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Abstract

Background: The stability of Variable Importance Measures (VIMs) based on random forest has recently received

increased attention. Despite the extensive attention on traditional stability of data perturbations or parameter

variations, few studies include influences coming from the intrinsic randomness in generating VIMs, i.e. bagging,

randomization and permutation. To address these influences, in this paper we introduce a new concept of intrinsic

stability of VIMs, which is defined as the self-consistence among feature rankings in repeated runs of VIMs without

data perturbations and parameter variations. Two widely used VIMs, i.e., Mean Decrease Accuracy (MDA) and Mean

Decrease Gini (MDG) are comprehensively investigated. The motivation of this study is two-fold. First, we empirically

verify the prevalence of intrinsic stability of VIMs over many real-world datasets to highlight that the instability of VIMs

does not originate exclusively from data perturbations or parameter variations, but also stems from the intrinsic

randomness of VIMs. Second, through Spearman and Pearson tests we comprehensively investigate how different

factors influence the intrinsic stability.

Results: The experiments are carried out on 19 benchmark datasets with diverse characteristics, including 10

high-dimensional and small-sample gene expression datasets. Experimental results demonstrate the prevalence of

intrinsic stability of VIMs. Spearman and Pearson tests on the correlations between intrinsic stability and different

factors show that #feature (number of features) and #sample (size of sample) have a coupling effect on the intrinsic

stability. The synthetic indictor, #feature/#sample, shows both negative monotonic correlation and negative linear

correlation with the intrinsic stability, while OOB accuracy has monotonic correlations with intrinsic stability. This

indicates that high-dimensional, small-sample and high complexity datasets may suffer more from intrinsic instability

of VIMs. Furthermore, with respect to parameter settings of random forest, a large number of trees is preferred. No

significant correlations can be seen between intrinsic stability and other factors. Finally, the magnitude of intrinsic

stability is always smaller than that of traditional stability.

Conclusion: First, the prevalence of intrinsic stability of VIMs demonstrates that the instability of VIMs not only comes

from data perturbations or parameter variations, but also stems from the intrinsic randomness of VIMs. This finding

gives a better understanding of VIM stability, and may help reduce the instability of VIMs. Second, by investigating the

potential factors of intrinsic stability, users would be more aware of the risks and hence more careful when using VIMs,

especially on high-dimensional, small-sample and high complexity datasets.
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Background

Feature selection is widely used to identify the most dis-

criminating features out of a large number of features

in bio-medical applications, such as biomaker discovery,

medical diagnosis, and gene selection. Random Forest

(RF) is an ensemble classifier, which applies bagging tech-

nique to construct an ensemble of trees, with random-

ization technique for the growth of each tree [1]. The

tree-based ensemble makes RF suitable for handling with

both categorical and numerical features, missing values,

and redundant features [2]. Especially, RF is suitable for

high-dimensional and small-sample datasets [3–6]. RF

provides two Variable Importance Measures (VIMs), i.e.

the Mean Decrease Accuracy (MDA) and Mean Decrease

Gini (MDG). The feature ranking produced by MDA or

MDG serves as a filter to eliminate irrelevant features, and

has been applied in a large variety of domains [3, 7–11].

It is widely believed that high stability is equally impor-

tant as high classification accuracy in the feature selection

literature [12–18]. The stability of feature selection always

refers to the sensitivity of a VIM to data perturbation

or parameter variations. With respect to data perturba-

tion stability, the main focus is the consistence between

feature rankings, each of which comes from different

subsamples of a training set (e.g., 10-fold cross valida-

tion) [15, 19–21]. Calle and Urrea discussed the stability

of both MDA and MDG rankings based on the varia-

tions in a bladder cancer recurrence dataset containing

723 independent features [22]. The average percentage of

overlap between the original ranking and the ranking in

the perturbed datasets (10% left out) is used to assess the

stability. The conclusion was that MDG is robust to small

perturbations of the data while MDA rankings behavior

was completely unstable. Nicodemus, K.K kept going deep

into the instability of VIMs with respect to data-specific

characteristics. Some artificial datasets were generated

concerning within-feature relevance and differences in

category frequencies [23]. The stability was analyzed by

the correlation coefficient between the feature rankings

from the original data set and 100 90% subsamples. The

comparison leads to the conclusion that MDG is inferior

to MDA on artificial datasets. Verikas et al explored the

MDA stability by observing the Spearman coefficient of

feature rankings obtained in 20 different runs [24]. Each

run performs under the same parameter setting with the

training dataset being randomly selected out of the orig-

inal dataset. Kursa, M.B. compared the stability of four

RF-based or RF-relevant VIMs [25]. The stability was

assessed among 30 optimal feature subsets derived from

30 bootstrap samples of equal size to the original data.

With respect to parameter-variations stability, the studies

concentrate on the consistence between feature rankings,

when the parameter settings are different from each other

[12, 14, 16, 17]. Okun and Priisalu noticed the influence

of the number of features for node split on the feature

rankings from MDG, where the correlation of two fea-

ture rankings was computed, provided before and after

the number of features for node split is changed [4]. The

results showed the correlation of two feature rankings can

be weak while they may exhibit similar accuracy on the

same data set. Verikas et al also tried to demonstrate the

correlations between a pair of feature rankings generated

by a pair of random forests with a very similar number of

trees and/or variables (adjacent numbers) [24]. The results

showed lower correlations when the number of variables

used to split a node in two RFs differs more. In sum-

mary, previous studies on the stability of VIMs have tried

to attribute the stability problem to the perturbations of

training data or parameter settings.

In this paper we address the problem of intrinsic sta-

bility which comes from the algorithm design of VIMs.

Generally speaking, most feature selection algorithms are

relatively stable when eliminating the impacts of data-

perturbations or parameter variations, e.g. Support Vector

Machine Recursive Feature Elimination [26] and relief-F

[27]. However, due to the intrinsic randomness of bagging

and randomization, random forest lacks stability decreas-

ing the robustness of performance [28–30]. In our previ-

ous work [28], we noticed the intrinsic stability problem

of random forest and tried to alleviate it by combining

of proximity measure and support vector machine. How-

ever, the intrinsic stability problem has not been formally

defined and thoroughly investigated, especially the com-

parison with traditional stability and potential affecting

factors. This limitation motivated us to explore the intrin-

sic stability of VIMs based on random forest. We intro-

duce the concept of intrinsic stability which is defined

by the self-consistence among the feature rankings of

repeated runs. Intrinsic stability describes the stability of

VIMs stemming from the intrinsic randomness in algo-

rithm design and distinguishes from traditional stability of

data perturbations and parameter variations.

