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Results are presented from an experimental study of the molecular mixing of a dynamically 
passive conserved scalar quantity in an axisymmetric laminar vortex ring. The experiments are 
based on highly resolved laser-induced fluorescence imaging measurements of the scalar field 
<(x,t) in the diametral plane of the ring, from which the evolution of the molecular mixing 
rate field V&V& x,t) can be directly examined. In particular, the structure and dynamics of the 
mixing process are addressed during the three characteristic stages in the ring evolution, 
namely, (i) the ring generation stage, (ii) the ring pinch-off stage, and (iii) the asymptotic 
stage of the ring. Results show a layering of the mixing process in which the diffusional 
cancellation term V( Vg) :V (Vc) plays a major role in setting the overall mixing rate achieved. 
The scalar field measurements are also used to extract detailed information about the 
underlying velocity field in the ring. 

I. INTRODUCTION 

A stable laminar vortex ring is formed when an impulse 
is imparted on a fluid in an axisymmetric manner. The dy- 
namics of the resulting vorticity field during various stages 
of the evolution of such vortex rings has been a subject of 
considerable interest for over 50 years.‘-” Indeed the lami- 
nar vortex ring is one of the most fundamental of the canoni- 
cal flow fields used in the study of vorticity dynamics. This 
interest comes largely from the fact that the simple structure 
of the ring lends itself well to both experimental and theoreti- 
cal investigation. These earlier studies have shown that 
many aspects of the vortex ring formation and propagation 
processes differ markedly from their classical descriptions 
based on various potential flow models. 

In this same sense, the laminar vortex ring provides a 
relatively simple flow field, simultaneously accessible to ex- 
perimental, numerical, and theoretical study, in which un- 
derstanding of the physics of the molecular mixing process 
in fluid flows also can be meaningfully examined and ex- 
tended. Yet the mixing processes within such a laminar vor- 
tex ring do not appear to have been documented in any sig- 
nificant detail. There are of course several problems in which 
these mixing processes in the ring are of direct relevance, and 
many others for which they provide a simple canonical rep- 
resentation of potentially more complicated processes. Ex- 
amples range from the mixing processes in a rising;atmo- 
spheric thermal and their implications for cloud formation, 
to the processes occurring during the interaction of a vortex 
with a premixed flame8 as a simple representation of the 
interaction of a turbulent flow with a flame front. In a 
broader sense, however, the laminar vortex ring provides a 
relatively simple and carefully controllable flow field in 
which theinteraction of strain and diffusion on the mixing 
process can in principle be studied in considerable detail. 

The study described here concerns itself with the mixing 
of dynamically passive conserved scalar quantities in such an 

. 

axisymmetric laminar vortex ring. By this we refer to quanti- 
ties that are advected by the fluid and can diffuse relative to 
the fluid, but which are neither created nor destroyed in the 
flow and which have no direct influence on the underlying 
flow field. We focus here on presenting a relatively detailed 
documentation based on experimental measurements of var- 
ious features of the molecular mixing of such scalars in the 
ring, and on their interpretation in terms of the dynamics of 
the associated mixing rate field. The presentation is orga- 
nized as follows. In Sec. II we give a brief summary of the 
formulation adopted here to quantify the molecular mixing 
process. In Sec. III we describe the experimental technique 
used to generate the rings and to measure the mixing rate 
field within them. Results are presented in Sec. IV, where we 
discuss the structure and evolution of the mixing rate field 
during the ring formation phase, the pinch-off phase, and the 
asymptotic phase. The extraction of the velocity field from, 
such measurements of the conserved scalar field is discussed 
in Sec. V and in Sec. VI we make several concluding remarks 
concerning the mixing processes within the ring. 

II. MIXING RATE FORMULATION 

The mixing process within the ring can be formulated in 
terms of a dynamically passive conserved scalar field c( x,t>, 

represented here by the concentration of an inert dye carried 
by one of the fluids in the ring. In such a conserved scalar 
field, the local scalar value can change only through advec- 
tion of the scalar with the fluid and molecular diffusion of 
the scalar relative to the fluid, and thus satisfies the advec- 
tion-diffusion equation 

( & + WV - & v2 > &-(x,t) = 0. (1) 

Here all variables have been made nondimensional by nor- 
malization with suitable reference length and velocity scales. 

