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Abstract

Piezoelectric transduction has received great attention for vibration-to-electric energy

conversion over the last five years. A typical piezoelectric energy harvester is a unimorph or a

bimorph cantilever located on a vibrating host structure, to generate electrical energy from base

excitations. Several authors have investigated modeling of cantilevered piezoelectric energy

harvesters under base excitation. The existing mathematical modeling approaches range from

elementary single-degree-of-freedom models to approximate distributed parameter solutions in

the sense of Rayleigh–Ritz discretization as well as analytical solution attempts with certain

simplifications. Recently, the authors have presented the closed-form analytical solution for a

unimorph cantilever under base excitation based on the Euler–Bernoulli beam assumptions. In

this paper, the analytical solution is applied to bimorph cantilever configurations with series and

parallel connections of piezoceramic layers. The base excitation is assumed to be translation in

the transverse direction with a superimposed small rotation. The closed-form steady state

response expressions are obtained for harmonic excitations at arbitrary frequencies, which are

then reduced to simple but accurate single-mode expressions for modal excitations. The

electromechanical frequency response functions (FRFs) that relate the voltage output and

vibration response to translational and rotational base accelerations are identified from the

multi-mode and single-mode solutions. Experimental validation of the single-mode coupled

voltage output and vibration response expressions is presented for a bimorph cantilever with a

tip mass. It is observed that the closed-form single-mode FRFs obtained from the analytical

solution can successfully predict the coupled system dynamics for a wide range of electrical

load resistance. The performance of the bimorph device is analyzed extensively for the short

circuit and open circuit resonance frequency excitations and the accuracy of the model is shown

in all cases.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The drastic reduction in power requirements of small electronic

components has motivated the research for powering such

components by using the vibration energy available in their

3 Author to whom any correspondence should be addressed.

environment, especially in remote/wireless sensing applica-

tions. As proposed by Williams and Yates [1], the three

basic vibration-to-electric energy conversion mechanisms are

electromagnetic [1–3], electrostatic [4] and piezoelectric [5–7]

transductions. In the past decade, these transduction mech-

anisms have been investigated by numerous researchers for

vibration-based energy harvesting and extensive discussions
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can be found in the existing review articles (e.g., Beeby

et al [8]). The literature of the last five years shows

that the piezoelectric transduction has received the greatest

attention for vibration-to-electric energy conversion and three

review articles specifically dealing with piezoelectric energy

harvesting have been published in the past two years [5–7].

Typically, a piezoelectric energy harvester is a cantilevered

beam with one or two piezoceramic layers (a unimorph or

a bimorph). Basically, the harvester beam is located on

a vibrating host structure and the dynamic strain induced

in the piezoceramic layer(s) generates an alternating voltage

output across the electrodes covering the piezoceramic

layer(s). In addition to the experimental research on

possible applications of such harvesters, researchers have

proposed various mathematical models. Although the

implementation of piezoelectric energy harvesting for charging

a real battery in an efficient way is more sophisticated

due to the AC-to-DC (alternating current-to-direct current)

conversion process [9–13], researchers have considered a

resistive electrical load in the circuit to come up with a simple

model for predicting the electrical outputs for a given base

motion input. The coupled problem of predicting the voltage

across the resistive load connected to the electrodes of a

vibrating harvester under base excitation has been investigated

by many authors. The early modeling attempts of piezoelectric

energy harvesters employed single-degree-of-freedom (SDOF)

solutions [14, 15]. SDOF modeling (i.e., lumped parameter

modeling) is a convenient modeling approach since the

electrical domain already consists of lumped parameters: a

capacitor (due to the internal capacitance of piezoceramic)

and a resistor (due to an external load resistance). Hence,

the only thing required is to obtain the lumped parameters

representing the mechanical domain so that the mechanical

equilibrium and electrical loop equations can be coupled

through the piezoelectric constitutive relations [16]. This

was the main procedure followed by Roundy et al [14] and

duToit et al [15] in their SDOF model derivations. Although

SDOF modeling gives initial insight into the problem by

allowing simple expressions, it is an approximation limited to

a single vibration mode and it lacks important aspects of the

physical system, such as the dynamic mode shape and accurate

strain distribution as well as their effects on the electrical

response. Since cantilevered harvesters are excited due to the

motion of their base, the well-known SDOF harmonic base

excitation relation taken from the elementary vibration texts

has been used in the energy harvesting literature both for

modeling [15] and studying the optimization [17] of energy

harvesters. It was recently shown [18] that the traditional

form of the SDOF harmonic base excitation relation may

yield highly inaccurate results both for the transverse and

longitudinal vibrations of cantilevered harvesters depending

on the tip (proof) mass to beam/bar mass ratio. Correction

factors were derived [18] to improve the predictions of SDOF

electromechanical relations [15] of cantilevered harvesters

under base excitation.

As an improved modeling approach, the Rayleigh–Ritz

type discrete formulation derived by Hagood et al [19] (based

on the generalized Hamilton’s principle for electromechanical

systems due to Crandall et al [20]) was employed by Sodano

et al [21] and duToit et al [15] for modeling of cantilevered

piezoelectric energy harvesters (based on the Euler–Bernoulli

beam theory). The Rayleigh–Ritz solution gives a discrete

model of the distributed parameter system and it is a more

accurate approximation compared to SDOF modeling. In

order to represent the electrical outputs analytically, Lu et al

[22] used the vibration mode shapes obtained from the

Euler–Bernoulli beam theory and the piezoelectric constitutive

relation [16] that gives the electric displacement to relate the

electrical outputs to the mechanical mode shape. Similar

models were given by Chen et al [23] and Lin et al [24]

where the electrical response is expressed in terms of the beam

vibration response. The issues in these analytical modeling

attempts include not considering the resonance phenomenon

and modal expansion as well as oversimplified modeling

of piezoelectric coupling in the beam equation as viscous

damping [22–24]. As shown in this work, representing the

effect of piezoelectric coupling in the beam equation as viscous

damping fails in predicting the coupled system dynamics of a

piezoelectric energy harvester, although this approach works

for certain electromagnetic energy harvesters [1]. In terms

of analytical modeling, more recently, Ajitsaria et al [25]

presented a bimorph cantilever model, where they attempted to

combine the static sensing/actuation equations (with constant

radius of curvature and a static tip force) with the dynamic

Euler–Bernoulli beam equation (where the radius of curvature

varies) under base excitation (where there is no tip force).

Thus, highly different modeling approaches have appeared in

the literature during the past five years and some of them

might be misleading due to weak mathematical assumptions

involved [26].

Recently, Erturk and Inman [27] have presented the

analytical solution to the coupled problem of a unimorph

piezoelectric energy harvester configuration based on the

Euler–Bernoulli assumptions. They obtained the coupled

voltage response across the resistive load and the coupled

vibration response of the harvester explicitly for harmonic

base excitations in the form of translation with small rotation.

The short circuit and open circuit trends and the effect

of piezoelectric coupling were investigated extensively [27].

Later, Elvin and Elvin [28] have observed the convergence

of the Rayleigh–Ritz type of solution formerly introduced by

Hagood et al [19] to the analytical solution given by Erturk and

Inman [27] when sufficient number of vibration modes is used

with appropriate admissible functions.

This paper presents the application of the coupled

distributed parameter solution [27] to bimorph cantilever

configurations with series and parallel connections of

piezoceramic layers. The steady state voltage response

and vibration response expressions are derived for harmonic

excitation of the base at an arbitrary excitation frequency (in

the form of translation in the transverse direction with small

rotation). Then, by using the complete (multi-mode) solutions,

the response expressions are reduced to simple but accurate

single-mode relations. The single-mode relations can be used

instead of the multi-mode relations for modal excitations (i.e.,

for excitations around resonance) of cantilevered bimorphs
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Figure 1. Bimorph cantilever configurations with (a) series connection of piezoceramic layers, (b) parallel connection of piezoceramic layers
and the (c) cross-sectional view of a bimorph cantilever.

since the resonance excitation is the main concern in vibration-

based energy harvesting. The electromechanical FRFs that

give the voltage output and vibration response-to-translational

and rotational base acceleration relations are extracted from

the multi-mode and single-mode solutions. Experimental

validation of the analytical formulation is given for a bimorph

cantilever with a tip mass. It is shown that the single-

mode analytical relations proposed here are very accurate in

predicting the voltage output and vibration response FRFs. The

bimorph device is analyzed extensively for the short circuit and

open circuit resonance frequency excitations by using different

resistive loads and it is observed that the analytical model can

successfully predict the coupled system dynamics.

2. Fundamentals of the coupled distributed
parameter model

This section reviews the assumptions in distributed parameter

electromechanical modeling and introduces the two possible

bimorph configurations based on the connection of the

piezoceramic layers. Derivation of the coupled beam equation

in physical coordinates is given along with the relevant

expressions for the modal analysis. Derivation of the

electrical circuit equation for an instantaneous deflection of a

vibrating cantilever is explained based on the fundamentals of

piezoelectricity and analytical structural dynamics.

2.1. Bimorph configurations and modeling assumptions

It is known from the literature of static sensing/actuation

that, depending on the voltage or current requirements, the

piezoceramic layers of a symmetric bimorph can be combined

in series or in parallel (see, for instance, Wang and Cross [29]).

