
Rochester Institute of Technology Rochester Institute of Technology 

RIT Scholar Works RIT Scholar Works 

Theses 

7-19-2017 

An Experimental Study on Pool Boiling Performance An Experimental Study on Pool Boiling Performance 

Enhancement and Effect of Aging Enhancement and Effect of Aging 

Aniket M. Rishi 
amr6756@rit.edu 

Follow this and additional works at: https://scholarworks.rit.edu/theses 

Recommended Citation Recommended Citation 

Rishi, Aniket M., "An Experimental Study on Pool Boiling Performance Enhancement and Effect of Aging" 

(2017). Thesis. Rochester Institute of Technology. Accessed from 

This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in 
Theses by an authorized administrator of RIT Scholar Works. For more information, please contact 
ritscholarworks@rit.edu. 

https://scholarworks.rit.edu/
https://scholarworks.rit.edu/theses
https://scholarworks.rit.edu/theses?utm_source=scholarworks.rit.edu%2Ftheses%2F9592&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.rit.edu/theses/9592?utm_source=scholarworks.rit.edu%2Ftheses%2F9592&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ritscholarworks@rit.edu


1 

 

R.I.T 

 

An Experimental Study on Pool Boiling Performance 

Enhancement and Effect of Aging 

by 

 Aniket M. Rishi   

 

 

A Thesis Submitted in Partial Fulfillment of the Requirement for the 

Degree of Master of Science in Mechanical Engineering  

 

 

Thermal Analysis, Microfluidics, and Fuel Cell Lab 

Department of Mechanical Engineering   

Kate Gleason College of Engineering  

 

 

ROCHESTER INSTITUTE OF TECHNOLOGY 

Rochester, NY 14623 

July 19th, 2017 



2 

 

An Experimental Study on Pool Boiling Performance 

Enhancement and Effect of Aging 

by: Aniket M. Rishi  

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of 

Science in Mechanical Engineering  

Department of Mechanical Engineering   

Kate Gleason College of Engineering  

Rochester Institute of Technology  

Approved By: 

 

   

Dr. Satish G. Kandlikar  

Thesis Advisor                                                                                                                                    Date 

Department of Mechanical Engineering     

    

 Dr. Anju Gupta  

Thesis Co-Advisor                                                                                                                              Date 

Department of Chemical Engineering     

  

Dr. Agamemnon Crassidis   

Department Representative, Thesis Committee Member                                                         Date 

Department of Mechanical Engineering      

                 

   

Dr. Surendra Gupta  

Thesis Committee Member                                                                                                             Date 

Department of Mechanical Engineering     

 

                   

Dr. Michael Schertzer  

Thesis Committee Member                                                                                                             Date 

Department of Mechanical Engineering                                                 



3 

 

Acknowledgement 

 

I would like to express my sincere gratitude to Dr. Kandlikar for giving me this great 

opportunity to work in the Thermal Analysis, Microfluidics, and Fuel Cell Laboratory. 

Without his continuous support and guidance, this work would not have been possible. I 

would also like to thank Dr. Anju Gupta for giving me a huge support and motivation for 

this work. The confidence that you have shown in my work has encouraged me to deliver 

the best performance.  

I would like to specially thank Dr. Surendra Gupta for giving me the training on XRD and 

for assisting me in this study. As his teaching assistant, I benefited from his teaching skills 

and systematic problem solving techniques. I would like to thank my committee members 

Dr. Schertzer and Dr. Surendra Gupta for taking time to review and evaluate my thesis 

work. I am also thankful to Dr. Crassidis for advising and helping me during my graduate 

studies at RIT. All the Thermal Analysis, Microfluidics, and Fuel Cell Laboratory members 

have been really helpful and have constantly encouraged me and trained me. I am really 

thankful to them for all the things they have done.  

Finally, I would like to thank my parents and my brother for their continuous support, 

encouragement and for showing the confidence in me. Thank you for making all the 

sacrifices and giving me the opportunity to have this wonderful experience. I would like to 

thank my brother for providing me everything that I needed. I would also like to thank my 

girlfriend Sharvari for being there all the time, for being a closest friend and constantly 

supporting me throughout the journey. You all are my support system. I would also like to 

thank all my friends for all the support. 



4 

 

Abstract  

 

The miniaturization of electronic devices requires advanced thermal management 

techniques. The two-phase heat transfer process offers more effective and sustainable 

approach compared to the presently used single-phase cooling techniques. The boiling heat 

transfer is a two-phase cooling technique, that dissipates a high heat flux while maintaining 

the low surface temperature thereby, offering an efficient heat transfer mechanism 

compared to the single-phase process. Furthermore, the surface enhancement techniques 

such as micro/nano porous coatings help to maintain the low surface temperature thus 

improving the overall heat transfer performance. Electrodeposition is a simple technique 

that enhances this performance by creating the porous structure on the surface. This 

research focuses on developing an enhanced microscale structures on plain copper surfaces 

to improve the pool boiling performance. Additionally, the longevity (or the long-term 

stability) and aging of these enhanced structures, and their effects on the pool-boiling 

performance is also investigated.    

Initially the pool boiling performance of enhanced surfaces is studied. The enhanced 

surfaces were prepared using electrodeposition of copper and graphene oxide. Later, the 

effects of repetitive boiling on the morphology of the surfaces were examined using various 

characterization techniques such as Scanning Electron Microscope (SEM), X-Ray 

Diffraction (XRD), and Fourier Transform Infrared (FTIR). 

The chips coated with electrodeposition method rendered a high pool boiling performance 

for GS-4 (2.5% GO-Cu electrodeposited chip) with CHF of 220 W/cm² at wall superheat 

of 14°C, giving ~76% improvement in CHF compared to plain copper chip. While, copper 
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on copper electrodeposited chip, deposited with a different technique, performs better in 

both CHF and aging. CHF of 192 W/cm² at wall superheat of 18.8°C was achieved for 

copper electrodeposited chip, giving ~30% enhancement compared to literature and ~54% 

enhancement when compared to plain copper chip.  

Moreover, surface characterization techniques including Scanning Electron Microscope 

(SEM) with Energy- Dispersive X-Ray Spectroscopy (EDS), Fourier Transform Infrared 

(FTIR), and X-Ray Diffraction (XRD) were employed to study the morphologies, 

elemental species, and to confirm the presence of graphene and graphene oxide on the test 

surfaces.  
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Chapter 1 

 

This chapter provides the framework and the motivation for the current research work and 

background information on the pool boiling curve, bubble nucleation phenomenon in boiling and 

the electrochemical principles involved in generation of the graphene-rich surfaces investigated in 

this study. 

1.1 Introduction: 

 

Heat transfer is the most important phenomenon for any heat dissipating device. To 

maintain the desired functioning of the devices, efficient cooling system is essential. 

Innovations in miniaturized electronic industry have resulted in multifunctional compact 

devices with a growing challenge of fire hazards arising from overheating of these devices. 

There is a growing need of novel systems capable of dissipating the heat in these devices. 

Cooling can be achieved by two ways, either air cooling or liquid cooling. Since air cooling 

does not involve phase change, it has limited heat transfer capabilities. In liquid cooling, 

large amount of heat is absorbed while changing the phase from liquid to gas. Boiling heat 

transfer is of two types, viz. pool boiling and flow boiling. In pool boiling heat transfer, a 

pool of the fluid is held stationary while the natural convection causes the heat transfer. 

Whereas, in a flow boiling system, forced convection progenerates the heat transfer. Fig. 1 

shows the range of heat transfer coefficients for single phase and two phase cooling for air 

and water. To meet the high demands of electronics cooling, two phase cooling system is 

required due to its high capabilities to transfer the heat. 
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Figure 1: Heat transfer coefficients for single and two phase cooling [1] 

 

Pool boiling is one of the most important phenomenon in which the heat transfer occurs at 

low wall superheats without the involvement of any no moving parts such as pumps, in the 

system. In order to improve the pool boiling performance further, several surface 

enhancement strategies have been investigated, such as micro porous, nanoporous 

coatings, nano structures, wire frame structures, and micro channels that produce additional 

nucleation sites. The  use of nanofluids has  also  been shown to advance the heat transfer 

performance. [2] To understand the heat dissipation using boiling, it is essential to 

understand the pool boiling curve. A characteristic pool boiling curve is plotted with the 

heat flux on y-axis and wall superheat on x-axis. The value by which the Critical Heat Flux 

(CHF) increases and the degree by which the curve shifts to the left represents the 

enhancement compared to a flat surface. 
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1.2 Pool Boiling Curve 

 

Pool boiling curve is the most fundamental curve that describes the four different stages of 

the mechanisms underlying the pool boiling phenomenon as shown in Figure 2 The Y-axis 

represents the heat flux (q”, W/m2) and the wall superheat (Tsat) is designated to the X-

axis. The 4 regimes of the plot are described below: 

 

Figure 2: Pool boiling curve  

 

1.2.1 Free convection boiling- natural convection process 

 

When the wall superheat is low, the heat is transferred from heated surface to bulk liquid 

by the means of natural convection. There are no bubbles in this stage. When this 

temperature difference rises to a certain value corresponding to point ‘A’, small vapor 

bubbles are observed on few sites of the surface. Till point A heat transfer that is occurred 
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in the liquid is by natural convection current, and the movement of liquid is due to the 

density variation.  

 

1.2.2 Nucleate boiling- heat dissipation by bubbles 

 

Once nucleation is initiated, under the right conditions, the bubbles grow and nucleate from 

the heater surface and rise to the free surface in liquid phase shown as the nucleate boiling 

region in Figure 2. The point when the very first bubble appears on the surface embodies 

the is onset of the nucleate boiling phase. As the temperature rises beyond point B, 

additional nucleation sites become active and the rate of generation of bubbles increases. 

Formation of the bubbles gradually increase at these various nucleation sites carrying the 

heat to the free surface of liquid.  

This rate of formation of bubbles increases rapidly, which in turn increases the heat 

dissipation rate significantly till point C, at this point; heat flux reaches the maximum value 

and is known as the Critical Heat Flux (CHF) which indicates the maximum heat that can 

be dissipated. This section from A to B comes under the nucleate boiling region. [3] 

 

1.2.3 Transition boiling- Insulation layer of vapor 

 

Beyond point C, the bubble generation rate is much higher than the bubble detachment 

rate. The bubbles formed in this stage, start to combine and form a layer of vapor film in 

horizontal direction on the surface that prevents any liquid to come in contact with the 

surface. The vapor film acts as an insulation layer causing the heat flux to reduce rapidly. 