From Eq. ( 1) the scalar energy per unit mass 4 c 2, defined 
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analogous to the kinetic energy per unit mass 4 u2, where 
UG 1~1, follows the transport equation, 

1 &+wv-- v2 
Re SC > 

$.T’(x,t) = - 

(2) 

where the same conservative advection-diffusion operator 
appears on the left. The term on the right then gives the 
scalar energy dissipation rate per unit mass, namely the local 
instantaneous rate at which nonuniformities in the scalar 
energy field are being reduced by molecular diffusion of the 
scalar in the flow. The scalar dissipation field V5;V<(x,t) is 
therefore often taken to define the instantaneous molecular 
mixing rate field in the flow. We note that the molecular 
mixing rate is sometimes alternately chosen as the magni- 
tude of the scalar gradient, IVc(x,t) I, though the logarithm 
of these two definitions differs only by a constant factor. 
Most of the results presented here are in terms of the loga- 
rithm of the mixing rate, and thus apply equally to both 
definitions. 

From Eq. ( 1 ), the scalar dissipation field in Eq. (2) can 
be seen to follow the transport equation 

( 

&+wv- & v2) f CVPV~) 

c - (V&‘Vg) - & vrvc>:v(vgL 

where the same conservative advection-diffusion operator is 
on the left. In the first term on the right, EZ~( Vu + Vur) is 
the local strain rate field, and the symmetric contraction 
simply selects the normal strain rate along the scalar gradi- 
ent vector direction as - E,~~ (VPVC). The remaining 
components of the strain rate act only to change the gradient 
vector orientation, but do not affect its magnitude. In this 
form, it can be readily seen that this term simply accounts for 
the reduction in scalar gradient magnitude due to extension- 
al straining along the gradient direction, or conversely the 
increase in dissipation that results when the scalar gradient 
is compressed. The second term on the right in Eq. (3) is 
strictly negative, and gives the reduction in dissipation due 
to diffusional cancellation of gradients in the scalar dissipa- 
tion field. It will be seen later that this term plays a key role in 
determining the evolution of the mixing rate field at various 
stages in the ring. 

Ill. EXPERIMENTAL TECHNIQUE 

The experimental technique used to generate the axi- 
symmetric laminar vortex rings in this investigation is de- 
scribed elsewhere’8 and will be only briefly summarized 
here. Each ring was formed by discharging a volume of fluid 
through a round nozzle to form a thin cylindrical sheet of 
vorticity. This vortex sheet rolls up and develops into astable 
ring that propagates away from the nozzle. The discharged 
fluid consisted of a uniform, weak, aqueous solution of a 
laser tluorescent dye (disodium fluorescein) that was pneu- 
matically driven through a contoured axisymmetric nozzle 
(shown in Fig. 1) by driving its free surface in a plenum with 
a high-pressure air stream metered through a micrometer- 
controlled, variable throat orifice held at sonic conditions 

High Pressure 

Air In 

1- 

FIG. 1. Axisymmetric nozzle geometry used.to generate the laminar vortex 
rings in this study. 

with a constant upstream pressure. A solenoid valve in this 
high-pressure air line was opened and closed via a variable 
delay timing circuit to discharge the dye-containing plenum 
fluid. For a given upstream pressure, the area of the sonic 
metering orifice set the air flowrate into the plenum, and the 
solenoid delay time (typically 50-100 msec) set the total 
amount of air supplied to the plenum. To keep the otherwise 
impulsive pressure rise driving the plenum fluid from excit- 
ing oscillations at the natural frequency of the second-order 
system formed by the compressibility of the air and the fluid 
mass in the plenum, the pressure rise was low-pass filtered by 
placing an adjustable volume of air in parallel with the ple- 
num. This pneumatic drive arrangement allowed for a very 
low disturbance level and a high degree of symmetry in the 
vortex sheet generation and roll-up processes that form the 
ring. The nozzle had an exit diameter of 3.9 cm and pro- 
duced rings with a center-to-center diameter az4.9 cm un- 
der all operating conditions. The ring circulation I’ was esti- 
mated from the integral of the exit velocity over time, and the 
corresponding Reynolds numbers Re= (I/Y) were typical- 
ly in the range from 5000 to 10 000. The Schmidt number 