This common practice of static sensing/actuation problems is

valid for the dynamic piezoelectric energy harvesting problem

as well. Each of the two bimorph configurations displayed

in figures 1(a) and (b) undergoes bending vibrations due to

the motion of its base. The piezoceramic layers are assumed

to be identical and conductive electrodes are assumed to be

fully covering the respective surfaces of these layers (top and

bottom). The instantaneous bending strain in the top and

bottom layers at an arbitrary position x over the beam length

have the opposite sign (i.e., one is in tension whereas the other

is in compression). As a consequence, since the piezoceramic

layers of the bimorph shown in figure 1(a) are poled oppositely

in the thickness direction (i.e., y-direction), this configuration

represents the series connection of the piezoceramic layers.

Likewise, figure 1(b) represents the parallel connection of the

piezoceramic layers because the layers are poled in the same

direction.

The bimorph cantilever configurations are modeled here

as uniform composite beams based on the Euler–Bernoulli

beam assumptions. Therefore, plane sections are assumed

to remain plane during the vibratory motion and the effects

of shear deformation and rotary inertia are neglected. This

is a reasonable assumption since typical cantilevered energy

harvesters are designed and manufactured as fairly thin beams.

The mechanical losses are represented by internal and external

damping mechanisms. The internal damping mechanism is

assumed to be in the form of strain rate (or Kelvin–Voigt)

damping and the effect of external (air) damping is considered

with a separate damping coefficient. The piezoceramic and

substructure layers are assumed to be perfectly bonded to

each other. The electrodes covering the opposite faces

of piezoceramic layers are assumed to be very thin when

compared to the overall thicknesses of the harvester so that

their contribution to the thickness dimension is negligible.

The continuous electrode pairs covering the top and

the bottom faces of the piezoceramic layers are assumed

to be perfectly conductive so that a single electric potential

difference can be defined across them. Therefore, the

instantaneous electric fields induced in the piezoceramic layers

are assumed to be uniform throughout the length of the beam.

A resistive electrical load (Rl) is considered in the circuit

along with the internal capacitances of the piezoceramic layers.

Note that, considering a resistive load in the electrical domain

is a common practice in modeling of vibration-based energy

harvesters [14, 15, 21–28]. As a consequence, it is assumed

that the base motion input is persistent so that continuous

electrical outputs can be extracted from the electromechanical

system.

2.2. Coupled mechanical equation and modal analysis of a

bimorph cantilever

As far as the mechanical aspect of the problem is concerned,

the bimorph configurations shown in figures 1(a) and (b) are
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identical. That is, they have the same geometric and material

properties. However, the backward piezoelectric coupling

effect in the beam equation due to piezoelectric constitutive

relations is different for series and parallel connections of the

piezoceramic layers, and expectedly, this affects the vibration

response of the cantilever. In the following, the beam equations

are derived for these two configurations and the analytical

modal analysis relations are presented.

The motion of the base for each of the cantilevers shown

in figures 1(a) and (b) is represented by translation g(t) in

the transverse direction with superimposed small rotation h(t).

Therefore, the effective base displacement wb(x, t) in the

transverse direction can be written as [27]

wb(x, t) = g(t) + xh(t). (1)

The partial differential equation governing the forced

vibrations of a uniform cantilevered bimorph (with a tip mass)

under base excitation is

∂2M(x, t)

∂x2
+ cs I

∂5wrel(x, t)

∂x4 ∂ t
+ ca

∂wrel(x, t)

∂ t

+ m
∂2wrel(x, t)

∂ t2
= −[m + Mtδ(x − L)]∂

2wb(x, t)

∂ t2
(2)

where wrel(x, t) is the transverse deflection of the beam relative

to its base at position x and time t , M(x, t) is the internal

bending moment (excluding the strain rate damping effect), cs I

is the equivalent damping term of the composite cross-section

due to strain rate damping (cs is the equivalent coefficient

of strain rate damping and I is the equivalent area moment

of inertia of the composite cross-section), ca is the viscous

air damping coefficient, m is the mass per unit length of the

beam, Mt it is tip mass and δ(x) is the Dirac delta function.

Both of the damping mechanisms are assumed to satisfy the

proportional damping criterion, hence, they are mathematically

convenient for the modal analysis solution procedure4. Note

that the effect of strain rate damping is an internal bending

moment and it is directly written outside the term M(x, t) in

equation (2).

Instead of defining the damping coefficients in the

physical equation of motion, one could consider the

corresponding undamped equation (by setting cs I = ca = 0

in equation (2)) and introduce modal damping to the equation

of motion in modal coordinates as is common practice. It

is worthwhile to mention that the foregoing consideration of

the mechanical damping components results in an additional

excitation term due to external damping as shown in Erturk

and Inman [18]. Typically, for harvesters operating in air, the

external damping excitation is negligible when compared to the

inertial excitation term. It was shown in a dimensionless basis

that, in the absence of a tip mass, the amount of modal forcing

due to external damping term is less than 5% of the total modal

base excitation force if the component of the modal damping

ratio due to external damping is less than 2.5% (see figure 3

4 Strain rate damping is assumed to be stiffness proportional whereas air

damping is assumed to be mass proportional and this type of damping is also

known as the Rayleigh damping [30]. Modeling and identification of more

sophisticated damping mechanisms in beams were investigated by Banks and

Inman [31].

in [18]). Therefore the damping excitation term is directly

omitted in equation (2) for simplicity. However, excitation due

to external damping can be important for harvesters operating

in fluids with larger damping effect and the general form of the

forcing function must be used in that case [18, 27].

The internal bending moment term in equation (2) is the

first moment of axial strain over the cross-section:

M(x, t) = −b

(∫ −h s̃/2

−hp̃−h s̃/2

T
p̃

1 y dy +
∫ h s̃/2

−h s̃/2

T s̃
1 y dy

+
∫ hp̃+h s̃/2

h s̃/2

T
p̃

1 y dy

)

(3)

where b is the width, h p̃ is the thickness of each piezoceramic

layer and h s̃ is the thickness of the substructure layer

(figure 1(c)). Furthermore, T
p̃

1 and T s̃
1 are the axial stress

components in the piezoceramic and substructure layers,

respectively (1-direction is the longitudinal direction, i.e., x-

direction), and they are given by the following constitutive

relations:

T s̃
1 = Ys̃S s̃

1, T
p̃

1 = c̄E
11S

p̃
1 − ē31 E3 (4)

where Ys̃ is Young’s modulus of the substructure layer, c̄E
11 is

the elastic stiffness (i.e., Young’s modulus) of the piezoceramic

layer at constant electric field, ē31 is the piezoelectric constant

and E3 is the electric field component in 3-direction (i.e., y-

direction). Here and hereafter, the subscripts and superscripts

p̃ and s̃ stand for the piezoceramic and the substructure layers,

respectively. Based on the plane-stress assumption for a beam,

the elastic stiffness component can be expressed as c̄E
11 =

1/sE
11, where sE

11 is the elastic compliance at constant electric

field. Furthermore, based on the same assumption, ē31 can

be given in terms of the more commonly used piezoelectric

constant d31 as ē31 = d31/sE
11. The axial strain components in

the piezoelectric and substructure layers are given by S
p̃
1 and

S s̃
1, respectively, and they are due to bending only. Hence the

axial strain at a certain level (y) from the neutral axis of the

composite beam is simply proportional to the curvature of the

beam at that position (x):

S1(x, y, t) = −y
∂2wrel(x, t)

∂x2
. (5)

The electric field component E3 should be expressed

in terms of the respective voltage term in each bimorph

configuration (figures 1(a) and (b)). This is the point where

the resulting mechanical equations for series and parallel

connections of the piezoceramic layers differ from each other.

Since the piezoceramic layers are assumed to be identical,

voltage across the electrodes of each piezoceramic layer is

vs(t)/2 in the series connection case (figure 1(a)). Expectedly,

for the parallel connection case (figure 1(b)), voltage across the

electrodes of each piezoceramic layer is vp(t). It is worthwhile

to add that ē31 has the opposite sign for the top and the

bottom piezoceramic layers for the series connection case (due

to opposite poling) so that the instantaneous electric fields

are in the same direction (i.e., E3(t) = −vs(t)/2h p̃ in both

layers). For the configuration with parallel connection, since

ē31 has the same sign in top and bottom piezoceramic layers,

4
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the instantaneous electric fields are in the opposite directions

(i.e., E3(t) = −vp(t)/h p̃ in the top layer and E3(t) =
vp(t)/h p̃ in the bottom layer). Another important point is

that, for both configurations, the piezoelectric coupling term

coming from equation (3) is a function of time only. Hence,

before substituting equation (3) into (2), the electrical term

must be multiplied by [H (x) − H (x − L)], where H (x) is

the Heaviside function. Since the voltage outputs of the series

and parallel connection cases are different, the piezoelectric

coupling effect in the mechanical equation (equation (2))

is expected to be different. Thus, in the rest of the

paper, the mechanical response expressions of the series and

parallel connection configurations are denoted by ws
rel(x, t)

and w
p
rel(x, t), respectively. Note that, here and hereafter, the

subscripts and superscripts s and p stand for series and parallel

connections of the piezoceramic layers.