Under these conditions, the surface temperature may fluctuate rapidly. Since the boiling in 
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this region is the combination of unstable film boiling and nucleate boiling, it is called as 

the transition boiling.  

 

1.2.4 Film boiling- Heat transfer due to radiation 

 

In the region, D to E, there is a thin film of vapor covering the heater surface completely. 

At this stage, heat transfer takes place by conduction and radiation from the wall through 

the vapor film. This vapor film does not wet the heater surface, although some transient 

wetting can occur and there can be a formation of bubbles at some regions and at the free 

interface evaporation occurs, the bubbles then depart from the interface and rise up through 

the liquid pool. Because the heat transfer in region occurs through the vapor film, this stage 

is called as film boiling. [4] 

1.3 Bubble nucleation 
 

Bubble nucleation occurs when the heated surface or the test surface in a pool boiling 

experiment is at higher temperature than that of the saturation temperature of the bulk fluid 

above it.  

 

          Figure 3: Nucleation of bubble 
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Figure 3 shows the various forces acting on the bubble. The two forces that act on the 

bubble are pressure force and surface tension force. The vapor pressure inside the bubble 

is given by,  

                                         𝜌𝑉 = 𝜌𝑙 + 2𝜎𝑅                                                                                    (1)   
Where, 𝜌𝑉 is vapor pressure inside the bubble,  

ρl is the pressure of the fluid 

σ is the surface tension of the fluid and 

R is the radius of the bubble. 

From the equation, it is seen that vapor pressure is inversely proportional to the radius of 

the bubble. [5] Therefore, even for the nucleation of smaller bubble, higher vapor pressure 

will be required, which indicates that surface temperature should be higher than the fluid 

temperature. 

 

{𝑟𝑐𝑚𝑎𝑥, 𝑟𝑐𝑚𝑖𝑛} =  𝛿𝑡 sin 𝜃𝑟2.2 ( ∆𝑇𝑠𝑎𝑡∆𝑇𝑠𝑎𝑡 +  ∆𝑇𝑠𝑢𝑏) [1 ± √1 − 8.8𝜎𝑇𝑠𝑎𝑡 (∆𝑇𝑠𝑎𝑡 +  ∆𝑇𝑠𝑢𝑏)𝜌𝑉ℎ𝑙𝑣𝛿𝑡𝑇𝑠𝑎𝑡 2 ]     (2) 

The equation above determines the range of radii of the cavity for nucleation. This implies 

that the cavities lying within this range will act as a nucleation site. The cavities are also 

dependent of the surface finish. For a very smooth and polished surface, higher wall 

superheat temperatures are required and this required high wall superheat is given by, [5] 

                 ∆𝑇𝑠𝑎𝑡,𝑂𝑁𝐵 𝑎𝑡 𝑟𝑐 =  1.1𝑟𝑐𝑞′′𝑘𝑙 sin 𝜃𝑟 +  2𝜎 sin 𝜃𝑟𝑇𝑠𝑎𝑡𝑟𝑐𝜌𝑣ℎ𝑙𝑣                                                                   (3) 
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1.4 Electrodeposition Technique 

 

Electrochemical deposition is the process of coating on a base material to modify the 

surface properties. Electrochemical cell is the device where these chemical reactions occur. 

Electrochemical cell consists of electrolyte and the electrode as the main components. 

Electrode is an electronic conductor through which the current flows by the movements of 

electrons. Electrochemical cell consists of two electrodes; working electrode and counter 

electrode. Working electrode is the electrode where the reaction of interest occurs and a 

source of this deposition is the counter electrode. The electrolyte is the medium that allows 

for the charge transportation between the working and counter electrodes by the means of 

ionic movement.  When these two electrodes are connected to power supply, current flows 

from counter electrode to working electrode. The atomic particles of counter electrode flow 

through electrolyte and get deposited on working electrode. Since, current always flow 

from anode to cathode, hence, counter electrode acts as anode and working electrode acts 

as cathode. [6] 

Electrodeposition or electroplating is used in number of applications including mechanical, 

automotive and metallurgical industries, and micro or nanotechnologies. It also helps to 

achieve desired electrical and corrosion resistance, or electrical conductance, improved 

heat tolerance. [7] Electrodeposition coating technique has also been used to create 

microporous coatings on boiling test surfaces . [8] [9] 

Shin and Liu [10] used the electrodeposition method to create the surfaces. They observed 

that the porous size of the surface increased with increase in time of the deposition. Also, 

the porosity is increased with increase in evolution of hydrogen bubbles and can be 
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controlled by controlling the percentage of concentrated sulphuric acid. But, the deposited 

structure came off during the pool boiling tests as reported by Patil and Kandlikar [11] and 

hence bonding is the important issue to get the stable results. 

 

 

     Figure 4: Evolution of hydrogen bubbles forming porous surface 

 

Albertson [12] proposed a technique in which deposition is obtained by initially coating at 

higher current densities for a short duration, and lower current densities for a longer 

duration. In the first step, deposition of copper along with simultaneous evolution of 

hydrogen bubbles occurs, leaving behind porous copper as shown in figure 15. In the 

second step, the current density is taken such that the copper is deposited without evolution 

of hydrogen. This improves the bonding and the porosity of the copper surface. Hence, this 

method is used to create the micro porous surfaces. 
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1.5 Graphene and graphene oxide 

 

Graphene is a tightly packed layer of carbon atoms which are bonded together in a 

hexagonal lattice in a honeycomb like structure. In other words, graphene is a two-

dimensional form of graphite. Graphene has very phenomenal properties including highest 

strength and very high thermal conductivity. Thermal conductivity of graphene is in the 

range of 4800 to 5300 W/m K. [13] Graphene is the thinnest material available yet having 

very high strength. Due to its unique properties, graphene has several applications in the 

field of composites and coating, energy, electronics, heat transfer, biomedical and many 

more. [14] 

            

              Figure 5: 2D hexagonal structure of graphene 

 

 

1.6 Goals of the current work 

 

Boiling heat transfer approach is very efficient and has massive advantages compared to 

conventional air cooling techniques. It can serve as a potential cooling method for large 

data centers, highly powered electronic components and systems, boilers, heat exchangers, 

and nuclear reactors. In order to enhance the performance of two phase cooling further, the 
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test surface should dissipate the large amount of heat by keeping its temperature to the 

minimum value while, establishing a high heat transfer coefficient of the surface. Hence 

the main goals of this work are to i) improve the CHF of the test surface and ii) keep the 

wall superheat temperature to a minimum value, iii) improve the aging of the 

electrodeposited surfaces, and improve the pool boiling performance of the aged test 

surface than the plain test surface. 

 

 

        Figure 6: Desired Goals of pool boiling enhancement 
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Chapter 2 

 

This chapter covers a detailed literature review on different surface enhancement techniques, 

performance of heat transfer surfaces with porous media, and the mechanisms involved for the 

enhancements in boiling heat transfer.  

2.1 Literature review 

 

Literature review is divided in two different sections – a) the various enhancement 

techniques that includes microporous surfaces and their wettability, and electrodeposition 

of carbon based coatings, and b) the mechanisms involved in the increase in pool boiling 

performance. Sections include the enhancement based on. 

2.1.1 Enhanced heat transfer – microporous surfaces 

 

Pool boiling performance of the micro porous surfaces has been reported extensively. 

Porous surfaces have higher heat flux at low wall superheat due to increased surface area 

and nucleation sites. To be effectively tested for the pool boiling testing, bond strength of 

the porous surface must be strong enough such that the coating should not come off. 

Bargles and Chyu [9] demonstrated   that a steady vapor formation takes place on the  

porous media and  the nucleation takes place within the matrix via the  re-entrant cavities 

that are not susceptible to flooding by liquid. When the heat is supplied to the heater 

surface, nucleus of a bubble grows in the cavity. When this bubble nucleates, it carries heat 

with itself. As the bubble departs, the liquid in the vicinity of void fills the cavity, thus 
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there is continuous supply of fluid for the evaporation. Higher the nucleation frequency, 

higher the heat dissipated from the surface. [10] 

 

  Figure 7: (a) Microporous surface, (b) Boiling mechanism in porous surface [16] 

 

Mori and Okuyama [17] enhanced CHF by the attachment of a honeycomb structured 

porous plate with different thickness (1.2 mm, 5 mm, 10 mm) on a heated surface. As the 

thickness of the honeycomb porous plate on the heated surface decreased, the CHF 

increased to 250 W/cm2. They found that the self-regulated liquid supply due to capillary 

action and reduction of flow resistance to liquid and vapor flow improved the heat transfer. 

Patil and Kandlikar [11] reviewed several ways to form porous surfaces for boiling heat 

transfer by investigating Three main manufacturing techniques that are commonly used for 

creating porous boiling surfaces include- sintering, electrodeposition, and advanced 

techniques such as vapor blasting, jet impingement, spray coating. In their subsequent 

research publication [13], heat flux of 325 W/cm² at a wall superheat of 7.3°C was obtained 

for a surface with porous microchannel fin tops using two step electrodeposition.  From 

high speed images, they found that, bubbles nucleated on fin tops which enabled liquid re-

entry from the microchannels to the pores.   
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Figure 8: Micro convective flow through microchannel due to porous structure on fin tops 

 

Webb[14] conducted a series of boiling experiments to study the effect of geometric 

parameters of porous coatings like particle size, pore size and coating thickness. The results 

revealed that a maximum HTC was obtained with a porous coating thickness of roughly 

four to six times the particle diameter. Additionally, it was suggested that the  pore size has 

a more significant role compared to the overall  porosity in enhancing the boiling heat 

transfer performance of porous surfaces.       

Webiel [15] employed sintered copper wicked surfaces in evaporator sections of heat pipes 

and obtained heat fluxes greater than 500 W/cm² without the dry outs. They also stated that 

the cavities on the porous network play an important role by acting as nucleation sites. As 

the bubbles depart, the smaller nucleation sites underneath the departing bubbles become 

active and the rapid evolution of bubbles creates a large vapor column and turbulent 

convective flow, enhancing the heat transfer rate. Hanlon and Ma [16] fabricated a porous 

medium from a 100 mesh (149μm) 99.9% pure copper particles sintered at 840–900◦C for 

12–45 min. They gradually decreased the thickness of the porous layer to study the effect 
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of thickness on the boiling performance. Based on their experimental work, they concluded 

that only the top surface of the wick plays an important role in heat transfer enhancement. 

Also, the heat transfer was improved by decreasing the particle size. They also observed 

that dry out heat flux depends significantly on the wick (layer) thickness.  

