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Abstract

Background: Computer-aided diagnosis (CAD) in the medical field has received more and more attention in recent

years. One important CAD application is to detect and classify breast lesions in ultrasound images. Traditionally, the

process of CAD for breast lesions classification is mainly composed of two separated steps: i) locate the lesion region

of interests (ROI); ii) classify the located region of interests (ROI) to see if they are benign or not. However, due to the

complex structure of breast and the existence of noise in the ultrasound images, traditional handcrafted feature based

methods usually can not achieve satisfactory result.

Methods: With the recent advance of deep learning, the performance of object detection and classification has been

boosted to a great extent. In this paper, we aim to systematically evaluate the performance of several existing

state-of-the-art object detection and classification methods for breast lesions CAD. To achieve that, we have collected

a new dataset consisting of 579 benign and 464 malignant lesion cases with the corresponding ultrasound images

manually annotated by experienced clinicians. We evaluate different deep learning architectures and conduct

comprehensive experiments on our newly collected dataset.

Results: For the lesion regions detecting task, Single Shot MultiBox Detector with the input size as 300 × 300

(SSD300) achieves the best performance in terms of average precision rate (APR), average recall rate (ARR) and F1
score. For the classification task, DenseNet is more suitable for our problems.

Conclusions: Our experiments reveal that better and more efficient detection and convolutional neural network

(CNN) frameworks is one important factor for better performance of detecting and classification task of the breast

lesion. Another significant factor for improving the performance of detecting and classification task, which is transfer

learning from the large-scale annotated ImageNet to classify breast lesion.
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Background

Breast cancer is the second leading cause of female death.

Early diagnosis is the key to breast cancer control, as it

can reduce mortality dramatically (40% or more) [1]. Pre-

viously, mammography is the main modality for detecting

breast cancer. However, mammography not only causes

health risks for patients but also leads to unnecessary

(65%-85%) biopsy operation due to low specificity [1]. As a
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much better option, ultrasound imaging can increase the

overall cancer detection by 17% and reduce unnecessary

biopsies by 40% [1].

Currently, ultrasound techniques for breast lesion

detection rely on doctor’s experience, especially for the

marks and classifications of breast lesions, the process

is as follow: doctors use ultrasound instruments to find

a good angle to make the lesions clearly shown on the

screen, and then keep probe fixed for a long time using

one hand, with another hand to mark and measure the

lesion on the screen. It is a difficult task, because slight

shaking of the hand which holds probe will cause a big

impact on the quality of breast ultrasound images; and
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then, other doctors diagnose the ultrasound images, based

on his experience, but it is usually hard to draw con-

clusion that lesions are benign or malignant, due to the

complex structure of breasts and the existence of noise in

the ultrasound images. Based on the above, automatically

locating regions of interest (i.e., lesions) and classification

(i.e, benign ormalignant) is highly demanded breast lesion

detection in ultrasound images.

Previous many researchers have analyzed the detection

and classification of lesions in breast ultrasound images.

We review the literature in the remainder of this section.

Classification

In early machine learning, the mainstreammachine learn-

ingmethods were based on statistics, and they did not care

about features. However, computer vision is the applica-

tion of machine learning in the field of vision, which a

good feature extraction method is crucial. Feature extrac-

tion is a process of dimension reduction, which reduce the

number of resources needed for processing without losing

important or relevant information, and facilitate the speed

of learning and generalization steps in the machine learn-

ing process. There were a lot of manual feature extraction

methods that can be divided into three categories [2, 3]:

i) Interest point detection (such as Laplacian of Gaussian,

Difference of Gaussian, Harris Corner Detection, Features

From Accelerated Segment Test), ii) Dense features [4]

(such as Scale Invariant Feature Transform [5], Histogram

of Oriented Gradient [6], Local Binary Pattern [7, 8]),

iii) Feature Combinations (such as Deformable Part-based

Model [9, 10]).