Based on the foregoing discussion, the coupled beam

equation can be obtained for the series connection case

(figure 1(a)) as follows:

Y I
∂4ws

rel(x, t)

∂x4
+ cs I

∂5ws
rel(x, t)

∂x4∂ t
+ ca

∂ws
rel(x, t)

∂ t

+ m
∂2ws

rel(x, t)

∂ t2
+ ϑsvs(t)

[

dδ(x)

dx
− dδ(x − L)

dx

]

= −[m + Mtδ(x − L)]∂
2wb(x, t)

∂ t2
(6)

where the piezoelectric coupling term ϑs for the series

connection case is

ϑs = ē31b

2h p̃

[

h2
s̃

4
−

(

h p̃ + h s̃

2

)2]

. (7)

Similarly, one can obtain the equation of motion for the

case with the parallel connection of the piezoceramic layers as

(figure 1(b))

Y I
∂4w

p
rel(x, t)

∂x4
+ cs I

∂5w
p
rel(x, t)

∂x4∂ t
+ ca

∂w
p
rel(x, t)

∂ t

+ m
∂2w

p
rel(x, t)

∂ t2
+ ϑpvp(t)

[

dδ(x)

dx
− dδ(x − L)

dx

]

= −[m + Mtδ(x − L)]∂
2wb(x, t)

∂ t2
(8)

where the backward coupling term ϑp for the parallel

connection case can be expressed as

ϑp = 2ϑs = ē31b

h p̃

[

h2
s̃

4
−

(

h p̃ + h s̃

2

)2
]

. (9)

In equations (6) and (8), the bending stiffness term Y I and

the mass per unit length term m are simply

Y I = 2b

3

[

Ys̃

h3
s̃

8
+ c̄E

11

((

h p̃ + h s̃

2

)3

−
h3

s̃

8

)]

,

m = b(ρs̃h s̃ + 2ρp̃h p̃)

(10)

where ρs̃ and ρp̃ are the mass densities of the substructure and

the piezoceramic materials, respectively.

Based on the proportional damping assumption, the

vibration response relative to the base of the bimorph

(figures 1(a) and (b)) can be represented as an absolutely and

uniformly convergent series of the eigenfunctions as

ws
rel(x, t) =

∞
∑

r=1

φr (x)ηs
r (t), (11a)

w
p
rel(x, t) =

∞
∑

r=1

φr (x)ηp
r (t) (11b)

where φr (x) is the mass normalized eigenfunction of the r th

vibration mode, ηs
r (t) and η

p
r (t) are the modal mechanical

response expressions of the series and parallel connection

cases, respectively. The eigenfunctions denoted by φr (x)

are the mass normalized eigenfunctions of the corresponding

undamped free vibration problem:

φr (x) = Cr

[

cos
λr

L
x − cosh

λr

L
x +ςr

(

sin
λr

L
x − sinh

λr

L
x

)]

(12)

where ςr is obtained from

ςr =
sin λr − sinh λr + λr

Mt

mL
(cos λr − cosh λr )

cos λr + cosh λr − λr
Mt

mL
(sin λr − sinh λr )

(13)

and Cr is a modal amplitude constant which should be

evaluated by normalizing the eigenfunctions according to the

following orthogonality conditions:
∫ L

0

φs(x)mφr(x) dx + φs(L)Mtφr (L)

+
[

dφs(x)

dx
It

dφr (x)

dx

]

x=L

= δrs

∫ L

0

φs(x)Y I
d4φr (x)

dx4
dx −

[

φs(x)Y I
d3φr (x)

dx3

]

x=L

+
[

dφs(x)

dx
Y I

d2φr (x)

dx2

]

x=L

= ω2
r δrs .

(14)

Here, It is the rotary inertia of the tip mass Mt and δrs is

Kronecker delta, defined as being equal to unity for s = r and

equal to zero for s �= r . Furthermore, ωr is the undamped

natural frequency of the r th vibration mode in short circuit

conditions (i.e., as Rl → 0) given by

ωr = λ2
r

√

Y I

mL4
(15)

where the eigenvalues of the system (λr for mode r ) are

obtained from

1 + cos λ cosh λ + λ
Mt

mL
(cos λ sinh λ − sin λ cosh λ)

− λ3 It

mL3
(cosh λ sin λ + sinh λ cos λ)

+ λ4 Mt It

m2 L4
(1 − cos λ cosh λ) = 0. (16)

It should be mentioned that the foregoing modal analysis

is given for the short circuit conditions (i.e., for Rl → 0) so

5
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(a) (b)

Figure 2. (a) Cantilever beam with a single piezoceramic layer under transverse vibrations (exaggerated view) and the (b) corresponding
electrical circuit for a resistive electrical load connected to the electrodes.

that the conventional form of the eigenfunctions is obtained

in equation (12) (since, for short circuit conditions, vs(t) →
0 and vp(t) → 0 in equations (6) and (8), respectively).

Thus, for a given bimorph, the form of the eigenfunctions

given by φr (x) and their mass normalization conditions are

the same regardless of the series or parallel connections of the

piezoceramic layers. For non-zero values of load resistance,

the voltage terms in the mechanical equations take finite values,

generating point moment excitations at the boundaries of the

piezoceramic layer according to equations (6) and (8), and

yielding two different modal mechanical response functions for

these equations as ηs
r (t) and η

p
r (t), respectively (as obtained in

sections 3.3 and 4.3). Therefore, the feedback from the voltage

response for a given load resistance alters the mechanical

response as well as the resonance frequency of the harvester,

which are observed experimentally and predicted theoretically

in section 7. At this stage, it should be underlined that

the harvester beam has the resonance characteristics of the

corresponding uncoupled (or passive) beam for Rl → 0 only.

2.3. Coupled electrical circuit equation of a piezoceramic

layer under dynamic bending

In order to derive the governing circuit equations of the

bimorph configurations for series and parallel connections

of the piezoceramic layers, one should first examine the

electrical dynamics of a single layer under bending vibrations.

Figure 2(a) displays a cantilevered beam with a single

piezoceramic layer, i.e., a unimorph cantilever. Note that the

deflections are exaggerated to highlight the space- and time-

dependent radius of curvature of the neutral axis at an arbitrary

point. The electrodes bracketing the piezoceramic layers fully

cover the top and the bottom surfaces and they are connected

to a resistive electrical load.

Since the only source of mechanical strain is assumed to

be the axial strain due to bending, the tensorial representation

of the relevant piezoelectric constitutive relation [16] that gives

the vector of electric displacements can be reduced to the

following scalar equation:

D3 = ē31S
p̃
1 + ε̄S

33 E3 (17)

where D3 is the electric displacement component and ε̄S
33 is the

permittivity component at constant strain with the plane-stress

assumption (ε̄S
33 = εT

33 − d2
31/sE

11 where εT
33 is the permittivity

component at constant stress). Since the circuit admittance

across the electrodes is 1/Rl, the electric current output can

be obtained from the Gauss law as [16]

d

dt

(
∫

A

D · n dA

)

= v(t)

Rl

(18)

where D is the vector of electric displacement components

in the piezoceramic layer, n is the unit outward normal

and the integration is performed over the electrode area

A [16, 27]. As can be anticipated, the only contribution to

the inner product of the integrand in equation (18) is from D3,

since the electrodes are perpendicular to 3-direction (i.e., y-

direction). After expressing the average bending strain in the

piezoceramic layer in terms of the curvature (see equation (5))

and the uniform electric field in terms of the electric potential

difference (E3(t) = −v(t)/h p̃), equation (17) can be used in

equation (18) to obtain

ε̄S
33bL

h p̃

dv(t)

dt
+ v(t)

Rl

= −ē31h p̃cb

∫ L

0

∂3wrel(x, t)

∂x2∂ t
dx (19)

where b, h p̃ and L are the width, thickness and the length of

the piezoceramic layer, respectively, and h p̃c is the distance

between the neutral axis and the center of the piezoceramic

layer [27]. One can then substitute the modal expansion form

given by

wrel(x, t) =
∞

∑

r=1

φr (x)ηr (t) (20)

in equation (19) to obtain

ε̄S
33bL

h p̃

dv (t)

dt
+ v(t)

Rl

=
∞

∑

r=1

κr

dηr (t)

dt
(21)

where κr is the modal coupling term in the electrical circuit

equation:

κr = −ē31h p̃cb

∫ L

0

d2φr (x)

dx2
dx = −ē31h p̃cb

dφr (x)

dx

∣

∣

∣

∣

x=L

.

(22)

The forward coupling term κr has important consequences

as discussed by Erturk et al [27, 32] extensively. According

to equation (19), which originates from the Gauss law

given by equation (18), the excitation of the simple RC

circuit considered here as well as that of more sophisticated

harvesting circuit topologies [9–13] is proportional to the

integral of the dynamic strain distribution over the electrode

area. For vibration modes of a cantilevered beam other than

6
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the fundamental (first) mode, the dynamic strain distribution

over the beam length changes sign at the strain nodes. It is

known from equation (5) that the curvature at a point is a direct

measure of the bending strain. Hence, for modal excitations,

strain nodes are the inflection points of the eigenfunctions and

the integrand in equation (22) is the curvature eigenfunction.

If the electric charge developed at the opposite sides of

a strain node is collected by continuous electrodes for

vibrations with a certain mode shape, cancelation occurs due

to the phase difference in the mechanical strain distribution.

