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Abstract:  

During early stages of the COVID-19 pandemic, forecasts provided actionable information about 

disease transmission to public health decision-makers. Between February and May 2020, experts 

in infectious disease modeling made weekly predictions about the impact of the pandemic in the 

U.S. We aggregated these predictions into consensus predictions. In March and April 2020, 

experts predicted that the number of COVID-19 related deaths in the U.S. by the end of 2020 

would be in the range of 150,000 to 250,000, with scenarios of near 1m deaths considered 

plausible. The wide range of possible future outcomes underscored the uncertainty surrounding 

the outbreak’s trajectory. Experts’ predictions of measurable short-term outcomes had varying 

levels of accuracy over the surveys but showed appropriate levels of uncertainty when 

aggregated. An expert consensus model can provide important insight early on in an emerging 

global catastrophe. 

One Sentence Summary: Expert predictions provided valuable insight of future societal burden 

during the early stages of the COVID-19 pandemic in the US. 
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Main Text: 

The first recorded world-wide COVID-19 cases were reported in December of 2019 [1], the 

World Health Organization declared the outbreak a Public Health Emergency of International 

Concern on January 30th, 2020, and on March 11th, 2020, after the virus began spreading to other 

continents [2], [3], the World Health Organization designated the outbreak a pandemic [4]. After 

the first COVID-19 case in the United States without known origin occurred in California in late 

February [5], a large-scale national effort aimed to prevent the spread of the disease. 

As with previous outbreaks of other diseases [6]–[8], forecasts from computational models [9]–

[12] assisted in planning and outbreak response in the first few months of the pandemic. 

However, these models faced three important challenges: a lack of reliable surveillance data, a 

paucity of data on models to explain SARS-COV-2 transmission dynamics, and unknown 

interactions between forecasts and future policy responses to the pandemic. As a result of these 

challenges in this phase, some models used by decision-makers faced criticism for a lack of 

accuracy [13]. 

Before the first US case of COVID-19, we aggregated probabilistic predictions weekly from 

experts in the modeling of infectious disease to support public health decision making [14].   

Aggregating human predictions has shown positive results in many domains from ecology to 

economics [15]–[20]. In the context of infectious disease, human judgment (from a 

knowledgeable but not exclusively “expert” panel) produced accurate forecasts of seasonal 

influenza outbreaks in recent seasons [6]. In the early stages of a pandemic there is a tremendous 

amount of objective scientific work and subjective media attention that makes identifying key 

information difficult, but past work shows that experts familiar with the subject matter may be 

able to wade through this information and extract important relationships between data and 

forecasting targets [21]. Past work has shown that expert predictions are often well-calibrated, 

and crowdsourcing research suggests a non-expert crowd can accurately predict targets sensitive 

to societal change and governmental intervention [18]. This may be particularly important in the 

context of an emerging pandemic with fast-changing government responses. Subjective forecasts 

from individual experts are often well calibrated, but less accurate than forecasts from 

computational models [22]. But gains in accuracy have been found when individual human 

predictions are combined into a consensus prediction [15], [23], [24]. 

Between February 18th, 2020 and May 11th, 2020, we conducted thirteen weekly surveys of 

experts in the modeling of infectious disease [14]. Across these surveys, we asked 75 questions 

(40 with measurable outcomes) focused on the outbreak in the United States. A total of 41 

experts contributed predictions, with an average of 18.6 responses each week (range: 15-22). We 

combined predictions into consensus distributions (see Methods). The survey results were 

released publicly every week and delivered directly to decision makers at state and federal health 

agencies. Experts responded to questions on a variety of topics including short- and long-term 

predictions of COVID-19 cases, hospitalizations, and deaths. Here we present results from 

questions that other computational models have tried to predict: the number of deaths due to 

COVID-19 in the US by the end of 2020, the total number of SARS-COV-2 infections in the US, 

and the number of confirmed cases one week ahead. Expert consensus forecasts for all questions 

are stored in a public GitHub repository [14]. 