Several previous methods discussed on how to auto-

matically classify breast lesions. In [11], the authors built

three M-dimensional feature sets and selected the fea-

tures by principal component analysis and mutual infor-

mation to classify 641 ultrasound images. In [12], the

authors segmented the Breast Ultrasound images based

on watershed transform and extracted 22 morphological

features from segmented lesions, and selected the fea-

tures based on mutual information and statistical tests to

classify 641 ultrasound images. In [13], the authors pro-

posed a computer-aided diagnosis method depending on

the lesion’s shape type of ultrasound image. They used

Zernike moments and invariant moment to extract fea-

ture, meanwhile, they used support vector machine and

multilayer perceptron to classify 45 ultrasound images.

In [14], The authors proposed a classified method by

using texture analysis to extract features, and perceptron

classification method was used to classify 57 ultrasound

images. In [15], the authors classed the primary and sec-

ondary occurring of benign and malignant cases. they

extracted Laws’ mask texture features from the ultrasound

images and used support vector machine as a classifier to

distinguish 172 ultrasound images of the breast lesions.

Detection

In the past, researchers usually studied hand-crafted fea-

tures within the traditional detection framework. For

example, Dalal et al. [6] used support vector machine

with the Histogram of Oriented Gradients features for

the pedestrian detection task. Felzenszwalb et al. [9, 10]

proposed a Deformable Part-based Model using latent

support vector machine, which achieved the best perfor-

mance in the 2006 Pattern Analysis, Statistical Modelling

and Computational Learning person detection challenge.

In [16], the authors used the dictionary learning method

to obtain a sparse expression of an image, which was

called Histograms of Sparse Codes. Histograms of Sparse

Codes was used to replace Histogram of Oriented Gradi-

ents for classifier training and target detection. Although

the performance has been considerably improved, the

detection speed is quite slow. In [17], the author pro-

posed an object detector based on co-occurrence features,

which was three kinds of local co-occurrence features

constructed by the traditional Harris Corner Detection,

Local Binary Pattern, and Histogram of Oriented Gradi-

ents respectively.

Several previous methods discussed on how to auto-

matically locate ROI of breast lesions. In [18], A self-

organizing map neural network was used for the detection

of the breast lesion. The ROI can be extracted automat-

ically by employing local textures and a local gray level

co-occurrence matrix which is a joint probability den-

sity function of two positions. Compared with the basic

texture feature, the gray level co-occurrence matrix can

reflect the comprehensive information about the direc-

tion, the interval and the amplitude of the image. In

[19], Shan et al. developed an automatic ROI genera-

tion method which consisted of two parts: automatic seed

point selection and region growing. However, the method

depends on textural features, and these features are not

effective for breast ultrasound images when there exists a

fat region close to the lesion area or contrast is low. In [20],

a supervises learning method was proposed to categorize

breast tissues into different classes by using a trained tex-

ture classifier, where background knowledge rules were

used to select the final ROI for the tissues. However, due

to the inflexibility of the introduced constraints in the

proposed method, its robustness was reduced. In [21],

the authors improved the method in [20] by proposing

a fully automatic and adaptive ROI generation method

with flexible constraints. In their work, the ROI seed can

be generated with high accuracy, and can also well dis-

tinguish the datasets lesion regions from normal regions.

However, as shown in the experiments, the recall is still

unsatisfactory, that average recall rate was low that benign

was 27.69%, malignant was 30.91%, the total was 29.29%.

Recently, deep learning techniques have attracted a lot

of attention from researchers, because of the good data
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interpretability as well as the high discriminable power.

Noticeably, deep convolutional neural network (CNN)

have substantially improved the performance not only for

general object detection [22–26], but also for image clas-

sification [27–32]. So far in the literature, people have

employed CNN based methods to handle detection and

classification tasks for medical images, such as mam-

mograms [33]. To the best of our knowledge, there is

little work that has comprehensively evaluated the perfor-

mance of different CNNbased detection and classification

methods for lesions in breast ultrasound images.

