
An Experimental Study on Performance Portability of OpenCL Kernels

Sean Rul, Hans Vandierendonck, Joris D’Haene and Koen De Bosschere
Ghent University,

Dept. of Electronics and Information Systems,
Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium

{srul,hvdieren,kdb}@elis.ugent.be

Abstract

Accelerator processors allow energy-efficient compu-
tation at high performance, especially for computation-
intensive applications. There exists a plethora of differ-
ent accelerator architectures, such as GPUs and the Cell
Broadband Engine. Each accelerator has its own program-
ming language, but the recently introduced OpenCL lan-
guage unifies accelerator programming languages. Hereby,
OpenCL achieves functional protability, allowing to reduce
the development time of kernels. Functional portability
however has limited value without performance portabil-
ity: the possibility to re-use optimized kernels with good
performance. This paper investigates the specificity of code
optimizations to accelerator architecture and the severity of
lack of performance portability.

1. Introduction

Accelerator processors allow to execute computation-
intensive programs with higher performance and with bet-
ter energy-efficiency than general-purpose processors. As
such, software developers are starting to exploit accelera-
tors by off-loading computation-intensive tasks.

The best known and most widely available accelerators
are graphical processing units (GPUs), which are avail-
able in every computer. But other accelerators such as the
Cell processor [3], ClearSpeed [2] and Nallatech’s Slip-
stream [1] are also commercially available. As maximum
performance is a key reason for using these devices, pro-
gramming them occurs at a very low abstraction level where
architecture-specific features are exposed to the program-
mer. As such, each architecture is programmed using a dif-
ferent programming language, which leads to a real “Tower
of Babel” experience: software developed for one accelera-
tor architecture cannot be ported to a different architecture.

The OpenCL language1 was introduced about 1 year ago

1http://www.khronos.org/opencl/

to solve this situation. OpenCL is a C-based programming
language that contains features of many accelerator archi-
tectures. As such, OpenCL allows to write software with
functional portability: software written for one accelerator
architecture should execute correctly on a different acceler-
ator architecture. As optimizing performance is the key rea-
son for using accelerators, functional portability has limited
value without performance portability: software optimized
for one accelerator should not be entirely re-optimized fora
different accelerator. Without performance portability,soft-
ware developers must still develop accelerator-specific ver-
sions of their code. OpenCL does not support performance
portability.

The goals of this paper are (i) to study the specificity of
code optimizations to the accelerator architecture and (ii) to
evaluate the severity of lack of performance portability.

2. Method

We use the OpenCL language as a means for obtaining
functional portability. The OpenCL language divides the
computational workload into thread-blocks which can have
up to three dimensions, similar to the CUDA programming
model. These thread-blocks are then dispatched onto the ex-
ecution units of the accelerator. Due to the similarity of pro-
gram structure between the CUDA and OpenCL languages,
the translation process is relatively straightforward.

This work uses Parboil2 benchmarks to study perfor-
mance portability. The Parboil benchmark suite consists
of 7 kernels expressed in the CUDA language, specific to
NVIDIA GPUs [5]. These benchmarks are hand-translated
into OpenCL and 3 optimization parameters are exposed in
order to auto-tune the kernels. These parameters correspond
to the degree of loop unrolling, the use of vectorization or
not (4-element float vectors) and the number of threads in a
thread block.

We perform measurements on four architectures: an Intel
Core i7 720-QM (a 1.60GHz quad-core), an NVIDIA Tesla

2http://impact.crhc.illinois.edu/parboil.php

1



Table 1. Properties of the accelerator architectures in the experiments. SIMD widths shown assume
floating-point values are held.

