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Abstract— This paper presents an experimental study on
pedestrian detection using state-of-the-art local feature extraction
and support vector machine (SVM) classifiers. The performance
of pedestrian detection using region covariance, histogram of
oriented gradients (HOG) and local receptive fields (LRF) feature
descriptors is experimentally evaluated. The experiments are
performed on both the benchmarking dataset used in [1] and
the MIT CBCL dataset. Both can be publicly accessed. The
experimental results show that region covariance features with
radial basis function (RBF) kernel SVM and HOG features
with quadratic kernel SVM outperform the combination of LRF
features with quadratic kernel SVM reported in [1].

I. INTRODUCTION

Detecting pedestrians has attracted a lot of research interests
in recent years, due to its key role for several important
applications in computer vision, e.g., smart vehicles, surveil-
lance systems with intelligent query capabilities, intersection
traffic analysis. Pattern classification approaches have been
shown to achieve successful results in many areas of object
detections. These approaches can be decomposed into two key
components: feature extraction and classifier construction. In
feature extraction, dominant features are extracted from a large
number of training samples. These features are then used to
train a classifier. This general approach has shown to work
very well in detection of many different objects, e.g., face [2]
and car number plate [3], etc.

The performance of several pedestrian detection approaches
has been evaluated in [1]. Different features including principal
component analysis coefficients (PCA), local receptive fields
(LRF) feature [4], and Haar wavelets [5] are used to train
neural networks, support vector machines (SVM) [6], [7] and
k-NN classifiers. The authors conclude that the combination of
SVM with LRF features performs best. Although [1] provides
some insights on pedestrian detection, it has not compared
state-of-the-art techniques in this topic. Very recently, his-
togram of oriented gradients (HOG) [8] and region covariance
features [9] are proffered for pedestrian detection. It has been
shown that they outperform those previous approaches. To our
knowledge, these approaches have not been compared yet.
It remains unclear whether silhouette based (HOG) or ap-
pearance based (covariance) features are better for pedestrian
detection. This paper tries to answer this question. The main
purpose of the paper therefore is a systematic comparison of
some novel techniques for pedestrian detection.
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In this paper, we perform an experimental study on the
state-of-the-art pedestrian detection techniques: LRF, HOG
and region covariance; along with various combination with
SVM. The reason why we select these three features along
with SVM classifiers is because SVM is one of the advanced
classifiers. It is easy to train and, unlike neural networks, the
global optimum is guaranteed. Thus the variance caused by
suboptimal training is avoided for fair comparison.

The paper is organized as follows. Section II reviews
various existing techniques for pedestrian detection. Sections
III and IV describe methods used for feature extraction and
a brief introduction to SVM. The experimental setup and
experimental results are presented in Section V. The paper
concludes in Section VI.

II. RELATED WORK

Many pedestrian classification approaches have been pro-
posed in the literature. These algorithms can be roughly
classified into two main categories: (1) approaches which
require pre-processing techniques like background subtraction
or image segmentation (e.g. [10] segments an image into so-
called super pixels and then detects the human body and esti-
mates its pose); and (2) approaches which detects pedestrian
directly without using pre-processing techniques [8], [5], [9],
[4].

Background subtraction and image segmentation techniques
can be applied to segment foreground objects from the back-
ground. One of the main drawbacks of these techniques are
that they usually assume that the camera is static, background
is fixed and the differences are caused only by foreground
objects. The second approach is to detect human based on fea-
tures extracted from the image. Features can be distinguished
into global features, local features and key-points depending
on how the features are measured. The difference between
global and local features is that global features operate on
the entire image of datasets whereas local features operate
on the subset regions of the image. One of the well known
global feature extraction method is PCA. The drawback of
global features is that the approach fails to extract meaningful
features if there is a large variation in object’s appearance, pose
and illumination conditions. On the other hand, local features
are much less sensitive to these problems since the features are
extracted from the subset regions of the image. Some examples
of the commonly used local features are wavelet coefficient
[2], gradient orientation [8], region covariance [9], etc. Local
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features approaches can be further divided into whole body
detection and body parts detection [11], [12].

III. FEATURE EXTRACTION

Feature extraction is the first step in most object detection
and pattern recognition algorithms. In this paper, we evaluate
three local features, namely LRF, HOG and region covariance.
LRF features are extracted using multilayer perceptrons by
means of their hidden layer. The features are tuned to the data
during training. The price is heavier computation. HOG uses
histogram to describe oriented gradient information. Region
covariance computes covariance from several low-level image
features such as image intensities and gradients.

A. Local receptive fields

Multilayer perceptrons provide an adaptive approach for
feature extraction by means of their hidden layer [4]. A neuron
of a higher layer does not receive input from all neurons of the
underlying layer but only from a limited region of it, which is
call local receptive fields (LRF). The hidden layer is divided
into a number of branches.