Methods

In this study, we analyze, explore and evaluate differ-

ent object detection and classification methods based on

CNN architectures for lesion detection and classification

in breast ultrasound images, which is extended based on

our MICCAI workshop paper [34]. Firstly, we introduce

data collection; Secondly, we analyze various architec-

tures of object detection based CNN that are applicable

to the breast ultrasound images; Finally, we describe how

to utilize CNN to classify breast lesions and CNN transfer

learning from no-medical to breast ultrasound images.

Data collection

Collecting a well-defined dataset is key to the research

on breast lesions detection/classification. For that, we

have been collaborating with Sichuan Provincial Peo-

ple’s Hospital to have experienced clinicians annotate

breast ultrasound images obtained from breast lesions

patients. Specifically, the patients were told to get scanned

by LOGIQ E9 (GE) and IU-Elite (PHILIPS) to gener-

ate those ultrasound images. Each ultrasound image was

later reviewed and diagnosed by two or three clinicians.

Based on the ratings obtained from the Breast Imaging-

Reporting and Data System (BI-RADS) [35], each diag-

nosed image was then grouped into 7 categories indexed

from 0 to 6, where 0 means more information is needed,

1 negative, 2 benign finding, 3 probably benign (less

than 2% likelihood of cancer), 4 suspicious abnormality, 5

highly suggestive of malignancy, and 6 provenmalignancy.

According to [35], some medical specialists proposed to

further partition the fourth category (suspicious abnor-

mality) into three sub-category, i.e., 4A (low suspicion for

malignancy), 4B (intermediate suspicion of malignancy)

and 4C (moderate concern, but not obvious for malig-

nancy). For that, by following the professional instruc-

tions from our clinicians, we divide our datasets into two

classes: benign and malignant. The benign class is con-

structed by the images grouped into categories 2, 3 and

4A, while the malignant class consists of the images from

categories 4B, 4C, 5 and 6. By working with the clini-

cians, we have collected 577 benign and 464 malignant

cases from patients. Moreover, the lesion in each image

has also been marked out by those experienced clinicians.

Figure 1 show cases four ultrasound images containing

either benign or malignant lesions. To the best of our

knowledge, there is no such a publicly available ultrasound

image datasets as ours for breast lesions.

Training protocols of object detection

The remarkable progress of deep learning techniques,

especially CNN, have largely promoted the research of

visual object detection. Fast Region-based convolutional

neural networks (R-CNN) [22], Faster R-CNN [23], You

Only LookOnce (YOLO) [24], YOLO version 3 (YOLOv3)

[25], and Single Shot MultiBox Detector (SSD) [26] are

existed state-of-the-art object detection methods. How-

ever, these CNN-based methods only focus on general

object detection. In this paper, we apply them to detecting

Fig. 1 Ground-truth annotations and predicted bounding boxes of

different methods, for four lesion cases from different patients
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lesions in our newly collected breast ultrasound dataset.

We also combine each CNN based detection method with

different existing neural networks, e.g., Visual Geometry

Group (VGG16) [29], ZFNet [28].

We use the result of method [21] as a baseline for the

detection of breast lesions. All CNN are modified to eval-

uate these CNN architecture from ImageNet detection

task to our dataset. Next, we will introduce the difference

between these algorithms.

Fast R-CNN R-CNN [36] and Spatial Pyramid Pooling

Net [37] using CNN to classify region proposals, and

achieves excellent object detection accuracy. However,

two major issues still exist: i) the training phase is a multi-

stage pipeline; and ii) object detection is slow. To over-

come these drawbacks, also inspired by Pyramid Pooling

Net [37], Girshick et al. [22] improved R-CNN by propos-

ing Fast R-CNN which adds an ROI pooling layer to the

last convolution layer, the ROI pooling layer uses max

pooling to convert the features inside any valid region of

interest into a small featuremapwith a fixed spatial extent.

Each feature is fed into a fully connected layers that finally

branch into two output: one output produces softmax

probability estimates and another output does bounding-

box regression. In other words, performs classification

and bounding box regression simultaneously.