Li, Wang et al.[17] developed various microstructures, nanostructures, and hybrid micro, 

nano structures on copper surfaces and  discovered  that the CHF for hybrid surfaces was 

about 15% more than that of the only nanowires and micro pillars. CHF of 250 W/cm2 at 

wall superheat of 28°C was reached for combined micro-pillar and nanowire sample.  

2.1.2 Heat transfer improvement – Effect of wettability and surface energy  

 

The surface wettability is another key factor affecting CHF Surface with high wettability 

has been identified to enhance phase change heat transfer. Kandlikar [18] developed 

theoretical model to describe the hydrodynamic behavior of vapor liquid interface of a 

bubble leading to initiation of CHF. The wettability of a surface can be tuned by changing 

its surface morphology. Liquid wettability is the ability of a liquid to spread across the 

soild surface.  Betz et al. [19] conducted a systematic study on combination of hydrophilic 

an hydrophobic surfaces. And revealed that the hydrophobic zones promote nucleation and 

the surface hydrophilicity helps in enhancing the CHF. The CHF value was increased by 

65%, while the heat transfer coefficient was increased by 100% to the original value. Also, 

they found that substantial enhancement was observed with surfaces encompassing 

hydrophilic network with hydrophobic islands as shown in Fig 9. [19] 
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Figure 9: (a), (b) Micrographs of surfaces with hydrophilic (black) and hydrophobic (gray) 

zones; d (diameter of pattern) and p (pitch) (c) Nucleation of bubble 

Hydrophilic networks prevent the formation of   insulating vapor layer. Different networks 

were evaluated and it was found that the hydrophobic surface promotes the nucleation in 

the beginning, which results in boiling at low wall superheat, with increased heat flux the 

hydrophilic network promotes the higher heat flux by preventing the formation of 

insulation vapor layer.  

                 

Figure 10: Measured density for active nucleation sites(white line as solid liquid interface) 

[19] 

 

The bubbles in contact with the hydrophobic surface do not detach from the surface due to 

their higher curvature radius that increases with time. At higher heat fluxes, bubbles spread 

over the surface and coalesces resulting   in a large vapor blanketed area.[20] 
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Hanley et al. [21] studied the individual effects of surface wettability, porosity and 

roughness on CHF and   observed  that the porous hydrophilic surfaces enhanced CHF by 

50%-60% while porous hydrophobic surfaces reduced CHF by 97%. Rahman et al. [22] 

used bio-templated virus to generate micropillar wick structures and demonstrated that the 

wickability is the dominant factor dictating the CHF of structured surfaces. Through this 

technique, they demonstrated that the wicked volume flux underneath a growing bubble 

determined the increase in CHF. For the enhanced structures, a CHF of 257 W/cm² was 

achieved.  

 

           Figure 11: Role of wickability in enhancing the CHF [22] 

 

2.1.3 Enhancement in heat transfer performance – Carbon derivatives 

 

Carbon and carbon derivatives have shown promising enhancements in pool boiling 

applications. Berber et al. [23] used carbon nanofluid with homogeneously suspended 

Carbon Nanotubes (CNTs)   that were coated on the surface after boiling  Which  led to the 

hypothesis that the  enhancement in boiling was caused due to the coating of CNTs on the 

surface This prompted further investigations into the growth of CNT on boiling surfaces, 

exhibiting thermal conductivity values of up to 6600 W/m K at room temperature. They 
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also found that, once graphene layers are stacked in graphite, interlayer interaction quench 

the thermal conductivity of system by nearly 1 order of magnitude. 

Novoselove et al. [24] successfully synthesized the graphene material  with a  high thermal 

conductivity of 5300 W/m K. Since then many researchers have employed various 

graphene and graphite structures to enhance the pool boiling performance.  

Jaikumar et al.[25] performed the electrochemical deposition of copper with graphene 

using potentiostatic deposition of copper on platinum disc electrode followed by dip 

coating of graphene at various durations. 82% enhancement in HTC was obtained for the 

surface. Another study by Protich et al. [26] involved electrochemical deposition of copper 

in Graphene Quantum Dot bath. String like structure of composite was obtained which 

gave CHF of 216 W/cm² and HTC of 86 kW/m²°C. Improved performance was obtained 

due to higher thermal conductivity of graphene layers arising from the porous surface with 

increased surface area.  

Park et al. [27] studied the effects of Graphene Oxide (GO) -based nanofluids boiling over 

a thin-wire heater in horizontal and vertical orientations. In these configurations, they 

reported enhancements of over 40-200% in CHF. These enhancements were attributed to 

the complex nature of self-assembling characteristics of graphene nanoparticles on the 

boiling surface. The self-assembly of graphene-layers results in a change in surface 

morphology which directly correlates with the increase in CHF. Method of dip coating 

copper chips in a solution consisting graphene and graphene oxide was investigated by 

Jaikumar et al.[28] Different characterization techniques were used to confirm the presence 

of graphene and graphene oxide. CHF of 182 W/cm² was obtained and the roughness was 

observed to be an influencing factor for improvement. Ahn et al. [29] sprayed Reduced 
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Graphene Oxide (RGO) flakes on copper substrates. The RGO colloid was synthesized by 

chemical reduction of hydrazine from graphene oxide. They identified that increased 

wettability and increase in percentage of GO led to significantly enhanced boiling 

characteristics. Ahn et al.  [30] postulated that thermal conductivity of RGO played a 

significant role in increasing the CHF while, the wall temperature did not increase rapidly. 

In another study, Kim et al. [31] reported  high hydrophobic wetting as a consequence of 

layer build up on the substrates. The large thermal conductivity of GO layer inhibited the 

formation of local hotspots and prevented the formation of dry-out regions and which in 

turn improved the CHF. Mejia et al. [32] used electrochemical deposition method for 

deposition of graphite/graphene composites on copper substrates. Different 

electrochemical baths of water, and ethanol were used for the deposition process. They 

achieved CHF of 269 W/cm² at wall superheat of 23°C for the deposited surfaces. Raj et 

al. [33] have shown that the advancing contact angles are a true representation of 

wettability in graphene coatings, while the receding contact angles were dictated by the 

defects on the surface which results in contact angle hysteresis. They also found that 

advancing contact angle measurements were independent of layers of graphene. 
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Figure 12: Advancing and receding contact angles with increase in graphene layers [33] 

 

 

 

2.2 Scope of work 

 

As noted from the literature review, graphene and graphene oxide have a huge impact on 

enhancing the CHF due to very high thermal conductivity of graphene. Additionally, it also 

improves the heat transfer rate by reducing the wall superheat. This research work focuses 

on enhancing the pool boiling heat transfer performance of a plain copper chip by 

combining the electrodeposition of copper and graphene oxide with distilled water as a 

working fluid at atmospheric pressure. Electrodeposition of combination of metal and non-

metal can be the key factor to drastically enhance the CHF by reducing the wall superheat 

temperatures simultaneously.   

Electrodeposited and sintered surfaces have significant effects on morphologies and 

wettability due to continuous boiling tests. The performance over a period of time of the 

enhanced test surfaces has not been reported, and this work on investigation of the 
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longevity of the electrodeposited tests surfaces and its effect on the pool boiling 

performance fills the gap in the pool boiling studies. The work also highlights the role of 

graphene in enhancement in aging. To improve the bond strength and the adhesion of 

electrodeposited test surfaces, new multi-step electrodeposition technique is employed to 

improve the aging performance of the electrodeposited chips. 
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Chapter 3 

 

This Chapter focuses on  the electrodeposition technique used in this study to deposit copper and 

graphene on test copper surfaces and their pool boiling performance All the pool boiling tests are 

performed at atmospheric pressure and distilled water is used for the tests. 

3.1 Experimental setup 

 

    3.1.1 Pool boiling setup 

 

A schematic of the experimental setup used for the pool boiling tests of the test chips is 

shown in Figure 13. The test setup included a water bath, an instrumented test chip, and a 

heater. The test chip was placed in the ceramic chip holder with slots to insert the 

thermocouples. Only 10 mm x 10 mm area of the test chip surface was exposed to the 

boiling and remaining area was covered with Kapton® tape which acts as an insulation. 

Above the test chip, a quartz glass water bath, rectangular in cross section, with dimensions 

14 mm x 14 mm x 38 mm was placed. To seal the contacting surfaces at the bottom and 

the top, a rubber gasket was used. 

Two stainless steel socket head cap screws were used to hold the middle garolite plate and 

the top aluminum plate. In the top aluminum plate, an auxiliary cartridge type heater (60-

VDC, 200W) of circular cross section was fitted along with a small circular hole to insert 

the saturation thermocouple probe.  

Four cartridge type heaters of 120-VDC, 200W capacity were inserted into a copper heater 

block which was then placed on the ceramic block below the test chip. The heater block 

fits snugly into the groove on the bottom of ceramic chip holder. Grafoil sheet was placed 
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above the heater to minimize the air gap between chip and the heater. Aluminum block is 

placed below the ceramic block, which is supported by four compression springs to 

establish the correct contact between the heater block and the test chip. This also ensured 

only 1-D steady state conduction from heat source to the test chip.[34] 

 

          Figure 13: Pool boiling setup[34] 

        3.1.2 Test section 

 

Plain test chips of made of copper alloy 101 were used in this study. Test chips consisted 

of a 17 mm x 17 mm x 9 mm surface with a 9-mm deep rectangular base to accommodate 

the thermocouples used for heat flux estimation. The thermocouple holes were drilled to 

reach the center of the rectangular base. As shown in Figure 14, the distance between the 

two successive holes on a rectangular base is 3 mm (Δx) while the distance between the 
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hole near the chip surface and the top of the chip is 1.5 mm. (x1). To read the three 

temperatures, T1, T2, T3, thermocouples were inserted into the holes.  

 

Figure 14: Plain copper chip (a) 3D view, (b) Front view, (c) Top view 

     3.1.3 Electrodeposition technique  

 

Electrodeposition is one of the techniques by which porosity can be controlled by 

controlling the current density and time required for the deposition. In the setup, test section 

i.e. copper chip is cathode while copper block is used as anode. Princeton Applied Research 

VersaSTAT 3 and Gamry Instruments Series 300 is used for the deposition. Both cathode 

and anode are inserted vertically in the electrolyte bath which contains the CuSO4 salts and 

distilled water. As shown in Figure 15, when direct current is supplied from the 

VersaSTAT 3, anode loses its electrons and cathode i.e. test section gains the electrons. 

The current in the solution always flows from anode to the cathode. Thus, when current is 

supplied, positive ions of Cu2+ are formed at the anode which travel towards the cathode. 
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Meanwhile, the sulphate ions (SO4 
2- ) are discharged from the electrolyte solution and 

travel to anode, which completes the electric circuit.  

