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Abstract

This paper studies the use of wireless Ethernet (Wi-Fi)
as a localization sensor for mobile robots. Wi-Fi-based lo-
calization relies on the existence of one or more Wi-Fi de-
vices in the environment to act as beacons, and uses sig-
nal strength information from those beacons to localize the
robot. Through the experiments described in this paper, we
explore the general properties of Wi-Fi in indoor environ-
ments, and assess both the accuracy and utility of Wi-Fi-
based localization.

1 Introduction

This paper presents an experimental study exploring the
use of wireless Ethernet (Wi-Fi) as a localization sensor.
Wi-Fi-based localization relies on the existence of one or
more Wi-Fi devices in the environment to act as beacons,
and uses signal strength information from those beacons to
localize the robot. Compared with traditional localization
sensors, such as cameras and laser range-finders, Wi-Fi de-
vices are cheap, light-weight and have relatively low power
consumption. Moreover, an increasing number of environ-
ments come pre-equipped with suitable beacons in the form
of Wi-Fi access points. For robots that are too small or in-
expensive to carry a laser range-finder or camera, Wi-Fi-
based localization offers a viable alternative.

The basic method for Wi-Fi-based localization is as fol-
lows. First, a number of Wi-Fi devices placed in the en-
vironment to act as beacons; pre-existing Wi-Fi access
points, embedded devices, or other robots may serve in
this role. Second, one or more robots is used to build a
Wi-Fi signal strength map of the environment; this map
specifies the expected signal strength for each beacon at
every location in the environment. We assume that, during
the mapping phase, robots are localized using some other
technique. Finally, armed only with a signal strength map,
a Wi-Fi adapter and odometry, robots may localize them-
selves using a variant of the standard Monte Carlo Local-
ization algorithm [3, 9]. Note that this approach is inspired
by the work of a number of authors [2, 8] on the subject

of Wi-Fi-based localization. Our key contributions are the
embedding of the problem within the context of Monte-
Carlo Localization (MCL), the development of appropriate
Wi-Fi signal strength maps, and the presentation of com-
prehensive experimental results.

The experiments described in this paper address four
key questions:

1. How does Wi-Fi signal strength vary over time, and
to what extent is it affected by day-to-day activity in
human environments?

2. How does signal strength vary as a function of robot
pose, and is it possible to construct signal strength
maps capturing this variation?

3. Are signal strength measurements consistent across
robots, such that the signal strength map acquired by
one robot can be used to localize another?

4. What level of accuracy is achievable with Wi-Fi-based
localization?

In answering these questions, we aim to determine both the
accuracy and the practical utility of Wi-Fi-based localiza-
tion.

2 On Monte-Carlo Localization

For the sake of the discussion that follows, we will
briefly sketch the basic theory underlying MCL (see [3]
and [9] for a more complete presentation). MCL is a form
of Bayes filtering; in the context of localization, the Bayes
filter maintains a probability distribution p(xt) over all pos-
sible robot poses x at time t. We interpret the probability
associated with each pose as our degree of belief that the
robot is pose x at time t and denote this Bel(xt). The belief
distribution is updated in response to two events: the robot
performs some action, or the robot records a new sensor ob-
servation. The filter update rules have the following general
form:

Bel(xt)
at′←−

∫

p(xt |xt ′ ,at ′)Bel(xt ′)dxt ′ (1)

Bel(xt)
st←− p(st |xt)Bel(xt) (2)



Figure 1: Building floor-plans of the SAL2 environment, showing the location of the four wireless beacons A, B, C and
D. The occupancy grid used for contact sensing and ground truth pose determination is also shown (free space is shown in
white, occupied space in black and unknown space in gray).

where at ′ is an action performed at time t ′ < t and st is
a subsequent sensor reading. Normalization factors have
been omitted for the sake of clarity. The terms p(st |xt) and
p(xt |xt−1,at−1) are known as the sensor and action mod-
els, respectively, and must be provided a priori. In this pa-
per, we develop a sensor model for Wi-Fi signal strength
(Section 5) and evaluate the utility of this model for robot
localization (Section 6).

