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Complex, high-rate dynamic structures, such as hypersonic air vehicles, space structures, and weapon systems, require structural
health monitoring (SHM) methods that can detect and characterize damage or a change in the system’s con�guration on the
order of microseconds. While high-rate SHM methods are an area of current research, there are no benchmark experiments
for validating these algorithms. �is paper outlines the design of an experimental test bed with user-selectable parameters that
can change rapidly during the system’s response to external forces. �e test bed consists of a cantilever beam with electronically
detachable added masses and roller constrains that move along the beam. Both controllable system changes can simulate system
damage. Experimental results from the test bed are shown in both �xed and changing con�gurations. A sliding mode observer
with a recursive least squares parameter estimator is demonstrated that can track the system’s states and changes in its �rst natural
frequency.

1. Introduction

Researchers have studied a variety of techniques and appli-
cations for structural health monitoring (SHM) [1–4]. Much
of this interest has focused on civil structures with low
frequency dynamics and use SHMtechniques that collect and
process data on the order of several seconds or longer. Many
of these classic methods are too slow to accommodate the
need for real-time SHM in the growing number of advanced
structures in high-rate, dynamically harsh environments,
such as hypervelocity air vehicles, space structures, high-
speed turbomachinery, andweapon systems.�ese structures
can experience high-speed impacts (>4 km/s) that result in
damage propagating through the structures in microseconds
[5, 6]. �ese high-rate dynamic systems present a number
of challenges to contemporary SHM and damage prognosis
algorithms including the need for rapid damage detection,
robustness to sensor noise, uncertainties in external forces,

unknown changes in system parameters, and unmodeled
dynamics [7, 8].

A number of authors have begun to study the problem
of damage detection for high-rate, time-varying systems.
Dodson et al. studied SHM at the microsecond timescales
using strain energy and wave propagation methods [9].
Kettle, Anton, and collaborators have studied extending
electromechanical impedance techniques to the megahertz
frequency range for use in real-time damage detection
[10–12]. Hong et al. utilized a data-driven, variable input
space observer for damage detection [8, 13]. Dodson et
al. previously studied recursive least squares and extended
Kalman �lter methods for estimating model parameters in
simulations of time-varying systems [14, 15]. �ese works
show promise for developing techniques for damage detec-
tion in high-rate systems, but su�cient data pertaining
to these rapidly changing systems is limited. Such data is
needed for developing high-rate SHMtechniques and gaining
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insight into detecting structural damage. While researchers
have developed benchmark experiments for assessing SHM
algorithms in civil structures [16], few have developed test
beds with fundamental natural frequencies above tens of
hertz and fast changing parameters that can change during
the system response.

To address the absence of such data, Abramczyk et
al. began developing a test bed with time-varying, user-
controllable parameters for developing real-time SHM algo-
rithms [17]. A summary of this test bed was previously
presented by Joyce et al. [18]. �eir setup, known as the
DROPBEAR (Dynamic Reproduction of Projectiles in Bal-
listic Environments for Advanced Research), is a cantilever
beam featuring two time-varying, user-controllable parame-
ters: the attachment of an electromagnet and the position of
roller constrains. Powering o� the magnet detaches the mass
and simulates a sudden damage or detachment of a system
component. A linear actuator moves the rollers and varies the
location of the external constraint. Varying either parameter
can simulate damage by producing a repeatable, controllable
change in the system dynamics. Similar simulated damage
strategies can be found elsewhere in the literature, such as
attaching masses [19, 20], loosing bolts [21, 22], or remov-
ing structural components [16, 23]. Rather than changing
con�gurations between tests, the DROPBEAR’s simulated
damage can be induced during the system’s response as would
occur for real damage in high-rate dynamic systems. For
repeatability, these temporary changes are preferred over
inducing a crack or other permanent defect in the beam.
Data sets from the DROPBEAR under known parameter
changes can be used to assess the accuracies and speeds of
di�erent damage detection or parameter estimation schemes.
�is allows the DROPBEAR to be an experimental test bed
for developing and evaluating methods of real-time damage
detection and prognosis.