Accelerator Core Freq. Processors DLP Memory BW Max. Dim XxYxZ / Max. Threads
CPU Intel i7 720-QM 1.6 GHz 4 (+4 SMT) 4-way SIMD 21 GB/s 1024x1024x1024 / 1024
Tesla c1060 1.3 GHz 240 8-way SIMT 102.4 GB/s 512x512x64 / 512
ATI FirePro V8700 750 MHz 160 5-way VLIW 108.8 GB/s 256x256x256 / 256
Cell PS3 3.2 GHz 6 4-way SIMD 25.6 GB/s 256x256x256 / 2561

1 While the maximum number of thread blocks is reported as 256,the current Cell implementation requires that the
threads per block is at most 1.

cp

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 4 8 16 32 1 2 4 8 16 32

scalar vector

E
x
e
c
u

ti
o

n
ti

m
e

(r
e
la

ti
v
e
)

CPU

Tesla

FirePro

Cell

mri-fhd

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 4 8 16 32 1 2 4 8 16 32

scalar vector

E
x
e
c
u

ti
o

n
ti

m
e

(r
e
la

ti
v
e
)

CPU

Tesla

FirePro

Cell

mri-q

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 4 8 16 32 1 2 4 8 16 32

scalar vector

E
x
e
c
u

ti
o

n
ti

m
e

(r
e
la

ti
v
e
)

CPU

Tesla

FirePro

Cell

Figure 1. Impact of loop unrolling and vectorization on the p erformance of kernels on different ar-
chitectures. Execution time is normalized per architectur e with respect to the baseline kernel (no
vectorization, loop unrolling factor 1). Missing data poin ts correspond to compilation errors.

c1060, an ATI FirePro V8700 and a Sony/Toshiba/IBM
Cell Broadband Engine (Playstation 3). These architec-
tures have quite diverse properties regarding the trade-
off between single-thread performance, number of proces-
sor cores and micro-architectural pipeline organization (Ta-
ble 1). Furthermore, while some architectures use SIMD
(single instruction multiple data) to enable power-efficient
data-parallelism, NVIDIA GPUs use SIMT (single instruc-
tion multiple thread) to limit the instruction fetch overhead
in data-parallel computations.

The architectural differences are so large that they in-
evitably percolate up to the programming language. The
last column shows the maximum dimensions of thread
blocks, the building block of OpenCL kernels. It is clear
that thread block sizes must be tuned to the architecture.

3. Evaluation

This section presents our measurement results on the cp,
mri-fhd and mri-q kernels. Results for the tpacf and rpes
benchmarks are pending. The sad and pns benchmarks were
excluded from this study as the first one is too small to
perform meaningful optimization and the latter one did not
work correctly.

Figure 1 shows the performance of the kernels when
varying the loop unrolling factor and when applying vec-
torization or not. The thread block size is 128 for the Tesla

Table 2. Execution time in seconds of kernels
on each accelerator when optimized for a par-
ticular accelerator.

Optimized for ...
Kernel Accelerator CPU Tesla FirePro Cell
cp CPU 12.62 50.50 50.54 12.62

Tesla 2.49 0.48 0.49 2.49
FirePro 164.60 1.83 1.71 164.60
Cell 8.80 39.75 49.49 8.80

mri-fhd CPU 2.90 2.93 4.66 3.11
Tesla 0.38 0.31 0.49 0.81
FirePro 1.84 1.3 1.10 n/a
Cell 1.20 1.26 10.22 1.14

mri-q CPU 5.78 5.99 8.74 6.22
Tesla 0.80 0.77 1.15 1.87
FirePro 1.49 1.98 1.25 n/a
Cell 2.28 2.08 24.00 1.91

and CPU measurements while it is necessarily 1 on Cell.
Figure 2 shows the impact of the thread block size on per-
formance. Only a single data point is possible for the Cell
processor.

The impact of the optimizations varies hugely between
architectures, confirming the need for architecture-specific
optimization. Optimizations interact with each other: e.g.,

2



cp

0

2

4

6

8

10

12

14

16

18

20

1 4 16 128 256 512

Block size

E
x
e
c
u

ti
o

n
ti

m
e

(s
e
c
s
)

CPU

Tesla

FirePro

Cell

mri-fhd

0

2

4

6

8

10

12

14

16

18

20

1 4 16 128 256 512

Block size

E
x
e
c
u

ti
o

n
ti

m
e

(s
e
c
s
)

CPU

Tesla

FirePro

Cell

mri-q

0

5

10

15

20

25

30

35

40

1 4 16 128 256 512

Block size

E
x
e
c
u

ti
o

n
ti

m
e

(s
e
c
s
)