Mathematically, the partial areas under the integrand function

of the integral in equation (22) cancel each other over

the domain of integration. As an undesired consequence,

the excitation of the electrical circuit, and therefore the

electrical outputs may diminish drastically. In order to avoid

cancellations, segmented electrodes can be used in harvesting

energy from the modes higher than the fundamental mode.

The leads of the segmented electrodes can be combined in

the circuit in an appropriate manner [32]. Note that the r th

vibration mode of a clamped-free beam has r − 1 strain nodes,

and consequently, the first mode of a cantilevered beam has

no cancelation problem. Some boundary conditions are more

prone to strong cancellations. For instance, a beam with

clamped–clamped boundary conditions has r + 1 strain nodes

for the r th vibration mode.

Based on equation (21), it is very useful to represent

the electrical domain of the coupled system by the simple

circuit shown in figure 2(b). It is known in the circuitry-based

energy harvesting literature that a piezoelectric element can

be represented as a current source in parallel with its internal

capacitance [9, 10]. Therefore, the simple circuit shown in

figure 2(b) is the complete circuit of the electrical domain

for a single resistive load case. Note that, this representation

considers the electrical domain only and the electromechanical

representation of the coupled system is actually a transformer

because of the voltage feedback sent to the mechanical domain

due to piezoelectric coupling (which will be incorporated in

the formulation here). The components of the circuit are the

internal capacitance Cp̃ of the piezoceramic layer, the resistive

load Rl and the current source ip̃(t). In agreement with

figure 2(a), the voltage across the resistive load is denoted by

v(t). Then, the Kirchhoff laws can be applied to the electrical

circuit shown in figure 2(b) to obtain

Cp̃

dv(t)

dt
+ v(t)

Rl

= ip̃(t) (23)

where the internal capacitance and the current source terms can

be extracted by matching equations (21) and (23) as

Cp̃ = ε̄S
33bL

h p̃

, ip̃(t) =
∞

∑

r=1

κr

dηr (t)

dt
. (24)

Identification of the above terms (especially the current

source term) has a very practical use for modeling of

multi-morph harvesters. This way, for a given number of

piezoceramic layers, there is no need to derive the electrical

circuit equation by using the constitutive relation and the Gauss

law given by equations (17) and (18), respectively. Each

piezoceramic layer will have a similar capacitance and current

source term and the layers can be combined to the resistive

electrical load(s) in a desired way. Here, however, we limit

our discussion to bimorphs (two piezoceramic layers only) as

presented in the following.

3. Bimorph cantilever model for series connection of
the piezoceramic layers

Based on the fundamentals given in section 2, this section

presents the derivation of the closed-form expressions for

the coupled voltage response vs(t) and vibration response

ws
rel(x, t) of the bimorph configuration shown in figure 1(a).

First the coupled mechanical equation is given in modal

coordinates and then the coupled circuit equation is derived.

The resulting coupled equations are then solved for the steady

state voltage response and vibration response for harmonic

base motion inputs.

3.1. Coupled beam equation in modal coordinates

After substituting equation (11a) into (6) and applying

the orthogonality conditions given by equation (14), the

mechanical equation of motion in modal coordinates can be

obtained as

d2ηs
r (t)

dt2
+ 2ζrωr

dηs
r (t)

dt
+ ω2

r η
s
r (t) + χ s

r vs(t) = fr (t) (25)

where the modal electromechanical coupling term is

χ s
r = ϑs

dφr (x)

dx

∣

∣

∣

∣

x=L

(26)

and the modal mechanical forcing function can be expressed as

fr (t) = −m

(

d2g(t)

dt2

∫ L

0

φr (x) dx + d2h (t)

dt2

∫ L

0

xφr(x) dx

)

− Mtφr (L)

(

d2g(t)

dt2
+ L

d2h(t)

dt2

)

. (27)

In equation (25), ζr is the modal mechanical damping

ratio that includes the combined effects of strain rate and air

damping. In the absence of a tip mass, how to relate the modal

damping ratio to the strain rate and air damping terms cs I

and ca mathematically based on the assumption of proportional

damping can be found in the literature [18]. However, as

a common experimental modal analysis practice, one can

identify the modal damping ratio ζr of a desired mode directly

from the frequency response or time domain measurements. In

this way, the requirement of defining and obtaining the physical

damping terms cs I and ca is avoided [27].

3.2. Coupled electrical circuit equation

As described in section 2.1, the piezoceramic layers of the

bimorph configuration shown in figure 1(a) are connected in

series. We know from the practice given in section 2.3 that

each piezoceramic layer can be represented as a current source

in parallel with its internal capacitance. Therefore, figure 3

7
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Figure 3. Electrical circuit representing the series connection of the
piezoceramic layers.

displays the series connection of the identical piezoceramic

layers of the bimorph configuration shown in figure 1(a).

Kirchhoff laws can be applied to the circuit depicted in

figure 3 to obtain

Cp̃

2

dvs(t)

dt
+ vs(t)

Rl

= i s
p̃(t) (28)

where the internal capacitance and the current source terms of

the bimorph (for each layer) are

Cp̃ = ε̄S
33bL

h p̃

, i s
p̃(t) =

∞
∑

r=1

κr

dηs
r (t)

dt
. (29)

The modal coupling term is then

κr = −ē31h p̃cb

∫ L

0

d2φr (x)

dx2
dx

= − ē31(h p̃ + h s̃)b

2

dφr (x)

dx

∣

∣

∣

∣

x=L

(30)

where h p̃c (the distance between the neutral axis and the

center of the piezoceramic layer) is expressed in terms of the

piezoceramic and the substructure layer thicknesses h p̃ and

h s̃ (figure 1(c)). Hence, equation (28) is the electrical circuit

equation of the bimorph cantilever for series connection of the

piezoceramic layers.

3.3. Closed-form voltage response and vibration response

expressions

Equations (25) and (28) constitute the coupled equations for

the modal mechanical response ηs
r (t) of the bimorph and the

voltage response vs(t) across the resistive load. In this section,

we derive the steady state solution of these terms for harmonic

motion inputs. If the translational and rotational components

of the base displacement given by equation (1) are harmonic of

the forms g(t) = Y0ejωt and h(t) = θ0ejωt , where Y0 and θ0 are

the translational and small rotational displacement amplitudes

of the base, ω is the frequency and j is the unit imaginary

number, then the modal forcing function given by equation (27)

can be expressed as fr (t) = Fr ejωt where the amplitude Fr is

Fr = ω2

[

m

(

Y0

∫ L

0

φr (x)dx + θ0

∫ L

0

xφr (x)dx

)

+ Mtφr (L)(Y0 + Lθ0)

]

. (31)

For the harmonic base motions at frequency ω, the steady

state modal mechanical response of the beam and the steady

state voltage response across the resistive load are assumed

to be harmonic at the same frequency as ηs
r (t) = H s

r ejωt and

vs(t) = Vse
jωt (linear system assumption), respectively, where

the amplitudes H s
r and Vs are complex valued. Therefore,

equations (25) and (28) yield the following two equations for

H s
r and Vs:

(ω2
r − ω2 + j2ζrωrω)H s

r + χ s
r Vs = Fr (32)

(

1

Rl

+ jω
Cp̃

2

)

Vs − jω

∞
∑

r=1

κr H s
r = 0. (33)

The complex modal mechanical response amplitude H s
r

can be extracted from equation (32) and it can be substituted

in equation (33) to obtain the complex voltage amplitude Vs

explicitly. The resulting complex voltage amplitude can then

be used in vs(t) = Vse
jωt to express the steady state voltage

response as

vs(t) =
∑∞

r=1
jωκr Fr

ω2
r −ω2+j2ζr ωr ω

1
Rl

+ jω
Cp̃

2
+

∑∞
r=1

jωκr χ
s
r

ω2
r −ω2+j2ζr ωr ω

ejωt . (34)

The complex voltage amplitude Vs can be substituted into

equation (32) to obtain the steady state modal mechanical

response of the bimorph as

ηs
r (t) =

(

Fr − χ s
r

∑∞
r=1

jωκr Fr

ω2
r −ω2+j2ζr ωr ω

1
Rl

+ jω
Cp̃

2
+

∑∞
r=1

jωκr χ
s
r

ω2
r −ω2+j2ζr ωr ω

)

× ejωt

ω2
r − ω2 + j2ζrωrω

. (35)

The transverse displacement response (relative to the

base) at point x on the bimorph can be obtained in physical

coordinates by substituting equation (35) in equation (11a):

ws
rel(x, t)

=
∞

∑

r=1

[(

Fr − χ s
r

∑∞
r=1

jωκr Fr

ω2
r −ω2+j2ζr ωr ω

1
Rl

+ jω
Cp̃

2
+

∑∞
r=1

jωκr χ
s
r

ω2
r −ω2+j2ζr ωr ω

)

× φr (x)ejωt

ω2
r − ω2 + j2ζrωrω

]

. (36)

Note that the vibration response given by equation (36)

is the response of the beam relative to its moving base. If

one is interested in the coupled beam displacement in the

absolute physical coordinates (relative to the fixed frame), it

is the superposition of the base displacement and the vibratory

displacement relative to base:

ws(x, t) = wb(x, t) + ws
rel(x, t) (37)

where wb(x, t) is the base displacement given by equation (1).