�is paper focuses onmodeling the experimental test bed
started byAbramczyk et al. [17, 18] in di�erent parameter con-
�gurations and developing a sliding mode observer (SMO)
to demonstrate a model-based state estimator for tracking
system changes. SMOs have been successfully implemented
for disturbance rejection, disturbance estimation, and struc-
tural health monitoring [24, 25]. SMOs o�er robustness
to uncertain and unmodeled dynamics which make them
attractive for implementation in more complex and di�cult
to model systems. �e results from the SMO are combined
with a recursive least squares (RLS) algorithm to estimate
the beam’s time-varying �rst natural frequency during the
simulated damage. �is natural frequency estimation serves
as an indicator and measure of the simulated system damage.

�e next section provides details of the DROPBEAR
setup. An initial analytical model of the system in �xed
con�gurations is derived, discretized using a �nite element
method, and reduced to a lower order system model for
implementation. Next, a SMO is examined to estimate time-
varying parameters in the initial model and estimate damage.
Modal hammer data from the systemwith di�erent tipmasses
and roller positions are compared against predictions from
the �nite element model. Finally, the SMO is applied to data
captured either while the tip mass detaches or while the

rollers move along the beam to demonstrate the ability to
detect and track simulated damage to this system.

2. Experimental Setup

Figure 1 shows the layout of the DROPBEAR experiment.�e
test bed features a large, rectangular aluminum plate fastened
to a tabletop to secure a clamp housing and a clamped steel
beam. �e steel beam is 51mm (2 in) wide with a free length
of 503mm (19.82 in) and a thickness of 6.3mm (0.25 in). A
PCB 353B17 accelerometer was attached to the beam near the
tip. �e mass of the beam involved in bending is 1.29 kg. A
PCB 086C01 modal hammer was used to excite the beam
at di�erent locations along the beam. �e accelerometer
and modal hammer were connected to a NI-9234 IEPE
analog input module seated in a National Instruments (NI)
cDAQ-9172 eight-slot chassis. �e chassis was connected to a
computer with NI LabVIEW to acquire the measured signals,
and the collected data was postprocessed in MATLAB to
generate frequency response functions (FRFs).

�e DROPBEAR has two mechanical parameters that
the operator can change during the system response. A
detachable electromagnet adds additionalmass to any desired
location along the beam’s length. �e electromagnets can
be disengaged quickly to simulate a sudden detachment of
a system component. Additional mass plates can be bolted
to the electromagnet to increase the total added mass. �e
DROPBEAR also features a sliding cart with rollers on
a linear actuator that creates a moveable constraint along
the span of the beam. �e electromagnet’s attachment and
the rollers’ position can be used as �xed parameters or as
variable parameters to simulate damage at any time during
testing. �e versatility of both components coupled together
provides an array of repeatable, �xed, or variable testing
con�gurations. �e results in this paper are for the beam in
clamped-free (cantilever) boundary conditions, but the setup
allows for clamping both ends of the beam to increase the
natural frequencies of the system.

3. Analytical and Numerical Models

A �nite element model (FEM) is developed for the can-
tilevered beam with di�erent tip masses and a midspan
pinned constraint. Because of the large number of elements
used in this initial model, a model reduction scheme is
adopted to approximate the system’s dynamics with a single
mode. While this reduced order model will not capture
the full transient response of the beam, this model is com-
putationally more e�cient to implement in the SMO and
captures the necessary dynamics for damage detection as
demonstrated later.

3.1. Initial Analytical and Finite Element Models. �e trans-
verse displacement of a point along the beam, �(�, �), at
location� from the base of the beam and at time � is described
by the Euler-Bernoulli equation [26, 27]

�� (�) �2� (�, �)��2 + �	�4� (�, �)��4 = 
 (�) � (�) , (1)
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Figure 1: Con�gurations for the DROPBEAR test bed. Sub�gures (a) and (b) show a photo and a schematic of the cantilever beam with
detaching electromagnet. Sub�gures (c) and (d) show the same setup including the cart with rollers to create a moving pin condition along
the span of the beam.

where ��(�) is the beam’s mass per unit length, �	 is the
beam’s bending sti�ness, �(�) is an externally applied force on
the beam, and 
(�) describes the distribution of the applied
force along the length of the beam.�e steel beam is assumed
to have an elastic modulus of 200GPa and a density of

7800 kg⋅m−3 [28]. �e boundary conditions at the clamped
end (� = 0) and the free end (� = ) are

� (0, �) = 0,
�� (0, �)�� = 0,
�2� (, �)��2 = 0,
�3� (, �)��3 = 0.