 

Figure 15: Electrodeposition technique 

The electrochemical deposition process is accomplished through two reactions. At cathode, 

electrons are supplied. Since the deposition occurs at cathode, cathode undergoes 

reduction. Thus, reaction at cathode is given by:  

Cd+ +ne- → C              (4) 

At anode, electrons are migrated from the surface towards the cathode, causing oxidation 

at anode Hence, reaction at anode is given by: 

C → Cd+ + ne-               (5)  

The electrons freed from anode to form the metal cations travel to cathode and get 

deposited at cathode. This forms the coating at the cathode. The coating on cathode is of 

the same material as that of the anode. In the electrochemical reaction, cathode undergoes 

reduction while anode undergoes oxidation. According to Faraday’s law of electrolysis [39] 
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[40], the amount of the deposited material is proportional to the duration of the 

electrodeposition and the time of the deposition.  

The process of electrodeposition can be done in two ways: (i) supplying the constant 

current throughout the deposition, and (ii) holding the constant potential throughout the 

deposition. These methods are called as Galvanostatic and potentiostatic methods of 

deposition respectively. In the current study, all the depositions are performed using 

Galvanostatic method, i.e. the constant current is supplied for the fixed duration and the 

voltage is varied accordingly.  

    3.1.4 Electrochemistry setup 

 

Plain copper chip is initially cleaned with Isopropyl Alcohol (IPA) and distilled water to 

remove any impurities if present on the test chip. Test chip with the central 10mm × 10mm 

area is then marked and the area outside this region is covered with electrical insulation 

tape. This is done to avoid any deposition occurring on the region outside the central test 

area.  

For the electrodeposition of copper on the plain chip, 0.8M CuSO4 solution (5.85 gm) and 

1.5M conc. H2SO4 solution (3.14 mL) is mixed with 40 mL of distilled water.[41] Since 

the chemical reaction of CuSO4 and H2SO4 is exothermic, water is added in two intervals, 

20 mL before adding H2SO4 and 20 mL after adding H2SO4. Sonicator is then used to make 

the solution homogeneous and to dissolve the copper sulfate powder completely in the 

solution. 
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Figure 16: Electrodeposition setup 

Figure 16 shows the setup used for the electrodeposition technique. Galvanostatic method 

is used for the deposition. Deposition is conducted in a two-step process in which the first 

step is the deposition of copper while the second step is enhancing the bonding of deposited 

copper with the base material. For the step 1, current density of 400 mA is applied for 15 

seconds, while for the second step; a current of 40 mA is applied for 2500 seconds. [13] 

From the literature study, it is found that apart from the deposition technique, type of 

coating material also plays a vital role in the porosity and the morphology of the 

electrodeposited surface. For the preliminary work, a combination of metal and nonmetal 

(Graphene Oxide) in an electrolyte solution is used for the deposition. Non-metal solution 

of graphene is added in the electrolyte solution at various percentages- of 0.5, 1, 1.5, 2. 

Table 1 shows the test matrix for the plain copper chips. Total four test chips of copper and 

graphene oxide are prepared, while one controlled chip of copper deposition is prepared 

for the comparison. 
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Table 1: Test matrix for plain chips 

Test chip # Composition (Electrodeposition) 

  

Chip 1 (Cu on Cu) Cu on Cu 

Chip 2 (GS-1) Cu + 0.5% GO 

Chip 3 (GS-2) Cu + 1.0% GO 

Chip 4 (GS-3) Cu + 1.5% GO 

Chip 5 (GS-4) Cu + 2.5% GO 

 

 

3.2 Data acquisition  
 

To record the temperatures given by the thermocouples, a National Instruments cDaq-9172 

data acquisition system with NI-9211 temperature module was used. Overall four 

thermocouples were used, out of which three were inserted into the slots provided in the 

test section for heat flux measurement and surface temperature determination, while the 

fourth was inserted from the top of aluminum block to measure the saturated temperature. 

A LabVIEW VR virtual instrument is displayed and the surface temperature and heat flux 

was calculated. Apart from that, Lab View also shows the graphical variation of 

temperature with respect to time of each thermocouple. This is useful for determining the 

critical heat flux spikes. 
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  Figure 17: Schematic of data acquisition and heater assembly 

 

Heat flux is calculated using steady state 1D conduction equation            

                                                                    q′′ =  −kCu dTdx                                              (6)                              

Where, the temperature gradient dT/dx was calculated using the three point backward 

Taylor's series approximation  

                                                       
dTdx =  3T1−4T2+T32∆x                                             (7) 

The boiling surface temperature was obtained by using eq. 1 and 2, and is given by 

                                     Twall =  T1 −  q′′ ( x1kCu)                                       (8) 
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3.3 Uncertainty analysis 
 

During the experiment, a certain amount of error occurs in measuring the values. The two 

main errors are precision error and bias error. Bias errors are the difference between 

expected measurement value and the true measurement value. So, bias errors are the errors 

due to calibration while precision errors are due to the sensitivity of the testing instruments. 

A complete uncertainty analysis was performed similar to Patil and Kandlikar[40] and 

Mejia and Kandlikar.[41] Errors due to precision and bias uncertainty are expressed as: 

                                                         𝑈𝑦 =  √𝐵𝑦2 +  𝑃𝑦2                                                                         (9) 

Where, Uy is the uncertainty of parameter y. Py is the precision error and By is the bias 

error. Table 2 shows the parameters associated with precision errors and the source of these 

errors, which includes thermocouple temperatures, thermal conductivity of copper and the 

machining of test chip. The thermocouples are calibrated and its precision error was 

computed statistically to be  0.1 C. 
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Table 2: Uncertainty parameters and sources of errors 

Parameter Value Units 
Precision error 

(UP) 
% uncertainty 

     

TTOP Varies °C 0.0763 Varies 

TMIDDLE Varies °C 0.0756 Varies 

TBOTTOM Varies °C 0.0791 Varies 

kCu 391 W/m°C 9 2 

Δx 3.00E-03 m 1.00E-04 3 

Δx1 1.50E-03 m 1.00E-04 6 

 

𝑈𝑝 =  √∑ (𝜕𝑝𝜕𝑎 ∗  𝑢𝑎𝑖)2𝑛
𝑖=1                                                         (10) 

      Where 𝑈𝑝 is the uncertainty in the parameter p, and 𝑢𝑎𝑖  is the uncertainty of measured 

parameter 𝑎𝑖. The uncertainty in the heat flux and heat transfer coefficient can thus be 

expressed by the equations 11 and 12 respectively. 

𝑈𝑞"𝑞" =  √[(𝑈𝑘𝑘 )2 +  (3𝑈𝑇1 ∗ 𝑘𝐶𝑢∆𝑥 ∗ 𝑞" )2 +  (4𝑈𝑇2 ∗  𝑘𝐶𝑢∆𝑥 ∗ 𝑞" )2 +  (𝑈𝑇3 ∗ 𝑘𝐶𝑢∆𝑥 ∗ 𝑞" )2 +  (𝑈∆𝑥∆𝑥 )2]          (11) 

 

                                               𝑈ℎℎ =  √ 𝑈𝑞"2𝑞"2  + 𝑈𝑇𝑤2𝛥𝑇𝑠𝑎𝑡2 +  𝑈𝑇𝑠𝑎𝑡2𝛥𝑇𝑠𝑎𝑡2                                              (12) 
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Figure 18: Uncertainty in heat flux for Six Step (SS) Cu on Cu electrodeposited chip and                       

GS-4 (2.5% GO-Cu) electrodeposited chip 

 

It was observed that uncertainty decreases with increase in heat flux. The main aim of this 

study is to have the uncertainty below 5% at higher heat fluxes and at CHF. Similar 

calculations were done to find the uncertainty in HTC (h). The uncertainty was found to be 

below 5% in the same region. 

3.4 Characterization of surface 

3.4.1 Scanning Electron Microscope (SEM) 
 

The distinct morphological structures of copper and graphene oxide for the aging studies 

analysed using a JSM-6400V and TESCAN Field Emission Mira III scanning electron 

microscope (SEM), at an accelerating voltage of 15 kV. The energy dispersive X-ray 

spectroscopy (EDS) measurements were done on Bruker Quantax EDS with XFLASH 
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5010 detector attached to a field emission scanning electron microscope MIRA II LMH to 

the presence of various elements on the sample. [43] 

The unique morphology of the samples of GO and copper are obtained through the 

electrodeposition process. As shown in Fig.19, “Bitter gourd” like structure is formed from 

the combination of copper and graphene oxide deposition. EDS mapping as shown in 

Fig.19 confirms the presence of carbon, oxygen and copper on this Bitter gourd structure. 

Detailed explanation of SEM images is given in Chapter 4. 

 

Figure 19: SEM images of the electrodeposited surface using Galvanostatic method. (a) Bitter 

gourd copper structures at 3.6 kX, 70° tilt, (b) Energy dispersive X-ray spectroscopy (EDS) 

showing copper mapping confirming Bitter gourd structures were made of copper, (c) Energy 

dispersive X-ray spectroscopy (EDS) showing the traces of carbon on Bitter gourd structure 

 

3.4.2 Contact angle study 
 

Static, advancing and receding contact angles were measured on both the surfaces. Contact 

angle measurements were done using VCA Optima Goniometer Instrument. Measurements 

of the contact angles were recorded on the VCA software which showed the real-time 

visualization of the droplet. For calculating the contact angle, five points were used to trace 

10 µm 10 µm 10 µm 
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the shape of the drop and then left side and the right-side contact angle of the droplet was 

displayed.  

Static contact angle was measured by dropping the specific quantity (2 µL) of the droplet 

of water on the surface and stabilizing it for 5 seconds. For measuring the advancing contact 

angle, syringe was used to drop a certain volume of water (4 µL) on the surface. The angle 

was measured when the size of the droplet was increased and when the droplet of water 

slide outward on surface compared to its previous position. The maximum value of the 

contact angle was recorded as the advancing contact angle. Similarly, for measuring the 

receding contact angle, water from the chip surface was drawn into the syringe, and the 

point at which the water droplet changed its shape from convex to concave, the contact 

angle was measured. This was recorded as the receding contact angle. The difference 

between advancing and receding contact angle is called as the hysteresis of contact angle. 