While conceptually simple, the Bayes filter can be dif-
ficult to implement. The sensor and action models tend
to be non-parametric, and the pose distribution Bel(xt) is
often multi-modal. MCL seeks to address this difficulty
through the use of particle filters. Particle filters approx-
imate the true distribution by maintaining a large set of
weighted samples. Roughly speaking, each sample in the
particle set represents a possible robot pose, and the filter
update rules are modified such that the action update step
1 modifies the sample poses, while the sensor update step
2 modifies their weights. Re-sampling is used to weed out
unlikely samples and focus computation on the more likely
parts of the distribution. See [1] for a good tutorial on par-
ticle filters and re-sampling techniques.

3 Experimental Setup

The experiments described in this paper were conducted
in a typical office environment consisting of rooms and cor-
ridors (Figure 1). Four wireless devices were placed at the
indicated locations to act as beacons (two iPaq’s, a laptop
and an Intel Stayton unit). The devices where used in ad-
hoc mode, and the iwspy utility (Linux) was used to col-
lect signal strength information. The environment was pre-
mapped with a scanning laser range-finder to produce the

occupancy grid shown in Figure 1. During subsequent ex-
periments, the occupancy grid was used in conjunction with
a laser-based localization algorithm to generate “ground
truth” pose estimates. These estimates were used for both
Wi-Fi map generation and the evaluation of Wi-Fi-based
localization.

Two Pioneer2DX robots (Fly and Bug) were used in
these experiment. Each robot was equipped with odometry,
a SICK LMS200 scanning laser range-finder, an Orinoco
Silver 802.11b PCMCIA card, and a range-extender an-
tenna. The antenna was placed in an unobstructed location
on the top of each robot in order to minimize any corre-
lation between signal strength and robot orientation. The
robots use the Player robot device server [5, 4], which in-
cludes drivers for measuring Wi-Fi signal strength and al-
gorithms for laser-based (and now Wi-Fi-based) MCL.

In the remainder of this paper, we investigate the gen-
eral properties wireless signal strength (in both space and
time), the construction of signal strength maps, and the use
of those maps for localization.

4 Properties of Wi-Fi Signal Strength

Figure 2(a) shows a plot of the signal strength recorded
by one of the robots over a 48 hour period. The robot was
located adjacent to beacon A in Figure 1, and recorded the
signal strength for beacon B. The period captured includes
two full working days, with people moving about in the
corridors and offices, opening and closing doors, and so on.
Some of the variation in the signal strength plot is likely
to be a result of such changes in the environment. More
importantly, however, all of the variation is confined to a
relative narrow band of around 10 dB.
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Figure 2: Signal strength measurements for wireless beacon B. (a) Signal strength plotted as a function of time over a
48 hour period. (b) Signal strength as a function of beacon range (log scale). (c) Signal strength as a function of robot
orientation.
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Figure 3: (a) Signal strength recorded by robot Fly over two complete circuits of the environment. (b) Signal strength
recorded by robot Bug over a similar circuit.

Figure 2(b) shows a plot of signal strength as a function
of range from one the beacons. This data was gathered by
one of the robots over two complete laps around the en-
vironment; the robot was localized using the laser-based
method described above, allowing the range to the beacon
to be accurately determined. In free-space, we expect sig-
nal strength (a logarithmic measure) to vary as −2logr,
as indicated by the lines in the figure. In indoor environ-
ments, however, radio is known to have complex propaga-
tion characteristics, with reflections, refraction and multi-
path effects [6]. Hence it is not surprising that while Figure
2(b) follows the correct general trend for free-space propa-
gation, it also shows significant local departures from this
trend. Figure 3(a) shows the same set of data plotted as a
function of robot position. In this plot, we note that there
is clear variation in signal strength across the environment,
and that the local signal strength values remain consistent
over multiple passes (within about 5 dB). Somewhat to our
surprise, the signal strength values are also consistent when

measured by different robots. Figure 3(b) plots the results
generated by a second robot for a similar circuit of the en-
vironment; the signal strength measurements are indistin-
guishable from those acquired by the first robot. Finally,
Figure 2(c) plots signal strength as a function of robot ori-
entation. While there does appear to be some correlation
between signal strength and orientation, this correlation is
weak; the variance over the full range of orientations is at
most twice that seen in the static time series plot.