Across five surveys administered in March, April, and May, we asked experts to predict the 

number of COVID-19 deaths in the US by the end of 2020. The consensus median ranged from 
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150,000 to more than 250,000 (Fig. 1) corresponding to between 4 and 7 times the average 

number of annual deaths in the US due to seasonal influenza [25]. There was considerable 

uncertainty around these predictions: the lower bound of the five 90% prediction intervals ranged 

from 6,000 (on March 16th) to 118,000 (on May 5th), and the upper bounds ranged from 517,000 

(on April 20th) to 1,700,000 (on March 30th). As of Aug. 26, 2020, over 171,000 cumulative 

deaths due to COVID-19 were reported in the US. 

Over the course of seven surveys from March 2nd to April 27th, 2020, the median of expert 

consensus predictions for the percentage of all SARS-CoV-2 (the virus that causes the COVID-

19 illness) infections in the U.S. that had been diagnosed was between 6% and 16%. The median 

responses were consistent with estimates from computational models generated over the same 

time span[10]–[12], [26]. As a sensitivity analysis, we asked experts to predict the number of 

hidden infections in two different ways: early surveys asked experts to predict the percent of 

confirmed cases, and later surveys asked to predict the total number of infections. The first six 

surveys asked experts to provide a smallest, most likely, and largest estimate. The last survey, on 

April 27th, asked experts to provide a 10th, 50th, and 90th percentile. We found that the experts’ 

median prediction of the fraction of total infections that were confirmed was stable when asked 

to predict percentages versus direct estimates of the number of infections and when asking 

experts to provide a smallest, most likely, and largest versus a percentile answer.  

At the beginning of each of thirteen consecutive weeks from February 17th to May 11th, experts 

predicted the number of confirmed cases at the end of the week. For surveys administered from 

February 17th to April 6th, participants specified the smallest, most likely, and largest possible 

number of cases that would occur by the end of the week, and for surveys administered from 

April 13th to May 11th they assigned probabilities to ranges where the number of cases could 

occur. (Fig. 3A). In all but two weeks (surveys on March 15th and April 20th), expert consensus 

predictions were more accurate than an “unskilled forecaster”, a naïve prediction that assigned 

uniform probability across the range of predicted values from all experts. In all but one week (the 

survey issued on April 27th), the consensus prediction was more accurate than the majority of 

individual expert predictions (Fig. 3B). All thirteen expert consensus 90% confidence intervals 

covered the reported number of confirmed cases. The consensus prediction was outperformed by 

expert’s individual predictions 23% of the time and no experts performed consistently better than 

the equally weighted consensus. As a result, performance-based weighting to build a consensus 

did not significantly improve forecast accuracy compared to equal weighting (see Supplement). 

Individual expert predictions did not perform as well as the consensus when experts were asked 

for a smallest, most likely, and highest number of confirmed cases. The median forecast skill of 

individual expert predictions was lower than an unskilled forecaster on the first five surveys. The 

forecasts from individual experts were more accurate in later surveys, and the median accuracy 

of individual expert predictions was higher than the accuracy of an unskilled forecaster in 7 of 

the last 8 surveys. 

Overall, across the 40 questions about measurable outcomes from February 17th to May 11th, a 

consensus of expert predictions scored better than an unskilled forecaster (Fig. 4A). An expert 

consensus scored in the top 50th percentile for 31 (78%) questions and had a higher relative 

forecast skill (relative to an unskilled forecaster) than the median individual expert skill for 36 

(90%) questions. Triplet questions, where experts were asked to provide a smallest, most likely, 

and largest possible outcome, showed the largest improvements between the median expert and 

consensus forecasts. The consensus was more accurate than all individual experts for 12 out of 
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21 triplet response questions (Fig. 4B). For percentile and probabilistic categorical questions, the 

consensus prediction ranked closer to the 50th percentile. An equally weighted consensus is 

likely to perform better than an individual forecast, but how well a consensus performs may 

depend on how we ask experts to provide predictions. 

 

Consensus aggregations of expert judgment during early months of the COVID-19 pandemic 

provided important and early insights about the trajectory of the emerging outbreak. Since mid-

March, when there were less than 100 COVID-19 deaths in the US, expert consensus showed 

substantial probability of well over 100,000 deaths by the end of 2020. In contrast, early 

forecasts from a computational model used by the federal government in late March predicted 

81,000 deaths and an outbreak that would end by early August [27]. 