Table 3: Contact angles of test chips (refer table #1) 

Test chip Contact angle (°) 

 Static Advancing Receding Hysteresis 

Cu on Cu 53 67 18.4 48.6 

GS-1 109.3 58.1 22.4 35.6 

GS-2 87.5 36.4 14.3 22.1 

GS-3 54.5 33.6 13 20.6 

GS-4 48.5 42.6 13.5 29.1 
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3.4.3 Wicking Rate 
 

Wicking is the property of micro porous structure which measured the volume of droplet 

wicked or absorbed in a particular period. For measuring the wicking rate, fixed volume of 

water (2 µL) was dropped on the chip surface and dynamic contact angle data of the droplet 

was taken. A sessile drop method [44] was used  to measure the wicking rate. A pendant 

water droplet was slowly brought contact to the electrodeposited test surfaces. Using high 

speed camera, rate of change of volume of droplet was measured on a software on frame 

basis. The wicking rates of each surface was measured by visualizing the dynamic 

spreading behavior of a drop placed on these surfaces. The volumetric change in a liquid 

droplet of a fixed volume was captured for a duration of ~75 s using a VCA Optima 

goniometer. 

3.5 Results  
 

3.5.1 Comparison of CHF and HTC: 
 

Figure 20 shows the pool boiling curves obtained with the GS1-4. The GO composition in 

these samples varied between 0.5-2.5 percent by volume. The deposition was carried out 

in a carefully designed electrochemical cell using a Galvanostatic method as discussed 

previously. GS-1, GS-2 and GS-3 reached a CHF of 135 W/cm², 169 W/cm² and 194 

W/cm², respectively. A CHF of 220 W/cm² was obtained with GS-4 corresponding to the 

sample with the maximum GO composition of 2.5 percent. To the best of the authors’ 

knowledge, this is currently the highest reported CHF with graphene-based coatings. The 
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test surfaces in this data set resulted in an increase in CHF with a simultaneous reduction 

in wall superheat. 

 

                            Figure 20: Comparison of pool boiling performance 

Figure 21 shows the HTC plots obtained for the surfaces prepared using the Galvanostatic 

process. In these samples, a significant increase in HTC in addition to CHF increase was 

observed. A maximum HTC of 72 kW/m² °C, 155 kW/m² °C, 103 kW/m²  °C and 155 

kW/m² °C at CHF was achieved with GS-1, GS-2, GS-3 and GS-4, respectively. The trend 

in the investigated surfaces suggest that the CHF increased with an increase in the GO 

concentration. 
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                   Figure 21: Comparison of heat transfer performance 

 

3.5.2 Effect of % increase of Graphene Oxide (GO) 
 

The percentage of graphene oxide was increased by volume in an electrolyte solution. This 

percentage was increased from 0.5, 1, 1.5 up to 2.5% GO in an electrolyte solution 

containing distilled water, copper sulfate and sulphuric acid. From the plot 22, it is seen 

that the heat flux increases with an increase in the percentage of GO in electrolyte solution.  
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               Figure 22: Effect of % increase of Graphene Oxide (GO) 

3.5.3 Effect of wicking  
 

The wicking rates play a significant role in enhancing the CHF. Rahman et al. [27] 

demonstrated this effect by introducing a dimensionless parameter, wicking number (Wi), 

which directly correlated to the increase in CHF using bio-templated structures.  

Figure 21 shows the variation of CHF with the (1 + Wi) for the surfaces investigated here. 

The wicking number is calculated using (13) as described by Rahman et al. [27].  

                                 𝑊𝑖 =  
𝑉"0 ∗ 𝜌𝑙√𝜌𝑣∗[𝜎∗𝑔∗(𝜌𝑙−𝜌𝑣)]1 4⁄                                                       (13) 

Where, 

Wi is wicking number, V0
” is the wicking rate (m/s), ρl and ρv are the liquid and vapor 

densities (kg/m³), g is the acceleration due to gravity (m/s²), and σ is the surface tension 

(N/m). The wicked volume (mm³/s) is estimated as the droplet volume change over time 
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using a VCA Optima goniometer. The wicking rate (mm/s) is calculated by normalizing 

the wicked volume over the droplet impingement area. [8] 

It is noted from Figure 23, that the CHF increases with an increase in the wicking number. 

The application of the CHF model proposed by Rahman et al. [27] predicts a CHF of less 

than 150 W/cm2 which is less than the experimental values obtained in this data set. 

Therefore, we recognize that additional mechanisms were further responsible for the 

enhancement. 

 

             Figure 23: Effect of wicking on GO-Cu electrodeposited chips (refer table 1) 

 

Additional nucleation sites and microlayer partitioning mechanisms 

In the samples investigated here (GS-1through GS-4), the HTC is significantly increased 

due to the low wall superheats at relatively higher heat fluxes. GS-2 and GS-4, in addition 

to wicking, have increased nucleation sites that are activated under suitable superheat 
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conditions and contribute towards decreasing the wall superheat. The mechanism for such 

a trend is attributed to the range of cavity sizes available for nucleation as discussed 

previously. The nucleation activity is further promoted by the enhanced evaporation 

through microlayer partitioning mechanisms. Maroo et al. proposed this mechanism by 

fabricating silicon ridges in the nano/microscale [45]. Similarly, Jaikumar et al. [27] have 

shown the microlayer partitioning on graphene surfaces contributed towards increasing the 

growth rates and bubble frequency. [43] 

The enhancements in CHF and HTC are due to the relative effects of wicking and 

additional nucleation sites. The microscale morphology of the samples play a critical role 

in enhancing wicking and promoting nucleation. The features promote wicking through the 

copper-dendrites and nucleation through the GO sheets. The nucleation activity increases 

due to microlayer partitioning mechanisms, as demonstrated by Jaikumar and Kandlikar 

[27] and Zou and Maroo [45]. The microlayer partitioning increases bubble growth rates 

and frequency. This arrangement results in an increase in both CHF and HTC 

characteristics demonstrated here. The effect of additional nucleation sites and wicking are 

the main contributing mechanisms for enhancing the CHF and HTC of GS-4. 
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Chapter 4 

 

From Chapter 3 it is seen that electrodeposition of combination of copper and graphene oxide helps 

to enhance the heat transfer performance drastically by keeping the wall superheat low. 220 W/cm² 

heat flux is obtained for GS-4 (2.5% graphene) chip, which is the highest heat flux that has ever 

been obtained for any graphene based coating on plain copper chip with a 14°C wall superheat.  

As mentioned earlier, this section of the thesis aims to fill the gap in the literature on the prolonged 

stability of the enhanced surfaces by focusing on the longevity and the aging studies of the 

electrodeposited chips. The extensive studies conducted in this thesis demonstrated the peeling of 

the coating on the controlled chip (copper on copper) whereas, the graphene coating sustained 

despite the pool boiling tests.  

For the ageing studies, the best performing chips with 2.5 % graphene oxide coatings from the 

previous chapter were considered along with the control plain copper chip.   

 

4.1 Development of the test method 
 

This chapter focuses on enhancements in prolonged stability due to electrodeposition of 

combination of graphene oxide and copper. 

The pool boiling setup mentioned in Chapter 2 was used for all the tests. A DC power 

source was used to supply the power to main heater. The voltage was increased and then 

kept constant till the saturation of the fluid was reached. All the four temperatures, i.e. T1, 
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T2, T3 and the bulk fluid temperature were measured using K type thermocouples and 

displayed in LabVIEW. (Refer Fig. 17) 

When the steady state was reached, data was logged for 10 seconds with 4 data points per 

second. The voltage of the DC power source was increased by 5 Volts and data was 

recorded after reaching the steady state. The steady state corresponds to ±0.1°C change in 

the readings of chip temperatures for 10 minutes. For the part 1, to age the chip, same chip 

was tested again and again for 20 times. Each time the heat flux was raised up to 80 W/cm2, 

and chip was kept running at the same heat flux for 15 minutes, and then was reduced back 

to zero by reducing the voltage by 5 Volts and tracing the path backwards. The similar test 

was repeated for 20 times. Total 85 hours of pool boiling test was performed. After that, 

the same chip was tested till it reaches the maximum heat flux (CHF). The CHF 

performance of the fresh chip and the aged chip was then compared. 

Similarly, the same numbers of tests were performed on plain copper chip and the CHF 

was compared. However, due to heavy oxidation of the plain copper chip after 20 runs, it 

was not tested for the CHF.  Table below shows the test matrix for the part 1 of the aging 

study. 

  Table 4: Test matrix for aging study of GalvanoStatic (GS-4) and Plain copper chip 

Chip No. of runs 

Plain Cu 20 

2.5% GO-Cu Electrodeposited chip (GS-4) 20 
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4.2 Characterization 
 

4.2.1 Contact angle study 
 

Similar to Chapter 3, static, advancing and receding contact angles for both the surfaces 

were measured. Contact angle measurements were done using VCA Optima Goniometer 

Instrument.  

Contact angles were measured before the test, i.e. on the fresh samples and to observe the 

change in morphology, contact angles were measured again after 20 repetitive pool boiling 

tests. Table 5 shows the contact angle data for plain copper chip and 2.5% GO-Cu 

electrodeposited chip. 

 

       Table 5: Contact angles of fresh and aged plain copper and 2.5% GO-Cu electrodeposited chips  

Test Chip Before the test (fresh chip) After 20 runs (aged chip) 

Plain Cu chip 

(PC) 

Static Advancing Receding Hysteresis Static Advancing Receding Hysteresis 

82.5 89.5 24.6 64.9 68.5 81.5 18.3 63.2 

2.5% GO-Cu 

electrodeposited 

chip (GS – 4) 

48.5 42.6 13.5 29.1 140 145 38.6 106.4 
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4.2.2 Wicking Rate 
 

Wicking rate for 2.5% GO-Cu electrodeposited (GS-4) chip was measured using the similar 

procedure as explained in Chapter 3. Wicking rate of the chip was taken before and after 

the aging of the sample. Figure 24 shows the change of contact angle over the time. LA 

represents the Left Angle and RA represents the Right Angle of the droplet. In the figure, 

the gray line plot shows the change in contact angle of GS-4 chip before the pool boiling 

test, while the black line graph shows the change in contact angle of the GS-4 aged chip. 

 

Figure 24: Change in contact angle over time of left and right side of the droplet (LA and RA 

respectively) for fresh and aged 2.5% GO-Cu electrodeposited chip (GS-4) 
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4.2.3 Scanning Electron Microscope (SEM) 

 

A Scanning Electron Microscope (SEM) is used for analysis of microstructural 

characteristics of a surface by producing images of the sample by scanning the sample 

surface with a focused beam of electrons. [46] Since SEM uses electrons instead of lenses 

to capture the image, hence, the degree of magnification can be controlled.  