Faster R-CNN Fast R-CNN, as selective search is used

for region proposals, the detection time is not very fast.

To avoid the standalone step to generate regions, Ren et

al. [23] proposed to integrate a so-called Region Proposal

Network (RPN) into Fast R-CNN, and RPN and fast R-

CNN share large number of convolutional layers. In Faster

R-CNN , an image as input fed into RPN and outputs a set

of rectangular object proposals, each with an objectness

score, which is fed into two sibling fully connected layers:

an object category classification layer and a box regression

layer, simultaneously regress objectness scores and region

bounds at each location on a regular grid.

YOLO YOLO [24] employed a single convolutional neu-

ral network to predict the bounding boxes and class labels

of detected regions. Since the YOLO limits the num-

ber of bounding boxes, it avoids repetitive detection of

the same object and thus greatly improves the detection

speed, making YOLO suitable for real-world applications.

Due YOLO may fail to localize small objects, Redmon

and Farhadi propose YOLO version 2 (YOLOv2) [38], an

improved version of YOLO. YOLOv2 use a new classi-

fication model Darknet-19, and achieved state of the art

on standard detection tasks. In [25], Redmon and Farhadi

made a bunch of little design changes to YOLO, that

present a faster and more accurate detecor than YOLOv2

which is called YOLOv3. YOLOv3 predicts bounding

boxes with dimension priors and location. YOLOv3 use a

much more powerful feature extractor network, which is

a hybrid approach between the network used in YOLOv2,

Darknet-19, and the newfangled residual network stuff.

YOLOv3 is a fast and accurate detecor.

SSD In order to improve detection speed and accuracy,

Liu et al. [26] proposed SSD, which only needs an input

image and ground truth boxes for each object during

training. For objects of different size, SSD adds several

auxiliary convolutional feature layers which progressively

decrease in size, and predicts detections at multi-scale.

SSD uses shallower layers for detecting small objects. Fur-

thermore, in a convolutional fashion, the SSD framework

evaluate a small set of default boxes of different aspect

ratios at each location in several feature maps with differ-

ent scales. In order to efficiently to discretize the space

of possible output box shapes allows different default box

shapes in several feature maps. For each default box, SSD

predicts both the shape offsets and the confidences for all

object categories.

Training protocols of classification

In this work, we mainly explore and evaluate different

CNN architectures with different model training param-

eter values in classify breast lesions tasks. These CNN

architectures learning from the labeled set, which has

major advantages over more traditional approaches that

use hand-crafted features. We also evaluate the transfer

learning from no-medical datasets due to the lack of big

data.

Convolutional neural network architectures

We mainly explore and evaluation AlexNet [27], ZFNet

[28], VGG [29], ResNet [30], GoogLeNet [31], and

DenseNet [32] with different model training parameter

values in classify breast lesions tasks. These deep CNN

architectures are described below.

AlexNet The AlexNet [27] achieved significantly

improved performance in ImageNet Large Scale Visual

Recognition Competition (2012). AlexNet has five con-

volution layers, three fully-connected layers and has

approximately 60 million free parameters.

ZFNet The ZFNet architecture was published in [28], the

author introduce a novel visualization technique that to

reveal why CNNmodels perform so well. The architecture

is based on AlexNet, which is an 8 layer convnet model

which has five convolution layers, two fully-connected

layers, and a softmax layer.

VGG In VGG [29], the author main contribution is the

evaluation of networks of increasing deep, which shows
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the depth to 16-19 weight layers that can significantly

improve the performance. In this paper, we use 16 weight

layers (VGG16) as default architecture.

GoogLeNet GoogLeNet [31], the authors propose a new

module called “Inception” which were based on the Heb-

bian theory and the intuition of multi-scale processing.

The “Inception” layer consists of six convolution layers.

The GooLeNet significantly increases the depth of the

convolution network, more than 20 layers (two convolu-

tion layers and nine “Inception” module).