 

Expert predictions of the US COVID-19 outbreak were well calibrated overall but erred on being 

too optimistic. Expert predictions of confirmed cases included the true number of cases in their 

90% prediction interval for all thirteen predictions. However, accuracy was a challenge. Experts’ 

predictions in early surveys were smaller than the true number of confirmed cases, but after 

receiving weekly feedback on their previous predictions (starting on March 9), accuracy 

substantially improved on triplet questions. The type of answer experts were asked to provide 

impacted individual accuracy and the variability in individual scores. Experts particularly 

struggled with triplet response questions. 

 

An expert consensus is a flexible model that can answer critical public health questions before 

computational models have enough data and validation to be reliable. In particular, an expert 

consensus model has two key advantages over computational models. First, an expert model has 

relatively low overhead to develop and can be deployed at the onset of an outbreak. Experts 

made predictions starting in mid-February before any computational models were available. 

Second, a survey framework allowed expert predictions to be tailored on-the-fly, to maximize 

value for public health decision makers.  

 

However, an expert consensus model suffers from issues of scalability. Every individual forecast 

elicited from an expert requires minutes of human time. Because of experts’ limited time, 

surveys must focus on a short list of impactful questions. Another potential disadvantage of an 

expert model is the bias introduced by human judgment. Though the assumptions built into 

computational models are explicitly specified, experts' predictive processes are more opaque. A 

robust forecasting platform, allowing experts to communicate with one another about the 

reasoning behind their forecasts and interactions between subject matter experts and trained 

forecasters may lead to more accurate predictions.  

An expert judgment model can act as an important component of rapid response and as a first-

step forecast for global catastrophes like an outbreak, especially while domain-specific 

computational models are still being trained on sparse early data. Experts’ ability to synthesize 

diverse sources of information gives them a unique, complementary perspective to model-driven 

forecasts that are not able to assimilate information or data outside of the domain of a specific, 

prescribed computational framework. During the evolving global catastrophe of the COVID-19 

pandemic, an expert judgment model provided rapid and well calibrated forecasts that were 

responsive to changing public health needs. 
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Fig. 1.  

Expert consensus predictions of the total number of deaths by the end of 2020, from five surveys 

asked between March 16 and May 4, 2020. Points show the median estimate. Bars show 90% 

prediction intervals for the first four surveys and an 80% prediction interval for the fifth survey. 

The first three surveys shown above asked experts for predictions of the smallest, most likely, 

and largest number of deaths; the fourth survey asked for 5th, 50th, and 95th predictive percentiles, 

and the fifth survey asked for 10th, 50th, and 90th percentiles (see Methods). The counts of cases 

and deaths above each prediction are the numbers reported by Covidtracker.com on the date each 

survey was issued, and the text below the x-axis provides context of national headlines during 

the times the surveys were open to responses. 
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Fig. 2. 

(A.) Expert consensus estimates (green dots, with 80% prediction intervals) of the total number 

of SARS-CoV-2 infections by the end of 2020. Expert predictions aligned with estimates from 

various computational models during the same time period. Prediction intervals at the 80% level 

are shown for all estimates except for the Bedford estimate which has a “best guess” prediction 

interval and a second interval double the size of the first shown as a narrower line [26]. (B.) 

Expert consensus distributions of the fraction of all infections reported as confirmed cases. In the 

first three surveys, experts provided a percent of infections that had been confirmed as cases by 

laboratory test, in the next four (dates in boldface) they directly estimated the total number of 

infections. Surveys 4-6 asked experts to provide the smallest, most likely, and highest number of 

total infections, and the last survey asked experts to provide a 10th, 50th, and 90th percentile. 
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Fig 3. 

(A.) Expert consensus forecasts of the number of cases to be reported by the end of the week 

(Sunday, date shown on x-axis), from thirteen surveys administered between February 23 and 

May 17, 2020. The first eight surveys asked experts to provide smallest, most likely, and largest 

possible values for the number of confirmed cases (blue bars and dots), and the last five asked 

experts to assign probabilities to ranges of values for confirmed cases (red bars and dots). Expert 

forecasts were made on Monday and Tuesday of each week. Light blue and red points represent 

the median of the expert consensus distribution. Dark points represent the eventually observed 

value. Prediction intervals at the 90% level are shown in shaded bars. The 90% prediction 

intervals included the true number of cases on thirteen out of thirteen forecasts. (B.) Relative 

forecast skill for each expert (light dots), the median expert (dark diamond), and the expert 

consensus (dark dot), compared with an “unskilled” forecaster (see Methods). Higher relative 

forecast skill indicates better performance than an “unskilled” forecaster and a zero relative 

forecast skill represents identical performance with an unskilled forecaster. The expert consensus 

prediction outperformed an unskilled forecast in all but two surveys. The median expert showed 

less forecast skill than an unskilled forecaster up until the survey issued on March 23rd 