In [1], the authors further investigate the concept of LRF.
In their experiments, they have shown that receptive fields of
size 5 × 5, shifted at a step size of two pixels over the input
image of size 18×36 are optimal. In order to further improve
the performance of LRF, the authors combine SVM with the
output of the hidden layer of a neural network/LRF.

B. Histograms of oriented gradients

HoG was first introduced in the context of human detection
by Dalal and Triggs [8]. Their method uses a dense grid of
Histogram of Oriented Gradients, computed over blocks of
size 16 × 16 pixels. Each block can be further divided into
cells of size 8 × 8 pixels. Cells are integrated into a block in
a sliding fashion. Also, blocks can overlap with each other.

For each region, a local 1D histogram of gradients over
all the pixels in the cell is accumulated. Each orientation
histogram divides the gradient angle range into 9 bins. The
gradient magnitudes of the pixels in the cell are used to
vote into the orientation histogram. Each block contains a
concatenated histogram vector of all its cells. Hence, each
block can be represented by a 36D feature vector that is nor-
malized to an �2-norm unit length. Normalization introduces
better invariance to illumination, shadowing and edge contrast.
The final step is to collect these normalized block descriptors
from all blocks of a dense overlapping grid of blocks into a
combined feature vector. The feature vector can then be used
to train a linear SVM classifier.

C. Region covariance

Tuzel, et al. [9], [13] have proposed region covariance in the
context of object detection. Instead of using joint histograms
of the image statistics (bd dimensions where d is the number
of image statistics and b is the number of histogram bins used
for each image statistics), covariance is computed from several
image statistics inside a region of interest (dimensions). This

results in a much smaller dimensionality. Similar to HOG,
the image is divided into small overlapped regions. For each
region, the correlation coefficient is calculated. The correlation
coefficient of two random variables X and Y is given by

ρX,Y =
cov(X,Y )

var(X)var(Y )
=

cov(X,Y )

σxσy

(1)

cov(X,Y ) = E [(X − μX)(Y − μY )]

=
1

n − 1

∑
k

(Xk − μX)(Yk − μY ), (2)

where cov(·, ·) is the covariance of two random variables; μ
is the sample mean and σ is the sample variance. Correlation
coefficient is commonly used to describe the information we
gain about one random variable by observing another random
variable.

A positive correlation coefficient, ρX,Y > 0, suggests that
when X is high relative to its expected value, Y also tends
to be high and vice versa. A negative correlation coefficient,
θX,Y < 0, suggests that a high value of X is likely to be
accompanied by a low value of Y and vice versa. A linear
relationship between X and Y produces the extreme values,
θX,Y = {+1,−1}. In other words, correlation coefficient is
bounded by −1 and 1.

Image statistics used in this experiment are similar to
the one used in [9]. The 8D feature image used are pixel
location x, pixel location y, first order partial derivative of
the intensity in horizontal direction and vertical direction |Ix|,

|Iy|, the magnitude
√

I2
x + I2

y , edge orientation tan−1

(
|Iy|
|Ix|

)
,

second order partial derivative of the intensity in horizontal
direction and vertical direction |Ixx|, |Iyy|. The final step is to
concatenate these covariance descriptors from all regions into a
combined feature vector which can then be used to train SVM
classifiers. Note that this treatment is different from [13], [9],
where the covariance matrix is directly used as the feature and
the distance between features is calculated in the Riemannian
manifold.

IV. SUPPORT VECTOR MACHINES

There exist several classification techniques which can be
applied to object detection problem. Some of the commonly
used classification techniques are support vector machine [6]
and Adaboost [2]. Due to space constraints we limit our
explanation of SVM classifiers algorithm to an overview. SVM
is one of the popular large margin classifiers [6], [7] which has
a very promising generalization capacity. The linear SVM is
the best understood and simplest to apply. However, linear sep-
arability is a rather strict condition. Kernels are combined into
margins for relaxing this restriction. SVM is extended to deal
with linearly non-separable problems by mapping the training
data from the input space into a high-dimensional, possibly
infinite-dimensional, feature space. In this experimental work,
SVM classifiers with three different kernel functions, linear,
quadratic and RBF kernels, are combined with the features
calculated from previous section.
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V. EXPERIMENTS

The experimental section is organized as follows. First,
the datasets used in this experiment is described. Preliminary
experiments and the parameters used to achieve optimal results
is then discussed. Finally, experimental results and analysis
of different techniques are compared. In all the experiments,
associated parameters are optimized via cross-validation.

A. Experiments on the dataset of [1]

This dataset consists of three training sets and two test
sets. Each training set contains 4, 800 pedestrian examples and
5, 000 non-pedestrian examples (see Table I). The pedestrian
examples were obtained from manually labeling and extracting
pedestrians in video images at various time and locations
with no particular constraints on pedestrian pose or clothing,
except that pedestrians are standing in an upright position. All
samples are scaled to size 18× 36 pixels. Performance on the
test sets is analyzed similarly to the techniques described in
[1].