The distinct morphological structures of copper and graphene oxide for the aging studies 

analysed using a JSM-6400V and TESCAN Field Emission Mira III scanning electron 

microscope (SEM), at an accelerating voltage of 15 kV. The energy dispersive X-ray 

spectroscopy (EDS) measurements were done on Bruker Quantax EDS with XFLASH 

5010 detector attached to a field emission scanning electron microscope MIRA II LMH to 

the presence of various elements on the sample. The “bitter gourd” like structures were 

formed as a result of graphene coated on the dendritic copper structures. The presence of 

both copper and carbon elements were confirmed by the as shown in Fig. 25 b and c. 

 

Figure 25 represents the SEM analysis of 2.5% GO-Cu electrodeposited chip before 

performing any pool boiling test. Fig.25 (a) shows the image of the surface at magnification 

of 3.6kX and at 70° tilt. The samples were also imaged by tilting the stage to gain an insight 

on the thickness, the height and additional features of the observed structures. From the 

tilted images, the thickness of the Bitter gourd structure was found to be around 6-8µm and 

height of the structure is 7-10µm. Despite of 20 repetitive tests, the morphology of the 

surface did not change much.  
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Figure 25: SEM images of the electrodeposited surface using Galvanostatic method. (a) Bitter 

gourd copper structures at 3.6 kX, 70° tilt, (b) Energy dispersive X-ray spectroscopy (EDS) 

showing copper mapping confirming Bitter gourd structures were made of copper, (c) Energy 

dispersive X-ray spectroscopy (EDS) showing the traces of carbon on Bitter gourd structure 

 

After continuous 20 cycles of pool boiling, the bitter gourd morphology underwent subtle 

changes and demonstrated more succulent plants like structures with well-defined grains 

on the base dendrites. Figure 26 shows the comparison of morphology of the test chip 

before the test and after 20 pool boiling tests. It was observed that the structure became 

less dense and the thickness of the Bitter gourd structure was reduced from 8µm to 5µm 

after 20 repetitive pool boiling tests. Figure 26 (a) and (b) show EDS mapping of the images 

before and after the 20 tests respectively. To find the thickness and height of the structure, 

all the images were captured at 70° tilt angle. Image 26(a) and is at 3.6 kX magnification 

while image 26 (b)is at 2 kX magnification. The thickness and height of the structure is 

decreased by ~2 µm as compared to that of before boiling. But despite of continuous pool 

boiling tests, the structure in general has remained the same. EDS mapping confirms the 

presence of carbon and copper on the test chip even after 20 repetitive tests.  

10 µm 10 µm 10 µm 
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Figure 26: SEM image of GO- Cu electrodeposited chip 70° tilt Energy Dispersive X-ray 

Spectroscopy (EDS) showing carbon mapping (a) before the test (3.6 kX), (b) after the 20 tests 

(2.0 kX)  

 

From Fig. 27, it is seen that the pore size of the structure has been changed marginally. 

Figure 27 show a top view of the sample. Figure 27 (a) is at the magnification of 5 kX 

while Fig. 27 (b) is at 2 kX magnification. Before starting the test, as seen in Fig. 27 (a), 

the structure was dense and average pore size was observed to be between 0.5 µm to 2 µm. 

7But, after 20 runs, from Fig.27 (b), it is seen that size of the pores is increased from 2µm 

up to 6µm.  Apart from this, the diameter of Bitter gourd structure is also decreased which 

suggests that the structure has become thinner.  

 

10 µm 20µm 
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Figure 27: Top view of Energy Dispersive X-ray spectroscopy (EDS) showing carbon 

mapping (a) before (5.4 kX), (b) after 20 tests (2 kX)  

 

 

4.2.4 Fourier Transform Infrared (FTIR) 

 

Fourier Transform Infrared (FTIR) spectroscopy is an optical analytical technique used to 

identify the organic and inorganic compounds present on the surface. FTIR passes infrared 

radiation through samples and a detector plots the peaks of absorbance v/s wavenumber of 

the radiation. All matter contains the molecules and molecules have bonds. These bonds 

continually vibrate and move around when they are in a ground state. When these 

molecules are exposed to the radiation of exact same frequency as the energy difference 

between ground state and excited state, they get promoted to excited state. Hence, for a 

bond there is a designated wavenumber which absorbs that wavelength and thus the peak 

intensity in terms of absorbance is observed.  [47] 

8 µm 20 µm 
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For all the test surfaces, Fourier Transform Infrared (FTIR) spectroscopy (Shimadzu IR 

Prestige 21) was used to confirm the presence of copper and graphene oxide. Absorption 

peaks of bonds of molecules are observed at different energy levels indicating the presence 

of a particular compound. Absorption of IR by molecules is plotted against the wavelength. 

The different peaks signify the different bonds. Figure 28 shows the FTIR of 2.5% GO-Cu 

electrodeposited chip before the pool boiling test. The characteristic peaks of C=O 

including stretching vibration of carboxyl group at 1726 cm-1, O-H deformation vibration 

resulting from C-OH at 1390 cm-1, and C-O stretching vibration at 1032 cm-1 was observed 

here. The peak at 1570 cm-1 corresponding to the presence of aromatic rings (C=C) is also 

seen. The broad peak between 3400-3100 cm-1 is attributed to O-H stretching from water 

vapor. The C=C, C=O, C-OH peaks confirm the presence of GO on the surface. [48] 

 

Figure 28: Fourier Transform Infrared (FTIR) of 2.5% GO-Cu electrodeposited chip (GS-4) 

before the pool boiling test 
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FTIR test was repeated on 2.5% GO-Cu electrodeposited chip after 20 runs. Data of the 

fresh test chip and aged test chip were plotted on the same graph to clearly visualize the 

difference between the peaks of new and aged chip. Figure 29 shows the combined plot of 

both fresh and aged chip. It is clearly seen that the aged chip traces the exact same path as 

that of the fresh chip, but with reduced intensity of the peaks. The peaks at wavenumbers 

1570 and 1726 cm-1 indicated  the presence of GO on the surface. [47] Hence, FTIR of 

aged chip confirms the presence of graphene on the test chip even after aging.  

 

Figure 29:Fourier Transform Infrared (FTIR) of 2.5% GO-Cu electrodeposited chip (GS-4) 

chip before and after 20 pool boiling tests 

 

4.2.5 X-Ray Diffraction (XRD) 

 

X-ray diffraction is a technique used for determining the atomic and molecular structure of 

a crystal in which crystalline atoms cause a beam of X-rays to diffract in specific directions. 
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When X-rays are incident on the sample, incident beam get separated in transmitted beam 

and diffracted beam. The diffraction pattern is recorded in term of 2θ angle that indicates 

the crystalline phase of the material. The crystalline phases of the RIT G/GO coated 

substrates were investigated using a Rigaku DMAZ-IIB X-Ray Diffractometer (XRD) with 

Cu Kα radiation; wavelength 1.5418 Å. The spectra were recorded for 2θ ranges between 

5° and 75° at a rate of 3°/min rate. The step size was 0.02° with an X-ray power of 40 kV 

and 35 mA. This range is expected to capture peaks from carbon and the underlying copper 

substrate. The location of characteristic peaks determines the presence of elements on the 

surface. XRD was taken for the 2.5% GO-Cu chip before any boiling test. Also, after 20 

runs aging, XRD was done again. 

 

            

Figure 30: X-Ray Diffraction of fresh and aged chip of 2.5% GO-Cu electrodeposited chip 

(GS-4)  

 



66 

 

The peaks between 0 to 10°, show the presence of graphene oxide on the surface. All the 

peaks after 40° show the presence of copper. [48] It is interesting to observe that even after 

20 repetitive cycles, the reduction of graphene from the surface was insignificant. 

indicating that the degradation of the pool boiling performance occurs due to increase in 

pore size (as explained in SEM), and is not because of the reduction of graphene oxide. 

 

4.3 Results 
 

4.3.1 Comparison of wall superheat and heat transfer performance 
 

Due to continuous heating and cooling of plain copper chip (PC) and 2.5% GO-Cu 

electrodeposited chip (GS-4) during pool boiling, morphology of the surface changes that 

further affects the overall performance of the chips and the surface temperature. To 

compare the advantages of electrodeposition of metal and non-metal combination, aging 

test was performed on plain copper chip and the highest performing 2.5% GO-Cu (GS-4) 

electrodeposited chip. 

Fig.31 shows the comparison of wall superheat temperatures at different stages of aging 

and it is clearly seen that for the same heat flux of ~80 W/cm², wall superheat of 

electrodeposited chip i.e. GS-4, is significantly less. 
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Figure 31: Comparison of wall superheat of Plain Copper chip (PC) and 2.5% GO-Cu      

electrodeposited chip (GS-4) at different repetitive test runs (R - repetition) 

 

In the beginning of the pool boiling tests, both plain copper chip (PC) and 2.5% GO-Cu 

electrodeposited chip (GS-4) yielded similar performance with approximately same wall 

superheat of 80 W/cm² heat flux (1R to 3R). But, from the 5th repetitive test onward, wall 

superheat for GS-4 chip started to decrease (13.5°C), while wall superheat for plain copper 

chip increased (14.8°C) (as shown in Fig.31). At the 13th repetitive test, GS-4 chip 

produced as very low wall superheat of 9.1°C as compared to the plain copper chip that 

attained a wall superheat of 16.2°C. 
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Figure 32: Heat transfer performance comparison of Plain Copper chip (PC) and 2.5% GO-

Cu electrodeposited chip (GS-4) at different repetitive test runs (R - repetition) 

 

Figure 32 shows the heat transfer performance for the compared runs. A maximum of 88 

kW/m2°C heat transfer coefficient was obtained for the GS-4 chip at 13th run at the heat 

flux of 80 W/cm². However, for the same number of repetitive test of plain copper chip, 

heat transfer coefficient was just 47 kW/m²°C.  

Figure 33 presents a comparison of the overall performance of aging of PC and GS-4 chips, 

and indicates the heat flux and wall superheats produced by the two chips during the 

second, tenth and the twentieth repetitive tests. It is observed that the heat transfer 

performance for GS-4 chip at any repetitive test is higher than that of the plain copper chip. 

After reaching the minimum of 9.1°C wall superheat on 13th repetitive test, the wall 

superheat slowly starts to increase. As seen from the Fig.33, at the end of twentieth 

repetitive test, wall superheat of GS-4 is 12°C, and that for the test chip PC, is 17.1°C. A 
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small rise in temperature of GS-4 after 13R is attributed to reduction in wicking rate and 

increase in range of cavity sizes. Figure 34 gives the heat transfer coefficient of the chips 

at initial, mid, and last repetitive test.  