(2)

Because of the electromagnet’s size, the masses of the electro-
magnet and added plates at the tip of the beam are included
in the spatially varying mass per unit length ��(�), i.e.,

�� (�) = {{{{{
����, for � <  − ��
���� + ��� , for  − �� ≤ � ≤ , (3)

where  is the length of the beam, ���� is the mass per unit
length of the beam only,� is the total amount of addedmass,
and �� is the diameter of the electromagnet (40mm). �e
rollers impose a pin condition with an additional torsional

sti�ness on the beam at a time-varying position �(�). �e
constrains from the rollers are represented as

� (� (�) , �) = 0,
�2� (� (�) , �)��2 = −�� �� (� (�) , �)�� , (4)

where �� is the rotational sti�ness from the rollers.
A FEM of the beam with tip mass and variable roller

position was derived from the above equations and boundary
conditions using Hermite cubic interpolation polynomials.
For a derivation of a FEM of a beam without the rollers,
see, for example, Reddy 2005 [29] or Inman 2016 [30]. A
MATLAB script is written to compute the mass and sti�ness
matrices, compute the natural frequencies and mode shapes,
and add a damping matrix to account for energy loss in the
system. For this application, a total of 400 elements are used.
�is leads to a model of the form

�q̈ (�) + �q̇ (�) + �q (�) = Γ�� (�) , (5)

where q(�) is a vector of the transverse displacements and
rotations of the �nite element nodes, � is the mass matrix,� is a proportional damping matrix, � is the sti�ness
matrix, and Γ� is the in�uence vector for the force �(�). �e
overdot denotes time di�erentiation. �e vector q(�) can be
decomposed into modal coordinates as

q (�) = Φ� (�) , (6)



4 Shock and Vibration

where �(�) is the vector of modal coordinates and Φ is the
matrix of mass-normalized mode shapes. From this, the FEM
(see (5)) can be written as

�̈ (�) + Λ ��̇ (�) + Λ� (�) = Φ�Γ�� (�) , (7)

where the superscript � denotes transposition, Λ = diag(�2� )
is a diagonal matrix of the squares of the beam’s natural
frequencies ��, Λ � = diag(2����) is a diagonal matrix of the
modal damping terms, and �� is the modal damping ratio for
mode  . �e modal damping ratios are estimated from the
experimental FRFs. �e solution in modal coordinates to (7)
can be transformed back to physical coordinates using (6).

3.2. Reduced Order Model. For ease of implementation in
the SMO discussed in the next section, a model reduction is
performed to retain a lower order model. While there are a
number ofmodel reduction techniques [31, 32], here amodal-
based approach is used to approximate the system dynamics
with only a few modal coordinates. Let the displacement
vector q(�) be approximated as the response due only to the
�rst mode, i.e.,

q (�) ≈ �1"1 (�) , (8)

where �1 is the �rst mode shape and "1(�) is the modal coor-
dinate for the �rst mode. From this onemode approximation,
only the �rst modal equation in (7) is considered, i.e.,

̈"1 (�) + 2�1�1"̇1 (�) + �21"1 (�) = ��1Γ�� (�) . (9)

Next de�ne a state space vector x(�) as the �rst modal
coordinate and its time derivative, i.e.,

x (�) = ["1 (�)̇"1 (�)] . (10)

�is leads to the state space equation of the form

ẋ (�) = �x (�) + B� (�) , (11)

where the state matrix � and the input vector B are de�ned
as

� = [ 0 1
−�21 −2�1�1] ,

B = [ 0
��1 Γ�

] .
(12)

For the experiments to follow, the system output '(�) is the
measured acceleration at the tip of the beam. �is can be
written as

' (�) = �2�(, �)��2 . (13)

In terms of the �rst modal coordinate, the output is approxi-
mately

' (�) ≈ Γ�	�1 ̈"1, (14)

where the vectorΓ	 is one at the element corresponding to the
translation degree of freedom at the beam tip and zero for all

other entries, i.e., Γ	 = [0 0 0 ⋅ ⋅ ⋅ 0 1 0]�. In state space
representation, the output is written as

' (�) = /x (�) + �� (�) , (15)

where the output matrix / and the direct feedthrough term� are de�ned as

/ = Γ�	�1 [−Λ −Λ �] ,
� = Γ�	�1��1 Γ�.