1) Parameter optimization: From the preliminary experi-
ments on the HOG features, we have decided to use a cell size
of 3×3 pixels with a block size of 2×2 cells, descriptor stride
of 2 pixels and 18 orientation bins of unsigned gradients (total
feature length is 8064). For the region covariance features,
our preliminary experiments have shown a region of size
7 × 7 pixels, shifted at a step size of 2 pixels over the
entire input image of size 18 × 36 to be optimal for our
benchmark datasets. Increasing the region width and step
size decreases the performance slightly. The reason is that
increasing the region width and step size decreases the feature
length of covariance descriptors to be trained by SVM. For
SVM classifiers, the HOG and region covariance descriptors
are trained with linear, quadratic and Gaussian kernel SVM
using SVMLight [14]. Preimilarny results show that setting
parameter γ in Gaussian RBF kernel to 0.01 gives the optimal
performance. Results of different kernel functions are shown
in the next section.

2) Results and analysis: This section provides experimental
results and analysis of the techniques described in previous
section. We compare our results with local receptive fields
features as experimented in [1].

Figure 1 shows detection results of HOG features trained
with different SVM classifiers. From the figure, it clearly indi-
cates that a combination of HOG features with quadratic SVM
performs best. Obviously the non-linear SVM outperforms the
linear SVM. It is also interesting to note that the linear SVM
trained using HOG features performs better than the non-
linear SVM trained using LRF features. This means that HOG
features are much better at describing spatial information in
the context of human detection than LRF features.

# data splits pedestrians/split non-pedestr./split
Train 3 4800 5000

Test 2 4800 5000

TABLE I: Benchmark dataset of [1].
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Fig. 1: Performance of different classifiers on histogram of oriented
gradients Features.
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Fig. 2: Performance of different parameters on region covariance
features.

Figure 2 shows detection results of covariance features
trained with different SVM classifiers. When trained with the
RBF SVM, a region of size 7× 7 pixels turns out to perform
best compared to other region sizes. From the figure, region
covariance features perform better than LRF features when
trained with the same SVM kernel (quadratic SVM). The RBF
SVM performs best.

A comparison of the best performing results for different
feature types are shown in Figure 3. The following observa-
tions can be made. Out of the three features, both HOG and
covariance features perform much better than LRF. HOG fea-
tures is slightly better than covariance features. [9] concludes
that the covariance descriptor outperforms the HOG descriptor
(using human datasets of size 64×128 pixels with LogitBoost
classification). We suspect the difference would be in the
resolution of datasets and the classifiers used. Small resolution
datasets give less number of covariance features than large
resolution data sets. From the figure, we can see that gradient
information is very helpful in human detection problems.
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Fig. 3: A performance comparison of the best classifiers for different
feature types on the dataset of [1].

In all experiments, nonlinear SVMs improves performance
significantly over the linear one. However, this comes at the
cost of a much higher computation time (approximately 50
times slower in building SVM model).

B. Experiments on the MIT CBCL dataset

# data splits pedestrians/split non-pedestr./split
Train 3 1840 5000

Test 2 1840 5000

TABLE II: MIT CBCL pedestrian dataset. The non-pedestrian exam-
ples are randomly sampled from [1].

The MIT CBCL Pedestrian Dataset1 consists of 924 non-
mirrored pedestrian samples. Each sample has a resolution of
64× 128. The database contains a combination of frontal and
rear view human. We have applied the same techniques as
described in [1] by dividing the pedestrian samples into five
sets (Table II). Each set consists of 184 pedestrian samples.
For MIT CBCL Pedestrian database, the parameters used are
the same as the ones used previously in the dataset of [1].

1) Results and analysis: Figure 4 shows a comparison of
experimental results on different feature types using the MIT
CBCL pedestrian dataset. Both HOG and covariance features
perform extremely well on this MIT dataset. This is not
too surprising knowing that the MIT dataset contain only a
frontal view and rear view of human. Less variation in human
poses makes the classification problem much easier for SVM
classifiers. As a result, there is a noticeable improvement in
the experimental results compared to Figure 3.

VI. CONCLUSION

This paper presented an in-depth experimental study on
pedestrian detection using three of the state-of-the-art local
features extraction techniques. Our experimental results show
that region covariance and normalized histogram of oriented

1http://cbcl.mit.edu/software-datasets/PedestrianData.html
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Fig. 4: A performance comparison of the best classifiers for different
feature types on the MIT CBCL dataset.

gradients (HOG) features in dense overlapping grids signifi-
cantly outperform the adaptive approach like local receptive
fields (LRF) feature.
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