SC= (Y/D) for the dye solution in water is 0( 103), giving 

Re Sc--O(lO’) in Rqs. (l)--(3). 
We measured the evolution of the resulting axisymmet- 

ric scalar field LJx,t) by quantitative imaging of laser-in- 
duced fluorescence from dye-containing fluid along the path 
of a thin laser beam swept through the diametral plane of the 
ring. The imaging and data acquisition systems used for this 
are also described in detail elsewhere’9~20 and will be only 
briefly summarized here. The measurements were based on 
high-speed acquisition of 256 successive 256 x 256 spatial 
data planes of the fluorescence intensity from the dye con- 
taining fluid carried by the ring. The fluorescence was pro- 
jected onto a planar imaging array scanned at a pixel rate of 
8.60 MHz, giving a net imaging rate of 100 planes/set. The 
output from the array was serially acquired through a pro- 
grammable digital port interface slaved to the array clock, 
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digitized to 8-bit digital resolution, and ported directly into 
16 MB of high-speed image memory. A galvanometric mir- 
ror scanner was slaved to the timing signals driving the array 
to synchronize the laser beam sweep with the data acquisi- 
tion. The resulting measured fluorescence intensity is related 
to the scalar field <( x,t) through a measured image transfer 
function and a simple attenuation integral. Although the at- 

tenuation integral is important for correctly obtaining the 
scalar field, the principal interest here is in the mixing rate 
field VQVc(x,t) for which the effect of the relatively weak 
attenuation was neglected. Because of the axisymmetry of 
the ring, the gradient vector V<( x,t) has only in-plane com- 
ponents and can be completely determined from these mea- 
surements in the diametral plane. The gradient vector field 
was obtained here by direct differentiation of the measure- 
ments using linear central difference approximations with- 
out any explicit smoothing or filtering of the results. 

IV. RESULTS 

The results from these measurements suggest that the 
evolution of the mixing process within such an axisymmetric 
laminar vortex ring can be usefully classified into three rela- 
tively distinct stages, namely (i) a ring generation stage, (ii) 
a “pinch-off stage, and (iii) an asymptotic stage. In this 
section, we present measurements of the mixing rate field in 
each of these stages and describe their particular characteris- 
tics. 

A. Generation phase 

The ring generation phase extends from the moment at 
which the impulse is first applied until the beginning of the 
pinch off phase. During this stage, the evolution of the scalar 
field is dominated almost entirely by the roll-up of the thin 
cylindrical vortex sheet emanating from the nozzle. A typi- 
cal sequence of images showing the resulting roll-up of the 
scalar field <(x,t) is presented in Fig. 2, and the sequence 
showing the associated mixing rate field log V&Vc(x,t) is 
given in Fig. 3. The sequence begins shortly after the pres- 
sure rise was first applied to the plenum, and shows only 
every 12th frame from the imaging data, corresponding to a 
time interval between successive panels shown of 

(At. K’/~sw’) ~0.054. As the axes indicate, the orange bor- 
der near the top of each frame in Fig. 2 corresponds to the 
exit plane of the nozzle, and the imaged region extends near- 
ly to the centerline of the flow. Pseudocolor assignments are 
used to denote the scalar and scalar dissipation values in 
each of these sequences, with the highest 0.1% of the dissipa- 
tion values corresponding to pure red in Fig. 3. Here D, is 
the nozzle exit diameter and c,, denotes the scalar value at 
the nozzle exit plane. In the earliest frame presented here, 
the scalar field at the front of the ring shows the effects of 
some slight stirring that has occurred between the plenum 
and ambient fluids due to small residual motions in the tank 
before the ring was generated. In the subsequent frames, it 
can be seen that the large stretching of the dye interface 

* 1.48 - 
1 I 

1.38 0 
WJ,) 

FIG. 2. Evolution of the scalar field <(x,t) during the ring formation phase. The dimensionless time between successive panels shown is 

(At-r/2ra”) 9.054. 
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FIG. 3. The logarithm of the scaled mixing rate field log V@Vc(x,t) obtained from the scalar field shown in Fig. 2. 

extending from the forward stagnation point of the ring 
leads to a rapid compression of the structure normal to this 
interface, producing a relatively clean front in later frames. 