The goal of this study is to explore the intrinsic stabil-

ity that stems from the intrinsic randomness of VIMs. The

experiments were carried out on 19 benchmark datasets

with diversified characteristics. Ten of them are gene

expression datasets, which are described as high dimen-

sional and small sample problemm, since small sample

size and high feature redundancy are important factors

that increase randomness [19, 21, 25, 31].

Besides the demonstration of intrinsic stability on a vari-

ety of datasets, a more valuable goal of this study is to

investigate the influence of several factors on intrinsic

stability throughout the VIM process. First, we exam-

ined the impact of parameters setting, i.e. the number of

trees (ntree) and the number of splitting features candi-

date for each node (mtry). Second, we investigated the

impact of dataset indicators, i.e. the number of features,
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sample size, the number of classes, and model accuracy.

Another highlight of our study is the comparison of mag-

nitude of intrinsic stability with traditional stability, which

gives a better understanding of the importance of intrinsic

stability.

Methods

Random forest variable importance measures

Random forest model

Random forest (RF) is an ensemble of multiple decision

trees. Each tree of RF is grown with a subset of data made

from bootstrap and random subset of variables [1]. The

process of sampling a bootstrap data from the original

training data to establish the training dataset for each tree

is described as bagging technique. The process of select-

ing a feature subset of the original feature set for tree-node

split is described as randomization technique. To clas-

sify a new instance, RF puts the new instance down each

tree in the forest. Each tree provides a predicted label as

a vote for prediction. RF chooses the classification with

the most votes. With respect to bagging method, there

are on average 36.8% of original instances not used as the

training dataset for each meta tree [1]. All the excluded

examples construct the so called out-of-bag dataset (OOB

dataset). The OOB accuracy is always applied to evaluate

the RF performance. Building on the bagging and ran-

domization technique, RF achieves higher accuracy with

low bias and variance than other popular tree structured

algorithms like CART, C4.5 and ID3, and has been con-

sidered as a highly preferred state-of-art machine learning

model [32].

MDA andMDG

Considering the learning scenario, the data is described

as z = (x, y) where x refers to an instance and y refers

to the label. The instance can further be denoted as x =

(x1, x2, ..., xd) ∈ X, with the upper index 1, 2, ..., d repre-

senting the original sequence numbers of the features, and

d is the size (cardinality) of the feature set. When a VIM

method is performed, each feature is designated with an

importance score. Thus a feature ranking can be obtained

by ordering the importance scores. The feature ranking

can be described as follows:

RankFea = (xπ(1), xπ(2), ..., xπ(d)) (1)

where π(j), j = 1, 2, ..., d is the new index of feature xj in

the descending ranking.

Building on RF modeling, MDA and MDG have been

proposed to serve as variable importance methods. Sup-

pose ht(xi) and ht(x
j
i) refer to the predicted label for OOB

instance xi before and after feature permutation respec-

tively, MDA measures the importance of a feature xj by

calculating themean decrease in theOOB accuracy before

and after the permutation of feature xj, i.e.,

VI(xj)=
1

ntree

∑ntree

t=1

∑

i∈OOB

I (yi = ht (xi)) −
∑

i∈OOB

I
(

yi = ht

(

x
j
i

))

|OOB|

(2)

For MDG, we measure the total decrease in node impu-

rities (e.g., Gini index) from splitting on the feature, and

average over all trees. Suppose Gini(j) is the Gini index

of feature xj, and ndot is the number of tree nodes based

on feature xj, the importance score by MDG is defined as

follows:

VI(xj) =
1

ndot

[

1 −

ndot
∑

k=1

Gini(j)k

]

(3)

whereGini(j)k is the kth Gini index of feature xj among the

ndot tree nodes.

Sources of randomness inMDG andMDA

The problem of the reproducibility of RF has received

attention [29, 30]. It is pointed out that the stability of RF is

reduced by two random components: the bagging method

and the randomization method. According to the algo-

rithm mechanism, both MDA and MDG involve the two

random components in feature ranking process. Beyond

that, one more random component has been involved in

MDA, i.e. feature permutation [28]. The random compo-

nents of VIMs can be eloquently visualized in Fig. 1.

It can be seen in Fig. 1, MDG only includes two random

components from RF, i.e., bagging (randomness com-

ponent 1) and randomization (random component 2).

Besides them, MDA involves the third random compo-

nents of feature permutation (randomness component 3).

Knowing the anchor points of random components in

VIMs helps understand the sources of intrinsic instability.

Evaluation criteria for VIM stability

There are a few evaluation criteria aiming to measure

the VIM stability [33–36]. Here we propose to measure

the consistence between the sequences as a measure of

VIM stability. Generally, VIM stability is measured with

respect to feature ranking. Three commonly used evalua-

tion criteria, i.e., Spearman coefficient, Jaccard index and

Kuncheva index, are applied to comprehensively assess

the VIM stability. Among them, Spearman coefficient

focuses on the correlation between two sequences, while

Jaccard index and Kuncheva index concern the overlap

of feature subsets. Moreover, considering the fact that a

slight perturbation in feature importance may lead to a

dramatic change in feature ranking, mean absolute rel-

ative difference (MARD) is also used to evaluate the

performance of VIM stability. MARD is often used as

a quantitative indicator of quality assurance and quality
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Fig. 1 Visualization of random components involved in the procedures of MDG and MDA. The distribution of random components of VIMs is

eloquently visualized to understand the source of intrinsic randomness of VIMs

control for repeated measurements where the outcomes

are expected to be the same. The measurement of MARD

provides detailed information of VIM stability.

Now consider the general framework for assessing

VIM stability among multiple feature rankings. Given

k feature rankings: RankFea1,RankFea2, ...,RankFeak , the

consistence among the k feature rankings is measured

by averaging over all pairwise feature rankings, i.e.,

(RankFeag ,RankFeah) where g, h ∈ {1, 2, ..., k} and g �= h.

The average consistence is computed as follows:

stabidxk =
2
∑k−1

g=1

∑k
h=g+1stabidx

2(RankFeag ,RankFeah)

k(k − 1)

(4)

where stabidx2(RankFeag ,RankFeah) represents an eval-

uation criterion to measure the pairwise consistence.