CPU

Tesla

FirePro

Cell

Figure 2. Impact of thread block size on kernel performance f or vectorization and loop unrolling 2.

too much loop unrolling degrades performance on Tesla.
When adding vectorization, this degradation becomes even
larger and the optimal unrolling factor becomes smaller.
Also, while the Tesla and FirePro respond largely similarly
to the optimizations, the FirePro is much more sensitive to
parameter values for the optimizations and it has different
optimal parameter values than the Tesla. Thus, accurate ex-
ploration of the parameter space is essential to maximize
performance.

Optimizations may be exclusively applicable to some
architectures. E.g., when optimizing for CPUs, loop un-
rolling is not an important optimization for these kernels,
but loop unrolling is crucial for good performance on Cell.
For Tesla, the thread block size is the most important param-
eter. Failing to expose a particular optimization through an
auto-tunable parameter may thus lead to sub-optimal perfor-
mance on some architectures. In order to maximize perfor-
mance portability, the developer must be careful to consider
optimizations relevant toall target accelerators.

Table 2 shows the performance obtained on each accel-
erator when selecting the optimal optimization sequence for
a particular accelerator. It is striking how sensitive perfor-
mance is to the optimization sequence. Especially the cp
kernel sees up to a factor of 4.5 performance difference on
the Cell if optimizing for the wrong architecture. We con-
clude that performance is by no means portable across ar-
chitectures.

4. Related Work

This work is concerned with the ease of programmabil-
ity of accelerators, in particular with the aspect of obtaining
portability of code across accelerators. Auto-tuning is an
important technique to optimize the performance of soft-
ware to architectural properties [6] that may be used to ob-
tain performance portability. Hereto, code generators are
constructed to create many different versions of an algo-
rithm. As such, auto-tuning requires significant efforts and
is kernel-specific [4, 7].

5. Conclusion

The recently introduced OpenCL language for acceler-
ator processors promises functional portability, but cannot
deliver performance portability.

This paper studies the sensitivity of performance on ac-
celerators to the best optimization sequence. We find that
optimizations have a strongly different impact on different
architectures. In particular, each architecture is extremely
sensitive to one of the optimizations, while these optimiza-
tions have much lesser impact on the other architectures.

We conclude that special measures must be taken to ob-
tain performance portability. Auto-tuning is a set of tech-
niques that may help reach this goal. Our results indicate
however a vulnerability of auto-tuning: as optimizations are
architecture-specific, they may be easily overseen or consid-
ered “not relevant” when developing on different architec-
tures. As such, performance of a kernel must be verified on
all potential target architectures. We conclude that, while
being technically possible, obtaining performance portabil-
ity remains time-consuming, regardless of the functional
portability obtained by a language such as OpenCL.

References

[1] A. Cantle and R. Bruce. An Introduction to the Nallatech Slip-
stream FSB-FPGA Accelerator Module for Intel Platforms.
White paper, http://www.nallatech.com, Sept. 2007.

[2] T. R. Halfhill. Floating point buoys ClearSpeed.Micropro-
cessor Report, page 7, Nov. 2003.

[3] H. P. Hofstee. Power efficient processor architecture and the
Cell processor. InHPCA ’05: Proceedings of the 11th Inter-
national Symposium on High-Performance Computer Archi-
tecture, pages 258–262, 2005.

[4] E.-J. Im, K. Yelick, and R. Vuduc. Sparsity: Optimization
framework for sparse matrix kernels.Int. J. High Perform.
Comput. Appl., 18(1):135–158, 2004.

[5] nVidia CUDA programming guide, version 3.0, Feb. 2010.
[6] C. Whaley, A. Petitet, and J. J. Dongarra. Automated empiri-

cal optimization of software and the ATLAS project.Parallel
Computing, 27:2001, 2000.

[7] S. W. Williams.Auto-tuning Performance on Multicore Com-
puters. PhD thesis, EECS Departement, University of Cali-
fornia, Berkeley, Dec. 2008.

3