4. Bimorph cantilever model for parallel connection
of the piezoceramic layers

This section aims to derive the steady state expressions for

voltage response vp(t) and the vibration response w
p
rel(x, t) of

the bimorph configuration shown in figure 1(b) to harmonic

base motions. The coupled beam equation in modal

coordinates and the electrical circuit equations are derived and

the closed-form solutions are obtained in the following.

8
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Figure 4. Electrical circuit representing the parallel connection of
the piezoceramic layers.

4.1. Coupled beam equation in modal coordinates

After substituting equation (11b) in equation (8), the partial

differential equation given by equation (8) can be reduced

to an infinite set of ordinary differential equations in modal

coordinates as follows:

d2η
p
r (t)

dt2
+ 2ζrωr

dη
p
r (t)

dt
+ ω2

r η
p
r (t) + χ p

r vp(t) = fr (t) (38)

where the modal electromechanical coupling term is

χ p
r = ϑp

dφr (x)

dx

∣

∣

∣

∣

x=L

(39)

and the modal mechanical forcing function is given by

equation (27). The discussion regarding the mechanical

damping ratio ζr is the same as given in section 3.1.

Thus, equation (38) is the coupled beam equation in modal

coordinates for the bimorph configuration with parallel

connection of the piezoceramic layers.

4.2. Coupled electrical circuit equation

It was mentioned in section 2.1 that the piezoceramic layers of

the bimorph configuration shown in figure 1(b) are connected

in parallel. Since each of the piezoceramic layers can be

represented as a current source in parallel with its internal

capacitance (section 2.3), figure 4 represents the parallel

connection of the identical top and bottom piezoceramic layers

of the bimorph configuration shown in figure 1(b).

One can then derive the governing circuit equation based

on the Kirchhoff laws as follows:

Cp̃

dvp(t)

dt
+ vp(t)

2Rl

= i
p

p̃ (t) (40)

where the internal capacitance and the current source terms for

each layer are

Cp̃ = ε̄S
33bL

h p̃

, i
p

p̃(t) =
∞

∑

r=1

κr

dη
p
r (t)

dt
(41)

and the modal coupling term κr is given by equation (30).

Equation (40) is the electrical circuit equation of the bimorph

cantilever for parallel connection of the piezoceramic layers.

4.3. Closed-form voltage response and vibration response

expressions

In order to solve for η
p
r (t) and vp(t) in equations (38) and (40),

we follow the same procedure given in section 3.3 by assuming

the base excitation components in figure 1(b) to be harmonic

as g(t) = Y0ejωt and h(t) = θ0ejωt . For these harmonic

base motion inputs of the same frequency, the modal forcing

is harmonic as fr (t) = Fr ejωt where the amplitude Fr is given

by equation (31).

Based on the linear system assumption, the modal

mechanical response η
p
r (t) and the voltage response vp(t) are

assumed to be harmonic at the frequency of excitation such that

η
p
r (t) = H

p
r ejωt and vp(t) = Vpejωt , where the amplitudes H

p
r

and Vp are complex valued. Hence, equations (38) and (40)

yield the following equations for H
p
r and Vp:

(ω2
r − ω2 + j2ζrωrω)H p

r + χ p
r Vp = Fr (42)

(

1

2Rl

+ jωCp̃

)

Vp − jω
∞

∑

r=1

κr H p
r = 0 (43)

where H
p
r and Vp can be obtained explicitly. Using the

resulting complex voltage amplitude in vp(t) = Vpejωt gives

the steady state voltage response as

vp(t) =
∑∞

r=1
jωκr Fr

ω2
r −ω2+j2ζr ωr ω

1
2Rl

+ jωCp̃ +
∑∞

r=1
jωκr χ

p
r

ω2
r −ω2+j2ζr ωr ω

ejωt . (44)

Then the steady state modal mechanical response of the

bimorph can be obtained by using Vp in equation (42) as

ηp
r (t) =

(

Fr − χ p
r

∑∞
r=1

jωκr Fr

ω2
r −ω2+j2ζr ωr ω

1
2Rl

+ jωCp̃ +
∑∞

r=1
jωκr χ

p
r

ω2
r −ω2+j2ζr ωr ω

)

× ejωt

ω2
r − ω2 + j2ζrωrω

. (45)

The modal mechanical response expression can then be

used in equation (11b) to obtain the transverse displacement

response (relative to the base) at point x on the bimorph:

w
p
rel(x, t)

=
∞

∑

r=1

[(

Fr − χ p
r

∑∞
r=1

jωκr Fr

ω2
r −ω2+j2ζr ωr ω

1
2Rl

+ jωCp̃ +
∑∞

r=1
jωκr χ

p
r

ω2
r −ω2+j2ζr ωr ω

)

× φr (x)ejωt

ω2
r − ω2 + j2ζrωrω

]

. (46)

Having obtained the vibration response relative to the

moving base, one can easily use superpose the base motion

to the relative response to obtain the transverse displacement

response at point x relative to the fixed frame as follows:

wp(x, t) = wb(x, t) + w
p
rel(x, t) (47)

where the base displacement wb(x, t) is given by equation (1).

5. Single-mode electromechanical expressions for
modal excitations

The steady state voltage response and vibration response

expressions obtained in sections 2 and 3 are valid for harmonic

excitations at any arbitrary frequency ω. That is, equations (34)

and (36) for series connection of the piezoceramic layers

(figure 1(a)) and equations (44) and (46) for parallel connection

of the piezoceramic layers (figure 1(b)) are the multi-mode

9
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solutions as they include all vibration modes of the bimorph

harvester. Hence, these equations can predict the coupled

system dynamics not only for resonance excitations but also for

excitations at the off-resonance frequencies of the harvester.

In order to obtain the maximum electrical response, it

is preferable to excite a given harvester at its fundamental

resonance frequency (or at one of the higher resonance

frequencies). Most of the studies in the literature have focused

on the resonance excitation at the fundamental resonance

frequency in order to investigate the maximum performance

of the harvester for electrical power generation. Consequently,

excitation of a bimorph at or very close to one of its natural

frequencies is a very useful problem to investigate through the

resulting equations derived in sections 3 and 4. This is the

modal excitation condition and mathematically it corresponds

to ω ∼= ωr . With this assumption on the excitation

frequency, the major contribution in the summation terms of

equations (34), (36), (44) and (46) are from the r th vibration

mode, which allows drastic simplifications in the coupled

voltage and vibration response expressions. In the following,

the reduced single-mode expressions are given for excitations

at or very close to the r th natural frequency, however, it should

be noted that the fundamental mode is the main concern in the

energy harvesting problem (which corresponds to r = 1).

5.1. Series connection of the piezoceramic layers

If the bimorph configuration shown in figure 1(a) is excited at

ω ∼= ωr , the contribution of all the vibration modes other than

the r th mode can be ignored in the summation terms. Then,

the steady state voltage response given by equation (34) can be

reduced to

v̂s(t) = j2ωRlκr Fr ejωt

(2 + jωRlCp̃)(ω2
r − ω2 + j2ζrωrω) + j2ωRlκrχ s

r

(48)

and the transverse displacement relative to the moving base is

simply obtained from equation (36) as

ŵs
rel(x, t)

= (2 + jωRlCp̃)Frφr (x)ejωt

(2 + jωRlCp̃)(ω2
r − ω2 + j2ζrωrω) + j2ωRlκrχ s

r

(49)

where the relevant terms can be found in section 3. Here and

below, a hat (ˆ) denotes that the respective term is reduced

from the full solution for excitations very close to a natural

frequency.

5.2. Parallel connection of the piezoceramic layers

Similarly, if the bimorph configuration displayed in figure 1(b)

is excited at ω ∼= ωr , the steady state voltage response given

by equation (44) can be reduced to

v̂p(t)

= j2ωRlκr Fr ejωt

(1 + j2ωRlCp̃)(ω2
r − ω2 + j2ζrωrω) + j2ωRlκrχ

p
r

(50)

and the transverse displacement relative to the base is obtained

from equation (46) as

ŵ
p
rel(x, t)

= (1 + j2ωRlCp̃)Frφr (x)ejωt

(1 + j2ωRlC p̃)(ω2
r − ω2 + j2ζrωrω) + j2ωRlκrχ

p
r

(51)

where the relevant terms can be found in section 4.

6. Multi-mode and single-mode electromechanical
FRFs

In the electromechanical model proposed, the two excitation

inputs to the system are the translation of the base in

the transverse direction and its small rotation (figures 1(a)

and (b)). For these two inputs, the resulting electrical

outputs are the voltage response and the vibration response.

Therefore, for harmonic base excitations, one can define

four electromechanical FRFs between these two outputs and

two inputs: voltage output-to-translational base acceleration,

voltage output-to-rotational base acceleration, vibration

response-to-translational base acceleration and vibration

response-to-rotational base acceleration. This section extracts

these FRFs from the multi-mode (for arbitrary frequency

excitations) and single-mode (for modal excitations) solutions

derived in the previous sections.