(16)

4. Model-Based State and
Parameter Estimation

An SMO is derived utilizing the reduced order systemmodel.
�e results from this observer are combined with an RLS
algorithm to estimate the natural frequency of the beam
during parameter changes.

4.1. State Observer with Uncertain Plant Dynamics. An SMO
is derived following work outlined by Shtessel et al. [24]. �e
reduced order model derived previously (see (11) and (15))
is rewritten to include uncertain dynamics from a parameter
change as

ẋ (�) = �x (�) + B� (�) +M3 (�, x (�) , � (�)) ,
' = /x (�) + �� (�) , (17)

where the termM3(�, x(�), �(�)) represents the time-varying,
uncertain dynamics. Next, introduce the new coordinate
z(�) = �x(�) with

� = [4�
/ ] , (18)

where 4
 is a matrix whose columns span the null space of/. In the new coordinates, the state space equations become

ż (�) = ��z (�) + B�� (�) +M�3 (�, �−1z (�) , �) ,
' = /�z (�) + �� (�) , (19)

with the transformed matrices �� = ���−1, B� = �B, /� =/�−1, andM� = �M. �ese matrices can be partitioned as

z (�) = [ 71 (�)
' (�) − �� (�)] ,

� = [�11 �12�21 �22] ,

B� = [8�18�2] ,
/� = [0 1] ,
M� = [��1��2] .

(20)
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�e new state vector z(�) has two components: an unmea-
sured state 71(�) and a state that is the measured tip accel-
eration '(�) without the direct feedthrough term ��(�). �e
SMO in the transformed coordinates has the structure

̇̂z (�) = ��ẑ (�) + B�� (�) + G�V (�) ,
'̂ (�) = /�ẑ (�) + �� (�) , (21)

where '̂(�) is the estimatedmeasurement, ẑ(�) is the estimated
state vector, G� is a gain vector to be determined, and the
discontinuous injection term V(�) is de�ned as

V (�) = � sgn (' − '̂) , (22)

where � is a positive scalar to be determined and sgn is the
signum function. �e gain G� has the structure

G� = [ ?
−1] . (23)

As shown in Shtessel et al. [24], the estimated states of this
observer will converge to the true states if the gain ? is chosen
to stabilize the matrix �11 + ?�21 and � is selected large
enough such that

� > @@@@@�21A1 + �22A	 + ��23@@@@@ + B, (24)

where A1 is a bound on the estimation error of the unmea-

sured state 71, A	 is a bound on the output error, 3 is a bound
on themodel uncertainty, andB is a positive scalar. Finally, for
application to the DROPBEAR system, the observer in (21) is
implemented in the state space coordinates x(�) as

̇̂x (�) = �x̂ (�) + B� (�) + GV (�) ,
'̂ (�) = /x̂ (�) + �� (�) , (25)

where x̂(�) = �−1ẑ and G = �−1G�.
4.2. Natural Frequency Estimation from Least Squares Regres-
sion. �e observer feedback term GV(�) in the SMO can be
used to estimate damage or time-varying parameters. Let the
time-varying �rst natural frequency of the beam �1(�) be
written as

(�1 (�))2 = �20 + C (�) , (26)

where �0 is the assumed �rst natural frequency in the model
and C(�) is a time-varying parameter indicating the change in
natural frequency. C(�) may be nonzero due to model error
and may change in time when damage occurs that alters the
�rst natural frequency. If there is a change in the natural
frequency and assuming that there is little change in damping
or force in�uence terms, then the systemmodel in (11) can be
written as

ẋ (�) = �0x (�) + B� (�) + [ 0
−1] "1 (�) C (�) , (27)

where �0 is the original state matrix in the model given by

�0 = [ 0 1
−�20 −2�1�0] . (28)

By comparing this to the uncertain system equations in (17),
a�er the estimated states converge to the true states, one can
equate the perturbation term in (17) to the equivalent form of
the feedback term in (27), i.e.,

GD [V (�)] ≈ [ 0
−1]D ["1 (�)] C (�) , (29)

where D denotes a low-pass �lter applied to the signals to
smooth the discontinuities from the injection signal V(�).�is
leads to an RLS algorithm to estimate a value of C(�) that best
minimizes the error to (29) [33]. �e estimated parameterĈ(�) at discrete time �(�) is written as

Ĉ (�) = min
�

( �∑
=1

G�− @@@@H2D [V (I)] + D ["̂1 (I)] C@@@@2) , (30)

where H2 is the second component of G and G is a forgetting
factor between zero and one that allows the parameter
estimate to adapt to system changes. A smaller value of G
results in faster convergence of the parameter estimate but
reduces robustness to measurement noise.