Of particular interest here is the immediate rolling up 
into a tight spiral structure of the scalar interface in Fig. 2 
and the associated spiral scalar dissipation layer in Fig. 3. 
These features can be seen to correspond to the sides of the 
otherwise cylindrical volume of dyed plenum fluid emanat- 
ing from the nozzle. Indeed, there is evidence of a spiral roll 
up of this interface even in the earliest frames in which any 
motion of the fluid is discernible. The trajectory of the result- 
ing vortex can also be seen here, though it must be cautioned 
that experiments by Auerbach’** as well as by Irdmussa and 
Garris’ indicate that the trajectory can depend quite strong- 
ly on the details of both the geometry and the process used to 
generate the ring. As a result, while most of the phenomena 
documented here appear to be characteristic of the mixing 
process in all laminar vortex rings, there are likely to be some 
comparatively minor aspects that are specific to the particu- 
lar ring formation mechanism used here. 

Overall the spiral roll-up of the scalar dissipation layer 
emanating from the nozzle lip in Fig. 3 is strongly suggestive 
of the expected form~of the cylindrical vortex sheet that also 
must emanate from the nozzle. There is in fact an interesting 
similarity in the dynamics of the vorticity and scalar dissipa- 
tion fields. In particular, note that Eq. (3) for the scalar 

1388 Phys. Fluids A, Vol. 3, No. 5, May 1991 

dissipation Vt*V[ is very similar to the transport equation 
for the square of the v&i&y magnitude o-o, sometimes 
referred to as the enstrophy, which takes the form 

( 
& + u-v -&v* 

> 
+ (0’0) = (OWO) - & vtixvw. 

(4) . 

Comparison with Eq. (3) shows that thesymmetric contrac- 
tion in the first term on the right now selects the normal 
strain rate along the vorticity vector direction, namely 
+ E,, (0.0). The further difference in sign reflects the fact 

that extensional strain along the vorticity vector direction 
acts to increase its magnitude. Here, due to the axisymmetry 
of the ring, the scalar gradient and vorticity vectors will lie 
normal to each other, and thus the component of the strain 
rate that affects their evolution will be different. Interest- 
ingly though, in flows where Vc and o are aligned, the dy- 
namics of the scalar dissipation at a given value of the dimen- 
sionless scalar diffusivity Re SC will be entirely parallel to 
those of the vorticity magnitude when Re is increased to this 
same value. Of course, in the vortex ring, the initial condi- 
tion for the scalar dissipation includes a nonzero disk in the 
nozzle exit plane that has no parallel in the vorticity field. 

We now turn to the effect of the diffusional cancellation 
term in Eq. (3 ) and examine its consequences when the dis- 
sipation layer extending from the forward stagnation point 
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begins to interact with the layer emanating from the nozzle 
lip. This occurs along the spiral windings of the vortex as the 
core is approached. As was noted in Sec. II, this effect acts to 
reduce the rate of mixing in the vortex core. Thus even 
though an increasing amount of interfacial area between the 
plenum and ambient fluids is created by the roll-up of the 
vortex during this formation phase, the diffusional cancella- 
tion that occurs between adjacent arms of the spiral roll acts 
to limit the total mixing rate that is achieved. Another 
further issue that can be addressed from these results is the 
role that the formation process plays in determining the vol- 
ume ratio of plenum and ambient fluids that will eventually 
be trapped in the Kelvin oval formed by the ring. The pinch 
off process that finally ends the further entrainment of ple- 
num and ambient fluid into this oval is discussed in the fol- 
lowing section. Here we can note, however, that the details 
of the spiral roll-up seen during the vortex formation stage in 
Figs. 2 and 3 clearly plays a major role in determining this 
ratio. In this manner, the geometry and the process used to 
generate the ring would be expected to play a significant role 
in setting the final ratio achieved by the ring, as discussed by 
Auerbach.’ 