It is worth noting that, VIMs are extremely sensi-

tive to redundant or noisy features, especially on high

dimensional with a small sample size datasets. It makes

sense to only analyze the top ranked features [35, 36].

In this study, we constrain that up to top 100 fea-

tures submitted to stability evaluation. That means,

stabidx2(RankFeag ,RankFeah) is computed with respect

to the top 100 features if the length of feature ranking is

larger than 100.

Spearman coefficient

Spearman coefficient instinctively assesses the rank cor-

relation between two sequences of ranking features

[37]. The calculation of Spearman coefficient begins

with the process of converting the numerical sequence

to ranks. Building on two sorted feature rankings

(RankFeag ,RankFeah), the Spearman coefficient defined

for pairwise consistence can be given by

stabidx2Spearman = 1−6

d
∑

j=1

(

RankFea
g
j − RankFeahj

)2

d(d2 − 1)

(5)

where RankFea
g
j and RankFeahj are the index of feature xj

in the feature ranking respectively. A preferred value is 1

when the two feature rankings are identical and a value of

-1 meaning that they have exactly inverse orders. Accord-

ing to the limit of up to top 100 features, d is set to be 100

if the length of feature ranking is larger than 100.

Jaccard index

Jaccard index is widely used in the literature of stability

evaluation, which calculates the similarity between pairs

of feature rankings concerning the aspect of overlap [38].

For two sorted feature rankings (RankFeag ,RankFeah),

Jaccard index is defined as the size of the intersection of

two sequences divided by the size of the union of the two

sequences. The Jaccard index definitely will be 1 when

the numerator and denominator are both 1. Therefore, in

order to correct this problem, an alternate Jaccard index,

which iterates through each sub-sequence and then aver-

ages the aggregated results from all steps, is given as

follows:

stabidx2Jaccard =
1

d − 1

d−1
∑

j=1

∣

∣

∣
RankFea

g
1...j ∩ RankFeah1...j

∣

∣

∣

∣

∣

∣
RankFea

g
1...j ∪ RankFeah1...j

∣

∣

∣

(6)

where RankFea
g
1...j,RankFea

h
1...j are the sub-sequence of

the original feature rankings (RankFeag ,RankFeah). Jac-

card index takes value in [ 0, 1]. The closer that number is

to 1, the better the VIM stability is. According to the limit

of up to top 100 features, d is changed to be 100 if the

length of feature ranking is larger than 100.

Kuncheva index

Kuncheva index is a more sensitive measure than Jaccard

index, which can correct the evaluation bias [33]. It is

pointed out that Jaccard index tends to produce higher

values for larger subsets due to the increased bias of select-

ing overlapping features by chance. Kuncheva index tends

to provide a correction for chance. For two sorted feature

rankings (RankFeag ,RankFeah), the computation iterates
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through each sub-sequence and then averaged evaluation

is defined as

stabidx2Kuncheva =
1

d − 1

d−1
∑

j=1

rj −
(

j2/d
)

j −
(

j2d
) (7)

where rj is the cardinality of intersection of sub-sequences

RankFea
g
1...j and RankFea

h
1...j. Kuncheva index takes a value

in [−1, 1]. Larger value indicates larger number of com-

mon features in both sub-sequences. According to the

limit of up to top 100 features, d is set to be 100 if the

length of feature ranking is larger than 100.

MARD

The evaluation criterion of mean absolute relative differ-

ence (MARD) is a frequently used measure of the differ-

ences between two sequences of real values [39]. Basically,

theMARD represents the standard deviation of the differ-

ences between two sequences. MARD is a good measure

of consistence of two sequences with respect to real val-

ues. For two sequences of importance score IMSg and

IMSh, MARD calculates the difference of absolute values

of importance score between sequences as follows:

stabidx2MARD =
1

d

d
∑

j=1

∣

∣

∣
s
g
j − shj

∣

∣

∣

(s
g
j + shj )/2

(8)

where s
g
j , s

h
j represent the elements of scores sequence

IMSg , IMSh, respectively.

It is worth noting that the calculation of MARD up

to the top 100 features is somewhat complicated. In this

study, The sequence of importance score is obtained by

the union of pairwise sequences with up to top 100 fea-

tures. Therefore, there may be more than 100 features

involved in each sequence of importance scores. Accord-

ingly, d is the united length of the two sequences when the

original feature ranking is larger than 100.

Datasets and experimental setup

In order to provide a more convincing empirical verifi-

cation, various types of datasets were chosen. Most of

the datasets in this study are collected from the biology

domain and have the characteristics of small sample-size

and high-dimensional features. Table 1 shows a summary

of the 19 data sets used. Among them, 14 of the total 19

datasets comes from the application of biology, and 11

from gene expression datasets except Arcene and made-

lon, are obtained from a repository of the most widely

studied gene expression sets (http://www.gems-system.

org/) [40]. The dataset Arcene, madelon and the rest are

Table 1 Characteristics of datasets used in experiments

ID Dataset Domain #Feature #Sample #Class OOB
accuracy

1 yeast biology 8 1484 10 0.98

2 glass Physical 9 240 6 0.79

3 vote social 16 232 2 0.97

4 segment image 19 2310 7 0.98

5 mushroom biology 20 8124 2 1.00

6 soybean biology 35 307 19 0.93

7 splice biology 60 3175 4 0.43

8 sonar Physical 60 208 2 0.85

9 Madelon artificial 500 2600 2 0.73

10 SRBCT biology 2308 83 4 1.00

11 Leukemia1 biology 5327 72 3 0.94

12 DLBCL biology 5469 77 2 0.83

13 Tumors_9 biology 5726 60 9 0.51

14 Brain_Tumor1 biology 5920 90 5 0.83

15 Arcene biology 10000 100 2 0.79

16 Brain_Tumor2 biology 10367 50 4 0.74

17 Prostate_Tumor biology 10509 102 2 0.92

18 Tumors_11 biology 12533 174 11 0.88

19 Lung_Cancer biology 12600 203 5 0.92

obtained from UCI Machine Learning Repository (http://

archive.ics.uci.edu/ml/).

Four dataset indicators are used to describe the charac-

teristics of datasets. Besides three commonly used statis-

tics, i.e., #feature, #sample and #class, the fourth indicator

OOB accuracy is used to evaluate the complexity of a

dataset [41]. The OOB accuracy of each dataset is the best

result of RF on the original dataset with fine-tuned param-

eters. The implementation of RF model, as well as the

runs of MDA andMDG, is executed in the R environment

(http://cran.r-project.org/) by calling for the R package of

randomForest4.6-10 [42].