ResNet In [30], the authors present a residual learning

framework to solve the problem which difficult to train

deeper CNN, and showing that these residual networks

are easier to optimize. The framework explicitly reformu-

lates the layers as learning residual functions. In our paper,

we use 50-layers to evaluation and analysis our dataset.

DenseNet DenseNet [32] connects each layer to every

other layer in a feed-forward fashion. DenseNets have sev-

eral advantages: Effectively solve the vanishing-gradient

problem, reduce the number of parameters, feature reuse,

and strengthen feature propagation. In this paper, the

DenseNet-121 is our default DenseNet architecture for

evaluation and analysis our dataset, and the growth rate is

k = 32.

Training protocols

Previous many studies have analyzed lesion regions of

interest which clinicians manual select ROI from full-size

images (LROI) classification based traditional approaches.

As we know, no existing work, which classifies breast

lesions in ultrasound images have reached the perfor-

mance requirements for a realistic clinical setting. In this

paper, in order to system evaluation the influence of dif-

ferent architecture based CNN, but previously not care

factors, we employ CNN to full-size image and LROI

image classification. In order to accommodate the CNN

architectures described above, all full-size images and

LROI images were resized to 256 × 256 pixels and classi-

fied manually as either benign or malignant. We use the

caffe framework to train all models, and we train for 2000

epoches which can observe the convergence.

Collecting and annotating large numbers of breast ultra-

sound images still poses significant challenges. Despite

the disparity between natural images and breast ultra-

sound images, our hypothesis, CNN comprehensively

trained on the large-scale well-annotated ImageNet may

still be transferred to make medical image recognition

tasks more effective. So, in this paper, we evaluate and

analyze the influence of CNN models which not only

learned from scratch, but also transfer learning from pre-

trained models. When learned from scratch, all the ran-

dom parameters of CNNmodels are initialized as follows:

AlexNet, ZFNet, VGG with Gaussian random parame-

ters; GoogLeNet with Xavier; ResNet and DenseNet with

Microsoft Research Asia filler. For fine-tuned from pre-

trained models, the last fully-connected layer is random

initialized and freshly trained, in order to accommodate

the new object categories in our task.

Results

In this section, the experiments compare the perfor-

mances of detection and classification methods based

CNN on our dataset.

Detection

In this paper, we compared the results of the differ-

ent methods (the method in [21], Fast R-CNN, Faster

R-CNN, YOLO, YOLOv3, SSD) on the locating lesion

ROI in breast ultrasound images. For the deep architec-

ture, we employ a medium-sized network VGG16 [29]

and a small network ZFNet [28] for Fast R-CNN, Faster

R-CNN, and SSD. We denote the detection architec-

ture based on VGG16 as Fast+VGG16, Faster+VGG16,

SSD300+VGG16, and SSD with the input size as 500 ×

500 (SSD500)+VGG16; and denote the detection archi-

tecture based on ZFNet as Fast+ZFNet, Faster+ZFNet,

SSD300+ZFNet, and SSD500+ZFNet. We denote the

YOLO uses its original Darknet-53 model [24] as YOLO,

and YOLOv3 uses its original Darknet53.conv.74 model

[25] as YOLOv3.

For evaluation metric, we employ average precision rate

(APR) and average recall rate (ARR) over all test images

[21] as well as the F1 score for each method:
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F1 =
2 × APR × ARR

APR + ARR
,

where N is the number of images, R
gt
i is the ground-truth

lesion region, and R
pred
i is the predicted bounding box. A

higher APR shows the higher overlapped rate between the

ROI and the true lesion region, while a higher ARR indi-

cates that ROI generated by the proposed method could

be subject to the removal of additional non-lesion regions.