(forecasting cases for March 29th) and for a survey issued on April 20th. Median expert accuracy 

improved above that of an “unskilled forecaster” (see Methods).  
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Fig 4. (A.) Relative forecast skill for the consensus prediction (diamond), for individual experts 

(light circle), and the median (dark circle) of individual expert’s relative forecast skill for 40 

questions where the truth could be determined. Predictions are grouped by five different types of 

forecasting targets: the number of weeks for an event to occur; the number of confirmed cases 

for one and two weeks ahead and average confirmed cases reported at the state level; number of 

deaths reported at the state level and short term predictions of the number of deaths for the US; 

number of countries reporting cases above a specific threshold; and the number of states 

reporting cases above a specific threshold. (B.) The percentile rank of the consensus prediction 

compared to individual expert predictions classified by forecasting target and type of answer 

requested from experts. A diverse range of questions with measurable outcomes was asked. In 

most cases a consensus distribution led to a more accurate prediction. A consensus most 

improved questions where experts were asked to provide a triplet answer. 
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Supplementary Materials: 

Materials and Methods 

Data Repository 

A publicly available repository with details about questions asked and data on all responses is 

available under a MIT license at https://github.com/tomcm39/COVID19_expert_survey. This is 

referred to below as “the data repository.” 

 

Recruitment of experts 

An expert was defined as a researcher who has spent a substantial amount of time in their 

professional career designing, building, and/or interpreting models to explain and understand 

infectious disease dynamics and/or the associated policy implications in human populations.  

 

Experts were recruited by sending an email asking for their participation, and by soliciting 

participation through online forums for infectious disease modelers. 

 
Experts could participate in our surveys after reading and agreeing to a consent document (Fig. S1). The consent 

states that after an expert completed two surveys, their name and affiliation would be included in public-facing 

summaries. The consent form also said that public releases of the data would ensure individual expert responses 

would remain unidentifiable. A current list of experts can be found in the data repository. 

 

Survey data were collected using the web-based Qualtrics platform (Qualtrics, Seattle, WA) 

through a link sent via email. A link to the survey was also placed on an online forum of 

modelers focused on COVID-19, asking a participant to self-identify as an expert and fill out the 

survey. If the participant was vetted to be an expert by the research team, according to the expert 

definition above, they were added to the list of those that receive weekly emails. Predictions 

were collected from experts starting on the Monday of each week and closing on Tuesday of that 

same week. 

 

The proposed research was deemed not human subjects research by the University of 

Massachusetts-Amherst Institutional Review Board. 

 

Survey methods 

We asked experts questions that required different types of predictions: 

• categorical questions asked experts to pick one out of two (binary) or many options 

(categorical) 

•  probabilistic questions asked experts to assign a probability to two (binary probabilistic) 

or many options (categorical probabilistic) 

• percentile questions asked experts to provide a lower (5th or 10th) percentile, median 

percentile, and upper (90th or 95th) percentile 

• triplet questions asked experts to report a smallest, most likely, and largest possible value 

for a forecasting target of interest.  

A list of all questions and the type of answer required by survey can be found in the data 

repository. 
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We deidentified experts by giving them each a unique “expert-id”. To mask expert identities for 

the data repository, we assigned a different random number between 0 and 5,000 to each expert 

for every survey. 

 

Data on true outcomes predicted by experts were collected from several sources (Table S1). For 

questions that have known, measurable answers, we created a database with the observed 

answers and the resolution criteria – the method used to define the true answer – that can be 

found in the data repository. 

 

Statistical methods 

 

Rounding 

When reported in the text, expert predictions in the manuscript were taken to have two 

significant digits. For example, the number 12 was rounded to 12, 123 was rounded to 120, 1,234 

was rounded to 1,200, 12,345 was rounded to 12,000, etc. We felt that rounding like this 

maintained the relevant precision in estimates for public health practice. Rounding was not 

performed when calculating scores. 