In our experiments, the intrinsic stability is assessed by

the self-consistence of the results in repeated 10 runs. The

self-consistence among the 10 feature rankings are evalu-

ated respectively by Spearman coefficient, Jaccard index,

and Kuncheva index, while the difference of 10 sequences

of importance scores is measured by MARD. The illustra-

tion of intrinsic stability was conducted in three stages.

First, in order to get a stable performance of VIMs,

the impact of parameter setting was explored. Second,

the correlations between four dataset indicators and the

intrinsic stability are statistically investigated. Finally, the

magnitude of intrinsic stability was compared with that of

the traditional stability with respect to data perturbations

and parameter variations.

http://www.gems-system.org/
http://www.gems-system.org/
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://cran.r-project.org/
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Results

Influence of the parameter setting on intrinsic stability

In order to explore whether or not the intrinsic stability is

affected by the parameter setting of VIMs, the distribution

of intrinsic stability against different parameter settings

are investigated. The two key parameters ntree and mtry

are set to different values respectively. The range of ntree

is set as (50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000

and 50000) and the range of mtry is set as (one,dwdef,def,

updef ), where def means the default value of mtry i.e. the

square-root of the total number of features, dwdef means

a half of def and updef means one and a half of def. For

each dataset, the distribution of intrinsic stability against

different values of ntree with the value of mtry being def

is displayed in Fig. 2. The distribution of intrinsic sta-

bility against different values of mtry with ntree being

20000 is displayed Fig. 3. It is worth noting, there are two

set of stability indices presented in our study. The first

group includes Spearman coefficient, Jaccard index and

Kuncheva index, which are based on feature ranking and

prefer to be as high as 1. The other is MARD, which is

based on the scores of feature importance and prefers to

be as low as zero.

It can be seen from Fig. 2, for both MDA and MDG, the

intrinsic stability is significantly more obvious to param-

eter ntree. With the increase of ntree, Spearman coeffi-

cient, Jaccard index and Kuncheva index ascend gradually

and MARD gradually declines. It shows that the role of

ntree nonlinearly decreases with its increasing value. Note

that, even when ntree equal to 50000, the values of indices

on most of the datasets are still away from the preferred

value, which is 1 for the stability indices based on fea-

ture rankings and 0 forMARD, especially for datasets with

small-size examples and high-dimensional features.

In contrast, Fig. 3 shows that the parameter mtry has

little impact on the performance of intrinsic stability. It

remained stable against different values of mtry across the

19 datasets. Similar to the results of ntree, the magnitudes

of intrinsic stability are always away from the preferred

value. Especially, the intrinsic stability on datasets with

small-size examples and high-dimensional features tend

to be poorer than others.

The demonstration of intrinsic stability on different

datasets

The intrinsic stability across all the 19 datasets are inves-

tigated under predefined parameter settings. According

to the finding in Figs. 2 and 3, to eliminate the influ-

ence of parameters we set ntree to be 20000 and mtry

to be the default settings of def. The results are respec-

tively shown in Table 2 for MDA and Table 3 for MDG. In

each table the performance of stability index is described

as its mean and variance over all possible 45 pairwise

computations.

It can be seen in Table 2 with respect to Spearman

coefficient, Jaccard index and Kuncheva index, most of

values in terms of the mean are smaller than 1, and the

scores in terms ofMARD do not touch the bottom of zero.

These observations illustrate the prevalence of inconsis-

tence among the results in repeated runs. Especially, the

values on gene expression datasets are significantly more

obvious than other datasets, which reveals that VIMs on

datasets with small-size samples and high dimensional

features are more likely to suffer from intrinsic instabil-

ity. Additionally, all the values in terms of variance are as

small as zero, which indicates that the results from dif-

ferent pairwise computations are consistent. According to

Table 3, the performance of MDG is analogous to that of

MDA.

Correlation between the dataset indicators and intrinsic

stability

In this section, we analyze the correlation between the

indicators of dataset characteristics and the intrinsic sta-

bility with the purpose of better understanding of the

potential factors that may affect the intrinsic stability. The

indicators including the number of features, sample size,

OOB accuracy and number of classes are studied respec-

tively. In our experiments, two correlation coefficients,

i.e., Spearman coefficient and Pearson coefficient, are

both used to capture the relationship. Spearman bench-

marks monotonic relationship while Pearson coefficient

benchmarks linear relationship. For each correlation test,

the performance is described as estimate and p value,

which is tested with confidence of 95%.

A preliminary test on the dependencies between differ-

ent indicators on the 19 datasets showed that #feature and

#sample is not independent. (Spearman correlation coef-

ficient for #feature and #sample is -0.63, with a p-value

of 0.0038). Specifically speaking the datasets in Table 1

can be divided into two categories of datasets: a) low-

dimensional with a large number of samples which is the

former 9 datasets in Table 1. b) high-dimensional with

a small sample size the latter 10 datasets in Table 1.

To eliminate the interference we study the role of fea-

ture and sample independently on these two groups

respectively. The results in terms of Spearman coeffi-

cient and Pearson coefficient are displayed in Table 4

for datasets(a) and Table 5 for datasets(b) respectively.

Further more, to investigate the coupling effect of #fea-

ture and #sample on the whole 19 datasets, we evaluate

the relationship between intrinsic stability and a syn-

thetic indicator #feature/ #sample, which can be seen

as an indicator of degree of high dimensional and small

sample of the dataset. Tables 6 and 7 show the relation-

ships between intrinsic stability and #feature/ #sample as

well as #class and OOB accuracy for MDA and MDG

respectively.
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Fig. 2 Influence of the setting of parameter ntree on the intrinsic stability. For each dataset, the distribution of intrinsic stability against different

values of ntree are illustrated (a) MDA (b) MDG



Wang et al. BMC Bioinformatics  (2016) 17:60 Page 8 of 18

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.0

0.1

0.2

0.3

0.4

0.5

S
p
e
a
rm

a
n

J
a
c
c
a
rd

K
u
n
c
h
e
va

M
A

R
D

one dwdef def updef

mtry

va
lu

e
data

yeast

glass

vote

segment

mushroom

soybean

splice

sonar

madelon

SRBCT

Leukemia1

DLBCL

Tumors_9

Brain_Tumor1

arcene

Brain_Tumor2

Prostate_Tumor

Tumors_11

Lung_Cancer

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.0

0.1

0.2

0.3

S
p
e
a
rm

a
n

J
a
c
c
a
rd

K
u
n
c
h
e
va

M
A

R
D

one dwdef def updef

mtry

va
lu

e

data

yeast

glass

vote

segment

mushroom

soybean

splice

sonar

madelon

SRBCT

Leukemia1

DLBCL

Tumors_9

Brain_Tumor1

arcene

Brain_Tumor2

Prostate_Tumor

Tumors_11

Lung_Cancer

a

b

Fig. 3 Influence of the setting of parameter mtry on the intrinsic stability. For each dataset, the distribution of intrinsic stability against different

values of mtry are illustrated (a) MDA (b) MDG
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Table 2 The performance of intrinsic stability of MDA