In the experiments, we prepare our data as follows. For

the benign class, 285 cases are randomly selected as the

training set, 191 cases as the validation set and 103 cases
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as the test set. For the malignant class, we sample 230

cases as the training set, 154 cases as the validation set

and 80 cases as the test set. In total (Benign + Malignant),

we have 515 training cases, 345 validation cases, and 183

test cases. The comparison of these baselines is listed in

Table 1, where the APRs, ARRs and F1 scores of differ-

ent methods are compared on three settings, i.e., benign

images only, malignant images only and both benign +

malignant images. We can clearly observe that the CNN

based methods perform much better than the method in

[21]. In addition, in the CNN-based method, YOLO and

SSD perform significantly better than Fast R-CNN and

Faster R-CNN. Also, SSD300, in general, achieves good

results than other CNN based methods, which shows

SSD300 is more suitable for the lesion detection task in

this work.

We also plot the resultant bounding boxes predicted by

different methods for four lesion cases in Fig. 1.

Classification

In order to analyze the impact of learning for scratch and

pretraining, we compared four different scenarios which

were LROI with random initialization, LROI with transfer

learning, full-size images with random initialization, and

full-size images with transfer learning.

For evaluation metric, we employ accuracy rate (AR) for

each method:

AR =
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B
pre

b
is the number of images which the benign predict

to benign, and M
pred
m is the number of images which the

malignant predict to malignant. B
pre
m is the number of

images which the benign predict to malignant, and M
pred

b

is the number of images which the malignant predict to

benign. The matter that needs your attention is when a

figure has more than one lesion, as long as there has a

malignant lesion, this figure is malignant.

In the experiments, we prepare our data as follows.

476 cases in the benign class and 384 cases in the

malignant class are randomly selected as the training

set. And 103 cases benign class and 80 cases malignant

class as the test set. In this experiment, we analyze and

compare the performance of AlexNet, ZFNet, VGG16,

GoogLeNet, ResNet, and DenseNet on our dataset. We

conduct extensive empirical evaluation and compared

four different scenarios which were described in above,

and the result shown in Table 2. We can see the DenseNet

achieves best results than other methods in all scenar-

ios, which shows DenseNet is more suitable for our

problems.

Discussion

Detection

From Table 1, we can see YOLO and SSD perform signif-

icantly better than other methods. YOLO makes predic-

tions based on each entire image so it implicitly encodes

contextual information. There is no two-stage intercep-

tion of ROI, so YOLO have fewer background errors. SSD

add several auxiliary convolutional feature layers which

progressively decrease in size, and predicts detections at

multi-scale. SSD uses different layers for detecting the

objects of different sizes. In the breast ultrasound image,

there are many lesions of different sizes, and these advan-

tages of SSD can also cover large and small lesion areas. It

is worth noting that SSD300 is better than SSD500 in all

three settings by using either ZFNet or VGG16. The rea-

son is as follows. SSD300 resizes images into 300 × 300,

Table 1 APR, ARR and F1 scores of different methods under three settings

Method Benign Malignant Benign+ Malignant

APR ARR F1 APR ARR F1 APR ARR F1

Auto ROI [21] 66.95 14.16 23.38 78.22 19.23 30.87 71.86 16.36 26.65

Fast+ZFNet 87.25 65.47 74.81 89.02 53.54 66.86 91.11 62.60 74.21

Fast+VGG16 90.17 66.39 76.47 71.00 40.83 51.84 88.70 61.97 72.96

Faster+ZFNet 93.14 66.25 77.43 86.37 46.83 60.73 92.42 62.23 74.38

Faster+VGG16 93.01 67.08 77.95 90.36 52.05 66.05 92.37 62.54 74.58

YOLO 95.59 68.85 80.05 96.46 57.73 72.23 96.81 65.83 78.37

YOLOv3 96.89 68.81 80.47 94.56 54.21 68.91 96.58 65.85 78.31

SSD300+ZFNet 97.20 70.56 81.76 96.44 54.91 69.97 96.89 67.23 79.38

SSD300+VGG16 96.03 69.76 80.82 97.56 58.96 73.50 96.42 66.70 78.85

SSD500+ZFNet 95.98 70.04 80.98 94.22 54.90 69.38 95.09 65.06 77.26

SSD500+VGG16 94.58 69.57 80.17 94.67 55.82 70.23 96.42 66.70 78.85

Note–Boldface data indicate the best results
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Table 2 Accuracy rates (AR) of different methods