B. Pinch-off phase 

mixing rate field log VQVC;( x,t) only. The sequence shown 
now consists of every fotkframe from the imaged data, cor- 
responding to a time interval between successive panels of 
(At* I’/2ra’) ~0.089, and beginning at roughly the end of 
the ring formation stage described above. The quantitative 
color values are assigned as shown, with the highest 0.1% of 
the mixing rates again corresponding to pure red. The key 
feature in this phase is the diffusional cancellation between 
the two scalar dissipation layers seen in this diametral plane 
that intersects the initially cylindrical dissipation surface 
emanating from the nozzle. In the sequence in Fig. 4, this 
cancellation is most readily apparent between the two dissi- 
pation layers which at this time still connect the ring to the 
nozzle. At relatively early times these layers are still widely 
separated, but the strain field induced by the ring then begins 
to draw them together on a relatively fast time scale. A short 
time later, the two layers begin to interact strongly and, 
owing to the cancellation term in Eq. (3), the mixing rate 
rapidly drops to zero. Beyond this point, the ring is no longer 
“connected” to the nozzle and all of the plenum fluid that 
will eventually reside in the Kelvin oval has been committed 
to the ring. The ambient fluid trapped between the stream- 
lines passing through the forward and rearward stagnation 
points then simply continues to wrap on an increasingly finer 
scale with this plenum fluid during the asymptotic stage. 

This stage is characterized by the “pinch-otl” process Aside from the diffusional cancellation noted above, 

shown in Fig. 4, where for brevity we present results for the there is of course additional cancellation of this type that 

2.0 3.2 

EIG. 4. The logarithm of the mixing rate field log VQV& x,t) during the pinch-off phase ofthe ring. The dimensionless time between successive panels shown 
is (A~r/2ra’)=:0.089. 
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FIG. 5. The asymptoticstructure of the laminar vortex ring. (a) The scalar 
field [(xJ). (b) The molecular mixing rate field VpVg(x,t). 

begins where the dissipation layer extending from the for- 
ward stagnation point meets the remnants of the layers that 
originally were connected to the nozzle lip. This cancellation 
of the mixing rate within these layers continues along the 
spiral arms as these two layers wrap around each other in 
their approach toward the vortex core. As a consequence, 
the mixing rate begins to drop rapidly as the center of the 
core is approached. This will be seen more clearly in the 
discussion of the asymptotic stage given below. One last 
point regarding the pinch-off stage is important here. Notice 
that the two layers emanating from the nozzle do not remain 
symmetrically located around the centerline of the ring. Ex- 
cept at the earliest times in this stage, the layers consistently 
wander off the centerline, especially near the forward stag- 
nation point. This appears to be due to the fact that this is a 
hyperbolic point, and as a result the flow along streamlines 
approaching it is sensitive to even very small displacements 
from the centerline. The effect of any slight initial asymme- 
try that causes these two layers not to pinch off precisely on 
this dividing streamline will therefore show a large displace- 
ment when integrated over time, even though the underlying 
flow field is very nearly symmetric. 

C. Asymptotic phase 

Once the ring has pinched off, the ambient fluid trapped 
inside the Kelvin oval wraps up with the plenum fluid on an 
increasingly finer scale along the two spiral arms extending 

toward the center of the core. This can be seen quite clearly 
in Figs. 5 (a) and 5 (b), which, respectively, show the scalar 
and scalar dissipation fields in the right half of the ring at a 
stage where the ring has already wrapped up to a rather large 
degree. As the axes indicate, the image covers only the right 
half of the ring, with the centerline coinciding roughly with 
the left edge of the image and the vertical axis referenced to 
the core location z,. The number of windings seen now give 
an indication of the dimensionless “age” of the ring. Note 
that the color values are assigned as shown, with< * denoting 
the average scalar value of the fluid inside the Kelvin oval, 
determined without radial weighting in the plane. 