 

Figure 33: Comparison of wall superheat of Plain Copper chip (PC) and 2.5% GO-Cu      

electrodeposited chip (GS-4) at different (initial, mid and last repetitive test) repetitive test 

runs (R - repetition)  

 

Figure 34: Comparison of heat transfer performance of Plain Copper chip (PC) and 2.5% 

GO-Cu electrodeposited chip (GS-4) at different (initial, mid and last repetitive test) 

repetitive test runs (R - repetition)  
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4.3.2 Comparison of CHF of fresh chip and aged chip 
 

After performing 20 repetitive pool boiling tests, the aged chip was allowed to reach its 

CHF point. was taken till it reaches CHF. However, the plain copper chip was not tested to 

reach its CHF due to the heavy damage caused by the repetitive pool boiling tests.  Figure 

35 shows the pool boiling performance and comparison of the heat fluxes achieved by the 

plain and GS-4 chips. GS-4 chip was heated until its CHF and the recorded maximum heat 

flux was found to be 146 W/cm² with respective wall superheat of 13.3°C. The pristine 

GS-4 chip had maximum heat flux of 220 W/cm² at wall superheat of 15.2°C. Despite, the 

aging, the electrodeposited 2.5% GO-Cu chip yielded higher CHF with better pool boiling 

performance compared to the aged and fresh plain copper chip 

 

Figure 35: Comparison of CHF of aged and non-aged 2.5% GO-Cu electrodeposited chip 

(GS-4) 

 

0

30

60

90

120

150

180

210

240

0 5 10 15 20 25 30

H
ea

t 
F

lu
x

 (
W

/c
m

²)

Wall Superheat (°C)

Plain Cu chip

GS-4

GS-4 (aged

chip)



71 

 

Figure 36 shows the heat transfer performance of fresh chip and aged chip. It is observed 

that the performance of the GS-4 chip decreases with increase in number of repetitive tests. 

However, HTC of aged GS-4 chip is much higher than that of the plain copper chip. 

Compared to plain chip, fresh GS-4 chip improved the heat transfer performance by ~195% 

while the aged chip improved the performance by ~102%. Table 6 summarizes the CHF 

and HTC of the aged and non-aged chips. 

 

Figure 36: Comparison of heat transfer performance of fresh and aged Plain Copper chip 

(PC) and 2.5% GO-Cu electrodeposited chip (GS-4)  
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Table 6: CHF and HTC comparison of fresh and aged chip of 2.5% GO-Cu (GS-4) 

Chip CHF (W/cm²) Wall superheat (°C) HTC (kW/m²°C) 

    

Plain Cu chip 125 23.8 52.5 

2.5% GO-Cu (GS-4) 220 14.3 155 

2.5% GO-Cu(GS-4) 

(aged chip) 
141 13.3 106.2 

 

 

 

4.3.3 Effect of aging the morphology 
 

Due to continuous heating and cooling of the chip during and after pool boiling test, the 

morphology of the test surface underwent various changes. First important observation was 

that, the contact angle and wickability of the surface changed. The volumetric change in a 

liquid droplet of a fixed volume was captured for a duration of ~80 s using a VCA Optima 

goniometer. The coating exhibited poor wickability as seen by the low volume of liquid 

wicked into the coatings. From Fig.24 the characterization section, it is clearly observed 

that wicked fluid is very less since the contact angle remains higher after a same time as 

compared to the contact angle before the test. Hence, due to reduction in wicking rate, CHF 

of the aged chip decreases. Also, from table 5, it can be seen that coating has lost its 

hydrophilicity and the has become a hydrophobic surface. 
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4.3.4 Enhancement mechanism of aged GS-4 chip 
 

Although the heat flux after 20 tests has reduced, it is still higher than the plain copper 

chip. The enhancement mechanism of this structure is primarily due to the increased 

nucleation site density. The range of cavity sizes (1-20µm) available for nucleation both in 

the planar and along the coating thickness is identified as the main contributing mechanism 

for the increase in HTC that causes the boiling curve to shift to the left owing to the rapid 

nucleation activity. On the other hand, the wicking rate of the structure was found to be 

decreasing from 1.7 to 0.9 mm/s, indicating that the liquid retention in the wicking 

structures did not contribute to the enhancement. It is postulated here that the GO 

encapsulates the porous copper thereby inhibiting liquid to be wicked into the coatings 

which  was evident from the low CHF values observed for these samples. [8] [43] 

 

Figure 37: Confocal laser scanning image showing range of cavities available for nucleation 

in the samples 
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Chapter 5 

 

Chapter 3 and 4 describe the enhancements and longevity of the performance achieved 

from 2 step electrodeposition process and advantages of use of Graphene in terms of heat 

transfer performance and aging as well. From the literature review in chapter 2 it is 

indicated that the porous surfaces provide additional nucleation sites that aid in reducing 

the   wall superheat. Chapter 5 centers on enhancing the heat transfer performance by a 

newly developed electrodeposition technique involving a variable multi-step 

electrodeposition of copper on the plain copper chip. The objective of the proposed new 

multi-step electrodeposition technique is to improve the bonding of the deposited material 

with the base material and simultaneously improve the heat transfer performance of the test 

surface and reduce the wall superheat.  

The scope of this chapter is to – a) obtain the CHF data of the new multi-step 

electrodeposited chip and compare the recorded values with the CHF of the previously 

studied two step deposited copper chip, and b) conduct the aging study on both two step 

and multi-step electrodeposition of copper on copper chips. This new multi-step 

electrodeposition process has never been implemented before which further strengthens 

the claim of the work presented in this chapter.  

5.1 Development of new electrodeposition technique 

 

Based on the pool boiling analysis it was observed that the coatings obtained by two-step 

deposition method were not sustainable and would peel off with after just one pool-boiling 
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tests. To address, this issue a six-step procedure was devised to improve the longevity and 

performance of the electrodeposited chip.  

The six-step method was similar to the previously employed two-step electrodeposition 

technique, and followed the Galvanostatic method for deposition. The key difference 

between the two methods is the alternate deposition and strengthening of the bonds of the 

deposited layer in the case of six-step method. The formation of deposited layer in smaller 

increments allows the strengthening of the deposition. In contrast, the two-step technique 

only involved the deposition by the supply of a higher current density for a short duration, 

followed by the lower current density for a longer duration. In the first step, deposition of 

copper along with simultaneous evolution of hydrogen bubbles occurs, leaving behind 

porous copper. In the second step, the current density is taken such that the copper is 

deposited without evolution of hydrogen bubbles. This improves the bonding and the 

porosity of the copper surface.  

In order to build more robust deposition, this same technique of higher current density for 

short duration which involves evolution of hydrogen bubbles and small current density for 

longer duration is used. But, instead of supplying a large current continuously for 15 sec., 

it is divided in 3 steps followed by a small current for longer period after each small step 

of large current density. The overall time of higher current density is kept constant but is 

divided in the intervals of 5 sec. Table 7 below summarizes the steps involved in six-step 

deposition process along with the applied current density and its duration for each step. 
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Table 7: Six-step electrodeposition process 

Step # 
Current density 

(mA/cm²) 
Time (sec.) 

Step 1 400 5 

Step 2 40 2500 

Step 3 400 5 

Step 4 40 2500 

Step 5 400 5 

Step 6 40 2500 

 

The electrolyte solution used for this deposition was 0.8M CuSO4 (5.85 gm) and 1.5M 

conc. H2SO4 (3.14 mL) and 40mL distilled water. For this six-step deposition, same 

electrolyte solution and electrodeposition procedure was followed as mentioned in Chapter 

3. Due to heavy damage on two-step deposited chip, both the chips were tested 7 repetitive 

times before taking to CHF. 

 

5.2 Characterization  
 

5.2.1 Contact angle study 

Similar to the studies published in Chapter 3 and 4, the static, advancing and receding 

contact angles for the newly synthesized chips were also recorded. Table 8 summarizes the 

contact angles measured for fresh and aged chips.  
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Table 8: Contact angles of Two Step (TS) and SS (Six-Step) electrodeposited copper on 

copper chips (fresh and aged chips) 

Test Chip Before the test After 7 runs 

Cu on Cu (Two 

Step deposition) 

(TS) 

Static Advancing Receding Hysteresis Static Advancing Receding Hysteresis 

53 67 18.4 48.6 80 98 21.3 76.7 

Cu on Cu (Six 

Step deposition) 

(SS) 

16 29.6 9.9 19.7 128.5 137 49.4 106.4 

 

5.2.2 Wicking rate 
 

 The wicking rates for both Two-Step and Six-Step chips were measured using a VCA 

Optima Goniometer. As shown in Fig. 38, for the time frame of ~80 seconds, contact angle 

reduction for Six-Step (SS) deposited chip is much higher as compared to Two-step (TS) 

deposited chip. Contact angle for SS chip reduced from 45° to almost 16° within 80 seconds 

showing that wicking rate for SS is way higher than TS. The wicking rates of each surface 

was measured by visualizing the dynamic spreading behavior of a drop placed on these 

surfaces. 
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Figure 38: Change in contact angle over time of left and right side of the droplet (LA and 

RA respectively) for Two-Step (TS) and Six-Step (SS) electrodeposited chips 

 

 

5.2.3 Scanning Electron Microscope (SEM) 

 

The morphology of the substrates was studied by JSM-6400V scanning electron 

microscope (SEM), JEOL, Ltd., Tokyo, Japan at an accelerating voltage of 15 kV. 

Accelerating voltage represents the energy that is set to accelerate the electrons in the 

electron beam when shooting on the sample. The WD on the SEM image represents the 

working distance between sample and the lens and it is zoomed to a required magnification 

from this WD. SEM MAG tells that whatever the image is shown, is magnified 5000 times. 

As higher magnification, view field reduces. It can be observed in Fig.39, that for the 

magnification of 5kX, view field is just 41.4µm. 
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Figure 39: Scanning Electron Microscope (SEM) images of the electrodeposited chips using 

Galvanostatic method, 5kX, 70° tilt (a) Cu on Cu two-step deposition, (b) Cu on Cu six-step 

deposition, 10µm 

 

Figure 40: Top view of copper on copper electrodeposited chip, 5kX, scale 10 µm, (a) two-

step, (b) six-step 

10 µm 10 µm 

10 µm 10 µm 
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Figure 41: SEM image of top view of copper on copper electrodeposited chip showing the 

structure at 5µm with 10kX magnification (a) two-step deposition, (b) six-step deposition 

 

Figure 39 of SEM as shown above is obtained by tilting the stage at 70° Figures 40 and 41 

are the top views of the test chip. From Fig.39, it is observed that the thickness of the 

deposition is higher for six step deposited surface as compared to two step deposited 

surface. For Fig. 39(a) of two step deposited copper, the thickness of the coating is 

approximately 2-3µm while that of the six-step deposited surface (Fig. 39(b)) is around 8-

10 µm.  