5. Modal Testing in Fixed Configurations

First the DROPBEAR setup was tested in various �xed
parameter conditions to validate the �nite element model.
Frequency response functions (FRFs) are computed from
a set of impact hammer tests. �ese FRFs and the beam’s
natural frequencies are compared against predictions from
themodel.�is validated modelwas then implemented in the
SMO to track the system under time-varying parameters.

5.1. Modal Testing in Fixed Mass Con
gurations. �e beam
was �rst tested with various masses attached near the tip
of the beam and the cart and rollers removed. Two added
mass con�gurations were tested. �e �rst consisted of the
electromagnet alone (mass of 0.259 kg), and the second
consisted of the electromagnet, three mass plates, and the
adjoining bolt (total mass of 0.695 kg). �e beam was struck
by the modal hammer at 483mm (19 in) from the clamp.
�e beam was struck �ve times per test with enough time
between each strike to observe the full decay in the response.
�emeasured, time-domain data was processed inMATLAB
to compute the experimental FRFs using the K1 estimation
method [34, 35]. For each mass con�guration, the natural
frequencies predicted by the FEM were validated against
natural frequencies calculated using the FRFs derived from
experimental data. Figure 2 plots the FRFs from experimental
data alongside those determined by the �nite element model.
�e �gure also shows the coherence, which is a measure of
the linear dependency of the output tip acceleration due to
the input force from the modal hammer as a function of
frequency [35].�e natural frequencies for the three di�erent
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Table 1: Finite element and experimental natural frequencies for the DROPBEAR with no added mass (� = 0 kg), adding the electromagnet
near the beam tip (� = 0.259kg), and with the electromagnet and added mass plates (� = 0.695 kg). Percent errors are relative to the
experimentally obtained natural frequencies.

Added Mass (�) Mode
Experimental Finite Element

Natural Frequency [Hz] Natural Frequency [Hz] Error

0 kg

1 19.6 19.8 0.8%
2 124.5 123.8 −0.5%
3 350.0 346.8 −0.9%

0.259 kg

1 15.3 15.2 −0.7%
2 106.9 106.6 −0.3%
3 311.8 307.2 −1.5%

0.695 kg

1 11.6 11.6 0.3%
2 91.5 90.6 −1.0%
3 240.8 233.3 −3.1%

102 103101

Frequency [Hz]

102 103101

102 103101

−180

−90

0

10−2

10−1

100

101

102

103

|＆
２
＆
|

[Ａ
Ｈ

/N
]

0

0.5

1

C
o

h
er

en
ce

Data (M = 0 kg)

Model (M = 0 kg)

Data (M = 0.259 kg)

Model (M = 0.259 kg)

Data (M = 0.695 kg)

Model (M = 0.695 kg)


F

R
F

 [
d

eg
]

Figure 2: Frequency response functions (FRFs) for the bare beam
(� = 0 kg), beamwith the electromagnet (� = 0.259 kg), and beam
with the electromagnet and added mass plates (� = 0.695 kg). Data
is from the tip accelerometerandmodal hammer impacts at 483mm
(19 in) from the base. Note that Q� = 9.81m⋅s−2 .

tip masses are listed in Table 1. �e FRFs from the model
and the data show good agreement. Adding moremass to the
beam decreased the natural frequencies as expected. It should
be noted that model updating could be used to re�ne the
initial model parameters and improve the model’s accuracy.
�e small errors between the experimental and �nite element
natural frequencies indicate that the model captures the
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Figure 3: Frequency response functions (FRFs) for the DROPBEAR
with the rollers in three di�erent positions: 46mm, 147mm, and
246mm. Data is from the tip accelerometer and impacts at 305mm
(12 in) from the base. Note that Q� = 9.81m⋅s−2.

behavior of the baseline system with �xed parameters and
could predict the beam’s response once the mass detaches.