The primary dynamical feature during this stage of the 
ring evolution is the continual lengthening’of the two spiral 
arms leading to the core in Fig. 5 (a). This extensional strain- 
ing of the scalar dissipation layers in Fig. 5 (b) between these 
arms leads to a compressional straining along the layer nor- 
mal direction. This in turn creates a steepening of the gradi- 
ent scale and a corresponding increase in the gradient magni- 
tude. Eventually the thickening effect of diffusion acts to 
balance the thinning due to the strain, and the result is a 
strain-limited molecular diffusion layer thickness. In Fig. 
5 (b) this balance between diffusion and the strain field im- 
posed by continuity appears to establish a thickening of the 
layers as they rotate through the upper half of the ring from 
the farthestoutboard point back toward the centerline, and 
then a thinning of the layers as they rotate back through the 
lower half of the ring. The scalar dissipation values farthest 
from the centerline of the ring also appear to be consistently 
lower than those closest to the centerline, presumably due to 
diffusional cancellation between the layers. This also leads to 
a rapid drop in the scalar dissipation within the layers as the 
center of the core is approached. Indeed, the scalar values in 
both arms of the spiral can be seen to approach the green 
value attained at the center of the core. Note in particular 
that even the core center appears to be adequately resolved, 
suggesting that the scalar dissipation field is sufficiently re- 
solved throughout the ring to allow accurate determination 
of the fine structure of the mixing process. There is, more- 
over, a pattern of alternating high and low dissipation rates 
encountered as the core is approached along the layer nor- 
mal direction. However, it is not clear if this results from the 
different strain rate histories to which the two scalar dissipa- 
tion layers that originally emanated from the forward stag- 
nation point and from the nozzle were subjected, or if instead 
this is a remnant of the initial conditions. 

V. VELOCITY FIELD MEASUREMENTS 

Equation ( 1) shows the effect of the underlying velocity 
field on the mixing process within the ring. It is possible to 
use these relatively high resolution scalar field measure- 
ments to invert Eq. ( 1) and extract a limited type of informa- 
tion about the velocity field underlying the mixing process. 
In particular, since the velocity affects the scalar field only 
through the WV< term in Eq. ( 1 ), the scalar field is affected 
only by the velocity component u,, ( XJ) oriented along the 
local gradient vector orientation. [Note that the velocity 
uII (x,t) is physically different from the notion of an isoscalar 
surface velocity discussed by Gibson.21 ] Inverting the con- 
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FIG. 6. The component fields involved in inverting the mixing process described by Eq. ( 1) to obtain the velocity field a,, (x,t) via Eq. (5). (a) The original 

scalar field <(x,t). (b) The resulting gradient magnitude field IV<(x,t) 1. (c) The resulting Laplacian field lV*{(x,t) I. (d) The time derivative field 

laaxJ)m I. 

served scalar transport equation gives this velocity compo- 
nent in terms of the measured scalar field c!J x,t) as 

q (x,0 = ( &v*+-) CJvsIr’. 

Note that this involves not only the scalar gradient field ex- 

amined thus far, but also the Laplacian V*c(x,t) and the 
time derivative ag/dt of the scalar field. If measurements 
such as these have a spatial resolution that is sufficiently 
high to allow accurate determination of the second deriva- 
tives in the Laplacian, and at the same time have a sufficient- 
ly fine temporal separation between successive images in 
time to allow meaningful evaluation of the time derivative of 
the scalar field, then Eq. (5) allows the velocity component 
ul, (XJ) to be determined. Notice that this inversion is only 
possible where the scalar gradient Vc( x,t) is not zero. 

In Fig. 6 we show each of the component fields involved 
in the inversion in Eq. (5). The colors in each case denote 
linearly increasing values of the absolute magnitude of the 
component field, and no explicit smoothing or filtering has 
been applied to any of these fields. Here 5 * denotes the aver- 
age scalar value in the spiral windings. Figure 6(a) shows 
the original scalar field [( x,t) during a relatively early stage 
in the pinch-off phase. The resulting scalar gradient magni- 
tude IV<(x,t) 1, determined as described in Sec. III, is shown 
in Fig. 6 (b). Numerically evaluating the divergence of this 
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scalar gradient field, again using linear central difference 

approximations, yields the Laplacian field V*c(x,t) shown 
in Fig. 6 (c) . Here it can be seen that the original scalar field 
data are sufficiently highly resolved to allow a relatively 
smooth determination even of these second derivatives. We 
note, however, that the relatively high value of Re SC in- 
volved in these measurements renders the contribution of 
the Laplacian in Eq. (5) practically negligible, and thus the 
requirement that second’derivatives of the measured data 
need to be accurately obtainable can in practice be relaxed. 
As far as the time derivative a~/& is concerned, we also 
approximate this with a linear central difference among the 
scalar field images immediately before and immediately 
after that shown in Fig. 6 (a), with the result shown in Fig. 