Three important implications can be drawn from the
data presented in Figures 2 and 3. (1) There is less variance
associated with the position plot that the range plot; hence
we expect that a signal-strength map should yield better lo-
calization results than a simple parametric model. (2) Raw
signal strength measurements are consistent across differ-
ent robots having identical hardware. This implies that a
signal strength map acquired by one robot can be used to
localize another, greatly increasing the practical utility of
this approach. (3) Signal strength is largely invariant with
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Figure 4: Interpolated signal strength maps generated using the filters K1 and K1 ·K2 (described in the text). The maps were
generated using the sample set shown in Figure 2(a).

respect to robot orientation, at least for the hardware con-
figuration used in these experiments. This result greatly
simplifies the construction of Wi-Fi signal strength maps.

5 Mapping Wi-Fi Signal Strength

While it is clearly impractical to probe the signal
strength at every point in the environment, it is relatively
easy to collect a representative set of samples and construct
an interpolated map. We make two important assumptions:
(1) during the sampling process, the robot’s pose is known
(in our case, this pose is provided by a laser-based system),
and (2) signal strength is invariant with respect to orienta-
tion, reducing map making to a two-dimensional problem.

For simplicity, we encode the signal strength map using
a regular grid. Each grid cell records the interpolated signal
strength value at a particular location, and separate grids
are used for each beacon. The grid is generated from raw
signal strength data using a low-pass filter, as follows. Let
Ψ = {(x0,ψ0),(x1,ψ1), ...} denote a set of samples such
that each sample i has a position xi and signal strength ψi.
Let Φ = {(x0,φ0),(x1,φ1), ...} denote the set of grid cells,
where the interpolated signal strength φi at position xi is
given by:

φi =
∑ j K(|x j− xi|)ψ j

∑ j K(|x j− xi|)
. (3)

K(s) is a weight function whose value depends on the dis-
tance s = |x j− xi| between the sample at x j and the cell at
xi. There are many possible choices for the weight func-
tion K(s); to date, we have achieved our best results using
a combination of two filters. The first filter uses the weight
function:

K1(s) =

{

1 if s < d
0 otherwise

(4)

This filter considers only those samples that lie within dis-

tance d of a cell, and generates an unweighted local av-
erage. Figure 4(a) shows the map generated by this filter
(d = 1 m) when applied to the sample data shown in Fig-
ure 3(a). Note that the filter generates good values in those
regions visited by the robot, but leaves large ‘holes’ in the
unvisited portion of the map. To fill these holes, we apply
a second filter with weight function:

K2(s) = s−m (5)

where m is generally a low integer value. This is a fairly
typical interpolation filter that considers all samples, but
assigns higher importance to those closer to the cell. Figure
4(b) shows the final interpolated map.

To use the signal strength map for localization, we must
augment it with an appropriate sensor model 2. If we
assume that the sensor noise is normally distributed, we
can write down the senor model p(φ|x) for Wi-Fi signal
strength:

p(φ|x) = exp
−(φ−φi)

2

2σ2 (6)

where φi is the interpolated signal strength for the cell i con-
taining pose x, and σ2 is the expected variance in the sig-
nal strength. Based upon time-series plots such as the one
shown in Figure 2(a), we typically choose σ to be 10 dB.
Note that it is not our intention to suggest that this partic-
ular sensor model (or the interpolation procedure describe
above) is the the best possible model for Wi-Fi-based local-
ization. Rather, we propose that this is a sufficient model,
and seek to determine its utility empirically.