 

Scoring predictions 

Expert predictions were scored against true outcomes using the log score. The log score is a 

proper scoring rule that assigns the log of the probability a forecast placed on the true outcome,  LS	 = 	ln[𝑝(𝑥)], 
where 𝑝(𝑥) is the forecasted probability assigned to the true value 𝑥. A log score of 0, indicating 

the forecast placed a probability of 1 on the truth, is the best score, and a log score of -infinity, 

indicating the forecast placed a probability of 0 on the truth, is the worst score. Experts’ scores 

for measurable questions are stored in the data repository. 

 

We used the concept of an “unskilled forecaster” as a benchmark against which to measure 

predictive performance. For triplet questions, an unskilled forecaster is one who assigns a 

uniform probability mass to all values between the lowest and the highest predictions any expert 

proposed for a particular question. An unskilled percentile question assigned to its lower 

percentile the minimum of all lower percentiles, and to its upper percentile the maximum of all 

largest percentiles. The unskilled median was the median of all median percentiles. For 

probabilistic forecasts, an unskilled forecaster assigns 1/C, where C is the number of categories, 

to each category available as an answer. 

 

A common transformation of the log score is forecast skill, defined as the exponentiated log 

score. Consensus model performance was reported using the forecast skill of the consensus 

model divided by the forecast skill of an unskilled forecaster minus one, or the relative difference 

in forecast skill compared to an unskilled forecaster. A positive difference indicates the model is 

better informed than an unskilled forecaster. 

 

From expert predictions to probabilistic forecasts  

Experts made four types of probabilistic predictions: binary, categorical, percentile, and triplet. 

For binary probabilistic questions, we can define the expert’s prediction of the presence of an 

event as 𝑝. Then an expert’s predictive distribution is Bernoulli(𝑝). A similar approach can be 
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taken for categorical probabilistic questions, and we define an expert’s predictive distribution 

over C different choices as a Multinomial(N=1,	𝑝!,	𝑝",…,	𝑝#) distribution. Percentile questions 

ask experts to provide three percentiles, a low (5th or 10th) percentile, 50th percentile (median), 

and high (90th or 95th) percentile. Specifying three percentiles creates four intervals with 

probabilities corresponding to the percentiles, for example asking for a 5th, 50th, and 95th 

percentile creates four intervals with the following probabilities: 0.05,0.45,0.45, and 0.05 

probability, and the probability prescribed to a value x was  

 𝑃𝐶𝑇2𝑥; 𝑝$%&,	𝑝()**$+	, 𝑝-).-, 𝑞$%&,𝑞()**$+	, 𝑞-).-	5
= 	
⎩⎪⎨
⎪⎧										𝑝$%&/𝑞$%&																			, 𝑥 < 𝑞$%&,𝑝()**$+/(𝑞()**$+ − 	𝑞$%&), 𝑞$%& ≤ 𝑥 < 𝑞()**$+𝑝-).-/(𝑞-).- − 	𝑞()**$+)		, 𝑞()**$+ ≤ 𝑥 < 𝑞-).-𝑝-).- 𝑞-).-⁄ 																										,														𝑥 > 𝑞-).-  

 

 Triangular probability densities (See Fig. S2 for an example) were generated from the smallest 

(𝑠), most likely (𝑚), and largest (𝑙) answer provided by experts as follows 

 

𝑇𝑃𝐷(𝑥; 𝑠,𝑚, 𝑙) =
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧										0																	, 𝑥 < 𝑠2(𝑥 − 𝑠)(𝑙 − 𝑠)(𝑚 − 𝑠) , 𝑠 ≤ 𝑥 < 𝑚2(𝑙 − 𝑠)														 , 𝑥 = 𝑚2(𝑙 − 𝑥)(𝑙 − 𝑠)(𝑙 − 𝑚) , 𝑚 ≤ 𝑥 < 𝑙

0															, 𝑥 > 𝑙
 

 

The above TPD specifies an expert-specific probability distribution over a continuous target. To 

specify a distribution over integers values (𝑥!, 𝑥", ⋯ 𝑥/), we assigned to the value 𝑥0 the integral 

of the continuous TPD from 𝑥0 up to 𝑥01!. Define the CDF of a TPD distribution as CDF234[𝑥]	. 
Then the discretized TPD was defined as 

 𝑝(𝑥)) 	= 	CDF234I𝑥()1!)J 	− 	CDF234I𝑥())J 
 

on the values (𝑥!, 𝑥", ⋯ 𝑥/). 
 