Method AlexNet ZFNet VGG16 GoogLeNet ResNet DenseNet

FULL-RI 56.6 56.7 56.9 69.6 75.0 80.0

FULL-FT 67.8 67.9 72.3 76.8 83.0 85.0

LROI-RI 60.0 66.3 56.7 68.8 75.0 80.0

LROI-FT 79.5 78.1 80.2 79.8 85.0 87.5

Note–Boldface data indicate the best results

while SSD500makes the size as 500×500. The region can-

didates in SSD300 cover a relatively larger area than those

in SSD500. Since the lesion region takes a good portion

in an image, SSD300 is able to better capture the region,

which thus leads to better performance. Furthermore,

SSD300+ZFNet is better than SSD300+VGG16 under the

benign setting but worse under the malignant setting.

This interesting observation can be explained based on

the model complexity of ZFNet and VGG16. Specifically,

although ZFNet is a small neural network, it can well han-

dle the easier case (i.e., benign), but is a bit underfitting

for the harder case (i.e., malignant). In contrast, the larger

VGG16 model is good at dealing with malignant lesions,

while getting overfitting for the benign ones.

Classification

For full-images and LROI, AlexNet, ZFNet, and VGG16

perform poorly when learn from scratch, due to the

curse-of-dimensionality problem lead to which easy to

over-fitting. GoogLeNet uses the inception module as

dimension reduction modules to increase the depth and

width of network which improved the result thanAlexNet,

ZFNet, and VGG16 on our dataset. ResNet addresses

the degradation problem by introducing a deep residual

learning framework, instead of hoping each few stacked

layers directly fit a desired underlying mapping, explicitly

let these layers fit a residual mapping. Resnet is easy to

optimize when the depth increases, and can easily enjoy

accuracy gain from greatly increased depth. In Table 2, we

can see ResNet gets more accurate than GoogLeNet on

our dataset. DenseNet connects each layer to every other

layer in a feed-forward fashion to alleviate the vanishing-

gradient problem and strengthen feature propagation.

DenseNet reduces the number of parameters than tra-

ditional convolutional networks in the case of the same

number of layers, as there is no need to relearn redundant

feature-maps, which has already obtained best result on

our dataset.

Potentially, transfer learning could further improve clas-

sification performance. In Table 2, in four different sce-

narios, we observed that all networks transfer learning

from the large-scale annotated ImageNet, which pro-

duce higher accuracy rate than random initialization, and

DenseNet obtain best result.

Conclusions

In this paper, we have mainly studied the existing state-

of-the-art CNN based methods for breast lesion detection

and classification in breast ultrasound images. Due to lack

of publicly available datasets, in order to analyze and eval-

uate the methods for CAD in breast ultrasound images,

we have collected a new dataset consisting of 579 benign

and 464 malignant lesion cases with the corresponding

ultrasound breast images, and have them manually anno-

tated by experienced clinicians.

For the detection task, we employ the state-of-the-art

CNN based detection methods to locate lesion regions

in breast ultrasound images and systematically evalu-

ate them on our newly collected dataset. We establish

benchmarks for our newly collected dataset, and our

study can potentially benefit other researchers working

in the same area. Through comprehensive experiments of

detecting the lesion regions, we find that SSD300 achieves

the best performance in terms of APR, ARR and F1
score.

For the classification task, on our dataset, we system-

atically analyze the performance of different CNN based

classification methods in four scenarios. Our experiments

reveal that the deeper network with less parameters

obtain better results on our dataset. Transfer learning

from the large-scale annotated ImageNet to classify breast

lesions significantly improves the performance of differ-

ent CNN architectures. DenseNet is more suitable for our

problems.

Currently, our dataset is based on the ratings obtained

from the BI-RADS, In the future, we will build well-

annotated dataset which is based biopsy result of every

tumor. Also, we will conduct further investigation of the

new algorithms to improve the performance.
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