5.2. Modal Testing in Fixed Roller Positions. Next, the DROP-
BEAR system was tested without the added masses and with
the rollers in di�erent positions. Modal hammer tests were
repeated for the rollers in three positions spanning the full
displacement range of the actuator. Figure 3 plots the FRFs
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Table 2: Finite element and experimental natural frequencies for the DROPBEAR with the rollers at distances from the clamped end (�) of
46mm, 147mm, and 246mm. Percent errors are relative to the experimentally obtained natural frequencies.

Cart Position (�) Mode
Experimental Finite Element

Natural Frequency [Hz] Natural Frequency [Hz] Error

46mm

1 22.9 22.8 −0.4%
2 144.8 143.4 −1.0%
3 404.0 402.7 −0.3%

147mm

1 33.2 33.7 1.5%
2 218.6 217.7 −0.4%
3 645.2 615.6 −4.6%

246mm

1 55.6 56.6 1.8%
2 352.1 355.2 0.9%
3 550.2 503.5 −8.5%

computed from experimental data and from the FEM. �e
model treated the rollers as a midspan pinned condition
with an additional torsional sti�ness (��) of 900N m rad−1.
�is sti�ness was manually estimated from the experimental
FRF near the �rst natural frequency with the rollers in the
46mm position. Table 2 lists the natural frequencies from
the experimental FRFs and those predicted by the model for
the three roller positions. �e natural frequencies and FRFs
from the model show good agreement with the experimental
results. Further model updating could be conducted to
improve the model accuracy.

5.3. Dropping Mass Experiments. With the FEM validated
for di�erent �xed parameters, the system was examined with
time-varying conditions. Two experimentswith time-varying
parameters were conducted. �e �rst involved detaching
the electromagnet during the beam’s ringdown from an
impact. �e second experiment used the linear actuator to
move the rollers along the beam to replicate changes in
external constraints on the beam and create a continuous
change in system parameters. �e SMO was used to track
the varying �rst natural frequency of the beam during both
parameter changes. For both experiments, the RLS algorithm
for estimating C used a forgetting factor G of 0.999 and a
fourth-order Butterworth �lter with a corner frequency of
50Hz for the smoothing �lter D.

Figure 4 plots the data from the tip accelerometer during
the mass detachment. �e beam was given an initial impulse
and allowed to ringdown. �en, the electromagnet was
powered o�. �ere was a sudden spike in the tip acceleration
when themagnetwas released.�ebeamcontinued to vibrate
for about one cycle at the original 12Hz frequency before
there was a noticeable change in the oscillation frequency.
�is transition occurs over approximately 86ms. While the
mass detachment was nearly instantaneous, the structural
waves had to propagate from one end of the beam to the
other and back before the standing waves or structural modes
formed. At higher natural frequencies, this time scale of
change would be less than 86ms.

Figure 5 shows the experimental results and estimations
from the SMO during the mass drop. Figure 5(c) plots
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Figure 4: Detailed view of tip acceleration a�er the mass releases
from the beam.�ere is a transition period between the beam in the
�rst con�guration (1) and the second con�guration (2).

data from the tip accelerometer recorded during the mass
drop, and Figure 5(d) plots a power spectrogram of this
data. �e power spectrogram is based on a short-time Fast
Fourier Transform using a moving Hanning window. �e
spectrogramhighlights the time-varying frequency spectrum
of the acceleration signal. Here, the sampling rate was 5,120
samples per second, the spectrogram window had a length
of 1 s, and the overlap of spectrogram windows was 99%.
�e spectrogram initially shows a dominating frequency near
12Hz corresponding to the �rst natural frequency of the beam
with 0.695 kg of added mass.�emass removal increased the
natural frequencies of the beam and caused a rapid increase
in the dominate frequency in the observed spectrogram in
Figure 5(c). �e remainder of the signal was concentrated
around 20Hz corresponding to the �rst natural frequency of
the bare beam.

�e SMO was applied to the data from the accelerometer
at the tip of the beam. �e SMO used a beam model with
the electromagnet only (no additional mass plates). �e
estimated output from the SMO is also shown in Figures 5(c)
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Figure 5: Results from the mass drop experiment. (a) Diagram of the mass dropping from the beam. (b) Amplitude of the discrete Fourier
series (DFS) of the tip acceleration. (c) Time history of the tip acceleration. (d) Spectrogram of the tip acceleration when the mass drops. �e
horizontal dashed lines indicate the frequencies for the �rst natural frequency with and without the added mass.

and 5(d). Before the initial impact, the estimator operated
on only signal noise and could not accurately update its
parameters. Joyce et al. [15] illustrated this issue for param-
eter estimation in simulations of time-varying mechanical
systems. A�er the initial impulse from the impact hammer,
the estimated �rst natural frequency decreased toward the
correct value for a beam with electromagnet and added mass
plates. When the electromagnet was detached, the estimated
�rst natural frequency quickly increased toward the correct
value of the beam with no mass. Both changes in estimated
natural frequency settled near the correct values a�er about
0.2 seconds.