Spearman coefficient Jaccard index Kuncheva index MARD

Mean Variance Mean Variance Mean Variance Mean Variance

Yeast 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.0076 0.0000

Glass 0.8756 0.0181 0.9852 0.0003 0.9708 0.0010 0.0077 0.0000

Vote 0.9851 0.0004 0.9909 0.0001 0.9866 0.0002 0.0270 0.0003

Segment 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.0110 0.0000

Mushroom 0.9628 0.0025 0.9925 0.0001 0.9910 0.0001 0.0134 0.0000

Soybean 0.9628 0.0025 0.9925 0.0001 0.9910 0.0001 0.0134 0.0000

Splice 0.4712 0.0162 0.9651 0.0000 0.9548 0.0001 0.0107 0.0000

Sonar 0.6107 0.0170 0.9672 0.0000 0.9509 0.0001 0.2936 2.8892

Madelon 0.1675 0.0104 0.7306 0.0002 0.8072 0.0002 0.4387 2.1041

SRBCT 0.1397 0.0078 0.9103 0.0001 0.9496 0.0000 0.0683 0.0000

Leukemia1 0.1282 0.0087 0.8864 0.0001 0.9370 0.0000 0.0963 0.0001

DLBCL 0.0809 0.0067 0.8333 0.0001 0.9059 0.0000 0.1402 0.0001

Tumors_9 0.0665 0.0084 0.7519 0.0003 0.8528 0.0001 0.1608 0.0002

Brain_Tumor1 0.0176 0.0094 0.8182 0.0002 0.8956 0.0001 0.1148 0.0001

Arcene 0.0453 0.0085 0.7563 0.0003 0.8574 0.0001 0.2283 0.0003

Brain_Tumor2 0.0427 0.0084 0.7378 0.0002 0.8361 0.0001 0.1637 0.0001

Prostate_Tumor 0.0437 0.0115 0.8826 0.0001 0.9362 0.0000 0.1170 0.0001

Tumors_11 0.0134 0.0111 0.8168 0.0002 0.8945 0.0001 0.0808 0.0000

Lung_Cancer 0.0220 0.0146 0.7839 0.0002 0.8745 0.0001 0.0906 0.0001

Table 3 The performance of intrinsic stability of MDG

Spearman coefficient Jaccard index Kuncheva index MARD

Mean Variance Mean Variance Mean Variance Mean Variance

yeast 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.0042 0.0000

Glass 0.9763 0.0010 0.9887 0.0002 0.9778 0.0009 0.0040 0.0000

Vote 0.8408 0.0222 0.9927 0.0001 0.9587 0.0014 0.0161 0.0000

Segment 0.9944 0.0001 0.9974 0.0000 0.9975 0.0000 0.0083 0.0000

Mushroom 0.9601 0.0014 0.9852 0.0002 0.9857 0.0002 0.0141 0.0000

Soybean 0.9601 0.0014 0.9852 0.0002 0.9857 0.0002 0.0141 0.0000

Splice 0.5471 0.0073 0.9380 0.0001 0.9355 0.0001 0.0022 0.0000

Sonar 0.8273 0.0030 0.9733 0.0000 0.9643 0.0001 0.0172 0.0000

Madelon 0.2731 0.0082 0.9158 0.0001 0.9481 0.0000 0.0145 0.0000

SRBCT 0.1154 0.0103 0.9067 0.0001 0.9469 0.0001 0.0596 0.0000

Leukemia1 0.0329 0.0086 0.8684 0.0002 0.9258 0.0001 0.0864 0.0001

DLBCL 0.0832 0.0089 0.8295 0.0001 0.9025 0.0000 0.1036 0.0000

Tumors_9 0.0655 0.0128 0.7753 0.0002 0.8694 0.0001 0.0894 0.0001

Brain_Tumor1 0.0085 0.0107 0.8003 0.0001 0.8828 0.0001 0.0970 0.0000

Arcene 0.0342 0.0115 0.7803 0.0002 0.8729 0.0001 0.1549 0.0001

Brain_Tumor2 0.0297 0.0120 0.7328 0.0003 0.8396 0.0001 0.1262 0.0001

Prostate_Tumor 0.0796 0.0120 0.8580 0.0002 0.9211 0.0001 0.0985 0.0001

Tumors_11 0.0761 0.0143 0.8052 0.0003 0.8877 0.0001 0.0744 0.0000

Lung_Cance 0.0421 0.0101 0.7538 0.0003 0.8547 0.0002 0.0905 0.0000
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Table 4 The correlation between datasets indicators and intrinsic stability in datasets(a)

Coefficient Dataset indicators Spearman coefficient Jaccard index Kuncheva index MARD

estimate p.value estimate p.value estimate p.value estimate p.value

Spearman #feature(MDA) -0.7848 0.0122 -0.7004 0.0356 -0.7004 0.0356 0.6891 0.0401

#feature(MDG) -0.8571 0.0031 -0.9244 0.0004 -0.6387 0.0641 0.3445 0.3639

#sample(MDA) -0.1345 0.7302 0.0168 0.9658 0.1345 0.7302 -0.1590 0.6828

#sample(MDG) -0.0921 0.8138 -0.2594 0.5003 -0.0084 0.9830 -0.4435 0.2318

Pearson #feature(MDA) -0.8346 0.0051 -0.9972 0.0000 -0.9755 0.0000 0.8511 0.0036

#feature(MDG) -0.8677 0.0024 -0.8289 0.0058 -0.4856 0.1851 0.2730 0.4772

#sample(MDA) -0.0319 0.9350 -0.0606 0.8769 -0.0157 0.9681 -0.0966 0.8047

#sample(MDG) -0.0769 0.8441 -0.1563 0.6880 0.0520 0.8942 0.0058 0.9883

Table 5 The correlation between datasets indicators and intrinsic stability in datasets(b)