6 Localization
In order to assess the comparative utility of Wi-Fi-based

localization, we compare the localization results achieved
using three different combinations of sensors: Wi-Fi, con-
tact, and Wi-Fi plus contact sensing. In all three cases we
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Figure 5: Localization results using different combinations of Wi-Fi and contact sensing. The plots on the left show the
estimated robot trajectory (the true trajectory is indicated by the ‘+’ symbols); the plots on the right show the error in the
pose estimate as a function of the distance travelled by the robot. (Top) Wi-Fi sensing only. (Middle) Contact sensing only.
(Bottom) Both Wi-Fi and contact sensing.

assume that odometry is also available. Note that the ‘con-
tact’ sensor in our case is logical rather than physical, and
simply asserts that the robot cannot be co-located with an-
other object. Thus, given an occupancy map of the envi-
ronment, the ‘contact’ sensor rejects those poses that lie in
occupied space.

Our basic experimental methodology is as follows. Data
was collected from a robot performing a series of circuits
of the environment, and processed off-line using different
combinations of the recorded sensor data. In all cases, the
initial pose of the robot was entirely unknown. Further-
more, different robots where used for the map acquisition
and localization phases, and these two robots executed their
circuits in opposite directions.

The combined localization results are presented in Fig-

ure 5. The top row shows the localization results using Wi-
Fi sensing only: the left hand figure plots the estimated
robot trajectory, while right hand figure plots the error in
the pose estimate as a function of the distance travelled by
the robot (i.e., the distance between the true pose and the
estimated pose). The key feature to note is that the pose es-
timate converges very quickly (within about 10 m of robot
travel) to a steady state error of 0.40± 0.09 m. The sec-
ond row in Figure 5 shows the results using contact sensing
only. Here, the estimate takes much longer to converge: the
robot has travel around 80 m before it can gather enough
data to make an unambiguous determination of the robot’s
pose. The steady-state error, however, is only 0.26±03 m;
better than that obtained using the Wi-Fi sensor alone. The
third and final row in Figure 5 shows the results of combin-



ing Wi-Fi and contact sensing. Here, convergence is rapid,
and the steady-state error is only 0.25± 0.02 m. It would
appear that these two sensors complement each other ex-
tremely well: Wi-Fi ensures rapid convergence when the
initial pose is unknown, while contact sensing improves the
subsequent accuracy of the estimate. One can, of course,
further improve the estimate by adding data from addi-
tional sensors; with sonar or laser range data, we expect
to achieve steady-state errors of less that 0.10 m with con-
vergence distances of a few meters.

The results described above were generated using all
four of the Wi-Fi beacons placed in the environment. Fewer
beacons can be used, with a consequent decrease in local-
ization accuracy. The steady-state errors for different com-
binations of the beacon A, B, C and D shown in Figure 1
are as follows.

Beacons Error (m)
A 0.87±0.34
A,B 0.55±0.12

Beacons Error (m)
A,B,C 0.45±0.14
A,B,C,D 0.40±0.09

Given the basic geometry of trilateration in two dimen-
sions, it comes as no surprise that best results are achieved
using two or more beacons. It should also be noted that
for this particular set of experiments, the location of the
beacons was selected based on the likelihood that it would
yield good localization accuracy. Other configurations may
yield lower accuracy for the same number of beacons.

7 Conclusion

Four major conclusions can be drawn from the results
presented in this paper.

1. Signal strength values are stable over time, and rel-
atively unaffected by environmental changes induced
by day-to-day activity.

2. Signal strength values vary relatively smoothly with
increasing range from the beacon. As a result, it is
possible to produce interpolated signal strength maps
from a relatively sparse sampling of the environment.

3. Signal strength measurements are consistent across
robots using identical Wi-Fi hardware, and thus maps
generated by one robot can be used to localize another.

4. Given a sufficient number of beacons and a sig-
nal strength map, robots can be localized to within
0.50 m. Accuracy can be increased by adding addi-
tional beacons and/or other forms of sensing.

Clearly, much experimental work remains to be done; this
paper does not, for example, consider the effect of different
environments, different beacon configurations, or heteroge-
nous hardware. Nevertheless, the results presented here in-
dicate that Wi-Fi is a very effective localization sensor.

Resources

Wi-Fi-based localization has been incorporated into the
Player robot device server [5], which can be downloaded
from the Player/Stage web-site [4]. The data-sets used in
this paper are also available on the Radish (Robotics Data
Set Repository) web-site [7].
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