Aggregation 

A consensus distribution for a question (q) was created by taking a weighted average of experts’ 

predictive densities, called a linear pool. We defined a consensus probability distribution for a 

question q, 𝑓7, as  

  𝑓7(𝑥) 	= 	L𝜋2𝑋78 , 𝛽5𝑓78(𝑥)
8
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where  𝑋78 is a design matrix for each question with one row for each expert and columns for 

covariates. The entries in the vector 𝛽 are estimated parameters associated with each column 

(covariate) of 𝑋78, and the matrix product 𝑋78𝛽 determines how weights are assigned to experts. 

The function 𝜋2𝑋78 , 𝛽5 ensures weights are positive and sum to one, and 𝑓78 are expert-specific 

predictive distributions for question q and expert e. A linear pool is a function of how we assign 

weights to experts. We chose a specific functional form for weights 𝜋(𝑋, 𝛽). The complete 

model is  

 𝑓7(𝑥) 	= 	∑𝜋(𝑋78 , 𝛽)𝑓78(𝑥)
𝜋(𝑋78 , 𝛽) = 	 expI𝑋78𝛽J∑ expI𝑋78𝛽J8

 

 

where 𝜋 is the softmax function. An equally-weighted consensus distribution (see Fig. S3. for an 

example of simulated expert predictions to a triplet question and an equally-weighted consensus) 

was created by assigning 𝜋 = !

9:(;+<	%=	+>?+<@A
  or by assigning 𝑋78 = 1, an intercept only model.   

We also examined two additional models. The first model assigned different weights to each 

expert based on their past performance.  

 (𝑋78𝛽)0 =	𝑥0!𝛽! + 𝑥0"𝛽" +⋯+	𝑥0B𝛽B 

where 𝛽8 is a weight corresponding to expert e, and 𝑥08 is equal to 1 when the ith observation 

corresponds to a prediction made by expert e and is 0 otherwise. 

 

The third model assigned weights to experts based on expert’s past performance and on the 

relative entropy of their probabilistic assignment to a question.  (𝑋78𝛽)0 =	𝑥0!𝛽! + 𝑥0"𝛽" +⋯+	𝑥0B𝛽B + 𝑟0𝛽C 

where 𝑟0 is the relative entropy of the ith expert’s prediction and 𝛽C is the corresponding 

parameter.  

 

Relative entropy is defined as an expert’s entropy of the probability distribution assigned to a 

question divided by the entropy of an unskilled forecaster. Heuristically, higher entropy indicates 

that a forecasted distribution is less certain and more uniform in its spreading out of probability 

across possible values. Entropy is defined for a categorical variable as  

 𝐸(𝑥) 	= 	−L log[𝑝(𝑐)]	𝑝(𝑐)
D	∈F

 

 

where the variable x has C categories and for triplet answers was defined as  

 

𝐸(𝑥) 	= 	12 	+  log \(𝑏 − 𝑎)2 _ 
 

where a is the expert’s smallest predicted value and b is the largest predicted value. For 

percentile questions the relative entropy is always one. 
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Weights for methods of the above form were estimated by optimizing the loglikelihood using 

PyMC3. The loglikelihood optimized is 

loglikelihood	 = 	 ∑	
GH!

I:(	J:<K+LA	 ∑	
7!H!

I:(	M:+A@)%9Alog d L fN"+2tAN"5
I:(	O>?+<@A

+H!

g. 
 

Experts who answered a survey for the first time or had no training data were assigned values 

equal to an unskilled forecaster, for example a relative entropy of one (i.e. the score of an 

unskilled forecaster). In later surveys, experts were not required to answer all questions, and in 

these cases, we assigned them the same value as an unskilled forecaster. These assignments 

enabled all responses to have observed data with which to calculate weights in a given week. 

 

Training and testing of weighted linear pools 

All consensus distributions distributed to public health officials and the public were built using 

equally weighted linear pools for all responses.  