6.1. Multi-mode electromechanical FRFs

Since the translation and small rotation of the base are given

by g(t) = Y0ejωt and h(t) = θ0ejωt , the modal forcing

function is in the form of fr (t) = Fr ejωt where Fr is given

by equation (31). Before identifying the aforementioned

FRFs, one should first rearrange the complex modal forcing

amplitude given by equation (31) as follows:

Fr = −σrω
2Y0 − τrω

2θ0 (52)

where

σr = −m

∫ L

0

φr (x) dx − Mtφr (L) (53)

τr = −m

∫ L

0

xφr (x) dx − Mt Lφr (L). (54)

6.1.1. Series connection of the piezoceramic layers. The

steady state voltage response given by equation (34) can

be written in terms of the translational and rotational base

accelerations as

vs(t) = αs(ω)(−ω2Y0ejωt ) + µs(ω)(−ω2θ0ejωt ) (55)

where the FRF that relates the voltage output to translational

base acceleration is

αs(ω) =
∑∞

r=1
jωκr σr

ω2
r −ω2+j2ζr ωr ω

1
Rl

+ jω
Cp̃

2
+

∑∞
r=1

jωκr χ s
r

ω2
r −ω2+j2ζr ωr ω

(56)

10
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and the voltage output per rotational base acceleration input

can be given by

µs(ω) =
∑∞

r=1
jωκr τr

ω2
r −ω2+j2ζr ωr ω

1
Rl

+ jω
Cp̃

2
+

∑∞
r=1

jωκr χ
s
r

ω2
r −ω2+j2ζr ωr ω

. (57)

Similarly, the steady state vibration response relative to the

base of the bimorph given by equation (36) can be expressed

as

ws
rel(x, t) = βs(ω, x)(−ω2Y0ejωt ) + ψs(ω, x)(−ω2θ0ejωt )

(58)

where the transverse displacement response-to-translational

base acceleration FRF is

βs(ω, x)

=
∞

∑

r=1

[(

σr − χ s
r

∑∞
r=1

jωκr σr

ω2
r −ω2+j2ζr ωr ω

1
Rl

+ jω
Cp̃

2
+

∑∞
r=1

jωκr χ
s
r

ω2
r −ω2+j2ζr ωr ω

)

× φr (x)

ω2
r − ω2 + j2ζrωrω

]

(59)

and the transverse displacement response and rotational base

acceleration are related by

ψs(ω, x)

=
∞

∑

r=1

[(

τr − χ s
r

∑∞
r=1

jωκr τr

ω2
r −ω2+j2ζr ωr ω

1
Rl

+ jω
Cp̃

2
+

∑∞
r=1

jωκr χ
s
r

ω2
r −ω2+j2ζr ωr ω

)

× φr (x)

ω2
r − ω2 + j2ζrωrω

]

. (60)

6.1.2. Parallel connection of the piezoceramic layers. It is

possible to derive similar FRFs for the parallel connection of

the piezoceramic layers. The steady state voltage response

given by equation (44) can be rearranged to give

vp(t) = αp(ω)
(

−ω2Y0ejωt
)

+ µp(ω)(−ω2θ0ejωt ) (61)

where the voltage output-to-translational base acceleration

FRF is

αp(ω) =
∑∞

r=1
jωκr σr

ω2
r −ω2+j2ζr ωr ω

1
2Rl

+ jωCp̃ +
∑∞

r=1
jωκr χ

p
r

ω2
r −ω2+j2ζr ωr ω

(62)

and the voltage output-to-rotational base acceleration FRF can

be given by

µp(ω) =
∑∞

r=1
jωκr τr

ω2
r −ω2+j2ζr ωr ω

1
2Rl

+ jωCp̃ +
∑∞

r=1
jωκr χ

p
r

ω2
r −ω2+j2ζr ωr ω

. (63)

From equation (46), the steady state vibration response

relative to the base of the bimorph can be expressed as

w
p
rel(x, t) = βp(ω, x)(−ω2Y0ejωt ) + ψp(ω, x)(−ω2θ0ejωt )

(64)

where the transverse displacement response-to-translational

base acceleration FRF is

βp(ω, x)

=
∞

∑

r=1

[(

σr − χ p
r

∑∞
r=1

jωκr σr

ω2
r −ω2+j2ζr ωr ω

1
2Rl

+ jωCp̃ +
∑∞

r=1
jωκr χ

p
r

ω2
r −ω2+j2ζr ωr ω

)

× φr (x)

ω2
r − ω2 + j2ζrωrω

]

(65)

and the transverse displacement response-to-rotational base

acceleration FRF is

ψp(ω, x)

=
∞

∑

r=1

[(

τr − χ p
r

∑∞
r=1

jωκr τr

ω2
r −ω2+j2ζr ωr ω

1
2Rl

+ jωCp̃ +
∑∞

r=1
jωκr χ

p
r

ω2
r −ω2+j2ζr ωr ω

)

× φr (x)

ω2
r − ω2 + j2ζrωrω

]

. (66)

6.2. Single-mode electromechanical FRFs

In order to extract the respective FRFs of the single-mode

expressions, one should use equations (48)–(51) along with

equation (52). In the following, equation (52) is substituted in

each of equations (48)–(51) and the relevant FRFs are extracted

as done for the multi-mode solution case. Note that, the single-

mode electromechanical FRFs given here are strictly valid for

modal excitations (ω ∼= ωr ) only.

6.2.1. Series connection of the piezoceramic layers.

Equation (48) can be rearranged to give the single-mode steady

state voltage response as

v̂s(t) = α̂s(ω)(−ω2Y0ejωt ) + µ̂s(ω)(−ω2θ0ejωt ) (67)

where the single-mode FRF that relates the voltage output to

translational base acceleration is

α̂s(ω) = j2ωRlκrσr

(2 + jωRlCp̃)(ω2
r − ω2 + j2ζrωrω) + j2ωRlκrχ s

r

(68)

and the single-mode voltage output-to-rotational base acceler-

ation FRF is

µ̂s(ω) = j2ωRlκrτr

(2 + jωRlCp̃)(ω2
r − ω2 + j2ζrωrω) + j2ωRlκrχ s

r

.

(69)

The single-mode steady state vibration response relative

to the base of the bimorph given by equation (49) can be

rearranged to give

ŵs
rel(x, t) = β̂s(ω, x)(−ω2Y0ejωt ) + ψ̂s(ω, x)(−ω2θ0ejωt )

(70)

where the single-mode transverse displacement response-to-

translational base acceleration FRF is

β̂s(ω, x)

= (2 + jωRlCp̃)σrφr (x)

(2 + jωRlCp̃)(ω2
r − ω2 + j2ζrωrω) + j2ωRlκrχ s

r

(71)
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and the single-mode transverse displacement response-to-

rotational base acceleration FRF can be given by

ψ̂s(ω, x)

= (2 + jωRlCp̃)τrφr (x)

(2 + jωRlCp̃)(ω2
r − ω2 + j2ζrωrω) + j2ωRlκrχ s

r

. (72)

6.2.2. Parallel connection of the piezoceramic layers.

The single-mode steady state voltage response given by

equation (50) can be expressed in terms of the translational and

rotational base accelerations as

v̂p(t) = α̂p(ω)(−ω2Y0ejωt ) + µ̂p(ω)(−ω2θ0ejωt ) (73)

where the single-mode FRF that relates the voltage output to

translational base acceleration is

α̂p(ω)

= j2ωRlκrσr

(1 + j2ωRlCp̃)(ω2
r − ω2 + j2ζrωrω) + j2ωRlκrχ

p
r

(74)

and the single-mode FRF that relates the voltage output to

rotational base acceleration is

µ̂p(ω)

= j2ωRlκrτr

(1 + j2ωRlCp̃)(ω2
r − ω2 + j2ζrωrω) + j2ωRlκrχ

p
r

.

(75)

Similarly, the single-mode steady state vibration response

relative to the base of the bimorph given by equation (51) can

be rewritten as

ŵ
p
rel(x, t) = β̂p(ω, x)(−ω2Y0ejωt ) + ψ̂p(ω, x)(−ω2θ0ejωt )

(76)

where the single-mode transverse displacement response-to-

translational base acceleration FRF can be given by

β̂p(ω, x)

= (1 + j2ωRlCp̃)σrφr (x)

(1 + j2ωRlCp̃)(ω2
r − ω2 + j2ζrωrω) + j2ωRlκrχ

p
r

(77)

and the single-mode transverse displacement response-to-

rotational base acceleration FRF is

ψ̂p(ω, x)

= (1 + j2ωRlCp̃)τrφr (x)

(1 + j2ωRlCp̃)(ω2
r − ω2 + j2ζrωrω) + j2ωRlκrχ

p
r

.

(78)

7. Experimental validation

This section provides experimental validation of the single-

mode analytical relationships. The experimentally measured

voltage response-to-base acceleration FRFs and the vibration

response-to-base acceleration FRFs are compared with the

closed-form FRFs derived in this paper. Variations of

the voltage output and the tip velocity response of the

bimorph with changing load resistance are also investigated

(a)   (b)

Figure 5. (a) Experimental setup used for validation of the analytical
model and the (b) bimorph with a tip mass attachment analyzed in
the experiment.

and predicted by using the analytical relations. Since the

fundamental vibration mode of the harvester has the highest

practical importance for energy harvesting, attention is given

to this mode. Variation of the voltage, current and power

outputs with load resistance are investigated for excitations at

the short circuit and open circuit resonance frequencies of the

fundamental mode. Optimum resistive loads of the harvester

are identified for excitations at these frequencies.