Coefficient Dataset indicators Spearman coefficient Jaccard index Kuncheva index MARD

estimate p.value estimate p.value estimate p.value estimate p.value

Spearman #feature(MDA) -0.8424 0.0045 -0.5030 0.1434 -0.5030 0.1434 0.0424 0.9186

#feature(MDG) -0.1879 0.6076 -0.5758 0.0878 -0.5758 0.0878 0.2606 0.4697

#sample(MDA) -0.5152 0.1328 0.1636 0.6567 0.1636 0.6567 -0.4424 0.2042

#sample(MDG) 0.2121 0.5599 0.0667 0.8648 0.0667 0.8648 -0.1152 0.7588

Pearson #feature(MDA) -0.7873 0.0069 -0.4687 0.1718 -0.4535 0.1880 0.1424 0.6946

#feature(MDG) -0.2785 0.4359 -0.6094 0.0615 -0.5942 0.0701 0.3507 0.3205

#sample(MDA) -0.5141 0.1284 -0.0242 0.9471 0.0126 0.9725 -0.4052 0.2453

#sample(MDG) 0.0359 0.9216 -0.1836 0.6117 -0.1733 0.6321 -0.2310 0.5207

Table 6 The correlation between the dataset indicators and intrinsic stability on whole datasets for MDA

Coefficient Dataset indicators Spearman coefficient Jaccard index Kuncheva index MARD

estimate p.value estimate p.value estimate p.value estimate p.value

Spearman #feature/#sample -0.8227 0.0000 -0.7717 0.0001 -0.7805 0.0001 0.7196 0.0005

#classes 0.0162 0.9474 0.1868 0.4438 0.1976 0.4173 -0.5079 0.0264

OOB accuracy 0.4289 0.0669 0.6639 0.0019 0.6498 0.0026 -0.4701 0.0423

Pearson #feature/#sample -0.7187 0.0005 -0.7212 0.0005 -0.6408 0.0031 0.2260 0.3522

#classes 0.2913 0.2263 0.2038 0.4028 0.2428 0.3166 -0.3893 0.0995

OOB accuracy 0.3246 0.1751 0.3903 0.0985 0.4815 0.0368 -0.2814 0.2432

Table 7 The correlation between the dataset indicators and intrinsic stability on whole datasets for MDG

Coefficient Dataset indicators Spearman coefficient Jaccard index Kuncheva index MARD

estimate p.value estimate p.value estimate p.value estimate p.value

Spearman #feature/#sample -0.8583 0.0000 -0.8530 0.0000 -0.8425 0.0000 0.8969 0.0000

#classes 0.1524 0.5333 0.0649 0.7917 0.0902 0.7134 -0.3175 0.1853

OOB accuracy 0.4006 0.0892 0.4930 0.0320 0.5387 0.0173 -0.2230 0.3589

Pearson #feature/#sample -0.7503 0.0002 -0.8641 0.0000 -0.8426 0.0000 0.8790 0.0000

#classes 0.2843 0.2381 0.1416 0.5630 0.1918 0.4315 -0.2371 0.3283

OOB accuracy 0.2622 0.2782 0.3188 0.1833 0.3989 0.0907 -0.1025 0.6762



Wang et al. BMC Bioinformatics  (2016) 17:60 Page 11 of 18

Table 4 shows the results for datasets(a). For #feature,

the performance are same regardless of MDA or MDG.

That is, the estimates of Spearman coefficient and Pearson

coefficient are all negative in terms of the stability indices

based on feature ranking and positive based on MARD.

Meanwhile, most of their p values are all below the signifi-

cance level 5%. This observation reflects that the number

of features basically performs both negative monotonic

correlation and negative linear correlation with the intrin-

sic stability. When it comes to #sample in terms of both

Spearman coefficient and Pearson coefficient, the p values

are all higher than the significance level 5%. From Table 5

which shows the results for datasets(b) with respect to

both #feature and #sample, most of the p values are sig-

nificantly higher than the significance level 5%, except

that the #feature in case of Spearman coefficient for MDA

shows both negative monotonic correlation and negative

linear correlation. This implies a complicated and ambigu-

ous relationship between intrinsic stability and #feature

as well as #sample for high dimensional and small sample

datasets.

As shown in Table 6 with respect to the synthetic indic-

tor #feature/#sample, the estimates of Spearman coeffi-

cient and Pearson coefficient are all negative in terms of

the stability indices based on feature ranking and posi-

tive based on MARD, with their p values all below the

significance level 5%. This observation reflects that the

synthetic indictor #feature/#sample performs both nega-

tive monotonic correlation and negative linear correlation

with the intrinsic stability. This implies that high dimen-

sional and small sample datasets are prone to intrinsic

instability of VIMs. When it comes to #class all the p

values are higher than the significance level 5%, which

indicates that there is no significant correlation between

the number of classes and the intrinsic stability. The

results of OOB accuracy in the case of Spearman coef-

ficient are not consistent. The p value of the stability

index in terms of Spearman coefficient is over 5% while

that of Jaccard index, Kuncheva index and MARD are

below the significance level of 5%. In the case of Pear-

son coefficient, only Kuncheva index has p value below

the significance level. The performance in terms of OOB
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Fig. 4 Comparison of intrinsic stability and data-perturbation stability with respect to MDA. For each dataset, a comparison of the distributions of

two kinds of stability is presented, one comes from intrinsic stability and the other refers to data-perturbation stability. The distribution is depicted

by the notched box which focuses on the variation in the distribution
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accuracy leads us to conclude that there is only monotonic

correlation between OOB accuracy and intrinsic stabil-

ity. This implies that data complexity may have impact on

the intrinsic stability of VIMs. From Table 7, we find sim-

ilar performance except for the results of OOB accuracy.

It shows only the p values in terms of Spearman coeffi-

cient betweenOOB accaracy, Jaccard index and Kuncheva

index are below 5%, which reveals a weak monotonic cor-

relation between theMDG intrinsic stability and the OOB

accuracy. Remembering the importance scores of MDG

which is not calculated by OOB accuracy but by Gini

index, the mechanism of importance score calculation

contributes to this observation.