Compared to six step deposited coating (2-3 µm), the two-step deposited coating did not 

show any pores. Figure 41 shows the top view of the morphology of TS and SS deposited 

chips at the magnification of 10kX. Highly microporous structure is formed from six step 

deposited chip. Pores in the range of 0.5 µm to 3 µm are formed. Compared to Fig.41 (b), 

Fig. 41(a) has no porosity.  

5 µm 5 µm 
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5.3 Results 
 

Results section consists the enhancement due to newly employed six step electrodeposition 

technique and its comparison with plain chip and existing results. In addition to this, the 

aging study of the six-step deposited chip is carried along with two step deposited chip to 

compare the results. 

5.3.1 CHF and HTC Enhancement due to new electrodeposition 

technique 
 

Figure 41 shows the pool boiling curves obtained with the two-step deposited chip (TS) 

and six-step deposited chip (SS). The deposition was carried out in a carefully designed 

electrochemical cell using a Galvanostatic method as discussed previously. TS chip 

reached a CHF of 150 W/cm² at a wall superheat of 18.7°C. A CHF of 192 W/cm² was 

obtained with SS at a wall superheat of 18.8°C. For the electrodeposition of copper on 

copper, this is the highest heat flux value that has been ever reported. The test surface of 

six step deposited chip resulted in an increase in CHF with a simultaneous reduction in 

wall superheat. Plot 41 shows the comparison of CHF of six step deposited chip with the 

CHF from literature.  
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                 Figure 42: Comparison of CHF of Two-Step (TS) and Six-Step (SS) electrodeposited chips 

 

Figure 42 shows the comparison of HTC of TS and SS obtained for the surfaces prepared 

using the Galvanostatic process. A maximum HTC of 102 kW/m2°C was achieved for Six-

Step deposited chip, while for two step deposited chip, HTC of 78 kW/m²°C was achieved.  

By implementing the new six step electrodeposition technique, 53% enhancement in CHF 

was achieved while ~96% enhancement in heat transfer coefficient was observed.  
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Figure 43: Comparison of heat transfer performance of Two-Step (TS) and Six-Step (SS) 

electrodeposited chips 

 

5.3.2 Comparison of wicking rate 
 

The wicking rates play a significant role in enhancing the CHF. In the samples investigated 

here (Two-Step and Six-Step deposited chips), the HTC is significantly increased for six-

step deposited chip due to the low wall superheats at relatively higher heat fluxes. SS in 

addition to wicking, have increased nucleation sites that are activated under suitable 

superheat conditions and contribute towards decreasing the wall superheat. The mechanism 

for such a trend is attributed to the range of cavity sizes available for nucleation as 

discussed previously in Chapter 3. The nucleation activity is further promoted by the 

enhanced evaporation through microlayer partitioning mechanisms. This arrangement 

results in an increase in both CHF and HTC characteristics demonstrated here. The effect 
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of additional nucleation sites and wicking are the main contributing mechanisms in 

enhancement. 

5.3.3 Test surfaces of the aged chips 
 

Due to continuous pool boiling testing, morphology of the test surface gets affected which 

results in reduction in performance of the chip. At the end of 3rd repetitive test, it was 

observed that the test surface of two step deposited chip had started to damage and the 

coating had come off partially. But, after performing 7 repetitive pool boiling tests, the 

coating of the two-step (TS) deposited chip was destroyed completely. However, the 

coating of six-step (SS) deposited chip was not reduced at all. Hence, it can be said that the 

new multi-step electrodeposited chip has better bonding and the adhesion of the deposition 

to the surface is very strong. 

Figure 44 shows the photographic images of the surfaces of the aged chips. It is clearly 

seen from Fig.44 (a) that the coating of the surface of two step deposited chip has 

completely come off. Compared to that, coating of the six-step deposited chip is still 

present, indicating that bonding is better for six step deposited chip.  

 

Figure 44: Test surface of aged (a) Two-Step (TS), (b) Six-Step (SS) electrodeposited chips 
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5.3.4 Effect of aging on wall superheat and heat transfer performance 
 

To compare the advantages of the newly employed electrodeposition techniques in terms 

of longevity and adhesion improvement, aging study was carried out. Fig.45 shows the 

comparison of wall superheat temperatures at different stages of aging that indicates that 

for the same heat flux of ~80 W/cm2, wall superheat of six-step electrodeposited chip i.e. 

SS, is significantly less than that of the two-step (TS) deposited chip. 

 

Figure 45: Comparison of wall superheat of Two-Step (TS) and Six-Step (SS) copper on 

copper electrodeposited chips at different repetitive test runs (R – repetition) 

 

For the 3rd repetitive test, as shown in plot, for the same heat flux, wall superheat of TS 

chip is 17.6°C while that of the SS chip is 14.3°C. Again, the similar trend is observed in 

all the tests. (4R to 7R).  

Figure 46 shows the heat transfer coefficient comparison of TS and SS chips. Maximum 

of 60 kW/m²°C HTC was obtained for SS chip at the 3rd repetitive test, while 44 kW/m²°C 
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HTC was obtained for the TS chip at 3rd repetitive test. It is observed that, for a given heat 

flux, the HTC of SS chip is always higher than TS chip. This indicates that Six-Step (SS) 

deposited chip has higher heat transfer efficiency than that of the Two-Step (TS) deposited 

chip.  

 

Figure 46: Comparison of heat transfer performance of Two-Step (TS) and Six-Step (SS) 

copper on copper electrodeposited chips at different repetitive test runs (R – repetition) 

 

5.3.5 Effect of aging on CHF and HTC 
 

As explained earlier, due to heavy damage of the TS chip, the CHF obtained for TS is 

exaggerated. Fig.47 shows the CHF of the aged chips. Compared to first CHF value, aged 

chips have less CHF. Wall superheat of TS chip is increased as well. However, for the SS 

chip, wall superheat temperature has remained similar as that of mentioned in 5.3.1 section.  
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CHF of 152 W/cm² was obtained for the aged SS chip at wall superheat of 18.8°C, while 

CHF of 140 W/cm² at a wall superheat of 23°C was obtained for TS chip.  

 

Figure 47: Comparison of CHF of Two-Step (TS) and Six-Step (SS) copper on copper 

electrodeposited chips 

 

HTC of 84 W/m² °C was achieved for SS chip at the CHF, while for the TS chip, it was 61 

W/m² °C. Compared to HTC of fresh samples, HTC and CHF of the aged chips reduced. 

However, newly employed Six-Step electrodeposited chip performed better than two step 

deposited chip. CHF, wall superheat and hence HTC of the SS chip is higher than TS 

indicating the improvement in performance due to new electrodeposition technique. 
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Figure 48: Comparison of HTC of Two-Step (TS) and Six-Step (SS) copper on copper 

electrodeposited chips  
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Chapter 6 

 

6.1 Conclusions 

 

This research work was divided into two parts. For the first part, aim was to enhance the 

heat flux by reducing wall superheat. The following conclusions were drawn from the part 

one: 

1) Two step electrodeposition technique was employed with the combination of a metal 

(Copper) and a non-metal (Graphene Oxide).  

2) For 2.5% by volume of Graphene Oxide in 40mL electrolyte solution, (GS-4), CHF of 

220W/cm² was achieved at wall superheat of 14.2°C. Compared to plain copper chip, ~76% 

enhancement in heat flux was achieved using 2.5% GO. 

3) It was observed that as the percentage of GO in an electrolyte goes on increasing, heat flux 

also goes on increasing.  

4) When GS-4 chip was tested for the longevity and aging, after overall 85 hours of pool 

boiling testing, pool boiling performance of the chip was still higher than that of the plain 

copper chip. CHF of 146 W/cm² was achieved at wall superheat of 13.3°C. Plain copper 

chip could not sustain the continuous pool boiling tests and the surface of the plain copper 

chip was heavily damaged. 

5) Surface characterization techniques including Scanning Electron Microscope (SEM), 

Fourier Transform Infrared (FTIR), and X-Ray Diffraction (XRD) confirmed the presence 

of Graphene Oxide on the surface even after aging. This shows that bonds between the 

graphene oxide and copper are strong and were helpful in improving the pool boiling 

performance. 
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In the second part, a new multi-step electrodeposition technique was employed to improve 

the aging by improving adhesive bond strength and to improve the pool boiling 

performance as well. Following conclusions were drawn from the study: 

1) In the new Multi-step electrodeposition technique of copper on copper, alternate activity 

of deposition and strengthening the deposition was performed which enhanced the adhesive 

and cohesive bonding of the deposition.  

2) Scanning Electron Microscope (SEM) confirmed the drastic change and improvement in 

the morphology of the six-step electrodeposited surface.  

3) CHF of 192 W/cm² at wall superheat of 18.8°C was achieved for the six-step deposited 

chip, which is 149 W/cm² for two-step deposited chip. Hence, ~30% enhancement was 

achieved by using new six-step electrodeposition technique as compared to two-step 

deposited chip. 

4) When both two-step (TS) and six-step (SS) deposited chips were taken for the aging test, 

the SS chip performed better than TS chip. The coating of TS chip came off after 6 

repetitive pool boiling tests, while the coating of SS chip did not come off even after hitting 

the CHF. 

5) Improvement in wicking and increased nucleation sites were the critical factors in 

improving the critical heat flux of the six-step deposited chip. 
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6.2 Future work 

 

A systematic parametric study of different current densities and different deposition time 

periods can be performed to optimize the pool boiling performance. The new six-step 

electrodeposition technique can be employed by adding Graphene Oxide in an electrolyte 

solution. As seen in Chapter 5, six-step electrodeposition gives very high CHF performance 

at low wall superheats. Hence, the use of graphene oxide will ensure the reduction in wall 

superheat and improved pool boiling performance. 

Implementation of six-step deposition process on microchannel surfaces can make a huge 

impact in the field of electronics cooling. Microchannel test surfaces with multi-step 

selective electrodeposition will improve the CHF to a very high extent and will 

simultaneously reduce wall superheat. 

Due to enhanced bonding, test surface will definitely last very long and will give high 

performance. Apart from this, porosity of six-step electrodeposited surfaces can further be 

controlled and varied by varying the deposition time and current density. 
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