Words Data Set

Degree is compared to Lesk and the best unsupervised, semi-
supervised, and supervised systems in the Senseval-3 competition.

TABLE 8
Results on the Semeval All-Words Data Set

Degree is compared to Lesk and the best unsupervised, semi-
supervised, and supervised systems in the Semeval-2007 competition.



WordNet-like reference lexicons exist for several languages
(e.g., EuroWordNet [76] and MultiWordNet [77]). Methods
have also been developed for learning taxonomies from
machine readable dictionaries [78], [79] and corpora [80]. It
is an interesting future direction to establish how well our
WSD method performs with such resources.

Our experiments focused primarily on graph connectivity
measures and their suitability for WordNet-like sense
inventories. For this reason,we employed a relatively generic
WSD algorithm (see Section 3) without extensive tuning and
obtained state-of-the-art performance when assessing our
system on standard evaluation data sets (e.g., Senseval-3 and
Semeval-2007). However, this does not mean to say that the
algorithm could not be further improved. For instance, we
could consider word sequences larger than sentences, take
into account syntactic relations, or score edges in the graph
according to semantic importance (e.g., hypernymy is more
important than meronymy).

More research is needed to assess whether our results
extend to other NLP tasks, besides WSD. An obvious
application would be summarization, where graph-based
methods have met with reasonable success [33], [34] and
eigenvector centrality measures are a popular choice.
However, their performance against other graph connectiv-
ity measures has not yet been studied in detail.
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