Comparison of intrinsic stability and data-perturbation

stability

In this section, the comparison of intrinsic stability and

data-perturbation stability are conducted. The data per-

turbation is conducted by 10-fold cross validation. To do

this, an original dataset is randomly partitioned into 10

equal sized data subsets, 9 of the 10 data subsets are used

as training set to produce a feature ranking. This process

is repeated 10 times, each of which includes different folds

as the training dataset. The 10 lists of feature importance

scores are then used to compute Spearman coefficient,

Jaccard index, Kuncheva index andMARD. Then the aver-

age over the 45 pairwise computations are recorded. For

intrinsic stability 10 runs of VIMs are executed on each

training set, and the stability indices on that training set

are computed. Finally, the averaged results over all the

10 training sets is reported. The comparison of intrinsic

stability and data-perturbation stability of MDA are dis-

played in Fig. 4 and the results of MDG are displayed in

Fig. 5.

The results are depicted with notched box plot. Each

notched box plot displays the variation in the distribution

of data based on some statistical summaries; the central

rectangle spanning the first quartile to the third quartile

(the interquartile range or IQR), the lines extending verti-

cally from the hinge to the highest value (upper whiskers)

is within 1.5 times of IQR, the lower whisker extends from

the hinge to the lowest value within 1.5 times of IQR.

Data beyond the end of the whiskers are outliers and are

plotted as individual points. Additionally, the notch is a
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Fig. 5 Comparison of intrinsic stability and data-perturbation stability with respect to MDG. For each dataset, a comparison of the distributions of

two kinds of stability is presented, one comes from intrinsic stability and the other refers to data-perturbation stability. The distribution is depicted

by the notched box which focuses on the variation in the distribution
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segment around the median displaying the a confidence

interval, with a height of 3.14 times the height of the

central box divided by the square root of the number of

data elements in the corresponding data distribution. The

notch is useful for determining whether two distributions

are drawn from the same population. Similar notches of

boxes indicate that the data visualized by the boxes have

the same distribution. Besides, if the notches of two boxes

do not overlap this is strong evidence that the medians

differ.

As shown in the case of both MDA and MDG, the posi-

tions of boxes referring to intrinsic stability are always

higher than that of perturbation stability in terms of

Spearman coefficient, Kuncheva index and Jaccard index,

while the situation is reversed in terms of MARD. How-

ever, the notches of boxes referring to intrinsic stability

overlap that of perturbation stability in some cases. For

example, the overlap appears in terms of Kuncheva index

for MDA, and the situation happens in terms of Spear-

man coefficient. Additionally, some notches go outside the

hinges, such as the notches in termsMARD for bothMDA

and MDG, the notches in terms of Spearman coefficient

for MDG. This is because the size of the notch is bigger

than the interquartile range. In other words, the dis-

tributions of intrinsic stability or perturbation stability

are not symmetric but skewed. This finding reveals that

intrinsic stability or perturbation stability are not always

normally distributed. Especially, the difference between

the intrinsic stability and data-perturbation stability on

mushroom dataset are substantially small. Considering

the unavoidable intrinsic stability, the observation on

mushroom dataset reveals that the major component of

data-perturbation stability of mushroom is intrinsic sta-

bility. The tendency of splice dataset is similar to that of

mushroom dataset. Comparatively, the gaps with respect

to mushroom dataset are substantially smaller than that

of splice dataset. The most obvious reason for the obser-

vation is the good characteristic of mushroom, which

has large sample size and high OOB accuracy. For the

comparison of MDA and MDG, the size of the box

with respect to MDG in terms of MARD is substan-

tially larger than that of MDA. This observation reveals

that there exists high variability in the distributions

of MDG.
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Fig. 6 Comparison of intrinsic stability and ntree-variations stability with respect to MDA. For each dataset, a comparison of the distributions of two

kinds of stability is presented, one comes from intrinsic stability and the other refers to ntree-variations stability. The distribution is depicted by the

notched box which focuses on the variation in the distribution
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Comparison of intrinsic stability and parameter-variation

stability

In this section the magnitude of intrinsic stability is com-

pared with that of parameter-variations stability. Consid-

ering two parameters ntree and mtry are required for

VIMs, the comparison is conducted from two aspects.

First, the comparison is carried out between the intrin-

sic stability and the ntree-variations stability. To do so the

parameter ntree takes 10 different values with the range

of (50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000 and

50000). In this scenario, the parameter mtry is set default

def. Based on each ntree setting, the VIM can be con-

ducted. The 10 lists of feature importance scores are then

used to compute ntree-variation stability. For intrinsic sta-

bility, 10 repeated runs are executed under each setting

of ntree. The results of stability evaluation based on 10

different settings of ntree are collected and then are aver-

aged. The performance of stability is presented by the

distributions of all possible 45 points by pairwise compu-

tations. The distributions are then depicted by notched

box plot. For each dataset, the comparison of intrinsic sta-

bility and ntree-variations stability was conducted. The

results of all 19 datasets were illustrated. The results of

MDA are displayed in Fig. 6 and the results of MDG can

be found in Fig. 7.

It can be seen from Fig. 6 and Fig. 7, generally speak-

ing the positions of boxes referring to intrinsic stability are

always higher than that of parameter stability in terms of

Spearman coefficient, Kuncheva index and Jaccard index,

while the situation is reversed in terms of MARD. Mean-

while, the notches of intrinsic stability do no overlap that

of ntree-variations stability. Additionally, some notches

go outside the hinges which reveals that the distribution

of data is not symmetric but skewed. But beyond that,

a remarkable characteristic is that the sizes of box with

respect to ntree-variations stability are substantially larger

than that of intrinsic stability. This observation reveals

that there exists high variability in the distributions of

ntree-variations stability.

Second, similar comparison is carried out between the

intrinsic stability and mtry-variations stability. To do so

the parametermtry changes its values: one, dwdef, def and

updef. The value of def means the square-root of the total

number of features, dwdef means a half of def, and updef
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Fig. 7 Comparison of intrinsic stability and ntree-variations stability with respect to MDG. For each dataset, a comparison of the distributions of two

kinds of stability is presented one comes from intrinsic stability and the other refers to ntree-variations stability. The distribution is depicted by the

notched box which focuses on the variation in the distribution
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Fig. 8 Comparison of intrinsic stability and mtry-variations stability with respect to MDA. For each dataset, a comparison of the distributions of two

kinds of stability is presented, one comes from intrinsic stability and the other refers to mtry-variations stability. The distribution is depicted by the

notched box which focuses on the variation in the distribution

means one and a half of def. In this scenario, the value

of ntree is set as default 20000. Similar computations are

conducted to get the results. The results of MDA are dis-

played in Fig. 8 and the results of MDG can be found in

Fig. 9.