7.1. Experimental setup for a bimorph cantilever with a tip

mass

The experimental setup used for measuring the voltage-to-

base acceleration and tip velocity-to-base acceleration FRFs

of the harvester is shown in figure 5(a). The bimorph

analyzed in this experiment is displayed in figure 5(b) and

it is manufactured by Piezo Systems, Inc. (T226-A4-503X).

The same type of bimorph was recently used by duToit et al

[33] for the verification of their Rayleigh–Ritz model. Here,

we attach a tip mass to the cantilever to make the problem

relatively sophisticated in terms of modeling (figure 5(b)). The

bimorph consists of two oppositely poled PZT-5A piezoelectric

elements bracketing a brass substructure layer. Therefore, the

piezoelectric elements are connected in series as schematically

given in figure 1(a). The geometric and material properties of

the piezoceramic and substructure layers are given in table 1.

Note that, in agreement with the formulation given in this

paper, the length described by L is the overhang length of

the harvester, i.e., it is not the total free length (63.5 mm) of

the bimorph as acquired from the manufacturer. In addition,

permittivity at constant strain is given in table 1 in terms of the

permittivity of free space, ε0 = 8.854 pF m−1 [16].

The bimorph cantilever is excited from its base with a

sine sweep generated by an electromagnetic LDS shaker. The

base acceleration of the harvester is measured by a low mass

accelerometer (PCB U352C22) and the velocity response of

the harvester at the free end is measured by a laser vibrometer

(Polytec OFV303 laser head, OFV3001 vibrometer). The

experimental voltage FRF (in V/g) and tip velocity FRF (in

(m/s)/g) obtained for a resistive load of 1 k� are shown in

figure 6(a). The coherence functions of these measurements

12
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Figure 6. (a) Experimental voltage and tip velocity FRFs of the cantilever and (b) their coherence functions (for a resistive load of 1 k�).

Table 1. Geometric and material parameters of the bimorph cantilever used for the experimental validation.

Geometric
parameters Piezo. Substructure Material parameters

Piezo
(PZT-5A)

Substructure
(brass)

Length, L (mm) 50.8 50.8 Mass density, ρ (kg m−3) 7800 9000
Width, b (mm) 31.8 31.8 Young’s modulus, Y (GPa) 66 105

Thickness, h (mm) 0.26 (each) 0.14 Piezo. constant, d31 (pm V−1) −190 —

Tip mass, Mt (kg) 0.012 Permittivity, ε̄S
33 (F m−1) 1500ε0 —

are given by figure 6(b). The coherence is considerably low

for frequencies less than 30 Hz but it is good around the first

resonance frequency (which is approximately 45.6 Hz for a

1 k� resistive load).

The single-mode analytical FRFs given by equations (68)

and (71) are used in order to validate their accuracy in

predicting the experimental observations. Note that the base

is not rotating and therefore θ0 = 0 in equations (67) and (70).

The fundamental vibration mode (seen around 45.6 Hz in

figure 6(a)) is of practical interest and consequently r = 1 is

used in equations (68) and (71). It is important to note that the

laser vibrometer measures the absolute velocity at the tip of the

bimorph in the experiment. However, the tip displacement FRF

given by equation (71) for x = L is the displacement of the tip

relative to the vibrating base, i.e., it is not relative to the fixed

frame. Hence, by considering the absolute displacement given

by equation (37), equation (71) must be modified as follows to

compare it with the experimental tip velocity measurement:

β̂modified
s (ω, L) =

dŵs(L ,t)

dt

−ω2Y0ejωt
=

d
dt

[Y0ejωt + ŵs
rel(L, t)]

−ω2Y0ejωt

= 1

jω
+ jωβ̂s(ω, L). (79)

Thus, the absolute tip velocity FRF given by equation (79)

is used in comparisons with the laser vibrometer measure-

ments. Note that, instead of modifying the analytical FRF

expression given by equation (71), one could as well process

the experimental FRF. However, this option is not preferable

because of the possibility of generating noise while post-

processing the experimental data. It should also be added that,

in the following, the FRFs given by equations (68) and (79) are

multiplied by the gravitational acceleration (g = 9.81 m s−2)

to be in agreement with the experimental measurements (hence

the FRFs are given per base acceleration in g). Comparison

of the experimental measurements and model predictions are

given next.

7.2. Validation of the single-mode expressions and coupled

analysis of the harvester

Since the performance of the harvester at resonance is the

main concern, accurate identification of mechanical damping

ratio is very important. It is a common practice to extract the

modal mechanical damping ratio from the first experimental

measurement. The uncoupled (but mechanically damped)

natural frequency of the harvester can be observed in the

experimental FRF by setting Rl → 0 (short circuit conditions),

i.e., by using a very low resistive load (since, practically, no

wire with zero electrical resistance exists). The measurement

provided for 1 k� resistive load is close to short circuit

conditions for the given harvester and the fundamental natural

frequency in short circuit conditions can be extracted from

the experimental voltage or tip velocity FRF (figure 6(a)) as

45.6 Hz. By using the numerical data of the bimorph harvester

given in table 1, equation (15) predicts the first uncoupled (and

mechanically undamped) natural frequency of the harvester

analytically as 45.7 Hz. One can then identify the mechanical

damping ratio of the first mode by employing the coupled

single-mode relations as 2.7%. Hence, this approach allows

extracting modal mechanical damping in the presence of a

finite resistive load (without forcing the system exactly to be

in short circuit conditions). Indeed, if the electromechanical

model is self-consistent, one must be able to identify the

mechanical damping ratio for any value of load resistance.

Furthermore, either the voltage FRF or the tip velocity FRF

can be used for identifying modal mechanical damping ratio,

since the bimorph harvester itself is a transducer. In other

words, theoretically, the coupled tip velocity information is

included in the voltage output information of the harvester, and

the voltage and tip motion predictions for the same mechanical

damping ratio must be in agreement based on the linear

electromechanical system assumption.

The mechanical damping ratio of the first vibration mode

is identified (as ζ1 = 0.027) by using the voltage FRF

13
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Figure 7. Comparison of the model predictions and experimental measurements; (a) voltage FRF and (b) tip velocity FRF for 1 k�,
(c) voltage FRF and (d) tip velocity FRF for 33 k�, (e) voltage FRF and (f) tip velocity FRF for 470 k�.

as shown in figure 7(a) (for 1 k� load resistance). For

this identified damping ratio, the voltage FRF of the model

(obtained from equation (68)) is in perfect agreement with the

experimental FRF as shown in figure 7(a). As discussed in

the previous paragraph, for the same damping ratio (2.7%), the

tip velocity FRF obtained from the model should predict the

experimental tip velocity FRF accurately. The tip velocity FRF

obtained from equation (79) is plotted with the laser vibrometer

measurement in figure 7(b). As can be seen from this

figure, the agreement between the theoretical and experimental

tip velocity FRFs is very good, which clearly shows the

consistency of the electromechanical model proposed here. If

the resistive load is replaced by a resistive load of 33 k�,

the experimental and analytical voltage and tip velocity FRFs

given by figures 7(c) and (d) are obtained, respectively. Note

that the mechanical damping ratio is kept at 2.7% in the

model and the model predicts the coupled structural response

successfully for this different resistive load (which is one

order of magnitude larger than the previous one). The shift

in the resonance frequency for a 33 k� resistive load is not

very large. However, if the resistive load is increased to

470 k� (figures 7(e) and (f)), the resonance frequency moves

to 48.4 Hz, which is approximately 2.8 Hz higher than the

resonance frequency for 1 k�. Note that the system is close

to open circuit conditions for the large resistive load of the

last case (470 k�). The variations in the fundamental mode

resonance frequency with changing load resistance as well

as the amplitude-wise results in the FRFs are successfully

predicted by the analytical model (modal mechanical damping

ratio is kept constant at 2.7% in all cases).

From the quantitative point of view, the maximum voltage

output increases from 1.57 V/g (at 45.6 Hz) to 84 V/g (at

48.4 Hz) as the resistive load increases from 1 to 470 k�. Note

that the former case (1 k�) is close to short circuit conditions

(corresponding to the highest current output) whereas the latter

case (470 k�) is close to open circuit conditions (yielding

the highest voltage output). Therefore, the short circuit and

open circuit resonance frequencies for the first mode of this

14
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Figure 8. Enlarged views of the (a) voltage FRF and the (b) tip velocity FRF for 8 different values of load resistance (model predictions and
the experimental measurements).

Figure 9. Enlarged views of the (a) current FRF for 8 different values of load resistance and the (b) power FRF 3 different values of load
resistance (model predictions and experimental measurements).

harvester are approximately 45.6 Hz and 48.4 Hz, respectively.

The analytical model predicts these two frequencies as 45.7 Hz

and 48.2 Hz, respectively.

The experimental measurements are repeated for 8

different values of load resistance: 1, 6.7, 11.8, 22, 33, 47,

100 and 470 k�. Each of the resistive loads results in a

different voltage FRF and a tip velocity FRF. Figures 8(a)

and (b), respectively, display enlarged views of the voltage

output and tip velocity FRFs around the first vibration mode

for these 8 different values of load resistance. The direction

of increasing load resistance is depicted with an arrow and it

is clear from figure 8(a) that the voltage across the resistive

load increases monotonically with increasing load resistance at

every excitation frequency. For the extreme values of the load

resistance, the frequency of maximum voltage output moves

from the short circuit resonance frequency to the open circuit

resonance frequency. For a moderate value of load resistance,

the frequency of maximum voltage has a value in between

these two extreme frequencies (i.e., between 45.6 and 48.4 Hz

in this case). The shift in the frequencies of maximum response

amplitude is also the case in the tip velocity FRF (figure 8(b)).