6(d). 
From the component fields in Fig. 6, the inversion in Eq. 

(5) can be evaluated to determine uI, (x,t) . The result is 
shown in Fig. 7, where the colors from blue to red denote 
linearly increasing values of u,, , and where points at which 
the scalar gradient magnitude in Fig. 5 (b) is essentially zero 
have been flagged black to show where the inversion is not 
possible. Note also that the u,, (XJ) is presented in the origi- 
nal lab-fixed frame. The result obtained shows relatively 
high values along the upstream and downstream sectors of 
the ring, where the scalar gradient lies coincident with the 
direction of propagation, and much smaller values where the 
gradient vector is oriented largely normal to the propagation 
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FIG. 7. The velocity component along the local scalar gradient vector direc- 
tion, In,, (x,t) I, obtained from the component fields in Fig. 6 via Eq. (5). 

Colors from blue through red denote linearly increasing values of 1 u,, (x,t) I. 

direction. Continuity can in principle be used to extract the 
remaining velocity component uL (XJ) from the result ob- 
tained for uII ( XJ) in Fig. 7, since the velocity at the center of 
the core is known from the propagation speed of the ring. 
This perpendicular component, however, contains no direct 
information about the mixing processes in the ring, and in- 
stead results entirely from the constraint of continuity. Nev- 
ertheless, it is interesting to note that this would allow the 
strain rate tensor E (XJ) in Eq. (3) to be evaluated, thereby 
permitting a quantitative study of the interaction -between 
the strain field and the mixing that extends well beyond the 
relatively detailed documentation of the mixing processes in 
the ring undertaken here. As a practical matter, this method 
for obtaining the underlying velocity field from detailed 
measurements of molecular mixing in certain axisymmetric 
or two-dimensional flows has applications beyond the study 
of vortex rings. In particular, in appropriate three-dimen- 
sional flows the vorticity transport equation together with 
the requirement of continuity may provide the necessary 
constraints to at least in principle determine the two remain- 
ing velocity components perpendicular to alI (x,t) obtained 
from mixing measurements such as these via Eq. (5). 

VI. CONCLUDING REMARKS 

The results presented here provide the first significantly 
detailed experimental examination of the molecular mixing 
processes associated with dynamically passive conserved 
scalar quantities in an axisymmetric laminar vortex ring. 
They identify three relatively distinct stages in the evolution 
of the mixing rate field, namely (i) the formation phase, (ii) 
the pinch-off phase, and (iii) the asymptotic laminar phase. 
In each phase, the diffusional cancellation term arising in the 
scalar dissipation transport equation is found to play a key 

role in limiting the total amount of mixing that takes place. 
We note also that the layer-like fine structure seen in the 
dissipation field in each of these three phases, together with 
the overall similarity in the dynamics of the dissipation field 
and the vorticity magnitude field, are suggestive of a layer- 
like fine structure in the vorticity field at relatively large 
Reynolds numbers. The results presented here also show 
that it is possible to extract information about the underlying 
velocity field in which the mixing takes place from such rela- 
tively highly resolved scalar field measurements. Moreover, 
the fact that in laminar vortex rings the velocity in the core is 
known suggests the use of continuity to extract the strain 
rate and vorticity fields from measurements such as these of 
the scalar mixing process. This would permit very highly 
detailed quantitative studies of the interaction of the strain 
rate and vorticity fields with the molecular mixing process 
documented here. In this sense, the axisymmetric laminar 
vortex ring provides a uniquely simple and carefully control- 
lable flow, simultaneously accessible to experimental, nu- 
merical and theoretical study, in which the precise under- 
standing of various aspects of the mixing processes in fluid 
flows can be significantly extended. 
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