5.4. Time-Varying Roller Positions. Next, the DROPBEAR is
tested with the rollers moving along its length during the
beam’s ringdown, as illustrated in Figure 6(a). As the rollers
move along the beam, they create a moving pinned condition
along the span of the beam. �e beam was �rst struck by
the impact hammer, then the rollers moved from 46mm to
195mm over a 1.5 s duration, the rollers sat at the 195mm
position for 1 s, and then the rollers returned to the 46mm
position over 0.5 s. �e SMO was again applied to data from
the accelerometer to track the states and estimate the �rst
natural frequency.

Figure 6 plots the time response of the tip accelerometer,
the power spectrogram of the data, and the results from the
SMO. Over this displacement range of the linear actuator,
the �rst natural frequency of the beam increased when the

rollers moved away from the base and decreased when they
moved back.�e SMOwas able to track the changing natural
frequency over this range of roller motion. �e estimated
natural frequency from the observer initially converged to the
correct value before the rollers began to move. As the rollers
moved away from the base (increasing natural frequency), the
estimated �rst natural frequency tracked the actual valuewith
a maximum error of 2.2Hz and a normalized-root-mean-
square error (NRMSE) of 3.4%. During the faster return
toward the base, the parameter estimation lagged behind the
actual value but was able to converge to the correct value
in approximately 1 s. During the rollers return (decreasing
natural frequency), the maximum error was 10.7Hz and the
NRMSE was 16.3%.

6. Conclusions and Future Work

�ere is a need for an experimental test bed for developing
and demonstrating high-rate damage detectionmethods.�e
DROPBEAR serves as a unique test bed capable of producing
repeatable, time-varying system conditions that can assist in
evaluating real-time SHM and state estimation algorithms
for high-rate systems. Results from a �nite element model
of the DROPBEAR showed good agreement to the experi-
mentally obtained FRFs with di�erent tip masses and cart
positions. Detaching the electromagnet mimicked sudden
damage to the DROPBEAR and illustrated the speed at which
the simulated damage a�ected the system’s response. �e
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Figure 6: Results from the moving roller experiment. (a) Diagram of the beam with moving rollers. (b) Amplitude of the discrete Fourier
series (DFS) of the tip acceleration. (c) Time history of the tip acceleration. (d) Spectrogram of the tip acceleration while the rollers move.
�e dashed line shows the natural frequency estimated from the cart position obtained from the encoder on the linear actuator.

moving roller test showed how the natural frequencies of
the DROPBEAR can also be adjusted continuously at a user
de�nable range and rate to mimic continuously progressing
damage or changes in external constraints.

For both varying parameter tests, a SMO was able to
track the time-varying �rst natural frequency. �is measure
of natural frequency change could be used to detect and
quantify system damage in application. �e demonstrated
ability of an SMO to quickly detect changes in the beam’s �rst
natural frequency shows promise for applying other SHMand
damage prognosis techniques to this system. Data from the
DROPBEARwill guide developing and evaluating algorithms
for real-time state estimation, system identi�cation, and dam-
age detection of more complex, high-rate dynamic systems
such as high-speed airframes, space structures, car crashes,
or civil structures subjected to impacts.

�e currentDROPBEARmodel is limited to �xed param-
eters. To fully understand the dynamics involved in the time-
varying system, future work will extend the FEM presented
here to study amodelwith time-varying parameters. It should
also be noted that the DROPBEAR’s parameter changes alter
the beam’s mode shapes as well as its natural frequencies.�is
means the modal decomposition and resulting state space
matrices will vary as a function of the attached mass or roller
position. �e SMO can compensate for some of this model
uncertainty; however detailed analysis of the DROPBEAR
with changing mode shapes Φ, output matrix /, and direct
feedthrough term� is le� for future work.
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