However, the variation of tip velocity with load resistance is

not necessarily monotonic at every frequency. For excitation

at 45.6 Hz, the tip motion is suppressed as the resistive load is

increased up to a certain value. It is very important to note that

this suppression in the motion amplitude is more sophisticated

than viscous damping. With increasing load resistance, the

motion is attenuated at 45.6 Hz whereas it is amplified at

48.4 Hz. Hence, if one focuses on the open circuit resonance

frequency (48.4 Hz), both the voltage output and vibration

amplitude at the tip increases with increasing load resistance.

Therefore, modeling the effect of piezoelectric coupling in the

beam equation as viscous damping clearly fails in predicting

this phenomenon (in addition to the fact that it cannot predict

the frequency shift due to changing load resistance). Note

that, for 8 different resistive loads, the model predicts the

frequency response of the voltage output and tip velocity very

successfully.

The electric current FRF exhibits the opposite behavior

of the voltage FRF with changing load resistance as shown

in figure 9(a) (obtained from I = V/Rl). Hence, the

electric current decreases monotonically with increasing load

resistance at every excitation frequency. Figure 9(b) displays

the electrical power FRF for 3 different resistive loads5. The

trend in the electrical power FRF with changing load resistance

is more interesting as it is the multiplication of two FRFs

(voltage and current) with the opposite trends. As can be

seen in figure 9(b), the electrical power FRFs of different

resistive loads intersect each other just like the tip velocity

FRF (figure 8(b)). For a given excitation frequency, there

exists a certain value of load resistance that gives the maximum

electrical power. This value is called the optimum load

resistance and it can be observed more easily if the frequency

5 In order to avoid confusion with 8 intersecting curves, the electrical power

FRF is given for 3 resistive loads only. Note that the electrical power amplitude

is due to P = |V |2/Rl; i.e., it is the peak power. The average power can

be obtained from Pave = |Vrms|2/Rl, where Vrms = V/
√

2 (thus, Pave =
|V |2/2Rl = P/2).
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Figure 10. Variations of the (a) peak voltage, (b) peak current and the (b) peak electrical power amplitudes with load resistance for excitations
at the short circuit and open circuit resonance frequencies of the first vibration mode.

of interest is kept constant and the power amplitude is plotted

against load resistance (which is addressed next).

The short circuit and open circuit resonance frequencies

of the first mode are defined for the extreme cases of load

resistance (45.6 Hz as Rl → 0 and 48.4 Hz as Rl → ∞) and

these frequencies are of practical interest. The variations of

the voltage output with changing load resistance for excitations

at these two frequencies are shown in figure 10(a). In both

cases, voltage increases monotonically with load resistance.

The voltage output for excitation at the short circuit resonance

frequency is higher when the system is close to short circuit

conditions and vice versa. There exists a certain resistive

load (83.4 k�), for which the voltage response has the same

amplitude (40.6 V/g) for excitations at both frequencies. The

maximum voltage amplitude in the limit Rl → ∞ is about

54.5 V/g for excitation at 45.6 Hz and it is about 108.8 V/g for

excitation at 48.4 Hz. Figure 10(b) shows the variations of the

electric current with changing load resistance for excitations

at these two frequencies. The trend of the current amplitude

with changing load resistance is the opposite of that of the

voltage amplitude. That is, the current amplitude decreases

monotonically with increasing load resistance. The current

output for excitation at the short circuit resonance frequency

is higher when the system is close to short circuit conditions

and vice versa. Again, for an 83.4 k� load resistance,

both excitation frequencies yield the same current amplitude

(0.49 mA/g). In the limit Rl → 0, the maximum current

amplitude is about 1.57 mA/g for excitation at 45.6 Hz and

it is about 0.68 mA/g for excitation at 48.4 Hz.

The variation of the electrical power with changing load

resistance is given in figure 10(c) for the short circuit and

open circuit resonance frequency excitations. As mentioned

before, the variation of the electrical power with changing

load resistance is not monotonic. These two cases (the short

circuit and open circuit resonance frequency excitations) have

different optimum resistive loads which yield the maximum

electrical power. The optimum load resistance for excitation at

45.6 Hz is about 35 k�, yielding a maximum electrical power

of about 23.9 mW/g2 whereas the optimum resistive load for

excitation at 48.4 Hz is 186 k�, yielding approximately the

same power output. As in the case of voltage and current

outputs, the electrical power output for excitation at the short

circuit resonance frequency is higher when the system is

close to short circuit conditions and vice versa. Moreover,

for an 83.4 k� resistive load, the same electrical power

(19.8 mW/g2) is obtained for excitations at both of these

frequencies. The respective trends in the electrical outputs

at the short circuit and open circuit resonance frequencies of

the first mode are successfully predicted by the single-mode

analytical relations derived in this paper.

A useful practice to obtain some additional information

regarding the performance of the harvester device implies

dividing the electrical power by the volume and by the mass of

the harvester. The overhang volume of the bimorph cantilever

is 1.07 cm3 whereas the volume occupied by the tip mass

attachment is 2.45 cm3, yielding a total device volume of about

3.52 cm3. The overhang mass of the bimorph is 8.6 g and the

tip mass is 12 g. Thus, the total mass of the cantilever is about

20.6 g. The electrical power versus load resistance graph given

by figure 10(c) can therefore be plotted in the form of power

density (power per device volume) and specific power (power

per device mass) graphs. The vertical axis of figure 10(c) must

be divided by the device volume to obtain the power density

graph and it must be divided by the device mass to obtain

the specific power graph. The variations of power density and
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Figure 11. Variations of the (a) power density (power per device volume) and the (b) specific power (power per device mass) amplitudes with
load resistance for excitations at the short circuit and open circuit resonance frequencies of the first vibration mode.

specific power with load resistance are given by figures 11(a)

and (b), respectively (for the short circuit and open circuit

resonance excitations). For instance, for excitation at 45.6 Hz,

the maximum power density is about 6.8 (mW/g2) cm−3

and the maximum specific power is about 1.15 (W/g2) kg−1

(for a 35 k� resistive load). It is very important to note

that the power density and the specific power concepts are

not complete dimensionless representations. For instance, the

same device volume can be occupied by the same amount

of material (piezoceramic, substructure and tip mass) for a

different aspect ratio of the beam, yielding a larger or smaller

electrical power with totally different natural frequencies. Yet,

these representations have been found useful for comparison of

the harvester devices in the literature.

8. Summary and conclusions

Piezoelectric energy harvesting has been investigated by

several researchers for the last five years. Typically, a

cantilevered harvester beam with one or two piezoceramic

layers is located on a vibrating host structure and the harvester

beam generates electrical power due to base excitation.

Electromechanical modeling of cantilevered piezoelectric

energy harvesters under base excitation has been studied

my many authors and the existing models include SDOF

approaches, approximate solutions in the sense of Rayleigh–

Ritz discretization and analytical solution attempts with certain

simplifications. Recently, the authors have presented the

closed-form analytical solution for a unimorph cantilever based

on the Euler–Bernoulli beam assumptions. In this work, the

analytical solution is extended to bimorph configurations with

series and parallel connections of piezoceramic layers and

experimentally validated.

The base excitation acting on the bimorph cantilever

is assumed to be translation in the transverse direction

with superimposed small rotation. For series and parallel

connections of the piezoceramic layers, the closed-form

electromechanical expressions are first obtained for the steady

state response to harmonic excitation at arbitrary frequencies.

The resulting expressions are then reduced to single-mode

expressions by assuming modal excitation (i.e., excitation at or

very close to a particular natural frequency), which is the main

concern in vibration-based energy harvesting. The single-

mode relations given here are easier to use compared to the

multi-mode solutions and they are as accurate as the multi-

mode solutions for excitations around a natural frequency of

interest (which, in general, is the first natural frequency of

the harvester). The electromechanical FRFs which relate the

voltage output and vibration response of the bimorph to the

translational and rotational base acceleration components are

extracted both for the multi-mode and single-mode solutions.

In order to validate the model proposed in this paper, an

experimental study is presented for a bimorph cantilever with

a tip mass attachment. It is shown that the single-mode FRFs

obtained from the analytical solution given here can predict

the voltage output and the vibration response FRFs of the

bimorph very accurately. The base excitation experiments are

run for 8 different resistive loads and it is shown that the

analytical model can successfully predict the variation in the

coupled electrical and mechanical response of the cantilevered

bimorph. The outputs of the harvester device (current, voltage

and power) are analyzed extensively for the short circuit and

open circuit frequency excitations and the accuracy of the

single-mode relations is observed in all cases. Since they

are based on the distributed parameter solution, the single-

mode electromechanical FRFs proposed in this paper here can

take the place of the elementary SDOF solutions for modal

excitations. Moreover, the single-mode expressions given here

are not limited to the fundamental mode and they can be used

for any vibration mode as they originate from the distributed

parameter solution. The multi-mode closed-form expressions

given here can be used if the same harvester is to be excited

at different vibration modes or at its off-resonance frequencies

due to multi-frequency or varying-frequency inputs.
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