It can be seen from Figs. 8 and 9, generally speaking

there is no any clear tendency with respect to the positions

and the overlap between boxes referring to intrinsic sta-

bility and that of mtry-variations stability. Meanwhile, the

notches of intrinsic stability do no overlap that of mtry-

variations stability. Additionally, the comparison in terms

of Spearman coefficient in case of both MDA and MDG,

as well as the comparison in term of MARD in case of

MDA is obscure, which shows that the positions of boxes

referring to intrinsic stability are almost as high as that

of parameter stability. Moreover, the notches of intrinsic

stability and that of mtry-variations stability are mutually

overlapping.

Discussion

Experimental results show that intrinsic instability is

prevalent across different datasets. Particularly, the degree

of intrinsic stability is dramatically low in the case of

gene expression datasets. The influence of parameter set-

ting of VIMs on the intrinsic stability is investigated

and the observations and conclusions are presented as

follows:

(a) With the increase of ntree, the intrinsic stability gets

better. Nevertheless, even when ntree equal to

50000, the values of indices on most of the datasets

are still away from the preferred value 1. These

observations lead to the conclusion that intrinsic

instability is inevitable, but can be reduced by a

larger value of ntree.

(b) There is no clear tendency of the distribution of

intrinsic stability against different settings of mtry.

This observation indicates that the setting of mtry is

not a solution to control the intrinsic instability.

With respect to four data-specific indicators, i.e., the

number of features, the sample size, the number of classes

and OOB accuracy, our observations and conclusions are

summarized as follows:
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Fig. 9 Comparison of intrinsic stability and mtry-variations stability with respect to MDG. For each dataset, a comparison of the distributions of two

kinds of stability is presented, one comes from intrinsic stability and the other refers to mtry-variations stability. The distribution is depicted by the

notched box which focuses on the variation in the distribution

(a) The relationships between #sample and intrinsic

stability can not be observed. For the #feature, there

is a perfect monotone decreasing relationship, as

well as strong negative linear correlation with

intrinsic stability on low-dimensional datasets with

a large number of samples. However, only #feature

in case of Spearman coefficient for MDA shows

both negative monotonic correlation and negative

linear correlation on high dimensional datasets with

small sample size. This implies a complicated and

ambiguous relationship between intrinsic stability

and #feature for high dimensional and small sample

datasets.

(b) Tests on the whole 19 datasets show that #feature

and #sample have a coupling effect on the intrinsic

stability. The synthetic indictor #feature/#sample

performs both negative monotonic correlation and

negative linear correlation with the intrinsic

stability. This implies that high dimensional and

small sample datasets are prone to intrinsic

instability of VIMs. This effect may stem from the

intrinsic randomness in the mechanism of VIMs,

the feature randomization (random component 2 in

Fig. 1) for both MDA and MDG, as well as the

feature permutation (random component 3 in

Fig. 1) for MDA.

(c) Generally, the OOB accuracy have a clear

monotonic correlation with the intrinsic stability.

However, there is no linear correlation. This

observation reveals that data complexity does have

impacts on the intrinsic stability.

(d) There is no significant correlation between the

number of classes and the intrinsic stability.

Further, the magnitude of intrinsic stability is compared

with that coming from data perturbation or parameter

variations. The observations and conclusions are summa-

rized as follows:

(a) The magnitude of intrinsic instability is generally

smaller than that of data-perturbation instability.

This observation indicates that data-perturbation

stability may contain intrinsic stability.

(b) The magnitude of intrinsic instability is significantly

smaller than that of ntree-variations instability.
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Moreover, the intrinsic stability has a dramatically

smaller variability than that of ntree-variability

stability. It shows that the intrinsic stability may be

involved in the ntree-variations stability and VIMs is

more sensitive to the change of ntree.

(c) The magnitude of intrinsic stability is generally

smaller than that of mtry-variations stability.

Nevertheless, there still exists the observation that

intrinsic stability and mtry-variations stability have

nearly equal magnitude in terms of Spearman

coefficient. Besides both intrinsic stability and mtry-

variations stability have significantly low variability.

These observations reveal that the intrinsic stability

is involved in the mtry-variations stability, but mtry

has little impact on the stability of VIMs.

Additionally, comparison of MDA and MDG exhibits a

lot of similarities between them. They both suffer from

the issue of intrinsic stability. Comparatively, MDG per-

forms relatively high variability in terms of MARD while

always making a consistent conclusion with the stability

indices based on feature ranking. The difference between

MDA and MDG lies in the degree of intrinsic stability.

Nevertheless, from an overall perspective, there is not

any clear conclusion about which one is more stable. The

observation is consistent with previous studies. In the

research of Calle and Urrea, MDG is more robust than

MDA to small perturbations of the data [22]. However,

Nicodemus, K.K concluded that MDG is inferior to MDA

on artificial datasets [23]. According to the mechanism

of intrinsic randomness, the number of random compo-

nents in Fig. 1 cannot completely depict the behavior

of MDA and MDG. Seemingly, MDG involves less ran-

dom components thanMDA.Whereas, Fig. 1 only focuses

the breath of random components and does not consider

the intensity of each component. It is better to con-

sider the quantity and intensity of random components

to evaluate the intrinsic stability of VIMs on different

implementations.

Conclusion

In this paper, a new concept of intrinsic stability of variable

importance measures (VIMs) is introduced to concern

the influence of intrinsic randomness in algorithm design.

The intrinsic stability in VIMs based on random forest

MDA and MDG, are comprehensively investigated which

assesses the self-consistence between the feature rankings

of repeated runs. First, the prevalence of intrinsic stabil-

ity of VIMs over many real-world datasets demonstrates

that the instability of VIMs not only comes from data per-

turbations or parameter variations, but also stems from

the intrinsic randomness of VIMs. The fact that the mag-

nitude of intrinsic stability is always smaller than that

of traditional stability indicates that the intrinsic stability

is implicitly involved in traditional stability. This finding

gives a better understanding of VIM stability, and may

help reduce or eliminate the instability of VIMs. Stud-

ies towards stable and robust VIMs without regard to the

intrinsic randomness of VIMs may not be likely to make

any real progress. Second, by investigating the potential

affecting factors of intrinsic stability, users would be more

aware of the risks and hence more careful when using

VIMs, especially on high-dimensional, small-sample and

high complexity datasets. In practice a large enough value

of ntree is preferred.
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