 

An equally weighted, expert specific weighting, and expert plus relative entropy weighted 

ensemble model (Table S2) were retrospectively trained on data from the first survey issued on 

2020-02-17 up until the most recent survey issued on May 11th. For each week a survey was 

issued, past data on expert answers and associated log scores (if the truth would have been 

available at that time) were available for training and used to estimate weights to assign experts 

who participated in the present survey. Weights were used to form a consensus distribution and 

this distribution was scored on the true outcome.  

 

Average and 95% confidence intervals of forecast skill were estimated for each expert, an 

expert’s average forecast skill over time was estimated, and how forecast skill compared from 

one survey to the next was estimated (Fig. S4.). The distribution of forecast skill between experts 

is similar, some experts performing marginally better than others on average. Experts performed 

similarly over surveys. Performance dipped on surveys issued on 3/16, 3/23, 3/30 likely due to 

the higher proportion of triplet questions asked. Expert average forecast skill is minimally 

correlated from one survey to the next and may make it difficult to weight experts based on 

performance. Performance amongst expert is similar over surveys, through time, and shows a 

minimal correlation from one survey to the next that is a challenge to assigning consensus 

weights based on expert performance. 

 

Scores from weighted consensus models were not large enough compared to an equally weighted 

model to change to a weighted ensemble. The average weight assigned to each of the 41 experts 

and a table of log scores for measurable questions for each of the three ensemble models is in 

Figure S5.  

 

Scores across the three consensus models are similar. Because weights assigned to the expert 

specific and expert specific plus R.E. model are similar, relative entropy does not appear to add 

information about which experts were more predictive than others. Similar scores between the 

equal weight and expert specific model could be because an expert’s performance on past 

survey’s does not suggest future performance on following surveys.  
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Fig. S1. 

The consent each expert was presented with and had to agree to before taking part in the survey. 

This document was shown for every survey. 
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Fig. S2. 

An example of transforming an expert’s triplet answer (smallest: 10, most likely: 30, largest: 50) to a probabilistic 

distribution.  
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Fig. S3. 

An example of 10 expert answers to a triplet question, their corresponding triangular probability 

distributions (TPDs), and an equally-weighted consensus distribution built from those TPDs.     
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Fig. S4. 

(A. ) The average and 95% confidence interval (CI) forecast skill for each expert’s answers over the course of the 

study from mid-February to mid-May. (B.) For each expert, the average and 95% CI forecast skill across surveys. 

(C.) For every expert, the average forecast skill for the first survey was plotted against the forecast skill of the 

second survey they completed, the second against third, up until the average forecast skill for the second-to-last and 

last survey was plotted. Pearson’s correlation coefficient was computed.  
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Fig. S5. 

(A. ) The average and 95%CI of weights assigned to each expert (from 0-40) over all surveys and questions. The red 

dotted line denotes the average weight assigned from an equally weighted ensemble. Weights were assigned 

according to expert’s historical performance (the expert specific model). (B. ) The difference between the consensus 

score and an unskilled forecaster’s score for all measurable questions (40 questions) from three ensemble models: an 

equally weighted ensemble, an ensemble that assigned weights based on expert’s past scores (Expert Spec), and an 

ensemble that assigned weights based on expert’s past scores and the relative entropy of expert’s answers to the 

most recent survey questions (Exp + R.E.). Weights assigned to experts based on past performance are not 

significantly different than the weights assigned by an equally weighted ensemble. The similarities in weighting 

translated to similar performance between all three ensembles. 
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Survey Date issued Number of 

participants 

Number of 

questions asked  

Sources for truth 

1 2020-02-17 15 5 WHO 

2 2020-02-24 17 6 WHO 

3 2020-03-02 17 6 WHO/CDC 

4 2020-03-09 21 6 CDC 

5 2020-03-16 19 6 CDC/COVIDTracker 

6 2020-03-24 20 6 COVIDTracker 

7 2020-03-30 18 7 COVIDTracker 

8 2020-04-06 20 5 COVIDTracker 

9 2020-04-13 20 6 COVIDTracker 

10 2020-04-20 22 7 COVIDTracker/NYC 

DOH 

Table S1. 

A listing of survey numbers, the date they were issued, information on expert participation, and 

the database(s) used to collect ground truth. 
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Model Number Covariates 

Equal 1 (equal weights) 

Expert-specific Expert 

Expert-specific plus Relative Entropy Expert , Relative entropy 

 

Table S2. 
Model numbers and the covariates used to define the design matrix X to weight experts. 
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